1
|
Amado P, Zegers J, Yarur HE, Gysling K. Transcriptional Regulation, Signaling Pathways, and Subcellular Localization of Corticotropin-Releasing Factor Receptors in the Central Nervous System. Mol Pharmacol 2022; 102:280-287. [PMID: 36167424 DOI: 10.1124/molpharm.121.000476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Corticotropin-releasing factor (CRF) receptors CRF-R1 and CRF-R2 are differentially distributed in body tissues, and although they respond differentially to stimuli due to their association with different signaling pathways, both receptors have a fundamental role in the response and adaptation to stressful stimuli. Here, we summarize the reported data on different forms of CRF-R1 and CRF-R2 regulation as well as on their subcellular localization. Although the presence of R1 has been described at pre- and postsynaptic sites, R2 is mainly associated with postsynaptic densities. Different studies have provided valuable information on how these receptors regulate responses at a central level, elucidating different and sometimes synergistic roles in response to stress, but despite their high sequence identity, both receptors have been described to be differentially regulated both by their ligands and by transcriptional factors. To date, and from the point of view of their promoter sequences, it has not yet been reported how the different consensus sites identified in silico could be modulating the transcriptional regulation and expression of the receptors under different conditions, which strongly limits the full understanding of their differential functions, providing a wide field to increase and expand the study of the regulation and role of CRF receptors in the CRF system. SIGNIFICANCE STATEMENT: A large number of physiological functions related to the organization of the stress response in different body tissues are associated with the corticotropin-releasing factor system. This system also plays a relevant role in depression and anxiety disorders, as well as being a direct connection between stress and addiction. A better understanding of how the receptors of this system are regulated would help to expand the understanding of how these receptors respond differently to both drugs and stressful stimuli.
Collapse
Affiliation(s)
- Paula Amado
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Zegers
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Urocortin Role in Ischemia Cardioprotection and the Adverse Cardiac Remodeling. Int J Mol Sci 2021; 22:ijms222212115. [PMID: 34829997 PMCID: PMC8622004 DOI: 10.3390/ijms222212115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Despite the considerable progress in strategies of myocardial protection, ischemic heart diseases (IHD) and consequent heart failure (HF) remain the main cause of mortality worldwide. Several procedures are used routinely to guarantee the prompt and successful reestablishment of blood flow to preserve the myocardial viability of infarcted hearts from ischemia injuries. However, ischemic heart reperfusion/revascularization triggers additional damages that occur when oxygen-rich blood re-enters the vulnerable myocardial tissue, which is a phenomenon known as ischemia and reperfusion (I/R) syndrome. Complications of I/R injuries provoke the adverse cardiac remodeling, involving inflammation, mishandling of Ca2+ homeostasis, apoptotic genes activation, cardiac myocytes loss, etc., which often progress toward HF. Therefore, there is an urgent need to develop new cardioprotective therapies for IHD and HF. Compelling evidence from animal studies and pilot clinical trials in HF patients suggest that urocortin (Ucn) isoforms, which are peptides associated with stress and belonging to the corticotropin releasing factor family, have promising potential to improve cardiovascular functions by targeting many signaling pathways at different molecular levels. This review highlights the current knowledge on the role of urocortin isoforms in cardioprotection, focusing on its acute and long-term effects.
Collapse
|
3
|
Borg ML, Massart J, De Castro Barbosa T, Archilla-Ortega A, Smith JAB, Lanner JT, Alsina-Fernandez J, Yaden B, Culver AE, Karlsson HKR, Brozinick JT, Zierath JR. Modified UCN2 peptide treatment improves skeletal muscle mass and function in mouse models of obesity-induced insulin resistance. J Cachexia Sarcopenia Muscle 2021; 12:1232-1248. [PMID: 34342159 PMCID: PMC8517345 DOI: 10.1002/jcsm.12746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Type 2 diabetes and obesity are often seen concurrently with skeletal muscle wasting, leading to further derangements in function and metabolism. Muscle wasting remains an unmet need for metabolic disease, and new approaches are warranted. The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin releasing factor receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance, glucose metabolism, and muscle mass. The aim of this study was to investigate the effects of modified UCN2 peptides as a pharmaceutical therapy to counteract the loss of skeletal muscle mass associated with obesity and casting immobilization. METHODS High-fat-fed mice (C57Bl/6J; 26 weeks old) and ob/ob mice (11 weeks old) were injected daily with a PEGylated (Compound A) and non-PEGylated (Compound B) modified human UCN2 at 0.3 mg/kg subcutaneously for 14 days. A separate group of chow-fed C57Bl/6J mice (12 weeks old) was subjected to hindlimb cast immobilization and, after 1 week, received daily injections with Compound A. In vivo functional tests were performed to measure protein synthesis rates and skeletal muscle function. Ex vivo functional and molecular tests were performed to measure contractile force and signal transduction of catabolic and anabolic pathways in skeletal muscle. RESULTS Skeletal muscles (extensor digitorum longus, soleus, and tibialis anterior) from high-fat-fed mice treated with Compound A were ~14% heavier than muscles from vehicle-treated mice. Chronic treatment with modified UCN2 peptides altered the expression of structural genes and transcription factors in skeletal muscle in high-fat diet-induced obesity including down-regulation of Trim63 and up-regulation of Nr4a2 and Igf1 (P < 0.05 vs. vehicle). Signal transduction via both catabolic and anabolic pathways was increased in tibialis anterior muscle, with increased phosphorylation of ribosomal protein S6 at Ser235/236 , FOXO1 at Ser256 , and ULK1 at Ser317 , suggesting that UCN2 treatment modulates protein synthesis and degradation pathways (P < 0.05 vs. vehicle). Acutely, a single injection of Compound A in drug-naïve mice had no effect on the rate of protein synthesis in skeletal muscle, as measured via the surface sensing of translation method, while the expression of Nr4a3 and Ppargc1a4 was increased (P < 0.05 vs. vehicle). Compound A treatment prevented the loss of force production from disuse due to casting. Compound B treatment increased time to fatigue during ex vivo contractions of fast-twitch extensor digitorum longus muscle. Compound A and B treatment increased lean mass and rates of skeletal muscle protein synthesis in ob/ob mice. CONCLUSIONS Modified human UCN2 is a pharmacological candidate for the prevention of the loss of skeletal muscle mass associated with obesity and immobilization.
Collapse
Affiliation(s)
- Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais De Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Adrià Archilla-Ortega
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathon A B Smith
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Section for Molecular Muscle Physiology and Pathophysiology, Karolinska Institutet, Stockholm, Sweden
| | | | - Benjamin Yaden
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Alexander E Culver
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Håkan K R Karlsson
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Popov SV, Prokudina ES, Mukhomedzyanov AV, Naryzhnaya NV, Ma H, Zurmanova JM, der Ven PFMV, Maslov LN. Cardioprotective and Vasoprotective Effects of Corticotropin-Releasing Hormone and Urocortins: Receptors and Signaling. J Cardiovasc Pharmacol Ther 2021; 26:575-584. [PMID: 34351805 DOI: 10.1177/1074248420985301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite the recent progress in research and therapy, cardiovascular diseases are still the most common cause of death worldwide, thus new approaches are still needed. The aim of this review is to highlight the cardioprotective potential of urocortins and corticotropin-releasing hormone (CRH) and their signaling. It has been documented that urocortins and CRH reduce ischemic and reperfusion (I/R) injury, prevent reperfusion ventricular tachycardia and fibrillation, and improve cardiac contractility during reperfusion. Urocortin-induced increase in cardiac tolerance to I/R depends mainly on the activation of corticotropin-releasing hormone receptor-2 (CRHR2) and its downstream pathways including tyrosine kinase Src, protein kinase A and C (PKA, PKCε) and extracellular signal-regulated kinase (ERK1/2). It was discussed the possibility of the involvement of interleukin-6, Janus kinase-2 and signal transducer and activator of transcription 3 (STAT3) and microRNAs in the cardioprotective effect of urocortins. Additionally, phospholipase-A2 inhibition, mitochondrial permeability transition pore (MPT-pore) blockade and suppression of apoptosis are involved in urocortin-elicited cardioprotection. Chronic administration of urocortin-2 prevents the development of postinfarction cardiac remodeling. Urocortin possesses vasoprotective and vasodilator effect; the former is mediated by PKC activation and prevents an impairment of endothelium-dependent coronary vasodilation after I/R in the isolated heart, while the latter includes both cAMP and cGMP signaling and its downstream targets. As CRHR2 is expressed by both cardiomyocytes and vascular endothelial cells. Urocortins mediate both endothelium-dependent and -independent relaxation of coronary arteries.
Collapse
Affiliation(s)
- Sergey V Popov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Ekaterina S Prokudina
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Alexander V Mukhomedzyanov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| | - Huijie Ma
- Department of Physiology, 12553Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Jitka M Zurmanova
- Department of Physiology, Faculty of Science, 37740Charles University, Prague, Czech Republic
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, 9374University of Bonn, Bonn, Germany
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, 164253Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russia
| |
Collapse
|
5
|
Feng MH, Li ZX, Wang Q, Manyande A, Li YJ, Li SY, Xu W, Xiang HB. Neurochemical alterations of different cerebral regions in rats with myocardial ischemia-reperfusion injury based on proton nuclear magnetic spectroscopy analysis. Aging (Albany NY) 2020; 13:2294-2309. [PMID: 33318304 PMCID: PMC7880342 DOI: 10.18632/aging.202250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies have demonstrated a complex and dynamic neural crosstalk between the heart and brain. A heart-brain interaction has been described regarding cardiac ischemia, but the cerebral metabolic mechanisms involved are unknown. METHODS Male Sprague Dawley rats were randomly allocated into 2 groups: those receiving myocardial ischemia-reperfusion surgery (IR group, n =10) and surgical controls (Con group, n=10). These patterns of metabolic abnormalities in different brain regions were assessed using proton magnetic resonance spectroscopy (PMRS). RESULTS Results assessed by echocardiography showed resultant cardiac dysfunction following heart ischemia-reperfusion. Compared with the control group, the altered metabolites in the IR group were taurine and choline, and differences mainly occurred in the thalamus and brainstem. CONCLUSIONS Alterations in cerebral taurine and choline are important findings offering new avenues to explore neuroprotective strategies for myocardial ischemia-reperfusion injury. These results provide preliminary evidence for understanding the cerebral metabolic process underlying myocardial ischemia-reperfusion injury in rats.
Collapse
Affiliation(s)
- Mao-Hui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.,The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Province, Key Laboratory of Tumor Biological Behavior of Hubei Province, Wuhan, China
| | - Zhi-Xiao Li
- Departments of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wang
- Departments of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Yu-Juan Li
- Departments of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, China
| | - Weiguo Xu
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Bing Xiang
- Departments of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Simpson SJS, Smith LIF, Jones PM, Bowe JE. UCN2: a new candidate influencing pancreatic β-cell adaptations in pregnancy. J Endocrinol 2020; 245:247-257. [PMID: 32106091 PMCID: PMC7159164 DOI: 10.1530/joe-19-0568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
The corticotropin-releasing hormone (CRH) family of peptides, including urocortin (UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating the physiological and behaviour responses to stress indirectly, via the hypothalamic-pituitary-adrenal (HPA) axis. More recently, these peptides have been implicated in diverse roles in peripheral organs through direct signalling, including in placental and pancreatic islet physiology. CRH has been shown to stimulate insulin release through activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the physiological significance of this is unknown. We have previously reported that during mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting that these peptides may play a role in various biological functions associated with pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state to compensate for the physiological increase in maternal insulin resistance. In the current study, we show that mouse pregnancy is associated with increased circulating levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose tolerance was comparable to that displayed with specific CRHR2 blockade and not with specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely signal mediating this.
Collapse
Affiliation(s)
- Sian J S Simpson
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
- Correspondence should be addressed to S J S Simpson:
| | - Lorna I F Smith
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - James E Bowe
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| |
Collapse
|
7
|
Gioldasi S, Karvela A, Rojas-Gil AP, Rodi M, de Lastic AL, Thomas I, Spiliotis BE, Mouzaki A. Metabolic Association between Leptin and the Corticotropin Releasing Hormone. Endocr Metab Immune Disord Drug Targets 2020; 19:458-466. [PMID: 30727936 PMCID: PMC7360915 DOI: 10.2174/1871530319666190206165626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 10/31/2018] [Accepted: 12/27/2018] [Indexed: 01/29/2023]
Abstract
Objective In healthy individuals, leptin is produced from adipose tissue and is secreted into the circulation to communicate energy balance status to the brain and control fat metabolism. Corticotropin-Releasing Hormone (CRH) is synthesized in the hypothalamus and regulates stress responses. Among the many adipokines and hormones that control fat metabolism, leptin and CRH both curb appetite and inhibit food intake. Despite numerous reports on leptin and CRH properties and function, little has been actually shown about their association in the adipose tissue environment. Methods In this article, we summarized the salient information on leptin and CRH in relation to metabolism. We also investigated the direct effect of recombinant CRH on leptin secretion by primary cultures of human adipocytes isolated from subcutaneous abdominal adipose tissue of 7 healthy children and adolescents, and measured CRH and leptin levels in plasma collected from peripheral blood of 24 healthy children and adolescents to assess whether a correlation exists between CRH and leptin levels in the periphery. Results and Conclusion The available data indicate that CRH exerts a role in the regulation of leptin in human adipocytes. We show that CRH downregulates leptin production by mature adipocytes and that a strong negative correlation exists between CRH and leptin levels in the periphery, and suggest the possible mechanisms of CRH control of leptin. Delineation of CRH control of leptin production by adipocytes may explain unknown pathogenic mechanisms linking stress and metabolism.
Collapse
Affiliation(s)
- Sofia Gioldasi
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Alexia Karvela
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | | | - Maria Rodi
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Anne-Lise de Lastic
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Iason Thomas
- Department of Allergy, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Bessie E Spiliotis
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Medical School, University of Patras, Patras, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
8
|
Cardiovascular Effects of Urocortin-2: Pathophysiological Mechanisms and Therapeutic Potential. Cardiovasc Drugs Ther 2019; 33:599-613. [DOI: 10.1007/s10557-019-06895-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Mapping Changes of Whole Brain Blood Flow in Rats with Myocardial Ischemia/Reperfusion Injury Assessed by Positron Emission Tomography. Curr Med Sci 2019; 39:653-657. [DOI: 10.1007/s11596-019-2087-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/06/2019] [Indexed: 01/02/2023]
|
10
|
Role of corticotropin-releasing factor on bladder function in rats with psychological stress. Sci Rep 2019; 9:9828. [PMID: 31285518 PMCID: PMC6614552 DOI: 10.1038/s41598-019-46267-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/25/2019] [Indexed: 12/27/2022] Open
Abstract
Stress-related peptide corticotropin-releasing factor (CRF) and CRF-related peptides are distributed in the peripheral viscera such as the bladder. We investigated the contribution of psychological stress (PS) and CRF on bladder function. Male rats received sham stress (SS) or PS using a communication box method for 120 min every day for 7 days. One group of rats received the intraperitoneal CRF-R1 antagonist antalarmin for 7 days during stress exposure. Mean voided volume per micturition was significantly lower in PS rats compared to SS rats, which was antagonized by antalarmin treatment. Increases in plasma and bladder CRF, and mRNA expressions of bladder CRF, CRF-R1, and M2/3 muscarinic receptors, were found in PS rats. CRF did not influence bladder contraction in itself; however, stress increased the response of muscarinic contraction of bladder strips. These changes were antagonized by antalarmin treatment. In conclusion, PS reinforces M3 receptor-mediated contractions via CRF-R1, resulting in bladder storage dysfunction.
Collapse
|
11
|
Borg ML, Massart J, Schönke M, De Castro Barbosa T, Guo L, Wade M, Alsina-Fernandez J, Miles R, Ryan A, Bauer S, Coskun T, O'Farrell E, Niemeier EM, Chibalin AV, Krook A, Karlsson HK, Brozinick JT, Zierath JR. Modified UCN2 Peptide Acts as an Insulin Sensitizer in Skeletal Muscle of Obese Mice. Diabetes 2019; 68:1403-1414. [PMID: 31010957 DOI: 10.2337/db18-1237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/08/2019] [Indexed: 11/13/2022]
Abstract
The neuropeptide urocortin 2 (UCN2) and its receptor corticotropin-releasing hormone receptor 2 (CRHR2) are highly expressed in skeletal muscle and play a role in regulating energy balance and glucose metabolism. We investigated a modified UCN2 peptide as a potential therapeutic agent for the treatment of obesity and insulin resistance, with a specific focus on skeletal muscle. High-fat-fed mice (C57BL/6J) were injected daily with a PEGylated UCN2 peptide (compound A) at 0.3 mg/kg subcutaneously for 14 days. Compound A reduced body weight, food intake, whole-body fat mass, and intramuscular triglycerides compared with vehicle-treated controls. Furthermore, whole-body glucose tolerance was improved by compound A treatment, with increased insulin-stimulated Akt phosphorylation at Ser473 and Thr308 in skeletal muscle, concomitant with increased glucose transport into extensor digitorum longus and gastrocnemius muscle. Mechanistically, this is linked to a direct effect on skeletal muscle because ex vivo exposure of soleus muscle from chow-fed lean mice to compound A increased glucose transport and insulin signaling. Moreover, exposure of GLUT4-Myc-labeled L6 myoblasts to compound A increased GLUT4 trafficking. Our results demonstrate that modified UCN2 peptides may be efficacious in the treatment of type 2 diabetes by acting as an insulin sensitizer in skeletal muscle.
Collapse
Affiliation(s)
- Melissa L Borg
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Julie Massart
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Milena Schönke
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Thais De Castro Barbosa
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Lili Guo
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Mark Wade
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | | | - Rebecca Miles
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Andrew Ryan
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Steve Bauer
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Tamer Coskun
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Elizabeth O'Farrell
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Evan M Niemeier
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan K Karlsson
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph T Brozinick
- Lilly Research Laboratories, Division of Eli Lilly and Company, Indianapolis, IN
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Abstract
The identification of corticotropin-releasing hormone (CRH) has led to the discovery of a growing family of ligands and receptors. CRH receptor 1 (CRHR1) and CRHR2 are mammalian G-protein coupled receptors (GPCRs) with high affinity for CRH and the CRH family of peptides. CRHR1 is predominantly expressed in the brain and plays a vital role in the hypothalamic-pituitary-adrenal (HPA) axis stress responses by secreting adrenal corticotropic hormone (ACTH). CRHR2 is predominantly expressed in the heart, and a CRHR2-specific ligand, urocortin 2 (UCN2), shows positive cardiac chronotropic and inotropic effects through 3´,5´-cyclic adenosine monophosphate (cAMP) signaling in response to CRHR2-mediated Gαs activation in mice and humans. Central administration of the CRH family of peptides increases mean arterial pressure through CRHR1 activation, whereas peripheral administration of the peptides decreases mean arterial pressure through CRHR2 activation. These observations have led to further investigations of CRHR2 as an important and unique GPCR in the physiological and pathological functioning of the cardiovascular (CV) system. Moreover, recent clinical trials demonstrate CRHR2 as a potentially therapeutic target in the treatment of heart failure. We present recent reviews of the role of CRHRs in basic CV physiology and in the pathophysiology of CV diseases.
Collapse
Affiliation(s)
- Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine
| | | |
Collapse
|
13
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Santacruz L, Arciniegas AJL, Darrabie M, Mantilla JG, Baron RM, Bowles DE, Mishra R, Jacobs DO. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation. Physiol Rep 2018; 5:5/16/e13382. [PMID: 28821596 PMCID: PMC5582266 DOI: 10.14814/phy2.13382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/18/2017] [Indexed: 12/23/2022] Open
Abstract
Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing Vmax and Km. Pharmacological activation of AMP‐activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF‐1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF‐1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia.
Collapse
Affiliation(s)
- Lucia Santacruz
- Department of Molecular Biology and Biochemistry, The University of Texas Medical Branch, Galveston, Texas .,Department of Natural Sciences, Bowie State University, Bowie, Maryland
| | - Antonio Jose Luis Arciniegas
- Department of Medicine, Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | - Rebecca M Baron
- Department of Medicine, Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dawn E Bowles
- Duke University Medical Center, Durham, North Carolina
| | | | - Danny O Jacobs
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
15
|
Vairamani K, Wang HS, Medvedovic M, Lorenz JN, Shull GE. RNA SEQ Analysis Indicates that the AE3 Cl -/HCO 3- Exchanger Contributes to Active Transport-Mediated CO 2 Disposal in Heart. Sci Rep 2017; 7:7264. [PMID: 28779178 PMCID: PMC5544674 DOI: 10.1038/s41598-017-07585-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
Loss of the AE3 Cl−/HCO3− exchanger (Slc4a3) in mice causes an impaired cardiac force-frequency response and heart failure under some conditions but the mechanisms are not known. To better understand the functions of AE3, we performed RNA Seq analysis of AE3-null and wild-type mouse hearts and evaluated the data with respect to three hypotheses (CO2 disposal, facilitation of Na+-loading, and recovery from an alkaline load) that have been proposed for its physiological functions. Gene Ontology and PubMatrix analyses of differentially expressed genes revealed a hypoxia response and changes in vasodilation and angiogenesis genes that strongly support the CO2 disposal hypothesis. Differential expression of energy metabolism genes, which indicated increased glucose utilization and decreased fatty acid utilization, were consistent with adaptive responses to perturbations of O2/CO2 balance in AE3-null myocytes. Given that the myocardium is an obligate aerobic tissue and consumes large amounts of O2, the data suggest that loss of AE3, which has the potential to extrude CO2 in the form of HCO3−, impairs O2/CO2 balance in cardiac myocytes. These results support a model in which the AE3 Cl−/HCO3− exchanger, coupled with parallel Cl− and H+-extrusion mechanisms and extracellular carbonic anhydrase, is responsible for active transport-mediated disposal of CO2.
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - John N Lorenz
- Department of Cellular and Molecular Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267, USA.
| |
Collapse
|
16
|
Schubert KM, Qiu J, Blodow S, Wiedenmann M, Lubomirov LT, Pfitzer G, Pohl U, Schneider H. The AMP-Related Kinase (AMPK) Induces Ca
2+
-Independent Dilation of Resistance Arteries by Interfering With Actin Filament Formation. Circ Res 2017; 121:149-161. [DOI: 10.1161/circresaha.116.309962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Rationale:
Decreasing Ca
2+
sensitivity of vascular smooth muscle (VSM) allows for vasodilation without lowering of cytosolic Ca
2+
. This may be particularly important in states requiring maintained dilation, such as hypoxia. AMP-related kinase (AMPK) is an important cellular energy sensor in VSM. Regulation of Ca
2+
sensitivity usually is attributed to myosin light chain phosphatase activity, but findings in non-VSM identified changes in the actin cytoskeleton. The potential role of AMPK in this setting is widely unknown.
Objective:
To assess the influence of AMPK on the actin cytoskeleton in VSM of resistance arteries with regard to potential Ca
2+
desensitization of VSM contractile apparatus.
Methods and Results:
AMPK induced a slowly developing dilation at unchanged cytosolic Ca
2+
levels in potassium chloride–constricted intact arteries isolated from mouse mesenteric tissue. This dilation was not associated with changes in phosphorylation of myosin light chain or of myosin light chain phosphatase regulatory subunit. Using ultracentrifugation and confocal microscopy, we found that AMPK induced depolymerization of F-actin (filamentous actin). Imaging of arteries from LifeAct mice showed F-actin rarefaction in the midcellular portion of VSM. Immunoblotting revealed that this was associated with activation of the actin severing factor cofilin. Coimmunoprecipitation experiments indicated that AMPK leads to the liberation of cofilin from 14-3-3 protein.
Conclusions:
AMPK induces actin depolymerization, which reduces vascular tone and the response to vasoconstrictors. Our findings demonstrate a new role of AMPK in the control of actin cytoskeletal dynamics, potentially allowing for long-term dilation of microvessels without substantial changes in cytosolic Ca
2+
.
Collapse
Affiliation(s)
- Kai Michael Schubert
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Jiehua Qiu
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Stephanie Blodow
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Margarethe Wiedenmann
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Lubomir T. Lubomirov
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Gabriele Pfitzer
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Ulrich Pohl
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Holger Schneider
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| |
Collapse
|
17
|
Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, Kaur H, Eguchi S, Sakaguchi T, Ishihama S, Kikuchi R, Unno K, Matsushita K, Ishikawa S, Offermanns S, Murohara T. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med 2017; 214:1877-1888. [PMID: 28550160 PMCID: PMC5502432 DOI: 10.1084/jem.20161924] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/09/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Prognosis of patients with chronic heart failure remains poor, emphasizing the need to identify additional pathophysiological factors. Tsuda et al. show that Crhr2 activation causes cardiac dysfunction and suggest Crhr2 blockade is a promising therapeutic strategy for chronic heart failure. Heart failure occurs when the heart is unable to effectively pump blood and maintain tissue perfusion. Despite numerous therapeutic advancements over previous decades, the prognosis of patients with chronic heart failure remains poor, emphasizing the need to identify additional pathophysiological factors. Here, we show that corticotropin releasing hormone receptor 2 (Crhr2) is a G protein–coupled receptor highly expressed in cardiomyocytes and continuous infusion of the Crhr2 agonist, urocortin 2 (Ucn2), reduced left ventricular ejection fraction in mice. Moreover, plasma Ucn2 levels were 7.5-fold higher in patients with heart failure compared to those in healthy controls. Additionally, cardiomyocyte-specific deletion of Crhr2 protected mice from pressure overload-induced cardiac dysfunction. Mice treated with a Crhr2 antagonist lost maladaptive 3′-5′-cyclic adenosine monophosphate (cAMP)–dependent signaling and did not develop heart failure in response to overload. Collectively, our results indicate that constitutive Crhr2 activation causes cardiac dysfunction and suggests that Crhr2 blockade is a promising therapeutic strategy for patients with chronic heart failure.
Collapse
Affiliation(s)
- Takuma Tsuda
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Mikito Takefuji
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kazuhiko Kotani
- Center for Community Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Harmandeep Kaur
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Shunsuke Eguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Teruhiro Sakaguchi
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Sohta Ishihama
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan
| | - Kazumasa Unno
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Shizukiyo Ishikawa
- Center for Community Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University School of Medicine, Nagoya, Japan
| |
Collapse
|
18
|
Wu D, Wang J, Wang H, Ji A, Li Y. Protective roles of bioactive peptides during ischemia-reperfusion injury: From bench to bedside. Life Sci 2017; 180:83-92. [PMID: 28527782 DOI: 10.1016/j.lfs.2017.05.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/14/2022]
Abstract
Ischemia-reperfusion (I/R) is a well-known pathological condition which may lead to disability and mortality. I/R injury remains an unresolved and complicated situation in a number of clinical conditions, such as cardiac arrest with successful reanimation, as well as ischemic events in brain and heart. Peptides have many attractive advantages which make them suitable candidate drugs in treating I/R injury, such as low toxicity and immunogenicity, good solubility property, distinct tissue distribution pattern, and favorable pharmacokinetic profile. An increasing number of studies indicate that peptides could protect against I/R injury in many different organs and tissues. Peptides also face several therapeutic challenges that limit their clinical application. In this review, we present the mechanisms of action of peptides in reducing I/R injury, as well as further discuss modification strategies to improve the functional properties of bioactive peptides.
Collapse
Affiliation(s)
- Dongdong Wu
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Jun Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Honggang Wang
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China
| | - Ailing Ji
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| | - Yanzhang Li
- Henan University School of Basic Medical Sciences, Kaifeng 475004, Henan, China; Institute of Environmental Medicine, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
19
|
Liew OW, Yandle TG, Chong JPC, Ng YX, Frampton CM, Ng TP, Lam CSP, Richards AM. High-Sensitivity Sandwich ELISA for Plasma NT-proUcn2: Plasma Concentrations and Relationship to Mortality in Heart Failure. Clin Chem 2016; 62:856-65. [DOI: 10.1373/clinchem.2015.252932] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Abstract
BACKGROUND
Urocortin 2 (Ucn2) has powerful hemodynamic, renal, and neurohormonal actions and likely participates in normal circulatory homeostasis and the compensatory response to heart failure (HF). A validated assay for endogenous circulating Ucn2 would facilitate investigations into Ucn2 physiology and elucidate its derangement and potential as a biomarker in heart disease.
METHOD
We developed a chemiluminescence-based sandwich ELISA to measure plasma N-terminal (NT)-proUcn2 in non-HF patients (control; n = 160) and HF patients with reduced (HFREF; n = 134) and preserved (HFPEF; n = 121) left ventricular ejection fraction (LVEF).
RESULTS
The ELISA had a limit of detection of 8.47 ng/L (1.52 pmol/L) and working range of 23.8–572 ng/L. Intra- and interassay CV and total error were 4.8, 16.2, and 17.7%, respectively. The median (interquartile range) plasma NT-proUcn2 concentration in controls was 112 (86–132) ng/L. HFREF, HFPEF, and all HF plasma concentrations were significantly increased [117 (98–141) ng/L, P = 0.0007; 119 (93–136) ng/L, P = 0.0376, and 119 (97–140) ng/L, P = 0.001] compared with controls but did not differ significantly between HFREF and HFPEF. NT-proUcn2 was modestly related to age (r = 0.264, P = 0.001) and cardiac troponin T (r = 0.258, P = 0.001) but not N-terminal pro-B-type natriuretic peptide, body mass index, LVEF, or estimated glomerular filtration rate. On multivariate analysis, plasma NT-proUcn2 was independently and inversely related to 2-year mortality in HF.
CONCLUSIONS
The validated ELISA measured human NT-proUcn2 in plasma and showed modest but significant increases in HF patients compared with controls. In HF, the unusual inverse relationship between plasma NT-proUcn2 and 2-year mortality portends potential prognostic value but requires further corroboration.
Collapse
Affiliation(s)
- Oi Wah Liew
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Timothy G Yandle
- Christchurch Heart Institute, University of Otago, Otago, New Zealand
| | - Jenny P C Chong
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Yan Xia Ng
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | | | - Tze Pin Ng
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Carolyn S P Lam
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
- Christchurch Heart Institute, University of Otago, Otago, New Zealand
| |
Collapse
|
20
|
Abstract
AMP-activated protein kinase (AMPK) is an important mediator in maintaining cellular energy homeostasis. AMPK is activated in response to a shortage of energy. Once activated, AMPK can promote ATP production and regulate metabolic energy. AMPK is a known target for treating metabolic syndrome and type-2 diabetes; however, recently AMPK is emerging as a possible metabolic tumor suppressor and target for cancer prevention and treatment. Recent epidemiological studies indicate that treatment with metformin, an AMPK activator reduces the incidence of cancer. In this article we review the role of AMPK in regulating inflammation, metabolism, and other regulatory processes with an emphasis on cancer, as well as, discuss the potential for targeting AMPK to treat various types of cancer. Activation of AMPK has been found to oppose tumor progression in several cancer types and offers a promising cancer therapy. This review evaluates the evidence linking AMPK with tumor suppressor function and analyzes the molecular mechanisms involved. AMPK activity opposes tumor development and progression in part by regulating inflammation and metabolism.
Collapse
|
21
|
AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation. J Mol Cell Cardiol 2016; 91:188-200. [PMID: 26772531 DOI: 10.1016/j.yjmcc.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general term encompassing a plethora of pathologies that span all systems and is marked by increased deposition of collagen. Injury of variable etiology gives rise to complex cascades involving several cell-types and molecular signals, leading to the excessive accumulation of extracellular matrix that promotes fibrosis and eventually leads to organ failure. Cardiac fibrosis is a dynamic process associated notably with ischemia, hypertrophy, volume- and pressure-overload, aging and diabetes mellitus. It has profoundly deleterious consequences on the normal architecture and functioning of the myocardium and is associated with considerable mortality and morbidity. The AMP-activated protein kinase (AMPK) is a ubiquitously expressed cellular energy sensor and an essential component of the adaptive response to cardiomyocyte stress that occurs during ischemia. Nevertheless, its actions extend well beyond its energy-regulating role and it appears to possess an essential role in regulating fibrosis of the myocardium. In this review paper, we will summarize the main elements and crucial players of cardiac fibrosis. In addition, we will provide an overview of the diverse roles of AMPK in the heart and discuss in detail its implication in cardiac fibrosis. Lastly, we will highlight the recently published literature concerning AMPK-targeting current therapy and novel strategies aiming to attenuate fibrosis.
Collapse
|
22
|
Wu MP, Zhang YS, Zhou QM, Xiong J, Dong YR, Yan C. Higenamine protects ischemia/reperfusion induced cardiac injury and myocyte apoptosis through activation of β2-AR/PI3K/AKT signaling pathway. Pharmacol Res 2015; 104:115-23. [PMID: 26746354 DOI: 10.1016/j.phrs.2015.12.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/08/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
Cardiomyocyte apoptosis contributes to ischemic cardiac injury and the development of heart failure. Higenamine is a key component of the Chinese herb aconite root that has been prescribed for treating symptoms of heart failure for thousands of years in the oriental Asian countries. It has been shown that higenamine has anti-apoptotic effects in a few cell types including cardiomyocytes. However, the pharmacological target and molecular mechanism of higenamine in the heart are still not fully illustrated. Herein, we report that higenamine protected myocyte apoptosis and ischemia/reperfusion (I/R) injury through selective activation of beta2-adrenergic receptor (β2-AR). In particular, we show that higenamine significantly reduced I/R-induced myocardial infarction in mice. In both primary neonatal rat and adult mouse ventricular myocytes, we show higenamine inhibited cell apoptosis and also reduced biochemical markers of apoptosis such as cleaved caspase 3 and 9. More importantly, we show that the anti-apoptotic effects of higenamine in cardiomyocytes were completely abolished by β2-AR but not β1-AR antagonism. Furthermore, we confirmed that higenamine attenuated I/R-induced myocardial injury and reduced cleaved caspases in a β2-AR dependent manner in intact mouse hearts. Higenamine stimulated AKT phosphorylation and required PI3K activation for the anti-apoptotic effect in cardiomyocytes. These findings together suggest that anti-apoptotic and cardiac protective effects of higenamine are mediated by the β2-AR/PI3K/AKT cascade.
Collapse
Affiliation(s)
- Mei-ping Wu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, United States.
| | - Yi-shuai Zhang
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, United States.
| | - Qian-mei Zhou
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jian Xiong
- Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China; Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, United States.
| | - Yao-rong Dong
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave, Box CVRI, Rochester, NY 14642, United States; Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
23
|
Chen S, Wang Z, Xu B, Mi X, Sun W, Quan N, Wang L, Chen X, Liu Q, Zheng Y, Leng J, Li J. The Modulation of Cardiac Contractile Function by the Pharmacological and Toxicological Effects of Urocortin2. Toxicol Sci 2015; 148:581-93. [PMID: 26342213 PMCID: PMC5009442 DOI: 10.1093/toxsci/kfv202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Urocortin2 (Ucn2) has been revealed to enhance cardiac function in heart failure. However, the pharmacological and toxicological effects of Ucn2 on cardiomyocytes are incompletely understood. In this study, we investigated the possible mechanisms of Ucn2 on mediating the contractility of cardiomyocytes. Mechanical properties and intracellular Ca(2+) properties were measured in isolated cardiomyocytes from different treatment groups. The stress signaling was evaluated using Western blot. The results demonstrated that Ucn2 induced maximal velocity of shortening (+dL/dt), peak height, peak shortening (PS) amplitude, maximal velocity of relengthening (-dL/dt), accompanied by a significant rise in intracellular Ca(2+) level and a fall of the mean time constant of Ca(2+) transient decay (Tau) in WT cardiomyocytes. However, these effects were abolished by preincubation of type 2 CRF receptors (CRFR2) antagonist anti-sauvagine 30 (a-SVG-30). We also found that Ucn2 treatment activated the AMPK pathway in isolated cardiomyocytes via CRFR2. Furthermore, Ucn2 induced protein kinase A (PKA) and phospholamban (PLN) phosphorylation. Pretreatment of PKA inhibitor H89 reduced the inotropic and lusitropic effects of Ucn2 as well as decreased the intracellular Ca(2+) load and slowed down the Ca(2+) transient decay. We also showed that preincubation of Compound C, an inhibitor of AMPK, inhibited the phosphorylation of PKA and the intracellular Ca(2+) level in cardiomyocytes without affecting the contractile function and the Tau of cardiomyocytes. Taken together, it suggests that Ucn2 facilitate the contractility of cardiomyocytes via activating both AMPK and PKA.
Collapse
Affiliation(s)
- Si Chen
- State University of New York at Buffalo, Buffalo, New York 14214
| | - Zhenhua Wang
- *College of Life Sciences, Yantai University, Yantai, Shandong 264005
| | - Bo Xu
- *College of Life Sciences, Yantai University, Yantai, Shandong 264005, Key Laboratory of Pharmacology and Molecular Drug Evaluation, School of Pharmacy, Yantai University, Yantai, Shandong 264005
| | - Xiangquan Mi
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000
| | - Wanqing Sun
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Nanhu Quan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Lin Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Xingchi Chen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and
| | - Quan Liu
- The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Yang Zheng
- The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Jiyan Leng
- The First Affiliated Hospital, Jilin University, Changchun, Jilin 130000
| | - Ji Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, and
| |
Collapse
|
24
|
Mohsin S, Troupes CD, Starosta T, Sharp TE, Agra EJ, Smith S, Duran JM, Zalavadia N, Zhou Y, Kubo H, Berretta RM, Houser SR. Unique Features of Cortical Bone Stem Cells Associated With Repair of the Injured Heart. Circ Res 2015; 117:1024-33. [PMID: 26472818 DOI: 10.1161/circresaha.115.307362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE Adoptive transfer of multiple stem cell types has only had modest effects on the structure and function of failing human hearts. Despite increasing the use of stem cell therapies, consensus on the optimal stem cell type is not adequately defined. The modest cardiac repair and functional improvement in patients with cardiac disease warrants identification of a novel stem cell population that possesses properties that induce a more substantial improvement in patients with heart failure. OBJECTIVE To characterize and compare surface marker expression, proliferation, survival, migration, and differentiation capacity of cortical bone stem cells (CBSCs) relative to mesenchymal stem cells (MSCs) and cardiac-derived stem cells (CDCs), which have already been tested in early stage clinical trials. METHODS AND RESULTS CBSCs, MSCs, and CDCs were isolated from Gottingen miniswine or transgenic C57/BL6 mice expressing enhanced green fluorescent protein and were expanded in vitro. CBSCs possess a unique surface marker profile, including high expression of CD61 and integrin β4 versus CDCs and MSCs. In addition, CBSCs were morphologically distinct and showed enhanced proliferation capacity versus CDCs and MSCs. CBSCs had significantly better survival after exposure to an apoptotic stimuli when compared with MSCs. ATP and histamine induced a transient increase of intracellular Ca(2+) concentration in CBSCs versus CDCs and MSCs, which either respond to ATP or histamine only further documenting the differences between the 3 cell types. CONCLUSIONS CBSCs are unique from CDCs and MSCs and possess enhanced proliferative, survival, and lineage commitment capacity that could account for the enhanced protective effects after cardiac injury.
Collapse
Affiliation(s)
- Sadia Mohsin
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Constantine D Troupes
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Timothy Starosta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Thomas E Sharp
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Elorm J Agra
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Shavonn Smith
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Jason M Duran
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Neil Zalavadia
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Yan Zhou
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Hajime Kubo
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Remus M Berretta
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.)
| | - Steven R Houser
- From the Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA (S.M., C.D.T., T.S., T.E.S., E.J.A., S.S., J.M.D., N.Z., H.K., R.M.B., S.R.H.); and Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, PA (Y.Z.).
| |
Collapse
|
25
|
Qi D, Young LH. AMPK: energy sensor and survival mechanism in the ischemic heart. Trends Endocrinol Metab 2015; 26:422-9. [PMID: 26160707 PMCID: PMC4697457 DOI: 10.1016/j.tem.2015.05.010] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 01/12/2023]
Abstract
AMP-activated protein kinase (AMPK) is a critical regulator of cellular metabolism and plays an important role in diabetes, cancer, and vascular disease. In the heart, AMPK activation is an essential component of the adaptive response to cardiomyocyte stress that occurs during myocardial ischemia. During ischemia-reperfusion, AMPK activation modulates glucose and fatty acid metabolism, mitochondrial function, endoplasmic reticulum (ER) stress, autophagy, and apoptosis. Pharmacological activation of AMPK prevents myocardial necrosis and contractile dysfunction during ischemia-reperfusion and potentially represents a cardioprotective strategy for the treatment of myocardial infarction. This review discusses novel mechanisms of AMPK activation in the ischemic heart, the role of endogenous AMPK activation during ischemia, and the potential therapeutic applications for AMPK-directed therapy.
Collapse
Affiliation(s)
- Dake Qi
- The Sections of Cardiovascular Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA
| | - Lawrence H Young
- The Sections of Cardiovascular Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA; Department of Internal Medicine, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, 3 FMP, P.O. Box 208017, New Haven, CT 06520-8017, USA.
| |
Collapse
|
26
|
Makarewich CA, Troupes CD, Schumacher SM, Gross P, Koch WJ, Crandall DL, Houser SR. Comparative effects of urocortins and stresscopin on cardiac myocyte contractility. J Mol Cell Cardiol 2015; 86:179-86. [PMID: 26231084 DOI: 10.1016/j.yjmcc.2015.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/13/2015] [Accepted: 07/25/2015] [Indexed: 01/19/2023]
Abstract
RATIONALE There is a current need for the development of new therapies for patients with heart failure. OBJECTIVE We test the effects of members of the corticotropin-releasing factor (CRF) family of peptides on myocyte contractility to validate them as potential heart failure therapeutics. METHODS AND RESULTS Adult feline left ventricular myocytes (AFMs) were isolated and contractility was assessed in the presence and absence of CRF peptides Urocortin 2 (UCN2), Urocortin 3 (UCN3), Stresscopin (SCP), and the β-adrenergic agonist isoproterenol (Iso). An increase in fractional shortening and peak Ca(2+) transient amplitude was seen in the presence of all CRF peptides. A decrease in Ca(2+) decay rate (Tau) was also observed at all concentrations tested. cAMP generation was measured by ELISA in isolated AFMs in response to the CRF peptides and Iso and significant production was seen at all concentrations and time points tested. CONCLUSIONS The CRF family of peptides effectively increases cardiac contractility and should be evaluated as potential novel therapeutics for heart failure patients.
Collapse
Affiliation(s)
- Catherine A Makarewich
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Constantine D Troupes
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Sarah M Schumacher
- Center for Translational Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Polina Gross
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Walter J Koch
- Center for Translational Research, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - David L Crandall
- Janssen Research & Development, LLC, Spring House, PA 19044, USA
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA; Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
Liu C, Liu X, Yang J, Duan Y, Yao H, Li F, Zhang X. The effects of vasoactive peptide urocortin 2 on hemodynamics in spontaneous hypertensive rat and the role of L-type calcium channel and CRFR2. Pharmacol Rep 2015; 67:394-8. [DOI: 10.1016/j.pharep.2014.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 08/27/2014] [Indexed: 01/28/2023]
|
28
|
Thapalia BA, Zhou Z, Lin X. Autophagy, a process within reperfusion injury: an update. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8322-8341. [PMID: 25674198 PMCID: PMC4314030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Autophagy is an important constitutive intracellular catalytic process that occurs in basal conditions, as well as during stress in all tissues. It is induced during cellular growth, tissue differentiation and metabolic demands. The regulated expression is cytoprotective while its deregulation leads to varieties of diseases. It plays a vital role in ischemic heart disease, being beneficial and adaptive during ischemia while detrimental and lethal during reperfusion. Reperfusion injury is the consequence of this deregulated autophagy and the motive of its persistence during reperfusion is still obscure. A long standing debate persists as to the dual nature of autophagy and defining its clearer role in cell death as compared to the widely studied process, apoptosis. Despite the progresses in understanding of the process and identification of critical mediators, there is no therapeutic strategy to address its final outcome, the reperfusion injury. This lack of effective therapeutic strategies has even questioned the validity of the process as a single entity. We still continue to witness the devastation with standard cure of reperfusion. In this article, we review the process, highlight reperfusion injury and outline important studies being conducted for the prevention of reperfusion injury and offer cardio-protection.
Collapse
Affiliation(s)
- Bisharad Anil Thapalia
- Anhui Medical UniversityHefei 230032, Anhui, China
- Department of Cardiology, First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Zhen Zhou
- Anhui Medical UniversityHefei 230032, Anhui, China
- Department of Cardiology, First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xianhe Lin
- Department of Cardiology, First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
29
|
Roustit MM, Vaughan JM, Jamieson PM, Cleasby ME. Urocortin 3 activates AMPK and AKT pathways and enhances glucose disposal in rat skeletal muscle. J Endocrinol 2014; 223:143-54. [PMID: 25122003 PMCID: PMC4191181 DOI: 10.1530/joe-14-0181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin resistance (IR) in skeletal muscle is an important component of both type 2 diabetes and the syndrome of sarcopaenic obesity, for which there are no effective therapies. Urocortins (UCNs) are not only well established as neuropeptides but also have their roles in metabolism in peripheral tissues. We have shown recently that global overexpression of UCN3 resulted in muscular hypertrophy and resistance to the adverse metabolic effects of a high-fat diet. Herein, we aimed to establish whether short-term local UCN3 expression could enhance glucose disposal and insulin signalling in skeletal muscle. UCN3 was found to be expressed in right tibialis cranialis and extensor digitorum longus muscles of rats by in vivo electrotransfer and the effects studied vs the contralateral muscles after 1 week. No increase in muscle mass was detected, but test muscles showed 19% larger muscle fibre diameter (P=0.030), associated with increased IGF1 and IGF1 receptor mRNA and increased SER256 phosphorylation of forkhead transcription factor. Glucose clearance into the test muscles after an intraperitoneal glucose load was increased by 23% (P=0.018) per unit mass, associated with increased GLUT1 (34% increase; P=0.026) and GLUT4 (48% increase; P=0.0009) proteins, and significantly increased phosphorylation of insulin receptor substrate-1, AKT, AKT substrate of 160 kDa, glycogen synthase kinase-3β, AMP-activated protein kinase and its substrate acetyl coA carboxylase. Thus, UCN3 expression enhances glucose disposal and signalling in muscle by an autocrine/paracrine mechanism that is separate from its pro-hypertrophic effects, implying that such a manipulation may have promised for the treatment of IR syndromes including sarcopaenic obesity.
Collapse
Affiliation(s)
- Manon M Roustit
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, Royal College Street, London NW1 0TU, UKLaboratory of Neuronal Structure and FunctionSalk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USAQueen's Medical Research InstituteCentre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Joan M Vaughan
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, Royal College Street, London NW1 0TU, UKLaboratory of Neuronal Structure and FunctionSalk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USAQueen's Medical Research InstituteCentre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Pauline M Jamieson
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, Royal College Street, London NW1 0TU, UKLaboratory of Neuronal Structure and FunctionSalk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USAQueen's Medical Research InstituteCentre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mark E Cleasby
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, Royal College Street, London NW1 0TU, UKLaboratory of Neuronal Structure and FunctionSalk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USAQueen's Medical Research InstituteCentre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
30
|
Xiong Y, Qu Z, Chen N, Gong H, Song M, Chen X, Du J, Xu C. The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP-protein kinase A signalling pathway in white adipose tissue. Mol Cell Endocrinol 2014; 392:106-14. [PMID: 24859650 DOI: 10.1016/j.mce.2014.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/19/2014] [Accepted: 05/13/2014] [Indexed: 12/27/2022]
Abstract
Our objective was to investigate the mechanisms by which the endogenous CRHR2 in white adipose tissue (WAT) regulates metabolic activities associated with lipogenesis and lipolysis under continuous exposure to hypoxia. We found that hypobaric hypoxia at a simulated altitude of 5000 m significantly reduced the body weight, food intake, and WAT mass of rats. Hypoxia also accelerated lipolysis and suppressed lipogenesis in WAT. Pretreatment with astressin 2B, a selective CRHR2 antagonist, partly but significantly attenuated the hypoxia-induced reductions in body weight and WAT mass by blocking the cAMP-protein kinase A (PKA)-hormone-sensitive lipase (HSL)/perilipin signalling pathway. Astressin 2B treatment failed to attenuate hypoxia induced lipogenic inhibition. In conclusion, activation of endogenous WAT Ucn2/3 autocrine/paracrine pathway was involved in hypoxia induced lipolysis via CRHR2 - cAMP-PKA signalling pathway. This study provides the novel understanding of local CRHR2 signaling pathway playing important role in WAT loss and lipid metabolism under hypoxia.
Collapse
Affiliation(s)
- Yanlei Xiong
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Zhuan Qu
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang University, Hangzhou, People's Republic of China
| | - Nan Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Hui Gong
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Mintao Song
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, People's Republic of China
| | - Xuequn Chen
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang University, Hangzhou, People's Republic of China
| | - Jizeng Du
- Division of Neurobiology and Physiology, Department of Basic Medical Sciences, School of Medicine, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang University, Hangzhou, People's Republic of China.
| | - Chengli Xu
- Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, People's Republic of China.
| |
Collapse
|
31
|
Qi D, Atsina K, Qu L, Hu X, Wu X, Xu B, Piecychna M, Leng L, Fingerle-Rowson G, Zhang J, Bucala R, Young LH. The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury. J Clin Invest 2014; 124:3540-50. [PMID: 24983315 DOI: 10.1172/jci73061] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/15/2014] [Indexed: 12/20/2022] Open
Abstract
The cellular response to stress involves the recruitment and coordination of molecular signaling pathways that prevent cell death. D-dopachrome tautomerase (DDT) is an enzyme that lacks physiologic substrates in mammalian cells, but shares partial sequence and structural homology with macrophage migration inhibitory factor (MIF). Here, we observed that DDT is highly expressed in murine cardiomyocytes and secreted by the heart after ischemic stress. Antibody-dependent neutralization of secreted DDT exacerbated both ischemia-induced cardiac contractile dysfunction and necrosis. We generated cardiomyocyte-specific DDT knockout mice (Myh6-Cre Ddtfl/fl), which demonstrated normal baseline cardiac size and function, but had an impaired physiologic response to ischemia-reperfusion. Hearts from Myh6-Cre Ddtfl/fl mice exhibited more necrosis and LV contractile dysfunction than control hearts after coronary artery ligation and reperfusion. Furthermore, treatment with DDT protected isolated hearts against injury and contractile dysfunction after ischemia-reperfusion. The protective effect of DDT required activation of the metabolic stress enzyme AMP-activated protein kinase (AMPK), which was mediated by a CD74/CaMKK2-dependent mechanism. Together, our data indicate that cardiomyocyte secretion of DDT has important autocrine/paracrine effects during ischemia-reperfusion that protect the heart against injury.
Collapse
|