1
|
Gunarathna I, Spear JD, Carter TE. Multi-locus investigation of Anopheles-mediated selective pressure on Plasmodium falciparum in Africa. Parasit Vectors 2024; 17:530. [PMID: 39710726 DOI: 10.1186/s13071-024-06604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND The high burden of malaria in Africa is largely due to the presence of competent and adapted Anopheles vector species. With invasive Anopheles stephensi implicated in malaria outbreaks in Africa, understanding the genomic basis of vector-parasite compatibility is essential for assessing the risk of future outbreaks due to this mosquito. Vector compatibility with P. falciparum arises from ancient coevolution and involves genes such as Pfs47 in P. falciparum and P47Rec in Anopheles. Questions remain about whether sub-continental vector variation is a selective pressure on current Plasmodium populations. METHODS We analyzed the genetic diversity in parasite-vector interaction genes in P. falciparum and An. gambiae from 9 and 15 countries in Africa, respectively. Specifically, we looked for evidence of malaria vector-mediated selection within three P. falciparum genes (Pfs47, Pfs16, Pfs37) and conducted association analyses with occurrence probabilities of prominent malaria vectors. RESULTS Higher protein haplotype diversities of Pfs47 and Pfs16 were associated with the probability of occurrence of An. arabiensis and An. funestus together. Only Pfs16 carried a signature of positive selection consistently (average Tajima's D = -2.96), which was associated with the probability of occurrence of An. funestus. These findings support vector-mediated selection on the basis of vector species diversity that may be occurring within Africa. We also employed phylogenetic analyses of An. gambiae interaction genes (P47Rec, APN1, HPX15) to identify significant subspecies diversity as a prerequisite to vector-population-mediated selection. Anopheles gambiae HPX15 revealed significant within-species differentiation (multiple branches bootstrap > 70) compared with absence of variation in P47Rec, suggesting that further investigation into subspecies-mediated selection on the basis of HPX15 is needed. Finally, we observed five amino acid changes at P47Rec in invasive An. stephensi compared with dominant African Anopheles species, calling for further investigation of the impact these distinct P47Rec variants might have on local African P. falciparum Pfs47 diversity. CONCLUSIONS Overall, these findings suggest that vector variation within Africa could influence P. falciparum diversity and lay a genomic framework for future investigation of invasive An. stephensi's impact on African malaria.
Collapse
Affiliation(s)
- Isuru Gunarathna
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, USA
| | - Joseph D Spear
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, USA
| | - Tamar E Carter
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, USA.
| |
Collapse
|
2
|
Jacobs-Lorena M, Cha SJ. Unbiased phage display screening identifies hidden malaria vaccine targets. Emerg Microbes Infect 2024; 13:2429617. [PMID: 39529575 PMCID: PMC11587725 DOI: 10.1080/22221751.2024.2429617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/18/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Malaria is among the deadliest infectious diseases. Over 200 million annual clinical malaria cases are reported and more than half a million people, mostly children, die every year. The most advanced RTS,S/AS01 vaccine based on the P. falciparum circumsporozoite protein (CSP), targets sporozoite liver infection but achieved modest efficacy. To reduce malaria death, novel malaria vaccine development is a high priority. Most malaria vaccine candidates target three infection steps: sporozoite liver infection, merozoite red blood cell (RBC) infection, and mosquito midgut infection. However, only few malaria vaccine candidates target specific parasite-host cell interactions. Our group has implemented the phage peptide-display approach to discover new parasite ligands and host cell receptors. Here we summarize our findings and discuss their potential for the development of novel vaccines.
Collapse
Affiliation(s)
- Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology and Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sung-Jae Cha
- Department of Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| |
Collapse
|
3
|
Gunarathna I, Spear JD, Carter TE. Multi-locus investigation of Anopheles-mediated selective pressure on Plasmodium falciparum in Africa. RESEARCH SQUARE 2024:rs.3.rs-5040478. [PMID: 39574894 PMCID: PMC11581053 DOI: 10.21203/rs.3.rs-5040478/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background The high burden of malaria in Africa is largely due to the presence of competent and adapted Anopheles vector species. With invasive Anopheles stephensi implicated in malaria outbreaks in Africa, understanding the genomic basis of vector-parasite compatibility is essential for assessing the risk of future outbreaks due to this mosquito. Vector compatibility with P. falciparum arises from ancient coevolution and involves genes like Pfs47 in P. falciparum and P47Rec in Anopheles. Questions remain about whether sub-continental vector variation is a selective pressure on current Plasmodium populations or not. Methods We analyzed the genetic diversity in parasite-vector interaction genes in P. falciparum and An. gambiae from 9 and 15 countries in Africa, respectively. Specifically, we looked for evidence of malaria vector-mediated selection within three P. falciparum genes (Pfs47, Pfs16, Pfs37) and conducted association analyses with occurrence probabilities of prominent malaria vectors (VOP). Results Higher protein haplotype diversities of Pfs47 and Pfs16 were associated with the probability of occurrence of An. arabiensis and An. funestus together. Only Pfs16 carried a signature of positive selection consistently (average Tajima's D = -2.96) which was associated with the probability of occurrence of An. funestus. These findings support vector-mediated selection based on vector species diversity may be occurring within Africa. We also employed phylogenetic analyses of An. gambiae interaction genes (P47Rec, APN1, HPX15) to identify significant subspecies diversity as a prerequisite to vector-population-mediated selection. An. gambiae HPX15 revealed significant sub-species differentiation (multiple branches bootstrap >70) compared to absence of variation in P47Rec, suggesting further investigation into sub-species mediated selection based on HPX15 is needed. Finally, we observed five amino acid changes at P47Rec in invasive An. stephensi compared to dominant African Anophelesspecies, calling for further investigation of the impact these distinct P47Rec variants would have on local African P. falciparum Pfs47 diversity. Conclusion Overall, these findings support the notion that vector variation within Africa could influence P. falciparumdiversity and lay a genomic framework for future investigation of invasive An. stephensi's impact on African malaria.
Collapse
|
4
|
Rosado-Quiñones AM, Colón-Lorenzo EE, Pala ZR, Bosch J, Kudyba K, Kudyba H, Leed SE, Roncal N, Baerga-Ortiz A, Roche-Lima A, Gerena Y, Fidock DA, Roth A, Vega-Rodríguez J, Serrano AE. Novel hydrazone compounds with broad-spectrum antiplasmodial activity and synergistic interactions with antimalarial drugs. Antimicrob Agents Chemother 2024; 68:e0164323. [PMID: 38639491 PMCID: PMC11620517 DOI: 10.1128/aac.01643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.
Collapse
Affiliation(s)
- Angélica M. Rosado-Quiñones
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Emilee E. Colón-Lorenzo
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Jürgen Bosch
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
- InterRayBio, LLC, Cleveland, Ohio, USA
| | - Karl Kudyba
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Heather Kudyba
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Susan E. Leed
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Norma Roncal
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Abel Baerga-Ortiz
- Department of Biochemistry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Abiel Roche-Lima
- RCMI Program, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Medical Center, New York, New York, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Adelfa E. Serrano
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
5
|
Kianifard L, Rafiqi AM, Akcakir O, Aly ASI, Billingsley PF, Uysal S. A recombinant Aspergillus oryzae fungus transmitted from larvae to adults of Anopheles stephensi mosquitoes inhibits malaria parasite oocyst development. Sci Rep 2023; 13:12177. [PMID: 37500682 PMCID: PMC10374630 DOI: 10.1038/s41598-023-38654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
The control of malaria parasite transmission from mosquitoes to humans is hampered by decreasing efficacies of insecticides, development of drug resistance against the last-resort antimalarials, and the absence of effective vaccines. Herein, the anti-plasmodial transmission blocking activity of a recombinant Aspergillus oryzae (A. oryzae-R) fungus strain, which is used in human food industry, was investigated in laboratory-reared Anopheles stephensi mosquitoes. The recombinant fungus strain was genetically modified to secrete two anti-plasmodial effector peptides, MP2 (midgut peptide 2) and EPIP (enolase-plasminogen interaction peptide) peptides. The transstadial transmission of the fungus from larvae to adult mosquitoes was confirmed following inoculation of A. oryzae-R in the water trays used for larval rearing. Secretion of the anti-plasmodial effector peptides inside the mosquito midguts inhibited oocyst formation of P. berghei parasites. These results indicate that A. oryzae can be used as a paratransgenesis model carrying effector proteins to inhibit malaria parasite development in An. stephensi. Further studies are needed to determine if this recombinant fungus can be adapted under natural conditions, with a minimal or no impact on the environment, to target mosquito-borne infectious disease agents inside their vectors.
Collapse
Affiliation(s)
- Leila Kianifard
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820, Istanbul, Turkey
| | - Ab Matteen Rafiqi
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820, Istanbul, Turkey
| | - Osman Akcakir
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820, Istanbul, Turkey
| | - Ahmed S I Aly
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820, Istanbul, Turkey
- School of Science and Engineering, Al Akhawayn University, Ifrane, 53000, Morocco
| | - Peter F Billingsley
- Sanaria Inc., 9800 Medical Center Dr., Suite A209, Rockville, MD, 20850, USA
| | - Serdar Uysal
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, 34820, Istanbul, Turkey.
| |
Collapse
|
6
|
Zhang G, Niu G, Hooker–Romera D, Shabani S, Ramelow J, Wang X, Butler NS, James AA, Li J. Targeting plasmodium α-tubulin-1 to block malaria transmission to mosquitoes. Front Cell Infect Microbiol 2023; 13:1132647. [PMID: 37009496 PMCID: PMC10064449 DOI: 10.3389/fcimb.2023.1132647] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
Plasmodium ookinetes use an invasive apparatus to invade mosquito midguts, and tubulins are the major structural proteins of this apical complex. We examined the role of tubulins in malaria transmission to mosquitoes. Our results demonstrate that the rabbit polyclonal antibodies (pAb) against human α-tubulin significantly reduced the number of P. falciparum oocysts in Anopheles gambiae midguts, while rabbit pAb against human β-tubulin did not. Further studies showed that pAb, specifically against P. falciparum α-tubulin-1, also significantly limited P. falciparum transmission to mosquitoes. We also generated mouse monoclonal antibodies (mAb) using recombinant P. falciparum α-tubulin-1. Out of 16 mAb, two mAb, A3 and A16, blocked P. falciparum transmission with EC50 of 12 μg/ml and 2.8 μg/ml. The epitopes of A3 and A16 were determined to be a conformational and linear sequence of EAREDLAALEKDYEE, respectively. To understand the mechanism of the antibody-blocking activity, we studied the accessibility of live ookinete α-tubulin-1 to antibodies and its interaction with mosquito midgut proteins. Immunofluorescent assays showed that pAb could bind to the apical complex of live ookinetes. Moreover, both ELISA and pull-down assays demonstrated that insect cell-expressed mosquito midgut protein, fibrinogen-related protein 1 (FREP1), interacts with P. falciparum α-tubulin-1. Since ookinete invasion is directional, we conclude that the interaction between Anopheles FREP1 protein and Plasmodium α-tubulin-1 anchors and orients the ookinete invasive apparatus towards the midgut PM and promotes the efficient parasite infection in the mosquito.
Collapse
Affiliation(s)
- Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Guodong Niu
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Diana Hooker–Romera
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Sadeq Shabani
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Julian Ramelow
- Biomedical Sciences Graduate Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Xiaohong Wang
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
| | - Noah S. Butler
- Departments of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Jun Li
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Biological Sciences, Biomolecule Sciences Institute, Florida International University, Miami, FL, United States
- Biomedical Sciences Graduate Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
7
|
Wyse AP, Dos Santos AJB, Azevedo JDS, Meneses ACD, Santos VMDC. Mathematical modeling of the performance of wild and transgenic mosquitoes in malaria transmission. PLoS One 2023; 18:e0285000. [PMID: 37115773 PMCID: PMC10146568 DOI: 10.1371/journal.pone.0285000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
A mathematical model that simulates malaria transmission under the influence of transgenic mosquitoes refractory to malaria is presented in this paper. The zygosity of transgenic mosquitoes is taken into account and, consequently, the total population of mosquitoes is comprised of wild type and heterozygous and homozygous transgenic mosquitoes. These three mosquito varieties interact by mating and competition, and the genetic characteristics of their resulting offspring are in accordance with Mendelian genetics or the mutagenic chain reaction (MCR) technique. Although the incorporation of transgenic mosquitoes into the ecosystem reduces the incidence of malaria, the model also takes into account the importance of completing treatment in individuals with confirmed infection and the imminent risk of increased environmental temperature.
Collapse
Affiliation(s)
- Ana Paula Wyse
- Department of Scientific Computing, Informatics Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Juarez Dos Santos Azevedo
- Institute of Science, Technology and Innovation, Federal University of Bahia, Camaçari, Bahia, Brazil
| | - Aline Costa de Meneses
- Graduate Program in Mathematical and Computational Modeling, Informatics Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Victor Matheus Da Cunha Santos
- Graduate Program in Mathematical and Computational Modeling, Informatics Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| |
Collapse
|
8
|
Huang W, Vega-Rodriguez J, Kizito C, Cha SJ, Jacobs-Lorena M. Combining transgenesis with paratransgenesis to fight malaria. eLife 2022; 11:e77584. [PMID: 36281969 PMCID: PMC9596157 DOI: 10.7554/elife.77584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria is among the deadliest infectious diseases, and Plasmodium, the causative agent, needs to complete a complex development cycle in its vector mosquito for transmission to occur. Two promising strategies to curb transmission are transgenesis, consisting of genetically engineering mosquitoes to express antimalarial effector molecules, and paratransgenesis, consisting of introducing into the mosquito commensal bacteria engineered to express antimalarial effector molecules. Although both approaches restrict parasite development in the mosquito, it is not known how their effectiveness compares. Here we provide an in-depth assessment of transgenesis and paratransgenesis and evaluate the combination of the two approaches. Using the Q-system to drive gene expression, we engineered mosquitoes to produce and secrete two effectors - scorpine and the MP2 peptide - into the mosquito gut and salivary glands. We also engineered Serratia, a commensal bacterium capable of spreading through mosquito populations to secrete effectors into the mosquito gut. Whereas both mosquito-based and bacteria-based approaches strongly reduced the oocyst and sporozoite intensity, a substantially stronger reduction of Plasmodium falciparum development was achieved when transgenesis and paratransgenesis were combined. Most importantly, transmission of Plasmodium berghei from infected to naïve mice was maximally inhibited by the combination of the two approaches. Combining these two strategies promises to become a powerful approach to combat malaria.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Chritopher Kizito
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Sung-Jae Cha
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
9
|
Pascini TV, Jeong YJ, Huang W, Pala ZR, Sá JM, Wells MB, Kizito C, Sweeney B, Alves E Silva TL, Andrew DJ, Jacobs-Lorena M, Vega-Rodríguez J. Transgenic Anopheles mosquitoes expressing human PAI-1 impair malaria transmission. Nat Commun 2022; 13:2949. [PMID: 35618711 PMCID: PMC9135733 DOI: 10.1038/s41467-022-30606-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/22/2022] [Indexed: 11/08/2022] Open
Abstract
In mammals, the serine protease plasmin degrades extracellular proteins during blood clot removal, tissue remodeling, and cell migration. The zymogen plasminogen is activated into plasmin by two serine proteases: tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), a process regulated by plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor that specifically inhibits tPA and uPA. Plasmodium gametes and sporozoites use tPA and uPA to activate plasminogen and parasite-bound plasmin degrades extracellular matrices, facilitating parasite motility in the mosquito and the mammalian host. Furthermore, inhibition of plasminogen activation by PAI-1 strongly blocks infection in both hosts. To block parasite utilization of plasmin, we engineered Anopheles stephensi transgenic mosquitoes constitutively secreting human PAI-1 (huPAI-1) in the midgut lumen, in the saliva, or both. Mosquitoes expressing huPAI-1 strongly reduced rodent and human Plasmodium parasite transmission to mosquitoes, showing that co-opting plasmin for mosquito infection is a conserved mechanism among Plasmodium species. huPAI-1 expression in saliva induced salivary gland deformation which affects sporozoite invasion and P. berghei transmission to mice, resulting in significant levels of protection from malaria. Targeting the interaction of malaria parasites with the fibrinolytic system using genetically engineered mosquitoes could be developed as an intervention to control malaria transmission.
Collapse
Affiliation(s)
- Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Zarna R Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine, Meridian, ID, 83642, USA
| | - Christopher Kizito
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Brendan Sweeney
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Thiago L Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, G10 Hunterian, Baltimore, MD, 21205, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Rm 2E20A, Rockville, MD, 20852, USA.
| |
Collapse
|
10
|
Viana TA, Barbosa WF, Jojoa LLB, Bernardes RC, da Silva JS, Jacobs-Lorena M, Martins GF. A Genetically Modified Anti-Plasmodium Bacterium Is Harmless to the Foragers of the Stingless Bee Partamona helleri. MICROBIAL ECOLOGY 2022; 83:766-775. [PMID: 34231036 PMCID: PMC9840896 DOI: 10.1007/s00248-021-01805-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Paratransgenesis consists of genetically engineering an insect symbiont to control vector-borne diseases. Biosafety assessments are a prerequisite for the use of genetically modified organisms (GMOs). Assessments rely on the measurement of the possible impacts of GMOs on different organisms, including beneficial organisms, such as pollinators. The bacterium Serratia AS1 has been genetically modified to express anti-Plasmodium effector proteins and does not impose a fitness cost on mosquitoes that carry it. In the present study, we assessed the impact of this bacterium on the native bee Partamona helleri (Meliponini), an ecologically important species in Brazil. Serratia eGFP AS1 (recombinant strain) or a wild strain of Serratia marcescens were suspended in a sucrose solution and fed to foragers, followed by measurements of survival, feeding rate, and behavior (walking and flying). These bacteria did not change any of the variables measured at 24, 72, and 144 h after the onset of the experiment. Recombinant and wild bacteria were detected in the homogenates of digestive tract during the 144 h period analyzed, but their numbers decreased with time. The recombinant strain was detected in the midgut at 24 h and in the hindgut at 72 h and 144 h after the onset of the experiment under the fluorescent microscope. As reported for mosquitoes, Serratia eGFP AS1 did not compromise the foragers of P. helleri, an ecologically relevant bee.
Collapse
Affiliation(s)
- Thaís Andrade Viana
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Wagner Faria Barbosa
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Juliana Soares da Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | |
Collapse
|
11
|
Dehghan H, Mosa-Kazemi SH, Yakhchali B, Maleki-Ravasan N, Vatandoost H, Oshaghi MA. Evaluation of anti-malaria potency of wild and genetically modified Enterobacter cloacae expressing effector proteins in Anopheles stephensi. Parasit Vectors 2022; 15:63. [PMID: 35183231 PMCID: PMC8858508 DOI: 10.1186/s13071-022-05183-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Malaria is one of the most lethal infectious diseases in tropical and subtropical areas of the world. Paratransgenesis using symbiotic bacteria offers a sustainable and environmentally friendly strategy to combat this disease. In the study reported here, we evaluated the disruption of malaria transmission in the Anopheles stephensi-Plasmodium berghei assemblage using the wild-type (WT) and three modified strains of the insect gut bacterium, Enterobacter cloacae. METHODS The assay was carried out using the E. cloacae dissolvens WT and three engineered strains (expressing green fluorescent protein-defensin (GFP-D), scorpine-HasA (S-HasA) and HasA only, respectively). Cotton wool soaked in a solution of 5% (wt/vol) fructose + red dye (1/50 ml) laced with one of the bacterial strains (1 × 109cells/ml) was placed overnight in cages containing female An. stephensi mosquitoes (age: 3-5 days). Each group of sugar-fed mosquitoes was then starved for 4-6 h, following which time they were allowed to blood-feed on P. berghei-infected mice for 20 min in the dark at 17-20 °C. The blood-fed mosquitoes were kept at 19 ± 1 °C and 80 ± 5% relative humidity, and parasite infection was measured by midgut dissection and oocyst counting 10 days post-infection (dpi). RESULTS Exposure to both WT and genetically modified E. cloacae dissolvens strains significantly (P < 0.0001) disrupted P. berghei development in the midgut of An. stephensi, in comparison with the control group. The mean parasite inhibition of E. cloacaeWT, E. cloacaeHasA, E. cloacaeS-HasA and E. cloacaeGFP-D was measured as 72, 86, 92.5 and 92.8 respectively. CONCLUSIONS The WT and modified strains of E. cloacae have the potential to abolish oocyst development by providing a physical barrier or through the excretion of intrinsic effector molecules. These findings reinforce the case for the use of either WT or genetically modified strains of E. cloacae bacteria as a powerful tool to combat malaria.
Collapse
Affiliation(s)
- Hossein Dehghan
- Department of Public Health, School of Public Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Seyed Hassan Mosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Yakhchali
- Department Industrial and of Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cha SJ, Kim MS, Na CH, Jacobs-Lorena M. Plasmodium sporozoite phospholipid scramblase interacts with mammalian carbamoyl-phosphate synthetase 1 to infect hepatocytes. Nat Commun 2021; 12:6773. [PMID: 34799567 PMCID: PMC8604956 DOI: 10.1038/s41467-021-27109-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
After inoculation by the bite of an infected mosquito, Plasmodium sporozoites enter the blood stream and infect the liver, where each infected cell produces thousands of merozoites. These in turn, infect red blood cells and cause malaria symptoms. To initiate a productive infection, sporozoites must exit the circulation by traversing the blood lining of the liver vessels after which they infect hepatocytes with unique specificity. We screened a phage display library for peptides that structurally mimic (mimotope) a sporozoite ligand for hepatocyte recognition. We identified HP1 (hepatocyte-binding peptide 1) that mimics a ~50 kDa sporozoite ligand (identified as phospholipid scramblase). Further, we show that HP1 interacts with a ~160 kDa hepatocyte membrane putative receptor (identified as carbamoyl-phosphate synthetase 1). Importantly, immunization of mice with the HP1 peptide partially protects them from infection by the rodent parasite P. berghei. Moreover, an antibody to the HP1 mimotope inhibits human parasite P. falciparum infection of human hepatocytes in culture. The sporozoite ligand for hepatocyte invasion is a potential novel pre-erythrocytic vaccine candidate. After transmission of Plasmodium sporozoites from infected mosquitoes, parasites first infect hepatocytes. Here, Cha et al. identify a sporozoite ligand (phospholipid scramblase) and the hepatocytic receptor (carbamoyl-phosphate synthetase 1) as relevant for hepatocyte invasion and show that an antibody to hepatocyte-binding peptide 1 (HP1), which structurally mimics the sporozoite ligand, partially protects mice from infection.
Collapse
Affiliation(s)
- Sung-Jae Cha
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, 615N. Wolfe St., Baltimore, MD, 21205, USA.
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Chan Hyun Na
- Department of Neurology, Institute for Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marcelo Jacobs-Lorena
- Johns Hopkins Bloomberg School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, 615N. Wolfe St., Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Adelman ZN, Kojin BB. Malaria-Resistant Mosquitoes (Diptera: Culicidae); The Principle is Proven, But Will the Effectors Be Effective? JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1997-2005. [PMID: 34018548 DOI: 10.1093/jme/tjab090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Over the last few decades, a substantial number of anti-malarial effector genes have been evaluated for their ability to block parasite infection in the mosquito vector. While many of these approaches have yielded significant effects on either parasite intensity or prevalence of infection, just a few have been able to completely block transmission. Additionally, many approaches, while effective against the parasite, also disrupt or alter important aspects of mosquito physiology, leading to corresponding changes in lifespan, reproduction, and immunity. As the most promising approaches move towards field-based evaluation, questions of effector gene robustness and durability move to the forefront. In this forum piece, we critically evaluate past effector gene approaches with an eye towards developing a deeper pipeline to augment the current best candidates.
Collapse
Affiliation(s)
- Zach N Adelman
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| | - Bianca B Kojin
- Department of Entomology and AgriLife Research, Texas A&M University, College Station, TX, USA
| |
Collapse
|
14
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
15
|
Alves E Silva TL, Radtke A, Balaban A, Pascini TV, Pala ZR, Roth A, Alvarenga PH, Jeong YJ, Olivas J, Ghosh AK, Bui H, Pybus BS, Sinnis P, Jacobs-Lorena M, Vega-Rodríguez J. The fibrinolytic system enables the onset of Plasmodium infection in the mosquito vector and the mammalian host. SCIENCE ADVANCES 2021; 7:7/6/eabe3362. [PMID: 33547079 PMCID: PMC7864569 DOI: 10.1126/sciadv.abe3362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 05/06/2023]
Abstract
Plasmodium parasites must migrate across proteinaceous matrices to infect the mosquito and vertebrate hosts. Plasmin, a mammalian serine protease, degrades extracellular matrix proteins allowing cell migration through tissues. We report that Plasmodium gametes recruit human plasminogen to their surface where it is processed into plasmin by corecruited plasminogen activators. Inhibition of plasminogen activation arrests parasite development early during sexual reproduction, before ookinete formation. We show that increased fibrinogen and fibrin in the blood bolus, which are natural substrates of plasmin, inversely correlate with parasite infectivity of the mosquito. Furthermore, we show that sporozoites, the parasite form transmitted by the mosquito to humans, also bind plasminogen and plasminogen activators on their surface, where plasminogen is activated into plasmin. Surface-bound plasmin promotes sporozoite transmission by facilitating parasite migration across the extracellular matrices of the dermis and of the liver. The fibrinolytic system is a potential target to hamper Plasmodium transmission.
Collapse
Affiliation(s)
- Thiago Luiz Alves E Silva
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Andrea Radtke
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - Amanda Balaban
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tales Vicari Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Zarna Rajeshkumar Pala
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Patricia H Alvarenga
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yeong Je Jeong
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Anil K Ghosh
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hanhvy Bui
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Brandon S Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Photini Sinnis
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Joel Vega-Rodríguez
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Mishra R, Guo Y, Kumar P, Cantón PE, Tavares CS, Banerjee R, Kuwar S, Bonning BC. Streamlined phage display library protocols for identification of insect gut binding peptides highlight peptide specificity. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100012. [PMID: 36003592 PMCID: PMC9387513 DOI: 10.1016/j.cris.2021.100012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 05/10/2023]
Abstract
Phage display libraries have been used to isolate insect gut binding peptides for use as pathogen transmission blocking agents, and to provide artificial anchors for increased toxicity of bacteria-derived pesticidal proteins. Previously, phage clones displaying enriched peptides were sequenced by Sanger sequencing. Here we present a streamlined protocol for identification of insect gut binding peptides, using insect-appropriate feeding strategies, with next generation sequencing and tailored bioinformatics analyses. The bioinformatics pipeline is designed to eliminate poorly enriched and false positive peptides, and to identify peptides predicted to be stable and hydrophilic. In addition to developing streamlined protocols, we also sought to address whether candidate gut binding peptides can bind to insects from more than one order, which is an important consideration for safe, practical use of peptide-modified pesticidal proteins. To this end, we screened phage display libraries for peptides that bind to the gut epithelia of two pest insects, the Asian citrus psyllid, Diaphorina citri (Hemiptera) and beet armyworm, Spodoptera exigua (Lepidoptera), and one beneficial insect, the western honey bee, Apis mellifera (Hymenoptera). While unique peptide sequences totaling 13,427 for D. citri, 89,561 for S. exigua and 69,053 for A. mellifera were identified from phage eluted from the surface of the insect guts, final candidate pools were comprised of 53, 107 and 1423 peptides respectively. The benefits of multiple rounds of biopanning, along with peptide binding properties in relation to practical use of peptide-modified pesticidal proteins for insect pest control are discussed.
Collapse
|
17
|
Plasmodium's journey through the Anopheles mosquito: A comprehensive review. Biochimie 2020; 181:176-190. [PMID: 33346039 DOI: 10.1016/j.biochi.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
The malaria parasite has an extraordinary ability to evade the immune system due to which the development of a malaria vaccine is a challenging task. Extensive research on malarial infection in the human host particularly during the liver stage has resulted in the discovery of potential candidate vaccines including RTS,S/AS01 and R21. However, complete elimination of malaria would require a holistic multi-component approach. In line with this, under the World Health Organization's PATH Malaria Vaccine Initiative (MVI), the research focus has shifted towards the sexual stages of malaria in the mosquito host. Last two decades of scientific research obtained seminal information regarding the sexual/mosquito stages of the malaria. This updated and comprehensive review would provide the basis for consolidated understanding of cellular, biochemical, molecular and immunological aspects of parasite transmission right from the sexual stage commitment in the human host to the sporozoite delivery back into subsequent vertebrate host by the female Anopheles mosquito.
Collapse
|
18
|
Reynolds RA, Kwon H, Alves E Silva TL, Olivas J, Vega-Rodriguez J, Smith RC. The 20-hydroxyecdysone agonist, halofenozide, promotes anti-Plasmodium immunity in Anopheles gambiae via the ecdysone receptor. Sci Rep 2020; 10:21084. [PMID: 33273588 PMCID: PMC7713430 DOI: 10.1038/s41598-020-78280-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Mosquito physiology and immunity are integral determinants of malaria vector competence. This includes the principal role of hormonal signaling in Anopheles gambiae initiated shortly after blood-feeding, which stimulates immune induction and promotes vitellogenesis through the function of 20-hydroxyecdysone (20E). Previous studies demonstrated that manipulating 20E signaling through the direct injection of 20E or the application of a 20E agonist can significantly impact Plasmodium infection outcomes, reducing oocyst numbers and the potential for malaria transmission. In support of these findings, we demonstrate that a 20E agonist, halofenozide, is able to induce anti-Plasmodium immune responses that limit Plasmodium ookinetes. We demonstrate that halofenozide requires the function of ultraspiracle (USP), a component of the canonical heterodimeric ecdysone receptor, to induce malaria parasite killing responses. Additional experiments suggest that the effects of halofenozide treatment are temporal, such that its application only limits malaria parasites when applied prior to infection. Unlike 20E, halofenozide does not influence cellular immune function or AMP production. Together, our results further demonstrate the potential of targeting 20E signaling pathways to reduce malaria parasite infection in the mosquito vector and provide new insight into the mechanisms of halofenozide-mediated immune activation that differ from 20E.
Collapse
Affiliation(s)
| | - Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Thiago Luiz Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
19
|
Abstract
Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression. One of the most powerful approaches to understanding gene function involves turning genes on and off at will and measuring the impact at the cellular or organismal level. This particularly applies to the cohort of essential genes where traditional gene knockouts are inviable. In Plasmodium falciparum, conditional control of gene expression has been achieved by using multicomponent systems in which individual modules interact with each other to regulate DNA recombination, transcription, or posttranscriptional processes. The recently devised TetR-DOZI aptamer system relies on the ligand-regulatable interaction of a protein module with synthetic RNA aptamers to control the translation of a target gene. This technique has been successfully employed to study essential genes in P. falciparum and involves the insertion of several aptamer copies into the 3′ untranslated regions (UTRs), which provide control over mRNA fate. However, aptamer repeats are prone to recombination and one or more copies can be lost from the system, resulting in a loss of control over target gene expression. We rectified this issue by redesigning the aptamer array to minimize recombination while preserving the control elements. As proof of concept, we compared the original and modified arrays for their ability to knock down the levels of a putative essential apicoplast protein (PF3D7_0815700) and demonstrated that the modified array is highly stable and efficient. This redesign will enhance the utility of a tool that is quickly becoming a favored strategy for genetic studies in P. falciparum. IMPORTANCE Malaria elimination efforts have been repeatedly hindered by the evolution and spread of multidrug-resistant strains of Plasmodium falciparum. The absence of a commercially available vaccine emphasizes the need for a better understanding of Plasmodium biology in order to further translational research. This has been partly facilitated by targeted gene deletion strategies for the functional analysis of parasite genes. However, genes that are essential for parasite replication in erythrocytes are refractory to such methods, and require conditional knockdown or knockout approaches to dissect their function. One such approach is the TetR-DOZI system that employs multiple synthetic aptamers in the untranslated regions of target genes to control their expression in a tetracycline-dependent manner. Maintaining modified parasites with intact aptamer copies has been challenging since these repeats can be lost by recombination. By interspacing the aptamers with unique sequences, we created a stable genetic system that remains effective at controlling target gene expression.
Collapse
|
20
|
Pirovich D, Da'dara AA, Skelly PJ. Why Do Intravascular Schistosomes Coat Themselves in Glycolytic Enzymes? Bioessays 2019; 41:e1900103. [PMID: 31661165 DOI: 10.1002/bies.201900103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Indexed: 11/11/2022]
Abstract
Schistosomes are intravascular parasitic helminths (blood flukes) that infect more than 200 million people globally. Proteomic analysis of the tegument (skin) of these worms has revealed the surprising presence of glycolytic enzymes on the parasite's external surface. Immunolocalization data as well as enzyme activity displayed by live worms confirm that functional glycolytic enzymes are indeed expressed at the host-parasite interface. Since these enzymes are traditionally considered to function intracellularly to drive glycolysis, in an extracellular location they are hypothesized to engage in novel "moonlighting" functions such as immune modulation and blood clot dissolution that promote parasite survival. For instance, several glycolytic enzymes can interact with plasminogen and promote its activation to the thrombolytic plasmin; some can inhibit complement function; some induce B cell proliferation or macrophage apoptosis. Several pathogenic bacteria and protists also express glycolytic enzymes externally, suggesting that moonlighting functions of extracellular glycolytic enzymes can contribute broadly to pathogen virulence. Also see the video abstract here https://youtu.be/njtWZ2y3k_I.
Collapse
Affiliation(s)
- David Pirovich
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Akram A Da'dara
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| | - Patrick J Skelly
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, 01536, USA
| |
Collapse
|
21
|
DEHGHAN H, OSHAGHI MA, MOSA-KAZEMI SH, ABAI MR, RAFIE F, NATEGHPOUR M, MOHAMMADZADEH H, FARIVAR L, MOHAMMADI BAVANI M. Experimental Study on Plasmodium berghei, Anopheles Stephensi, and BALB/c Mouse System: Implications for Malaria Transmission Blocking Assays. IRANIAN JOURNAL OF PARASITOLOGY 2018; 13:549-559. [PMID: 30697308 PMCID: PMC6348208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/16/2018] [Indexed: 10/25/2022]
Abstract
BACKGROUND Plasmodium berghei is a rodent malaria parasite and has been very valuable means in the progress of our understanding of the essential molecular and cellular biology of the malaria parasites. Availability of hosts such as mice and vectors such as Anopheles stephensi has made this parasite a suitable system to study the parasite-host and vector-parasite relationships. METHODS This study was performed at Medical Entomology and Parasitology laboratories of the School of Public Health, Tehran University of Medical Sciences, Iran in 2016. The investigation was carried out to describe life cycle and parameters influencing maintenance of the parasite within the mice or the mosquito. RESULTS Results have revealed details and addressed some parameters and points influence maintenance of various life stages of the parasite including merozoites, macrogametocytes, ookinetes, oocysts and sporozoites in the laboratory model P. berghei-A. stephensi-BALB/c mouse. Injection of fresh infected blood results in higher gametocytemia in the animals. The more injected parasites result in earlier and higher parasitemia and exfelagellation centers in the mice blood. However, the highest number of infected mosquitoes and oocysts formation were observed when the parasitemia and exflagellation centers per microscopic field were 9% and 3.6 in the infected mice respectively. The infected mosquitoes should be maintained on 8% (w/v) fructose, 0.05% (w/v) PABA at 20±1 °C and 50%-80% relative humidity. CONCLUSION This study helps to understand the biology of vertebrate-parasite and mosquito-malaria interactions that may aid in the development of a new generation of drug/vaccine and vector-based measures for malaria control.
Collapse
Affiliation(s)
- Hossein DEHGHAN
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali OSHAGHI
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassan MOSA-KAZEMI
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza ABAI
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh RAFIE
- Dept. of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi NATEGHPOUR
- Dept. of Parasitology and Medical Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib MOHAMMADZADEH
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Dept. of Medical Parasitology and Mycology, School of Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila FARIVAR
- Dept. of Parasitology and Medical Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mulood MOHAMMADI BAVANI
- Dept. of Medical Entomology, School of Health, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
22
|
Shaw WR, Catteruccia F. Vector biology meets disease control: using basic research to fight vector-borne diseases. Nat Microbiol 2018; 4:20-34. [PMID: 30150735 DOI: 10.1038/s41564-018-0214-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 06/29/2018] [Indexed: 12/11/2022]
Abstract
Human pathogens that are transmitted by insects are a global problem, particularly those vectored by mosquitoes; for example, malaria parasites transmitted by Anopheles species, and viruses such as dengue, Zika and chikungunya that are carried by Aedes mosquitoes. Over the past 15 years, the prevalence of malaria has been substantially reduced and virus outbreaks have been contained by controlling mosquito vectors using insecticide-based approaches. However, disease control is now threatened by alarming rates of insecticide resistance in insect populations, prompting the need to develop a new generation of specific strategies that can reduce vector-mediated transmission. Here, we review how increased knowledge in insect biology and insect-pathogen interactions is stimulating new concepts and tools for vector control. We focus on strategies that either interfere with the development of pathogens within their vectors or directly impact insect survival, including enhancement of vector-mediated immune control, manipulation of the insect microbiome, or use of powerful new genetic tools such as CRISPR-Cas systems to edit vector genomes. Finally, we offer a perspective on the implementation hurdles as well as the knowledge gaps that must be filled in the coming years to safely realize the potential of these novel strategies to eliminate the scourge of vector-borne disease.
Collapse
Affiliation(s)
- W Robert Shaw
- Harvard T. H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| | - Flaminia Catteruccia
- Harvard T. H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| |
Collapse
|
23
|
Simões ML, Caragata EP, Dimopoulos G. Diverse Host and Restriction Factors Regulate Mosquito-Pathogen Interactions. Trends Parasitol 2018; 34:603-616. [PMID: 29793806 DOI: 10.1016/j.pt.2018.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Mosquitoes transmit diseases that seriously impact global human health. Despite extensive knowledge of the life cycles of mosquito-borne parasites and viruses within their hosts, control strategies have proven insufficient to halt their spread. An understanding of the relationships established between such pathogens and the host tissues they inhabit is therefore paramount for the development of new strategies that specifically target these interactions, to prevent the pathogens' maturation and transmission. Here we present an updated account of the antagonists and host factors that affect the development of Plasmodium, the parasite causing malaria, and mosquito-borne viruses, such as dengue virus and Zika virus, within their mosquito vectors, and we discuss the similarities and differences between Plasmodium and viral systems, looking toward the elucidation of new targets for disease control.
Collapse
Affiliation(s)
- Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; These authors contributed equally
| | - Eric P Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; These authors contributed equally
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
24
|
Abstract
Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria.
Collapse
|
25
|
Wang S, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Jacobs-Lorena M. Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 2017; 357:1399-1402. [PMID: 28963255 PMCID: PMC9793889 DOI: 10.1126/science.aan5478] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/24/2017] [Indexed: 12/30/2022]
Abstract
The huge burden of malaria in developing countries urgently demands the development of novel approaches to fight this deadly disease. Although engineered symbiotic bacteria have been shown to render mosquitoes resistant to the parasite, the challenge remains to effectively introduce such bacteria into mosquito populations. We describe a Serratia bacterium strain (AS1) isolated from Anopheles ovaries that stably colonizes the mosquito midgut, female ovaries, and male accessory glands and spreads rapidly throughout mosquito populations. Serratia AS1 was genetically engineered for secretion of anti-Plasmodium effector proteins, and the recombinant strains inhibit development of Plasmodium falciparum in mosquitoes.
Collapse
Affiliation(s)
- Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China,Corresponding author. (S.W.); (M.J.-L.)
| | - André L. A. Dos-Santos
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kun Connie Liu
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Mohammad Ali Oshaghi
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Ge Wei
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peter Agre
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Corresponding author. (S.W.); (M.J.-L.)
| |
Collapse
|
26
|
Healer J, Cowman AF, Kaslow DC, Birkett AJ. Vaccines to Accelerate Malaria Elimination and Eventual Eradication. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a025627. [PMID: 28490535 DOI: 10.1101/cshperspect.a025627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Remarkable progress has been made in coordinated malaria control efforts with substantial reductions in malaria-associated deaths and morbidity achieved through mass administration of drugs and vector control measures including distribution of long-lasting insecticide-impregnated bednets and indoor residual spraying. However, emerging resistance poses a significant threat to the sustainability of these interventions. In this light, the malaria research community has been charged with the development of a highly efficacious vaccine to complement existing malaria elimination measures. As the past 40 years of investment in this goal attests, this is no small feat. The malaria parasite is a highly complex organism, exquisitely adapted for survival under hostile conditions within human and mosquito hosts. Here we review current vaccine strategies to accelerate elimination and the potential for novel and innovative approaches to vaccine design through a better understanding of the host-parasite interaction.
Collapse
Affiliation(s)
- Julie Healer
- Walter & Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | - Alan F Cowman
- Walter & Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia
| | | | | |
Collapse
|
27
|
Dutta S, Moitra A, Mukherjee D, Jarori GK. Functions of tryptophan residues in EWGWS insert of Plasmodium falciparum enolase. FEBS Open Bio 2017; 7:892-904. [PMID: 28680804 PMCID: PMC5494301 DOI: 10.1002/2211-5463.12242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum enolase (Pfeno) is a dimeric enzyme with multiple moonlighting functions. This enzyme is thus a potential target for anti-malarial treatments. A unique feature of Pfeno is the presence of a pentapeptide insert 104 EWGWS 108. The functional role of tryptophan residues in this insert was investigated using site-directed mutagenesis. Replacement of these two Trp residues with alanines (or lysines) resulted in a near complete loss of enolase activity and dissociation of the normal dimeric form into monomers. Molecular modeling indicated that 340R forms π-cation bonds with the aromatic rings of 105W and 46Y. Mutation induced changes in the interactions among these three residues were presumably relayed to the inter-subunit interface via a coil formed by 46Y : 59Y, resulting in the disruption of a salt bridge between 11R : 425E and a π-cation interaction between 11R : 59Y. This led to a drop of ~ 4 kcal·mole-1 in the inter-subunit docking energy in the mutant, causing a ~ 103 fold decrease in affinity. Partial restoration of the inter-subunit interactions led to reformation of dimers and also restored a significant fraction of the lost enzyme activity. These results suggested that the perturbations in the conformation of the surface loop containing the insert sequence were relayed to the interface region, causing dimer dissociation that, in turn, disrupted the enzyme's active site. Since Plasmodium enolase is a moonlighting protein with multiple parasite-specific functions, it is likely that these functions may map on to the highly conserved unique insert region of this protein. ENZYMES Enolase(EC4.2.1.11).
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India.,Present address: T. H. Chan School of Public Health Graduate School of Arts and Sciences Harvard University Boston MA USA
| | - Anasuya Moitra
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| | - Debanjan Mukherjee
- Instituto de Medicina Molecular Faculdade de Medicina Universidade de Lisboa Portugal
| | - Gotam K Jarori
- Department of Biological Sciences Tata Institute of Fundamental Research Mumbai India
| |
Collapse
|
28
|
Mi R, Yang X, Huang Y, Cheng L, Lu K, Han X, Chen Z. Immunolocation and enzyme activity analysis of Cryptosporidium parvum enolase. Parasit Vectors 2017; 10:273. [PMID: 28569179 PMCID: PMC5452291 DOI: 10.1186/s13071-017-2200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022] Open
Abstract
Background Enolase is an essential multifunctional glycolytic enzyme that is involved in many biological processes of apicomplexan protozoa, such as adhesion and invasion. However, the characteristics of enolase in Cryptosporidium parvum, including the location on the oocyst and the enzyme activity, remain unclear. Methods The C. parvum enolase gene (cpeno) was amplified by RT-PCR and sequenced. The deduced amino acid sequence was analysed by bioinformatics software. The gene was expressed in Escherichia coli BL21 (DE3) and purified recombinant protein was used for enzyme activity analysis, binding experiments and antibody preparation. The localisation of enolase on oocysts was examined via immunofluorescence techniques. Results A 1,350 bp DNA sequence was amplified from cDNA taken from C. parvum oocysts. The deduced amino acids sequence of C. parvum enolase (CpEno) had 82.1% homology with Cryptosporidium muris enolase, and 54.7–68.0% homology with others selected species. Western blot analysis indicated that recombinant C. parvum enolase (rCpEno) could be recognised by C. parvum-infected cattle sera. Immunolocalization testing showed that CpEno was found to locate mainly on the surface of oocysts. The enzyme activity was 33.5 U/mg, and the Michaelis constant (Km) was 0.571 mM/l. Kinetic measurements revealed that the most suitable pH value was 7.0–7.5, and there were only minor effects on the activity of rCpEno with a change in the reaction temperature. The enzyme activity decreased when the Ca2+, K+, Mg2+ and Na+ concentrations of the reaction solution increased. The binding assays demonstrated that rCpEno could bind to human plasminogen. Conclusion This study is the first report of immunolocation, binding activity and enzyme characteristics of CpEno. The results of this study suggest that the surface-associated CpEno not only functions as a glycolytic enzyme but may also participate in attachment and invasion process of the parasite. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2200-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rongsheng Mi
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China.,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiaojiao Yang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Yan Huang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Long Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ke Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiangan Han
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhaoguo Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou, 730046, China. .,Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
29
|
VenkatRao V, Kumar SK, Sridevi P, Muley VY, Chaitanya RK. Cloning, characterization and transmission blocking potential of midgut carboxypeptidase A in Anopheles stephensi. Acta Trop 2017; 168:21-28. [PMID: 28087198 DOI: 10.1016/j.actatropica.2016.12.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/27/2016] [Accepted: 12/27/2016] [Indexed: 11/16/2022]
Abstract
Transmission-blocking vaccines (TBV) interrupt malaria parasite transmission and hence form an important component for malaria eradication. Mosquito midgut exopeptidases such as aminopeptidase N & carboxypeptidase B have demonstrated TBV potential. In the present study, we cloned and characterized carboxypeptidase A (CPA) from the midgut of an important malarial vector, Anopheles stephensi. ClustalW amino acid alignment and in silico 3-dimensional structure analysis of CPA predicted the presence of active sites involved in zinc and substrate binding that are conserved among all the known mosquito species. Real-time PCR analysis demonstrated that CPA is predominantly expressed in the midgut throughout the mosquito life cycle and that this gene is significantly elevated in P. berghei-infected mosquitoes compared to uninfected blood-fed controls. The high midgut CPA activity correlated with the prominent mRNA levels observed. Peptide-based anti-CPA antibodies were raised that cross-reacted specifically to ∼48kDa and ∼37kDa bands, which correspond to zymogen and active forms of CPA. Further, the addition of CPA-directed antibodies to P. berghei-containing blood meal significantly reduced the mosquito infection rate in the test group compared to control and blocked the parasite development in the midgut. These results support further development of A. stephensi CPA as a candidate TBV.
Collapse
Affiliation(s)
- V VenkatRao
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Surendra K Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - P Sridevi
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, 484224, India
| | - Vijaykumar Yogesh Muley
- Centre for Computational Science, School of Basic & Applied Sciences, Central University of Punjab, Bhatinda 151001, India
| | - R K Chaitanya
- Centre for Animal Sciences, School of Basic & Applied Sciences, Central University of Punjab, Bhatinda, 151001, India.
| |
Collapse
|
30
|
Aguiar ACC, Figueiredo FJB, Neuenfeldt PD, Katsuragawa TH, Drawanz BB, Cunico W, Sinnis P, Zavala F, Krettli AU. Primaquine-thiazolidinones block malaria transmission and development of the liver exoerythrocytic forms. Malar J 2017; 16:110. [PMID: 28279180 PMCID: PMC5345155 DOI: 10.1186/s12936-017-1755-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/26/2017] [Indexed: 02/06/2023] Open
Abstract
Background Primaquine is an anti-malarial used to prevent Plasmodium vivax relapses and malaria transmission. However, PQ metabolites cause haemolysis in patients deficient in the enzyme glucose-6-phosphate dehydrogenase (G6PD). Fifteen PQ-thiazolidinone derivatives, synthesized through one-post reactions from primaquine, arenealdehydes and mercaptoacetic acid, were evaluated in parallel in several biological assays, including ability to block malaria transmission to mosquitoes. Results All primaquine derivatives (PQ-TZs) exhibited lower cell toxicity than primaquine; none caused haemolysis to normal or G6PD-deficient human erythrocytes in vitro. Sera from mice pretreated with the test compounds thus assumed to have drug metabolites, caused no in vitro haemolysis of human erythrocytes, whereas sera from mice pretreated with primaquine did cause haemolysis. The ability of the PQ-TZs to block malaria transmission was evaluated based on the oocyst production and percentage of mosquitoes infected after a blood meal in drug pre-treated animals with experimental malaria caused by either Plasmodium gallinaceum or Plasmodium berghei; four and five PQ-TZs significantly inhibited sporogony in avian and in rodent malaria, respectively. Selected PQ-TZs were tested for their inhibitory activity on P. berghei liver stage development, in mice and in vitro, one compound (4m) caused a 3-day delay in the malaria pre-patent period. Conclusions The compound 4m was the most promising, blocking malaria transmissions and reducing the number of exoerythrocytic forms of P. berghei (EEFs) in hepatoma cells in vitro and in mice in vivo. The same compound also caused a 3-day delay in the malaria pre-patent period. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1755-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Caroline C Aguiar
- Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil.,Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte, MG, 30130-100, Brazil.,Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Flávio Jr B Figueiredo
- Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil
| | - Patrícia D Neuenfeldt
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, Campus Universitário s/no, Pelotas, RS, 98001-970, Brazil
| | - Tony H Katsuragawa
- Laboratório de Epidemiologia, Fundação Osvaldo Cruz-Fiocruz Rondônia, Bairro Lagoa, Porto Velho, RO, Brazil
| | - Bruna B Drawanz
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, Campus Universitário s/no, Pelotas, RS, 98001-970, Brazil
| | - Wilson Cunico
- Laboratório de Química Aplicada à Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, UFPel, Campus Universitário s/no, Pelotas, RS, 98001-970, Brazil
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Fidel Zavala
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD, 21205, USA
| | - Antoniana U Krettli
- Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, Belo Horizonte, MG, 30190-002, Brazil. .,Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Alfredo Balena, 190, Belo Horizonte, MG, 30130-100, Brazil.
| |
Collapse
|
31
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
32
|
Alvarado-Delgado A, Perales Ortiz G, Tello-López ÁT, Encarnación S, Conde R, Martínez-Batallar ÁG, Moran-Francia K, Lanz-Mendoza H. Infection with Plasmodium berghei ookinetes alters protein expression in the brain of Anopheles albimanus mosquitoes. Parasit Vectors 2016; 9:542. [PMID: 27724938 PMCID: PMC5057407 DOI: 10.1186/s13071-016-1830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/02/2016] [Indexed: 12/15/2022] Open
Abstract
Background The behaviour of Anopheles spp. mosquitoes, vectors for Plasmodium parasites, plays a crucial role in the propagation of malaria to humans. Consequently, it is important to understand how the behaviour of these mosquitoes is influenced by the interaction between the brain and immunological status. The nervous system is intimately linked to the immune and endocrine systems. There is evidence that the malaria parasite alters the function of these systems upon infecting the mosquito. Although there is a complex molecular interplay between the Plasmodium parasite and Anopheles mosquito, little is known about the neuronal alteration triggered by the parasite invasion. The aim of this study was to analyse the modification of the proteomic profile in the An. albimanus brain during the early phase of the Plasmodium berghei invasion. Results At 24 hours of the P. berghei invasion, the mosquito brain showed an increase in the concentration of proteins involved in the cellular metabolic pathway, such as ATP synthase complex alpha and beta, malate dehydrogenase, alanine transaminase, enolase and vacuolar ATP synthase. There was also a rise in the levels of proteins with neuronal function, such as calreticulin, mitofilin and creatine kinase. Concomitantly, the parasite invasion repressed the expression of synapse-associated proteins, including enolyl CoA hydratase, HSP70 and ribosomal S60 proteins. Conclusions Identification of upregulated and downregulated protein expression in the mosquito brain 24 hours after Plasmodium invaded the insect midgut paves the way to better understanding the regulation of the neuro-endocrine-immune system in an insect model during parasite infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1830-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Alvarado-Delgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Guillermo Perales Ortiz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Ángel T Tello-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Sergio Encarnación
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | | | - Ken Moran-Francia
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México
| | - Humberto Lanz-Mendoza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, C. P. 62100, Cuernavaca, Morelos, México.
| |
Collapse
|
33
|
Daubenspeck JM, Liu R, Dybvig K. Rhamnose Links Moonlighting Proteins to Membrane Phospholipid in Mycoplasmas. PLoS One 2016; 11:e0162505. [PMID: 27603308 PMCID: PMC5014317 DOI: 10.1371/journal.pone.0162505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
Many proteins that have a primary function as a cytoplasmic protein are known to have the ability to moonlight on the surface of nearly all organisms. An example is the glycolytic enzyme enolase, which can be found on the surface of many types of cells from bacteria to human. Surface enolase is not enzymatic because it is monomeric and oligomerization is required for glycolytic activity. It can bind various molecules and activate plasminogen. Enolase lacks a signal peptide and the mechanism by which it attaches to the surface is unknown. We found that treatment of whole cells of the murine pathogen Mycoplasma pulmonis with phospholipase D released enolase and other common moonlighting proteins. Glycostaining suggested that the released proteins were glycosylated. Cytoplasmic and membrane-bound enolase was isolated by immunoprecipitation. No post-translational modification was detected on cytoplasmic enolase, but membrane enolase was associated with lipid, phosphate and rhamnose. Treatment with phospholipase released the lipid and phosphate from enolase but not the rhamnose. The site of rhamnosylation was identified as a glutamine residue near the C-terminus of the protein. Rhamnose has been found in all species of mycoplasma examined but its function was previously unknown. Mycoplasmas are small bacteria with have no peptidoglycan, and rhamnose in these organisms is also not associated with polysaccharide. We suggest that rhamnose has a central role in anchoring proteins to the membrane by linkage to phospholipid, which may be a general mechanism for the membrane association of moonlighting proteins in mycoplasmas and perhaps other bacteria.
Collapse
Affiliation(s)
- James M. Daubenspeck
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
| | - Kevin Dybvig
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
34
|
Lecona-Valera AN, Tao D, Rodríguez MH, López T, Dinglasan RR, Rodríguez MC. An antibody against an Anopheles albimanus midgut myosin reduces Plasmodium berghei oocyst development. Parasit Vectors 2016; 9:274. [PMID: 27165123 PMCID: PMC4863318 DOI: 10.1186/s13071-016-1548-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/27/2016] [Indexed: 11/13/2022] Open
Abstract
Background Malaria parasites are transmitted by Anopheles mosquitoes. Although several studies have identified mosquito midgut surface proteins that are putatively important for Plasmodium ookinete invasion, only a few have characterized these protein targets and demonstrated transmission-blocking activity. Molecular information about these proteins is essential for the development of transmission-blocking vaccines (TBV). The aim of the present study was to test three monoclonal antibodies (mAbs), A-140, A-78 and A-10, for their ability to recognize antigens and block oocyst infection of the midgut of Anopheles albimanus, a major malaria vector in Latin America. Method Western-blot of mAbs on antigens from midgut brush border membrane vesicles was used to select antibodies. Three mAbs were tested by membrane feeding assays to evaluate their potential transmission-blocking activity against Plasmodium berghei. The cognate antigens recognized by mAbs with oocyst-reducing activity were determined by immunoprecipitation followed by liquid chromatography tandem mass spectrometry. Results Only one mAb, A-140, significantly reduced oocyst infection intensity. Hence, its probable protein target in the Anopheles albimanus midgut was identified and characterized. It recognized three high-molecular mass proteins from a midgut brush border microvilli vesicle preparation. Chemical deglycosylation assays confirmed the peptide nature of the epitope recognized by mAb A-140. Immunoprecipitation followed by proteomic identification with tandem mass spectrometry revealed five proteins, presumably extracted together as a complex. Of these, AALB007909 had the highest mascot score and corresponds to a protein with a myosin head motor domain, indicating that the target of mAb A-140 is probably myosin located on the microvilli of the mosquito midgut. Conclusion These results provide support for the participation of myosin in mosquito midgut invasion by Plasmodium ookinetes. The potential inclusion of this protein in the design of new multivalent vaccine strategies for blocking Plasmodium transmission is discussed. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1548-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba N Lecona-Valera
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology & Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, 21205, USA
| | - Mario H Rodríguez
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico
| | - Tomás López
- Instituto de Biotecnología, Universidad Nacional Autónoma de Méxic006F, Av. Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology and the Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, Baltimore, Maryland, 21205, USA
| | - María C Rodríguez
- Center of Research on Infectious Diseases, National Institute of Public Health, Av. Universidad 655, Col. Santa María Ahuacatitlán, Cuernavaca, Morelos, C. P. 62508, Mexico.
| |
Collapse
|
35
|
Gonçalves D, Hunziker P. Transmission-blocking strategies: the roadmap from laboratory bench to the community. Malar J 2016; 15:95. [PMID: 26888537 PMCID: PMC4758146 DOI: 10.1186/s12936-016-1163-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 02/11/2016] [Indexed: 11/10/2022] Open
Abstract
Malaria remains one of the most prevalent tropical and infectious diseases in the world, with an estimated more than 200 million clinical cases every year. In recent years, the mosquito stages of the parasite life cycle have received renewed attention with some progress being made in the development of transmission-blocking strategies. From gametocytes to late ookinetes, some attractive antigenic targets have been found and tested in order to develop a transmission blocking vaccine, and drugs are being currently screened for gametocytocidal activity, and also some new and less conventional approaches are drawing increased attention, such as genetically modified and fungus-infected mosquitoes that become refractory to Plasmodium infection. In this review some of those strategies focusing on the progress made so far will be summarized, but also, the challenges that come from the translation of early promising benchwork resulting in successful applications in the field. To do this, the available literature will be screened and all the pieces of the puzzle must be combined: from molecular biology to epidemiologic and clinical data.
Collapse
Affiliation(s)
- Daniel Gonçalves
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| | - Patrick Hunziker
- CLINAM Foundation for Nanomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Mukherjee D, Mishra P, Joshi M, Thakur PK, Hosur RV, Jarori GK. EWGWS insert in Plasmodium falciparum ookinete surface enolase is involved in binding of PWWP containing peptides: Implications to mosquito midgut invasion by the parasite. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 68:13-22. [PMID: 26592350 DOI: 10.1016/j.ibmb.2015.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
There are multiple stages in the life cycle of Plasmodium that invade host cells. Molecular machinery involved is such host-pathogen interactions constitute excellent drug targets and/or vaccine candidates. A screen using a phage display library has previously demonstrated presence of enolase on the surface of the Plasmodium ookinete. Phage-displayed peptides that bound to the ookinete contained a conserved motif (PWWP) in their sequence. Here, direct binding of these peptides with recombinant Plasmodium falciparum enolase (rPfeno) was investigated. These peptides showed specific binding to rPfeno, but failed to bind to other enolases. Plasmodium spp enolases are distinct in having an insert of five amino acids ((104)EWGWS(108)) that is not found in host enolases. The possibility of this insert being the recognition motif for the PWWP containing peptides was examined, (i) by comparing the binding of the peptides with rPfeno and a deletion variant Δ-rPfeno lacking (104)EWGWS(108), (ii) by measuring the changes in proton chemical shifts of PWWP peptides on binding to different enolases and (iii) by inter-molecular docking experiment to locate the peptide binding site. Results from these studies showed that the pentapeptide insert of Pfeno indeed constitutes the binding site for the PWWP domain containing peptide ligands. Search for sequences homologous to phage displayed peptides among peritrophic matrix proteins resulted in identification of perlecan, laminin, peritrophin and spacran. The possibility of these PWWP domain-containing proteins in the peritrophic matrix of insect gut to interact with ookinete cell surface enolase and facilitate the invasion of mosquito midgut epithelium is discussed.
Collapse
Affiliation(s)
- Debanjan Mukherjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Pushpa Mishra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Mamata Joshi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Prasoon Kumar Thakur
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisbon, 1649- 028 Lisbon, Portugal
| | - R V Hosur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
| |
Collapse
|
37
|
Smith RC, Vega-Rodríguez J, Jacobs-Lorena M. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector. Mem Inst Oswaldo Cruz 2015. [PMID: 25185005 PMCID: PMC4156458 DOI: 10.1590/0074-0276130597] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Joel Vega-Rodríguez
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health and Immunology, Baltimore, MD, USA
| |
Collapse
|
38
|
Ruiz A, Pérez D, Muñoz MC, Molina JM, Taubert A, Jacobs-Lorena M, Vega-Rodríguez J, López AM, Hermosilla C. Targeting essential Eimeria ninakohlyakimovae sporozoite ligands for caprine host endothelial cell invasion with a phage display peptide library. Parasitol Res 2015; 114:4327-31. [PMID: 26341796 DOI: 10.1007/s00436-015-4666-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 01/14/2023]
Abstract
Eimeria ninakohlyakimovae is an important coccidian parasite of goats which causes severe diarrhoea in young animals. Specific molecules that mediate E. ninakohlyakimovae host interactions and molecular mechanisms involved in the pathogenesis are still unknown. Although strong circumstantial evidence indicates that E. ninakohlyakimovae sporozoite interactions with caprine endothelial host cells (ECs) are specific, hardly any information is available about the interacting molecules that confer host cell specificity. In this study, we describe a novel method to identify surface proteins of caprine umbilical vein endothelial cells (CUVEC) using a phage display library. After several panning rounds, we identified a number of peptides that specifically bind to the surface of CUVEC. Importantly, caprine endothelial cell peptide 2 (PCEC2) and PCEC5 selectively reduced the infection rate by E. ninakohlyakimovae sporozoites. These preliminary data give new insight for the molecular identification of ligands involved in the interaction between E. ninakohlyakimovae sporozoites and host ECs. Further studies using this phage approach might be useful to identify new potential target molecules for the development of anti-coccidial drugs or even new vaccine strategies.
Collapse
Affiliation(s)
- A Ruiz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35416, Arucas, Las Palmas, Spain.
| | - D Pérez
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35416, Arucas, Las Palmas, Spain
| | - M C Muñoz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35416, Arucas, Las Palmas, Spain
| | - J M Molina
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35416, Arucas, Las Palmas, Spain
| | - A Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - J Vega-Rodríguez
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - A M López
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, 35416, Arucas, Las Palmas, Spain
| | - C Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
39
|
Lawniczak MK. Connecting genotypes to medically relevant phenotypes in major vector mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2015; 10:59-64. [PMID: 29588015 DOI: 10.1016/j.cois.2015.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/16/2015] [Indexed: 06/08/2023]
Abstract
Transmission of mosquito-borne human disease relies on vectors maintaining strong human host preference and continued susceptibility to disease-causing pathogens or parasites. These traits are affected by the genetics and the environments of all involved organisms, and genotypic interactions are common between parasite and vector, and between virus and vector. A recent study on Aedes host preference has exploited natural genetic variation to make great progress. Here I review our current understanding of the genetic basis of transmission-relevant traits in Anopheles and Aedes, highlighting additional research areas that would benefit from the integration of natural genetic variation.
Collapse
Affiliation(s)
- Mara Kn Lawniczak
- Wellcome Trust Sanger Institute, Malaria Programme, Hinxton CB10 1SA, United Kingdom; Imperial College London, Department of Life Sciences, London SW7 2AZ, United Kingdom.
| |
Collapse
|
40
|
Cha SJ, Park K, Srinivasan P, Schindler CW, van Rooijen N, Stins M, Jacobs-Lorena M. CD68 acts as a major gateway for malaria sporozoite liver infection. ACTA ACUST UNITED AC 2015. [PMID: 26216124 PMCID: PMC4548058 DOI: 10.1084/jem.20110575] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cha et al. use a phage display library screen to identify a peptide, P39, that binds to CD68 on the surface of Kupffer cells to inhibit malaria sporozoite cell entry. Thus, P39 may represent a therapeutic strategy for malaria by limiting hepatic infection. After being delivered by the bite from an infected mosquito, Plasmodium sporozoites enter the blood circulation and infect the liver. Previous evidence suggests that Kupffer cells, a macrophage-like component of the liver blood vessel lining, are traversed by sporozoites to initiate liver invasion. However, the molecular determinants of sporozoite–Kupffer cell interactions are unknown. Understanding the molecular basis for this specific recognition may lead to novel therapeutic strategies to control malaria. Using a phage display library screen, we identified a peptide, P39, that strongly binds to the Kupffer cell surface and, importantly, inhibits sporozoite Kupffer cell entry. Furthermore, we determined that P39 binds to CD68, a putative receptor for sporozoite invasion of Kupffer cells that acts as a gateway for malaria infection of the liver.
Collapse
Affiliation(s)
- Sung-Jae Cha
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Kiwon Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Prakash Srinivasan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Christian W Schindler
- Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032 Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032
| | - Nico van Rooijen
- Department of Molecular Cell Biology and Immunology, VUmc, 1081 BT Amsterdam, Netherlands
| | - Monique Stins
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Marcelo Jacobs-Lorena
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
41
|
Abstract
Reductive evolution during the adaptation to obligate parasitism and expansions of gene families encoding virulence factors are characteristics evident to greater or lesser degrees in all parasitic protists studied to date. Large evolutionary distances separate many parasitic protists from the yeast and animal models upon which classic views of eukaryotic biochemistry are often based. Thus a combination of evolutionary divergence, niche adaptation and reductive evolution means the biochemistry of parasitic protists is often very different from their hosts and to other eukaryotes generally, making parasites intriguing subjects for those interested in the phenomenon of moonlighting proteins. In common with other organisms, the contribution of protein moonlighting to parasite biology is only just emerging, and it is not without controversy. Here, an overview of recently identified moonlighting proteins in parasitic protists is provided, together with discussion of some of the controversies.
Collapse
|
42
|
Vega-Rodriguez J, Perez-Barreto D, Ruiz-Reyes A, Jacobs-Lorena M. Targeting molecular interactions essential for Plasmodium sexual reproduction. Cell Microbiol 2015; 17:1594-604. [PMID: 25944054 DOI: 10.1111/cmi.12458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/30/2015] [Indexed: 01/15/2023]
Abstract
Malaria remains one of the most devastating infectious diseases, killing up to a million people every year. Whereas much progress has been made in understanding the life cycle of the parasite in the human host and in the mosquito vector, significant gaps of knowledge remain. Fertilization of malaria parasites, a process that takes place in the lumen of the mosquito midgut, is poorly understood and the molecular interactions (receptor-ligand) required for Plasmodium fertilization remain elusive. By use of a phage display library, we identified FG1 (Female Gamete peptide 1), a peptide that binds specifically to the surface of female Plasmodium berghei gametes. Importantly, FG1 but not a scrambled version of the peptide, strongly reduces P. berghei oocyst formation by interfering with fertilization. In addition, FG1 also inhibits P. falciparum oocyst formation suggesting that the peptide binds to a molecule on the surface of the female gamete whose structure is conserved. Identification of the molecular interactions disrupted by the FG1 peptide may lead to the development of novel malaria transmission-blocking strategies.
Collapse
Affiliation(s)
- Joel Vega-Rodriguez
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Davinia Perez-Barreto
- Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos Campus Universitario de Arucas - Facultad de Veterinaria, Universidad de Las Palmas de Gran Canarias, Gran Canarias, Spain
| | - Antonio Ruiz-Reyes
- Departamento de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos Campus Universitario de Arucas - Facultad de Veterinaria, Universidad de Las Palmas de Gran Canarias, Gran Canarias, Spain
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
43
|
Zhang G, Niu G, Franca CM, Dong Y, Wang X, Butler NS, Dimopoulos G, Li J. Anopheles Midgut FREP1 Mediates Plasmodium Invasion. J Biol Chem 2015; 290:16490-501. [PMID: 25991725 DOI: 10.1074/jbc.m114.623165] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 01/17/2023] Open
Abstract
Malaria transmission depends on sexual stage Plasmodium parasites successfully invading Anopheline mosquito midguts following a blood meal. However, the molecular mechanisms of Plasmodium invasion of mosquito midguts have not been fully elucidated. Previously, we showed that genetic polymorphisms in the fibrinogen-related protein 1 (FREP1) gene are significantly associated with Plasmodium falciparum infection in Anopheles gambiae, and FREP1 is important for Plasmodium berghei infection of mosquitoes. Here we identify that the FREP1 protein is secreted from the mosquito midgut epithelium and integrated as tetramers into the peritrophic matrix, a chitinous matrix formed inside the midgut lumen after a blood meal feeding. Moreover, we show that the FREP1 can directly bind Plasmodia sexual stage gametocytes and ookinetes. Notably, ablating FREP1 expression or targeting FREP1 with antibodies significantly decreases P. falciparum infection in mosquito midguts. Our data support that the mosquito-expressed FREP1 mediates mosquito midgut invasion by multiple species of Plasmodium parasites via anchoring ookinetes to the peritrophic matrix and enabling parasites to penetrate the peritrophic matrix and the epithelium. Thus, targeting FREP1 can limit malaria transmission.
Collapse
Affiliation(s)
- Genwei Zhang
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Guodong Niu
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Caio M Franca
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Yuemei Dong
- the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Xiaohong Wang
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Noah S Butler
- the Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - George Dimopoulos
- the W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Jun Li
- From the Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019,
| |
Collapse
|
44
|
Dutta S, Mukherjee D, Jarori GK. Replacement of Ser108 in Plasmodium falciparum enolase results in weak Mg(II) binding: role of a parasite-specific pentapeptide insert in stabilizing the active conformation of the enzyme. FEBS J 2015; 282:2296-308. [PMID: 25787157 DOI: 10.1111/febs.13272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/06/2015] [Accepted: 03/16/2015] [Indexed: 01/20/2023]
Abstract
A distinct structural feature of Plasmodium falciparum enolase (Pfeno) is the presence of a five amino acid insert -104EWGWS108- that is not found in host enolases. Its conservation among apicomplexan enolases has raised the possibility of its involvement in some important physiological function(s). Deletion of this sequence is known to lower k(cat)/K(m), increase K(a) for Mg(II) and convert dimer into monomers (Vora HK, Shaik FR, Pal-Bhowmick I, Mout R & Jarori GK (2009) Arch Biochem Biophys 485, 128-138). These authors also raised the possibility of the formation of an H-bond between Ser108 and Leu49 that could stabilize the apo-Pfeno in an active closed conformation that has high affinity for Mg(II). Here, we examined the effect of replacement of Ser108 with Gly/Ala/Thr on enzyme activity, Mg(II) binding affinity, conformational states and oligomeric structure and compared it with native recombinant Pfeno. The results obtained support the view that Ser108 is likely to be involved in the formation of certain crucial H-bonds with Leu49. The presence of these interactions can stabilize apo-Pfeno in an active closed conformation similar to that of Mg(II) bound yeast enolase. As predicted, S108G/A-Pfeno variants (where Ser108-Leu49 H-bonds are likely to be disrupted) were found to exist in an open conformation and had low affinity for Mg(II). They also required Mg(II) induced conformational changes to acquire the active closed conformational state essential for catalysis. The possible physiological relevance of apo-Pfeno being in such an active state is discussed.
Collapse
Affiliation(s)
- Sneha Dutta
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Debanjan Mukherjee
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Gotam K Jarori
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
45
|
Smith RC, Colón-López DD, Bosch J. Immunization against a merozoite sheddase promotes multiple invasion of red blood cells and attenuates Plasmodium infection in mice. Malar J 2014; 13:313. [PMID: 25115675 PMCID: PMC4248431 DOI: 10.1186/1475-2875-13-313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/05/2014] [Indexed: 12/31/2022] Open
Abstract
Background Subtilisin-like protease 2 (SUB2) is a conserved serine protease utilized by Plasmodium parasites as a surface sheddase required for successful merozoite invasion of host red blood cells and has been implicated in ookinete invasion of the mosquito midgut. To determine if SUB2 is a suitable vaccine target to interfere with malaria parasite development, the effects of SUB2-immunization on the Plasmodium life cycle were examined in its vertebrate and invertebrate hosts. Methods Swiss Webster mice were immunized with SUB2 peptides conjugated to Keyhole limpet hemocyanin (KLH) or KLH alone, and then challenged with Plasmodium berghei. To determine the effects of immunization on parasite development, infected mice were evaluated by blood film and Giemsa staining. In addition, collected immune sera were used to perform passive immunization experiments in non-immunized, P. berghei-infected mice to determine the potential role of SUB2 in parasite development in the mosquito. Results Following P. berghei challenge, SUB2-immunized mice develop a lower parasitaemia and show improved survival when compared to control immunized mice. Moreover, SUB2 immunization results in an increase in the number of multiply invaded red blood cells, suggesting that SUB2 antibodies interfere with merozoite invasion. Passive immunization experiments imply that SUB2 may not have a major role in ookinete invasion, but this requires further investigation. Conclusion By interfering with red blood cell invasion, immunization against SUB2 limits malaria parasite development and confers protection from severe malaria. Together, these results provide proof-of-principle evidence for future investigation into the use of SUB2 as a vaccine or drug target to interrupt parasite development in more relevant human malaria models. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-313) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Jürgen Bosch
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
46
|
Krautz R, Arefin B, Theopold U. Damage signals in the insect immune response. FRONTIERS IN PLANT SCIENCE 2014; 5:342. [PMID: 25071815 PMCID: PMC4093659 DOI: 10.3389/fpls.2014.00342] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 05/24/2023]
Abstract
Insects and mammals share an ancient innate immune system comprising both humoral and cellular responses. The insect immune system consists of the fat body, which secretes effector molecules into the hemolymph and several classes of hemocytes, which reside in the hemolymph and of protective border epithelia. Key features of wound- and immune responses are shared between insect and mammalian immune systems including the mode of activation by commonly shared microbial (non-self) patterns and the recognition of these patterns by dedicated receptors. It is unclear how metazoan parasites in insects, which lack these shared motifs, are recognized. Research in recent years has demonstrated that during entry into the insect host, many eukaryotic pathogens leave traces that alert potential hosts of the damage they have afflicted. In accordance with terminology used in the mammalian immune systems, these signals have been dubbed danger- or damage-associated signals. Damage signals are necessary byproducts generated during entering hosts either by mechanical or proteolytic damage. Here, we briefly review the current stage of knowledge on how wound closure and wound healing during mechanical damage is regulated and how damage-related signals contribute to these processes. We also discuss how sensors of proteolytic activity induce insect innate immune responses. Strikingly damage-associated signals are also released from cells that have aberrant growth, including tumor cells. These signals may induce apoptosis in the damaged cells, the recruitment of immune cells to the aberrant tissue and even activate humoral responses. Thus, this ensures the removal of aberrant cells and compensatory proliferation to replace lost tissue. Several of these pathways may have been co-opted from wound healing and developmental processes.
Collapse
Affiliation(s)
| | | | - Ulrich Theopold
- *Correspondence: Ulrich Theopold, Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, Stockholm, Sweden e-mail:
| |
Collapse
|
47
|
Mathias DK, Jardim JG, Parish LA, Armistead JS, Trinh HV, Kumpitak C, Sattabongkot J, Dinglasan RR. Differential roles of an Anopheline midgut GPI-anchored protein in mediating Plasmodium falciparum and Plasmodium vivax ookinete invasion. INFECTION GENETICS AND EVOLUTION 2014; 28:635-47. [PMID: 24929123 DOI: 10.1016/j.meegid.2014.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 12/14/2022]
Abstract
Novel strategies to directly thwart malaria transmission are needed to maintain the gains achieved by current control measures. Transmission-blocking interventions (TBIs), namely vaccines and drugs targeting parasite or mosquito molecules required for vector-stage parasite development, have been recognized as promising approaches for preventing malaria transmission. However, the number of TBI targets is limited and their degree of conservation among the major vector-parasite systems causing human disease is unclear. Therefore, discovery and characterization of novel proteins involved in vector-stage parasite development of Plasmodium falciparum and Plasmodium vivax is paramount. We mined the recent Anopheles gambiae midgut lipid raft proteome for putative mosquito-derived TBI targets and characterized a secreted glycoconjugate of unknown function, AgSGU. We analyzed molecular variation in this protein among a range of anopheline mosquitoes, determined its transcriptomic and proteomic profiles, and conducted both standard and direct membrane feeding assays with P. falciparum (lab/field) and P. vivax (field) in An. gambiae and Anopheles dirus. We observed that α-AgSGU antibodies significantly reduced midgut infection intensity for both lab and field isolates of P. falciparum in An. gambiae and An. dirus. However, no transmission-reducing effects were noted when comparable concentrations of antibodies were included in P. vivax-infected blood meals. Although antibodies against AgSGU exhibit transmission-reducing activity, the high antibody titer required for achieving 80% reduction in oocyst intensity precludes its consideration as a malaria mosquito-based TBI candidate. However, our results suggest that P. falciparum and P. vivax ookinetes use a different repertoire of midgut surface glycoproteins for invasion and that α-AgSGU antibodies, as well as antibodies to other mosquito-midgut microvillar surface proteins, may prove useful as tools for interrogating Plasmodium-mosquito interactions.
Collapse
Affiliation(s)
- Derrick K Mathias
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | - Juliette G Jardim
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | - Lindsay A Parish
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | - Jennifer S Armistead
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | - Hung V Trinh
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| | | | | | - Rhoel R Dinglasan
- W. Harry Feinstone Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health & Malaria Research Institute, Baltimore, MD 21205, USA.
| |
Collapse
|