1
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024; 244:1709-1722. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Balcke GU, Vahabi K, Giese J, Finkemeier I, Tissier A. Coordinated metabolic adaptation of Arabidopsis thaliana to high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:387-405. [PMID: 39175460 DOI: 10.1111/tpj.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
SUMMARYIn plants, exposure to high light irradiation induces various stress responses, which entail complex metabolic rearrangements. To explore these dynamics, we conducted time‐course experiments spanning 2 min to 72 h with Arabidopsis thaliana under high and control light. Comparative metabolomics, transcriptomics, redox proteomics, and stable isotope labeling on leaf rosettes identified a series of synchronous and successive responses that provide a deeper insight into well‐orchestrated mechanisms contributing to high‐light acclimation. We observed transient transcriptome downregulation related to light harvesting and electron flow before the profound remodeling of the photosynthetic apparatus. Throughout the entire time course, redox homeostasis is tightly balanced between downregulation of production and enhanced transformation of NADPH accompanied by redistribution of reducing equivalents across several subcellular compartments. In both light conditions, C4 acids such as malate and fumarate are produced via anaplerosis. In carbon units, their accumulation in vacuoles surpasses plastidic levels of starch and intensifies notably under high light. In parallel, citrate synthesis from pyruvate is significantly hindered diurnally. Isotopic labeling in 2‐oxoglutarate and glutamate suggests a moderate de novo synthesis of C5 acids from a vacuolar citrate reservoir during the light phase while they are largely renewed during the night. In the absence of a diurnal clockwise flow through the tricarboxylic acid (TCA) cycle, increased oxidation of photorespiratory glycine takes over as a source of reductants to fuel mitochondrial ATP production. These findings, along with previous research, contribute to a model integrating redox balance and linking increased carbon assimilation and nitrogen metabolism, especially in the context of an incomplete TCA cycle.
Collapse
Affiliation(s)
- Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Jonas Giese
- Institute for Plant Biology and Biotechnology (IBBP), University of Muenster, Schlossplatz 7, D-48149, Münster, Germany
| | - Iris Finkemeier
- Institute for Plant Biology and Biotechnology (IBBP), University of Muenster, Schlossplatz 7, D-48149, Münster, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
3
|
Osinuga A, González Solís A, Cahoon RE, Alsiyabi A, Cahoon EB, Saha R. Deciphering sphingolipid biosynthesis dynamics in Arabidopsis thaliana cell cultures: Quantitative analysis amid data variability. iScience 2024; 27:110675. [PMID: 39297170 PMCID: PMC11409011 DOI: 10.1016/j.isci.2024.110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed toward fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we obtained data with notable variations and developed a regularized and constraint-based dynamic metabolic flux analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Despite challenges posed by data variability, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna González Solís
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Alsiyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
4
|
Saeheng S, Bailes C, Bao H, Gashu K, Morency M, Arlynn T, Smertenko A, Walker BJ, Roje S. Formate-tetrahydrofolate ligase: supplying the cytosolic one-carbon network in roots with one-carbon units originating from glycolate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2464-2483. [PMID: 39010784 DOI: 10.1111/tpj.16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
The metabolism of tetrahydrofolate (H4PteGlun)-bound one-carbon (C1) units (C1 metabolism) is multifaceted and required for plant growth, but it is unclear what of many possible synthesis pathways provide C1 units in specific organelles and tissues. One possible source of C1 units is via formate-tetrahydrofolate ligase, which catalyzes the reversible ATP-driven production of 10-formyltetrahydrofolate (10-formyl-H4PteGlun) from formate and tetrahydrofolate (H4PteGlun). Here, we report biochemical and functional characterization of the enzyme from Arabidopsis thaliana (AtFTHFL). We show that the recombinant AtFTHFL has lower Km and kcat values with pentaglutamyl tetrahydrofolate (H4PteGlu5) as compared to monoglutamyl tetrahydrofolate (H4PteGlu1), resulting in virtually identical catalytic efficiencies for the two substrates. Stable transformation of Arabidopsis plants with the EGFP-tagged AtFTHFL, followed with fluorescence microscopy, demonstrated cytosolic signal. Two independent T-DNA insertion lines with impaired AtFTHFL function had shorter roots compared to the wild type plants, demonstrating the importance of this enzyme for root growth. Overexpressing AtFTHFL led to the accumulation of H4PteGlun + 5,10-methylene-H4PteGlun and serine, accompanied with the depletion of formate and glycolate, in roots of the transgenic Arabidopsis plants. This metabolic adjustment supports the hypothesis that AtFTHFL feeds the cytosolic C1 network in roots with C1 units originating from glycolate, and that these units are then used mainly for biosynthesis of serine, and not as much for the biosynthesis of 5-methyl-H4PteGlun, methionine, and S-adenosylmethionine. This finding has implications for any future attempts to engineer one-carbon unit-requiring products through manipulation of the one-carbon metabolic network in non-photosynthetic organs.
Collapse
Affiliation(s)
- Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Thailand
- Plant Cell and Physiology for Sustainable Agriculture Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Clayton Bailes
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Han Bao
- Department of Energy-Michigan State University Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Kelem Gashu
- Department of Energy-Michigan State University Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Matt Morency
- Department of Energy-Michigan State University Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Tana Arlynn
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - Berkley James Walker
- Department of Energy-Michigan State University Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
5
|
Tcherkez G, Abadie C, Dourmap C, Lalande J, Limami AM. Leaf day respiration: More than just catabolic CO 2 production in the light. PLANT, CELL & ENVIRONMENT 2024; 47:2631-2639. [PMID: 38528759 DOI: 10.1111/pce.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Summary statementDay respiration is a net flux resulting from several CO2‐generating and CO2‐fixing reactions, not only related to catabolism but also to anabolism. We review pieces of evidence that decarboxylating reactions are partly fed by carbon sources disconnected from current photosynthesis and how they reflect various metabolic pathways.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
- Research school of biology, ANU College of Science, Australian National University, Canberra, Australia
| | - Cyril Abadie
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
- Ecophysiologie et génomique fonctionnelle de la vigne, Institut des Sciences de la Vigne et du Vin, INRAe, Université de Bordeaux, Villenave-d'Ornon, France
| | - Corentin Dourmap
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Julie Lalande
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| | - Anis M Limami
- Institut de recherche en horticulture et semences, Université d'Angers, INRAe, Beaucouzé, France
| |
Collapse
|
6
|
Steichen S, Deshpande A, Mosey M, Loob J, Douchi D, Knoshaug EP, Brown S, Nielsen R, Weissman J, Carrillo LR, Laurens LML. Central transcriptional regulator controls photosynthetic growth and carbon storage in response to high light. Nat Commun 2024; 15:4842. [PMID: 38844786 PMCID: PMC11156908 DOI: 10.1038/s41467-024-49090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Carbon capture and biochemical storage are some of the primary drivers of photosynthetic yield and productivity. To elucidate the mechanisms governing carbon allocation, we designed a photosynthetic light response test system for genetic and metabolic carbon assimilation tracking, using microalgae as simplified plant models. The systems biology mapping of high light-responsive photophysiology and carbon utilization dynamics between two variants of the same Picochlorum celeri species, TG1 and TG2 elucidated metabolic bottlenecks and transport rates of intermediates using instationary 13C-fluxomics. Simultaneous global gene expression dynamics showed 73% of the annotated genes responding within one hour, elucidating a singular, diel-responsive transcription factor, closely related to the CCA1/LHY clock genes in plants, with significantly altered expression in TG2. Transgenic P. celeri TG1 cells expressing the TG2 CCA1/LHY gene, showed 15% increase in growth rates and 25% increase in storage carbohydrate content, supporting a coordinating regulatory function for a single transcription factor.
Collapse
Affiliation(s)
- Seth Steichen
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Arnav Deshpande
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Megan Mosey
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Jessica Loob
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Damien Douchi
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Eric P Knoshaug
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - Stuart Brown
- ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA
| | - Robert Nielsen
- ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA
| | - Joseph Weissman
- ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA
| | - L Ruby Carrillo
- ExxonMobil Technology and Engineering Co. (EMTEC), CLD286 Annandale, 1545 Route 22 East, Annandale, NJ, 08801, USA
| | - Lieve M L Laurens
- Bioenergy Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA.
| |
Collapse
|
7
|
Xu Y, Schmiege SC, Sharkey TD. The oxidative pentose phosphate pathway in photosynthesis: a tale of two shunts. THE NEW PHYTOLOGIST 2024; 242:2453-2463. [PMID: 38567702 DOI: 10.1111/nph.19730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/17/2024] [Indexed: 05/24/2024]
Abstract
CO2 release in the light (RL) and its presumed source, oxidative pentose phosphate pathways, were found to be insensitive to CO2 concentration. The oxidative pentose phosphate pathways form glucose 6-phosphate (G6P) shunts that bypass the nonoxidative pentose phosphate reactions of the Calvin-Benson cycle. Using adenosine diphosphate glucose and uridine diphosphate glucose as proxies for labeling of G6P in the stroma and cytosol respectively, it was found that only the cytosolic shunt was active. Uridine diphosphate glucose, a proxy for cytosolic G6P, and 6-phosphogluconate (6PG) were significantly less labeled than Calvin-Benson cycle intermediates in the light. But ADP glucose, a proxy for stromal G6P, is labeled to the same degree as Calvin-Benson cycle intermediates and much greater than 6PG. A metabolically inert pool of sedoheptulose bisphosphate can slowly equilibrate keeping the label in sedoheptulose lower than in other stromal metabolites. Finally, phosphorylation of fructose 6-phosphate (F6P) in the cytosol can allow some unlabeled carbon in cytosolic F6P to dilute label in phosphenolpyruvate. The results clearly show that there is oxidative pentose phosphate pathway activity in the cytosol that provides a shunt around the nonoxidative pentose phosphate pathway reactions of the Calvin-Benson cycle and is not strongly CO2-sensitive.
Collapse
Affiliation(s)
- Yuan Xu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Stephanie C Schmiege
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, Western University, London, ON, N6A 5B7, Canada
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
Goelzer A, Rajjou L, Chardon F, Loudet O, Fromion V. Resource allocation modeling for autonomous prediction of plant cell phenotypes. Metab Eng 2024; 83:86-101. [PMID: 38561149 DOI: 10.1016/j.ymben.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Predicting the plant cell response in complex environmental conditions is a challenge in plant biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA) constraint-based modeling framework. The RBA model contains the metabolic network and the major macromolecular processes involved in the plant cell growth and survival and localized in cellular compartments. We simulated the model for varying environmental conditions of temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established Farquhar model. In comparison to other standard constraint-based modeling methods like Flux Balance Analysis, the RBA model makes accurate quantitative predictions without the need for empirical constraints. Altogether, we show that RBA significantly improves the autonomous prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic links between the genotype and the phenotype of the plant cell.
Collapse
Affiliation(s)
- Anne Goelzer
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| | - Loïc Rajjou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Vincent Fromion
- Université Paris-Saclay, INRAE, MaIAGE, 78350, Jouy-en-Josas, France.
| |
Collapse
|
9
|
Rao X, Barros J. Modeling lignin biosynthesis: a pathway to renewable chemicals. TRENDS IN PLANT SCIENCE 2024; 29:546-559. [PMID: 37802691 DOI: 10.1016/j.tplants.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Plant biomass contains lignin that can be converted into high-value-added chemicals, fuels, and materials. The precise genetic manipulation of lignin content and composition in plant cells offers substantial environmental and economic benefits. However, the intricate regulatory mechanisms governing lignin formation challenge the development of crops with specific lignin profiles. Mathematical models and computational simulations have recently been employed to gain fundamental understanding of the metabolism of lignin and related phenolic compounds. This review article discusses the strategies used for modeling plant metabolic networks, focusing on the application of mathematical modeling for flux network analysis in monolignol biosynthesis. Furthermore, we highlight how current challenges might be overcome to optimize the use of metabolic modeling approaches for developing lignin-engineered plants.
Collapse
Affiliation(s)
- Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Jaime Barros
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
10
|
Sharkey TD. The end game(s) of photosynthetic carbon metabolism. PLANT PHYSIOLOGY 2024; 195:67-78. [PMID: 38163636 PMCID: PMC11060661 DOI: 10.1093/plphys/kiad601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
The year 2024 marks 70 years since the general outline of the carbon pathway in photosynthesis was published. Although several alternative pathways are now known, it is remarkable how many organisms use the reaction sequence described 70 yrs ago, which is now known as the Calvin-Benson cycle or variants such as the Calvin-Benson-Bassham cycle or Benson-Calvin cycle. However, once the carbon has entered the Calvin-Benson cycle and is converted to a 3-carbon sugar, it has many potential fates. This review will examine the last stages of photosynthetic metabolism in leaves. In land plants, this process mostly involves the production of sucrose provided by an endosymbiont (the chloroplast) to its host for use and transport to the rest of the plant. Photosynthetic metabolism also usually involves the synthesis of starch, which helps maintain respiration in the dark and enables the symbiont to supply sugars during both the day and night. Other end products made in the chloroplast are closely tied to photosynthetic CO2 assimilation. These include serine from photorespiration and various amino acids, fatty acids, isoprenoids, and shikimate pathway products. I also describe 2 pathways that can short circuit parts of the Calvin-Benson cycle. These final processes of photosynthetic metabolism play many important roles in plants.
Collapse
Affiliation(s)
- Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Plant Resilience Institute, and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
The SV, Santiago JP, Pappenberger C, Hammes UZ, Tegeder M. UMAMIT44 is a key player in glutamate export from Arabidopsis chloroplasts. THE PLANT CELL 2024; 36:1119-1139. [PMID: 38092462 PMCID: PMC10980354 DOI: 10.1093/plcell/koad310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/15/2023] [Indexed: 04/01/2024]
Abstract
Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.
Collapse
Affiliation(s)
- Samantha Vivia The
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - James P Santiago
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Clara Pappenberger
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
12
|
Zhu XG, Treves H, Zhao H. Mechanisms controlling metabolite concentrations of the Calvin Benson Cycle. Semin Cell Dev Biol 2024; 155:3-9. [PMID: 36858897 DOI: 10.1016/j.semcdb.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/28/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Maintaining proper metabolite levels in a complex metabolic network is crucial for maintaining a high flux through the network. In this paper, we discuss major regulatory mechanisms over the Calvin Benson Cycle (CBC) with regard to their roles in conferring homeostasis of metabolite levels in CBC. These include: 1) Redox regulation of enzymes in the CBC on one hand ensures that metabolite levels stay above certain lower bounds under low light while on the other hand increases the flux through the CBC under high light. 2) Metabolite regulations, especially allosteric regulations of major regulatory enzymes, ensure the rapid up-regulation of fluxes to ensure sufficient amount of triose phosphate is available for end product synthesis and concurrently avoid phosphate limitation. 3) A balanced activities of enzymes in the CBC help maintain balanced flux through CBC; some innate product feedback mechanisms, in particular the ADP feedback regulation of GAPDH and F6P feedback regulation of FBPase, exist in CBC to achieve such a balanced enzyme activities and hence flux distribution in the CBC for greater photosynthetic efficiency. Transcriptional regulation and natural variations of enzymes controlling CBC metabolite homeostasis should be further explored to maximize the potential of engineering CBC for greater efficiency.
Collapse
Affiliation(s)
- Xin-Guang Zhu
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Science, Shanghai 200032, China.
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, 6997801, Israel
| | - Honglong Zhao
- Center of Excellence for Molecular Plant Sciences, Chinese Academy of Science, Shanghai 200032, China
| |
Collapse
|
13
|
Clapero V, Arrivault S, Stitt M. Natural variation in metabolism of the Calvin-Benson cycle. Semin Cell Dev Biol 2024; 155:23-36. [PMID: 36959059 DOI: 10.1016/j.semcdb.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
The Calvin-Benson cycle (CBC) evolved over 2 billion years ago but has been subject to massive selection due to falling atmospheric carbon dioxide, rising atmospheric oxygen and changing nutrient and water availability. In addition, large groups of organisms have evolved carbon-concentrating mechanisms (CCMs) that operate upstream of the CBC. Most previous studies of CBC diversity focused on Rubisco kinetics and regulation. Quantitative metabolite profiling provides a top-down strategy to uncover inter-species diversity in CBC operation. CBC profiles were recently published for twenty species including terrestrial C3 species, terrestrial C4 species that operate a biochemical CCM, and cyanobacteria and green algae that operate different types of biophysical CCM. Distinctive profiles were found for species with different modes of photosynthesis, revealing that evolution of the various CCMs was accompanied by co-evolution of the CBC. Diversity was also found between species that share the same mode of photosynthesis, reflecting lineage-dependent diversity of the CBC. Connectivity analysis uncovers constraints due to pathway and thermodynamic topology, and reveals that cross-species diversity in the CBC is driven by changes in the balance between regulated enzymes and in the balance between the CBC and the light reactions or end-product synthesis.
Collapse
Affiliation(s)
- Vittoria Clapero
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Golm, D-14476 Potsdam, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Golm, D-14476 Potsdam, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Golm, D-14476 Potsdam, Germany
| |
Collapse
|
14
|
Kambhampati S, Hubbard AH, Koley S, Gomez JD, Marsolais F, Evans BS, Young JD, Allen DK. SIMPEL: using stable isotopes to elucidate dynamics of context specific metabolism. Commun Biol 2024; 7:172. [PMID: 38347116 PMCID: PMC10861564 DOI: 10.1038/s42003-024-05844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
The capacity to leverage high resolution mass spectrometry (HRMS) with transient isotope labeling experiments is an untapped opportunity to derive insights on context-specific metabolism, that is difficult to assess quantitatively. Tools are needed to comprehensively mine isotopologue information in an automated, high-throughput way without errors. We describe a tool, Stable Isotope-assisted Metabolomics for Pathway Elucidation (SIMPEL), to simplify analysis and interpretation of isotope-enriched HRMS datasets. The efficacy of SIMPEL is demonstrated through examples of central carbon and lipid metabolism. In the first description, a dual-isotope labeling experiment is paired with SIMPEL and isotopically nonstationary metabolic flux analysis (INST-MFA) to resolve fluxes in central metabolism that would be otherwise challenging to quantify. In the second example, SIMPEL was paired with HRMS-based lipidomics data to describe lipid metabolism based on a single labeling experiment. Available as an R package, SIMPEL extends metabolomics analyses to include isotopologue signatures necessary to quantify metabolic flux.
Collapse
Affiliation(s)
- Shrikaar Kambhampati
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Allen H Hubbard
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Javier D Gomez
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Frédéric Marsolais
- London Research and Development Center, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Bradley S Evans
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Jamey D Young
- Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA.
- Agricultural Research Service, US Department of Agriculture, St. Louis, MO, 63132, USA.
| |
Collapse
|
15
|
Kaste JA, Shachar-Hill Y. Model validation and selection in metabolic flux analysis and flux balance analysis. Biotechnol Prog 2024; 40:e3413. [PMID: 37997613 PMCID: PMC10922127 DOI: 10.1002/btpr.3413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
13C-Metabolic Flux Analysis (13C-MFA) and Flux Balance Analysis (FBA) are widely used to investigate the operation of biochemical networks in both biological and biotechnological research. Both methods use metabolic reaction network models of metabolism operating at steady state so that reaction rates (fluxes) and the levels of metabolic intermediates are constrained to be invariant. They provide estimated (MFA) or predicted (FBA) values of the fluxes through the network in vivo, which cannot be measured directly. These fluxes can shed light on basic biology and have been successfully used to inform metabolic engineering strategies. Several approaches have been taken to test the reliability of estimates and predictions from constraint-based methods and to compare alternative model architectures. Despite advances in other areas of the statistical evaluation of metabolic models, such as the quantification of flux estimate uncertainty, validation and model selection methods have been underappreciated and underexplored. We review the history and state-of-the-art in constraint-based metabolic model validation and model selection. Applications and limitations of the χ2 -test of goodness-of-fit, the most widely used quantitative validation and selection approach in 13C-MFA, are discussed, and complementary and alternative forms of validation and selection are proposed. A combined model validation and selection framework for 13C-MFA incorporating metabolite pool size information that leverages new developments in the field is presented and advocated for. Finally, we discuss how adopting robust validation and selection procedures can enhance confidence in constraint-based modeling as a whole and ultimately facilitate more widespread use of FBA in biotechnology.
Collapse
Affiliation(s)
- Joshua A.M. Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48823
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| |
Collapse
|
16
|
Walker BJ, Driever SM, Kromdijk J, Lawson T, Busch FA. Tools for Measuring Photosynthesis at Different Scales. Methods Mol Biol 2024; 2790:1-26. [PMID: 38649563 DOI: 10.1007/978-1-0716-3790-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Measurements of in vivo photosynthesis are powerful tools that probe the largest fluxes of carbon and energy in an illuminated leaf, but often the specific techniques used are so varied and specialized that it is difficult for researchers outside the field to select and perform the most useful assays for their research questions. The goal of this chapter is to provide a broad overview of the current tools available for the study of photosynthesis, both in vivo and in vitro, so as to provide a foundation for selecting appropriate techniques, many of which are presented in detail in subsequent chapters. This chapter will also organize current methods into a comparative framework and provide examples of how they have been applied to research questions of broad agronomical, ecological, or biological importance. This chapter closes with an argument that the future of in vivo measurements of photosynthesis lies in the ability to use multiple methods simultaneously and discusses the benefits of this approach to currently open physiological questions. This chapter, combined with the relevant methods chapters, could serve as a laboratory course in methods in photosynthesis research or as part of a more comprehensive laboratory course in general plant physiology methods.
Collapse
Affiliation(s)
- Berkley J Walker
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Xu Y, Fu X, Sharkey TD, Walker BJ. Combining Gas Exchange and Rapid Quenching of Leaf Tissue for Mass Spectrometry Analysis Directly in Gas Exchange Cuvette. Methods Mol Biol 2024; 2792:209-219. [PMID: 38861090 DOI: 10.1007/978-1-0716-3802-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Isotopically nonstationary metabolic flux analysis (INST-MFA) is a powerful technique for studying plant central metabolism, which involves introducing a 13CO2 tracer to plant leaves and sampling the labeled metabolic intermediates during the transient period before reaching an isotopic steady state. The metabolic intermediates involved in the C3 cycle have exceptionally fast turnover rates, with some intermediates turning over many times a second. As a result, it is necessary to rapidly introduce the label and then rapidly quench the plant tissue to determine concentrations in the light or capture the labeling kinetics of these intermediates at early labeling time points. Here, we describe a rapid quenching (0.1-0.5 s) system for 13CO2 labeling experiments in plant leaves to minimize metabolic changes during labeling and quenching experiments. This system is integrated into a commercially available gas exchange analyzer to measure initial rates of gas exchange, precisely control ambient conditions, and monitor the conversion from 12CO2 to 13CO2.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Thomas D Sharkey
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Xu Y, Koroma AA, Weise SE, Fu X, Sharkey TD, Shachar-Hill Y. Daylength variation affects growth, photosynthesis, leaf metabolism, partitioning, and metabolic fluxes. PLANT PHYSIOLOGY 2023; 194:475-490. [PMID: 37726946 PMCID: PMC10756764 DOI: 10.1093/plphys/kiad507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Daylength, a seasonal and latitudinal variable, exerts a substantial impact on plant growth. However, the relationship between daylength and growth is nonproportional, suggesting the existence of adaptive mechanisms. Thus, our study aimed to comprehensively investigate the adaptive strategies employed by plants in response to daylength variation. We grew false flax (Camelina sativa) plants, a model oilseed crop, under long-day (LD) and short-day (SD) conditions and used growth measurements, gas exchange measurements, and isotopic labeling techniques, including 13C, 14C, and 2H2O, to determine responses to different daylengths. Our findings revealed that daylength influences various growth parameters, photosynthetic physiology, carbon partitioning, metabolic fluxes, and metabolite levels. SD plants employed diverse mechanisms to compensate for reduced CO2 fixation in the shorter photoperiod. These mechanisms included enhanced photosynthetic rates and reduced respiration in the light (RL), leading to increased shoot investment. Additionally, SD plants exhibited reduced rates of the glucose 6-phosphate (G6P) shunt and greater partitioning of sugars into starch, thereby sustaining carbon availability during the longer night. Isotopic labeling results further demonstrated substantial alterations in the partitioning of amino acids and TCA cycle intermediates between rapidly and slowly turning over pools. Overall, the results point to multiple developmental, physiological, and metabolic ways in which plants adapt to different daylengths to maintain growth.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Abubakarr A Koroma
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30329, USA
| | - Sean E Weise
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Thomas D Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
19
|
Osinuga A, Solis AG, Cahoon RE, Al-Siyabi A, Cahoon EB, Saha R. Quantitative Dynamic Analysis of de novo Sphingolipid Biosynthesis in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570827. [PMID: 38105963 PMCID: PMC10723408 DOI: 10.1101/2023.12.08.570827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Sphingolipids are pivotal for plant development and stress responses. Growing interest has been directed towards fully comprehending the regulatory mechanisms of the sphingolipid pathway. We explore its de novo biosynthesis and homeostasis in Arabidopsis thaliana cell cultures, shedding light on fundamental metabolic mechanisms. Employing 15N isotope labeling and quantitative dynamic modeling approach, we developed a regularized and constraint-based Dynamic Metabolic Flux Analysis (r-DMFA) framework to predict metabolic shifts due to enzymatic changes. Our analysis revealed key enzymes such as sphingoid-base hydroxylase (SBH) and long-chain-base kinase (LCBK) to be critical for maintaining sphingolipid homeostasis. Disruptions in these enzymes were found to affect cellular viability and increase the potential for programmed cell death (PCD). Thus, this work enhances our understanding of sphingolipid metabolism and demonstrates the utility of dynamic modeling in analyzing complex metabolic pathways.
Collapse
Affiliation(s)
- Abraham Osinuga
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ariadna Gonzalez Solis
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rebecca E Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Adil Al-Siyabi
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
20
|
Wang B, Zuniga C, Guarnieri MT, Zengler K, Betenbaugh M, Young JD. Metabolic engineering of Synechococcus elongatus 7942 for enhanced sucrose biosynthesis. Metab Eng 2023; 80:12-24. [PMID: 37678664 DOI: 10.1016/j.ymben.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
The capability of cyanobacteria to produce sucrose from CO2 and light has a remarkable societal and biotechnological impact since sucrose can serve as a carbon and energy source for a variety of heterotrophic organisms and can be converted into value-added products. However, most metabolic engineering efforts have focused on understanding local pathway alterations that drive sucrose biosynthesis and secretion in cyanobacteria rather than analyzing the global flux re-routing that occurs following induction of sucrose production by salt stress. Here, we investigated global metabolic flux alterations in a sucrose-secreting (cscB-overexpressing) strain relative to its wild-type Synechococcus elongatus 7942 parental strain. We used targeted metabolomics, 13C metabolic flux analysis (MFA), and genome-scale modeling (GSM) as complementary approaches to elucidate differences in cellular resource allocation by quantifying metabolic profiles of three cyanobacterial cultures - wild-type S. elongatus 7942 without salt stress (WT), wild-type with salt stress (WT/NaCl), and the cscB-overexpressing strain with salt stress (cscB/NaCl) - all under photoautotrophic conditions. We quantified the substantial rewiring of metabolic fluxes in WT/NaCl and cscB/NaCl cultures relative to WT and identified a metabolic bottleneck limiting carbon fixation and sucrose biosynthesis. This bottleneck was subsequently mitigated through heterologous overexpression of glyceraldehyde-3-phosphate dehydrogenase in an engineered sucrose-secreting strain. Our study also demonstrates that combining 13C-MFA and GSM is a useful strategy to both extend the coverage of MFA beyond central metabolism and to improve the accuracy of flux predictions provided by GSM.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, CA, 92093, USA; Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, CA, 92093, USA; Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Center for Microbiome Innovation, University of California, San Diego, CA, 92093, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
21
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
22
|
Shi H, Ernst E, Heinzel N, McCorkle S, Rolletschek H, Borisjuk L, Ortleb S, Martienssen R, Shanklin J, Schwender J. Mechanisms of metabolic adaptation in the duckweed Lemna gibba: an integrated metabolic, transcriptomic and flux analysis. BMC PLANT BIOLOGY 2023; 23:458. [PMID: 37789269 PMCID: PMC10546790 DOI: 10.1186/s12870-023-04480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Duckweeds are small, rapidly growing aquatic flowering plants. Due to their ability for biomass production at high rates they represent promising candidates for biofuel feedstocks. Duckweeds are also excellent model organisms because they can be maintained in well-defined liquid media, usually reproduce asexually, and because genomic resources are becoming increasingly available. To demonstrate the utility of duckweed for integrated metabolic studies, we examined the metabolic adaptation of growing Lemna gibba cultures to different nutritional conditions. RESULTS To establish a framework for quantitative metabolic research in duckweeds we derived a central carbon metabolism network model of Lemna gibba based on its draft genome. Lemna gibba fronds were grown with nitrate or glutamine as nitrogen source. The two conditions were compared by quantification of growth kinetics, metabolite levels, transcript abundance, as well as by 13C-metabolic flux analysis. While growing with glutamine, the fronds grew 1.4 times faster and accumulated more protein and less cell wall components compared to plants grown on nitrate. Characterization of photomixotrophic growth by 13C-metabolic flux analysis showed that, under both metabolic growth conditions, the Calvin-Benson-Bassham cycle and the oxidative pentose-phosphate pathway are highly active, creating a futile cycle with net ATP consumption. Depending on the nitrogen source, substantial reorganization of fluxes around the tricarboxylic acid cycle took place, leading to differential formation of the biosynthetic precursors of the Asp and Gln families of proteinogenic amino acids. Despite the substantial reorganization of fluxes around the tricarboxylic acid cycle, flux changes could largely not be associated with changes in transcripts. CONCLUSIONS Through integrated analysis of growth rate, biomass composition, metabolite levels, and metabolic flux, we show that Lemna gibba is an excellent system for quantitative metabolic studies in plants. Our study showed that Lemna gibba adjusts to different nitrogen sources by reorganizing central metabolism. The observed disconnect between gene expression regulation and metabolism underscores the importance of metabolic flux analysis as a tool in such studies.
Collapse
Affiliation(s)
- Hai Shi
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Evan Ernst
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Nicolas Heinzel
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Sean McCorkle
- Brookhaven National Laboratory, Computational Science Initiative, Upton, NY, 11973, USA
| | - Hardy Rolletschek
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Ljudmilla Borisjuk
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Stefan Ortleb
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, Seeland OT Gatersleben, Germany
| | - Robert Martienssen
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Jorg Schwender
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
23
|
Tong H, Laitinen RAE, Nikoloski Z. Predicting plasticity of rosette growth and metabolic fluxes in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 240:426-438. [PMID: 37507350 DOI: 10.1111/nph.19154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Plants can rapidly mitigate the effects of suboptimal growth environments by phenotypic plasticity of fitness-traits. While genetic variation for phenotypic plasticity offers the means for breeding climate-resilient crop lines, accurate genomic prediction models for plasticity of fitness-related traits are still lacking. Here, we employed condition- and accession-specific metabolic models for 67 Arabidopsis thaliana accessions to dissect and predict plasticity of rosette growth to changes in nitrogen availability. We showed that specific reactions in photorespiration, linking carbon and nitrogen metabolism, as well as key pathways of central carbon metabolism exhibited substantial genetic variation for flux plasticity. We also demonstrated that, in comparison with a genomic prediction model for fresh weight (FW), genomic prediction of growth plasticity improves the predictability of FW under low nitrogen by 58.9% and by additional 15.4% when further integrating data on plasticity of metabolic fluxes. Therefore, the combination of metabolic and statistical modeling provides a stepping stone in understanding the molecular mechanisms and improving the predictability of plasticity for fitness-related traits.
Collapse
Affiliation(s)
- Hao Tong
- Bioinformatics and Mathematical Modeling, Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
| | - Roosa A E Laitinen
- Organismal and Evolutionary Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, 00014, Finland
| | - Zoran Nikoloski
- Bioinformatics and Mathematical Modeling, Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
| |
Collapse
|
24
|
Geffen O, Achaintre D, Treves H. 13CO 2-labelling and Sampling in Algae for Flux Analysis of Photosynthetic and Central Carbon Metabolism. Bio Protoc 2023; 13:e4808. [PMID: 37719071 PMCID: PMC10501915 DOI: 10.21769/bioprotoc.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
The flux in photosynthesis can be studied by performing 13CO2 pulse labelling and analysing the temporal labelling kinetics of metabolic intermediates using gas or liquid chromatography linked to mass spectrometry. Metabolic flux analysis (MFA) is the primary approach for analysing metabolic network function and quantifying intracellular metabolic fluxes. Different MFA approaches differ based on the metabolic state (steady vs. non-steady state) and the use of stable isotope tracers. The main methodology used to investigate metabolic systems is metabolite steady state associated with stable isotope labelling experiments. Specifically, in biological systems like photoautotrophic organisms, isotopic non-stationary 113C metabolic flux analysis at metabolic steady state with transient isotopic labelling (13C-INST-MFA) is required. The common requirement for metabolic steady state, alongside its very short half-timed reactions, complicates robust MFA of photosynthetic metabolism. While custom gas chambers design has addressed these challenges in various model plants, no similar tools were developed for liquid photosynthetic cultures (e.g., algae, cyanobacteria), where diffusion and equilibration of inorganic carbon species in the medium entails a new dimension of complexity. Recently, a novel tailor-made microfluidics labelling system has been introduced, supplying short 13CO2 pulses at steady state, and resolving fluxes across most photosynthetic metabolic pathways in algae. The system involves injecting algal cultures and medium containing pre-equilibrated inorganic 13C into a microfluidic mixer, followed by rapid metabolic quenching, enabling precise seconds-level label pulses. This was complemented by a 13CO2-bubbling-based open labelling system (photobioreactor), allowing long pulses (minutes-hours) required for investigating fluxes into central C metabolism and major products. This combined labelling procedure provides a comprehensive fluxome cover for most algal photosynthetic and central C metabolism pathways, thus allowing comparative flux analyses across algae and plants.
Collapse
Affiliation(s)
- Or Geffen
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - David Achaintre
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Haim Treves
- School of Plant Sciences and Food Security, Faculty of Biology, Tel-Aviv University, Tel Aviv-Yafo, Israel
- Plant Metabolism Group, Faculty of Biology, Rhineland-Palatinate Technical University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
25
|
Miyazawa SI, Ujino-Ihara T, Miyama T, Tahara K, Tobita H, Suzuki Y, Nishiguchi M. Different photorespiratory mechanisms in conifer leaves, where peroxisomes have intrinsically low catalase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1004-1020. [PMID: 37162489 DOI: 10.1111/tpj.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023]
Abstract
Photorespiration is an essential metabolic mechanism associated with photosynthesis; however, little is known about the photorespiratory pathway of conifer gymnosperms. Metabolite analyses of the leaves of 27 tree species showed that the mean glycerate content in conifer leaves was lower than that in angiosperm leaves. We performed experiments where [13 C]-serine was fed to detached shoots of a conifer (Cryptomeria japonica), via the transpiration stream, and compared the labeling patterns of photorespiratory metabolites with those of an angiosperm tree (Populus nigra), because glycerate is produced from serine via hydroxypyruvate in peroxisomes. In P. nigra, hydroxypyruvate, glycerate and glycine were labeled with 13 C, whereas in C. japonica, glycolate and a non-canonical photorespiratory metabolite, formate, were also labeled, suggesting that an H2 O2 -mediated non-enzymatic decarboxylation (NED) reaction occurs in C. japonica. We analyzed changes in the metabolite contents of leaves kept in the dark and leaves exposed to illuminated photorespiration-promoting conditions: a positive relationship between formate and serine levels in C. japonica implied that the active C1 -metabolism pathway synthesizes serine from formate. Leaf gas exchange analyses revealed that CO2 produced through NED was recaptured by chloroplasts. Database analysis of the peroxisomal targeting signal motifs of an H2 O2 -scavenging enzyme, catalase, derived from various species, including nine coniferous species, as well as analyses of peroxisomal fractions isolated from C. japonica and P. nigra leaves indicated that conifer peroxisomes had less catalase activity. These results suggest that NED and the subsequent C1 metabolism are involved in the photorespiratory pathway of conifer leaves, where peroxisomes have intrinsically low catalase activity.
Collapse
Affiliation(s)
- Shin-Ichi Miyazawa
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Tokuko Ujino-Ihara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Takafumi Miyama
- Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Ko Tahara
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Hiroyuki Tobita
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| | - Yuji Suzuki
- Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Japan
| | - Mitsuru Nishiguchi
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Japan
| |
Collapse
|
26
|
Huang F, Luo X, Ou Y, Gao Z, Tang Q, Chu Z, Zhu X, He Y. Control of histone demethylation by nuclear-localized α-ketoglutarate dehydrogenase. Science 2023; 381:eadf8822. [PMID: 37440635 DOI: 10.1126/science.adf8822] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/19/2023] [Indexed: 07/15/2023]
Abstract
Methylations on nucleosomal histones play fundamental roles in regulating eukaryotic transcription. Jumonji C domain-containing histone demethylases (JMJs) dynamically control the level of histone methylations. However, how JMJ activity is generally regulated is unknown. We found that the tricarboxylic acid cycle-associated enzyme α-ketoglutarate (α-KG) dehydrogenase (KGDH) entered the nucleus, where it interacted with various JMJs to regulate α-KG-dependent histone demethylations by JMJs, and thus controlled genome-wide gene expression in plants. We show that nuclear targeting is regulated by environmental signals and that KGDH is enriched at thousands of loci in Arabidopsis thaliana. Chromatin-bound KGDH catalyzes α-KG decarboxylation and thus may limit its local availability to KGDH-coupled JMJs, inhibiting histone demethylation. Thus, our results uncover a regulatory mechanism for histone demethylations by JMJs.
Collapse
Affiliation(s)
- Fei Huang
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Xiao Luo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| | - Yang Ou
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Zhaoxu Gao
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Qiming Tang
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai, 200032, China
| | - Zhenzhen Chu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Xinguang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, CAS, Shanghai, 200032, China
| | - Yuehui He
- National Key Laboratory of Wheat Improvement, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 201602, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China
| |
Collapse
|
27
|
Daloso DDM, Morais EG, Oliveira E Silva KF, Williams TCR. Cell-type-specific metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1093-1114. [PMID: 36987968 DOI: 10.1111/tpj.16214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 05/31/2023]
Abstract
Every plant organ contains tens of different cell types, each with a specialized function. These functions are intrinsically associated with specific metabolic flux distributions that permit the synthesis of the ATP, reducing equivalents and biosynthetic precursors demanded by the cell. Investigating such cell-type-specific metabolism is complicated by the mosaic of different cells within each tissue combined with the relative scarcity of certain types. However, techniques for the isolation of specific cells, their analysis in situ by microscopy, or modeling of their function in silico have permitted insight into cell-type-specific metabolism. In this review we present some of the methods used in the analysis of cell-type-specific metabolism before describing what we know about metabolism in several cell types that have been studied in depth; (i) leaf source and sink cells; (ii) glandular trichomes that are capable of rapid synthesis of specialized metabolites; (iii) guard cells that must accumulate large quantities of the osmolytes needed for stomatal opening; (iv) cells of seeds involved in storage of reserves; and (v) the mesophyll and bundle sheath cells of C4 plants that participate in a CO2 concentrating cycle. Metabolism is discussed in terms of its principal features, connection to cell function and what factors affect the flux distribution. Demand for precursors and energy, availability of substrates and suppression of deleterious processes are identified as key factors in shaping cell-type-specific metabolism.
Collapse
Affiliation(s)
- Danilo de Menezes Daloso
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Eva Gomes Morais
- Lab Plant, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza-CA, 60451-970, Brazil
| | - Karen Fernanda Oliveira E Silva
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília-DF, 70910-900, Brazil
| | | |
Collapse
|
28
|
Kaste JAM, Shachar-Hill Y. Model Validation and Selection in Metabolic Flux Analysis and Flux Balance Analysis. ARXIV 2023:arXiv:2303.12651v1. [PMID: 36994165 PMCID: PMC10055486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
13C-Metabolic Flux Analysis (13C-MFA) and Flux Balance Analysis (FBA) are widely used to investigate the operation of biochemical networks in both biological and biotechnological research. Both of these methods use metabolic reaction network models of metabolism operating at steady state, so that reaction rates (fluxes) and the levels of metabolic intermediates are constrained to be invariant. They provide estimated (MFA) or predicted (FBA) values of the fluxes through the network in vivo, which cannot be measured directly. A number of approaches have been taken to test the reliability of estimates and predictions from constraint-based methods and to decide on and/or discriminate between alternative model architectures. Despite advances in other areas of the statistical evaluation of metabolic models, validation and model selection methods have been underappreciated and underexplored. We review the history and state-of-the-art in constraint-based metabolic model validation and model selection. Applications and limitations of the χ2-test of goodness-of-fit, the most widely used quantitative validation and selection approach in 13C-MFA, are discussed, and complementary and alternative forms of validation and selection are proposed. A combined model validation and selection framework for 13C-MFA incorporating metabolite pool size information that leverages new developments in the field is presented and advocated for. Finally, we discuss how the adoption of robust validation and selection procedures can enhance confidence in constraint-based modeling as a whole and ultimately facilitate more widespread use of FBA in biotechnology in particular.
Collapse
Affiliation(s)
- Joshua A M Kaste
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd, East Lansing, MI 48823
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824
| |
Collapse
|
29
|
Baan J, Holloway-Phillips M, Nelson DB, Kahmen A. The metabolic sensitivity of hydrogen isotope fractionation differs between plant compounds. PHYTOCHEMISTRY 2023; 207:113563. [PMID: 36528118 DOI: 10.1016/j.phytochem.2022.113563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen stable isotope analyses (δ2H) of plant derived organic compounds are a useful tool for ecological, environmental, and palaeoclimatological research. However, during organic compound synthesis, variable biosynthetic 2H-fractionation has been suggested to occur as a result of changes in plant carbon fluxes. So far, inference has been based on examining the δ2H patterns of plant compounds along environmental gradients, among plant species, and between plant organs. In an alternative approach, we used four plant species with four different types of mutations that cause impaired starch synthesis to assess whether variability in carbon metabolism affects the biosynthetic 2H-fractionation during cellulose, phytol, and acetogenic lipid synthesis. We found that mutants with impaired starch synthesis always had higher cellulose and phytol δ2H values compared to the wild type. By contrast, 2H-fractionation during acetogenic lipid biosynthesis generally did not show strong metabolic sensitivity. We rationalise these differences by considering the biosynthetic pathway of each compound and the likely source of the variable isotope fractionation. In different organic compounds, the sensitivity of variable biosynthetic 2H-fractionation to changes in C-metabolism depends on incorporation of specific H atoms from precursor molecules. As such, we determined that the similar increase in cellulose and phytol δ2H values as an effect of impaired starch synthesis most likely originates in triose-phosphates.
Collapse
Affiliation(s)
- Jochem Baan
- University of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056, Basel, Switzerland.
| | - Meisha Holloway-Phillips
- University of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056, Basel, Switzerland
| | - Daniel B Nelson
- University of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056, Basel, Switzerland
| | - Ansgar Kahmen
- University of Basel, Department of Environmental Sciences - Botany, Schönbeinstrasse 6, 4056, Basel, Switzerland
| |
Collapse
|
30
|
Morley SA, Ma F, Alazem M, Frankfater C, Yi H, Burch-Smith T, Clemente TE, Veena V, Nguyen H, Allen DK. Expression of malic enzyme reveals subcellular carbon partitioning for storage reserve production in soybeans. THE NEW PHYTOLOGIST 2023. [PMID: 36829298 DOI: 10.1111/nph.18835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Central metabolism produces amino and fatty acids for protein and lipids that establish seed value. Biosynthesis of storage reserves occurs in multiple organelles that exchange central intermediates including two essential metabolites, malate, and pyruvate that are linked by malic enzyme. Malic enzyme can be active in multiple subcellular compartments, partitioning carbon and reducing equivalents for anabolic and catabolic requirements. Prior studies based on isotopic labeling and steady-state metabolic flux analyses indicated malic enzyme provides carbon for fatty acid biosynthesis in plants, though genetic evidence confirming this role is lacking. We hypothesized that increasing malic enzyme flux would alter carbon partitioning and result in increased lipid levels in soybeans. Homozygous transgenic soybean plants expressing Arabidopsis malic enzyme alleles, targeting the translational products to plastid or outside the plastid during seed development, were verified by transcript and enzyme activity analyses, organelle proteomics, and transient expression assays. Protein, oil, central metabolites, cofactors, and acyl-acyl carrier protein (ACPs) levels were quantified overdevelopment. Amino and fatty acid levels were altered resulting in an increase in lipids by 0.5-2% of seed biomass (i.e. 2-9% change in oil). Subcellular targeting of a single gene product in central metabolism impacts carbon and reducing equivalent partitioning for seed storage reserves in soybeans.
Collapse
Affiliation(s)
- Stewart A Morley
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Mazen Alazem
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Cheryl Frankfater
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hochul Yi
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Tessa Burch-Smith
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Tom Elmo Clemente
- Department of Agronomy & Horticulture, University of Nebraska-Lincoln, 202 Keim Hall, Lincoln, NE, 68583, USA
| | - Veena Veena
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Hanh Nguyen
- Center for Plant Science Innovation, University of Nebraska, N300 Beadle Center, 1901 Vine St., Lincoln, NE, 68588, USA
| | - Doug K Allen
- United States Department of Agriculture, Agricultural Research Service, 975 N Warson Rd, St Louis, MO, 63132, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| |
Collapse
|
31
|
Strand DD, Walker BJ. Energetic considerations for engineering novel biochemistries in photosynthetic organisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1116812. [PMID: 36814754 PMCID: PMC9939686 DOI: 10.3389/fpls.2023.1116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humans have been harnessing biology to make valuable compounds for generations. From beer and biofuels to pharmaceuticals, biology provides an efficient alternative to industrial processes. With the continuing advancement of molecular tools to genetically modify organisms, biotechnology is poised to solve urgent global problems related to environment, increasing population, and public health. However, the light dependent reactions of photosynthesis are constrained to produce a fixed stoichiometry of ATP and reducing equivalents that may not match the newly introduced synthetic metabolism, leading to inefficiency or damage. While photosynthetic organisms have evolved several ways to modify the ATP/NADPH output from their thylakoid electron transport chain, it is unknown if the native energy balancing mechanisms grant enough flexibility to match the demands of the synthetic metabolism. In this review we discuss the role of photosynthesis in the biotech industry, and the energetic considerations of using photosynthesis to power synthetic biology.
Collapse
Affiliation(s)
- Deserah D. Strand
- U. S. Department of Energy (DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Berkley J. Walker
- U. S. Department of Energy (DOE) Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
32
|
Fu X, Walker BJ. Dynamic response of photorespiration in fluctuating light environments. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:600-611. [PMID: 35962786 DOI: 10.1093/jxb/erac335] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Photorespiration is a dynamic process that is intimately linked to photosynthetic carbon assimilation. There is a growing interest in understanding carbon assimilation during dynamic conditions, but the role of photorespiration under such conditions is unclear. In this review, we discuss recent work relevant to the function of photorespiration under dynamic conditions, with a special focus on light transients. This work reveals that photorespiration is a fundamental component of the light induction of assimilation where variable diffusive processes limit CO2 exchange with the atmosphere. Additionally, metabolic interactions between photorespiration and the C3 cycle may help balance fluxes under dynamic light conditions. We further discuss how the energy demands of photorespiration present special challenges to energy balancing during dynamic conditions. We finish the review with an overview of why regulation of photorespiration may be important under dynamic conditions to maintain appropriate fluxes through metabolic pathways related to photorespiration such as nitrogen and one-carbon metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Berkley J Walker
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
33
|
Smith EN, Ratcliffe RG, Kruger NJ. Isotopically non-stationary metabolic flux analysis of heterotrophic Arabidopsis thaliana cell cultures. FRONTIERS IN PLANT SCIENCE 2023; 13:1049559. [PMID: 36699846 PMCID: PMC9868915 DOI: 10.3389/fpls.2022.1049559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Fluxes are the ultimate phenotype of metabolism and their accurate quantification is fundamental to any understanding of metabolic networks. Steady state metabolic flux analysis has been the method of choice for quantifying fluxes in heterotrophic cells, but it is unable to measure fluxes during short-lived metabolic states, such as a transient oxidative load. Isotopically non-stationary metabolic flux analysis (INST-MFA) can be performed over shorter timescales (minutes - hours) and might overcome this limitation. INST-MFA has recently been applied to photosynthesising leaves, but agriculturally important tissues such as roots and storage organs, or plants during the night are heterotrophic. Here we outline the application of INST-MFA to heterotrophic plant cells. Using INST-MFA we were able to identify changes in the fluxes supported by phosphoenolpyruvate carboxylase and malic enzyme under oxidative load, highlighting the potential of INST-MFA to measure fluxes during short-lived metabolic states. We discuss the challenges in applying INST-MFA, and highlight further development required before it can be routinely used to quantify fluxes in heterotrophic plant cells.
Collapse
Affiliation(s)
- Edward N. Smith
- Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, United Kingdom
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - R. George Ratcliffe
- Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. Kruger
- Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Fu X, Gregory LM, Weise SE, Walker BJ. Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine and serine during photorespiration. NATURE PLANTS 2023; 9:169-178. [PMID: 36536013 DOI: 10.1038/s41477-022-01294-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Photorespiration is an essential process juxtaposed between plant carbon and nitrogen metabolism that responds to dynamic environments. Photorespiration recycles inhibitory intermediates arising from oxygenation reactions catalysed by Rubisco back into the C3 cycle, but it is unclear what proportions of its nitrogen-containing intermediates (glycine and serine) are exported into other metabolisms in vivo and how these pool sizes affect net CO2 gas exchange during photorespiratory transients. Here, to address this uncertainty, we measured rates of amino acid export from photorespiration using isotopically non-stationary metabolic flux analysis. This analysis revealed that ~23-41% of the photorespiratory carbon was exported from the pathway as serine under various photorespiratory conditions. Furthermore, we determined that the build-up and relaxation of glycine pools constrained a large portion of photosynthetic acclimation during photorespiratory transients. These results reveal the unique and important roles of glycine and serine in successfully maintaining various photorespiratory fluxes that occur under environmental fluctuations in nature and providing carbon and nitrogen for metabolism.
Collapse
Affiliation(s)
- Xinyu Fu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Luke M Gregory
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Sean E Weise
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Berkley J Walker
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
35
|
Babele PK, Srivastava A, Selim KA, Kumar A. Millet-inspired systems metabolic engineering of NUE in crops. Trends Biotechnol 2022; 41:701-713. [PMID: 36566140 DOI: 10.1016/j.tibtech.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
The use of nitrogen (N) fertilizers in agriculture has a great ability to increase crop productivity. However, their excessive use has detrimental effects on the environment. Therefore, it is necessary to develop crop varieties with improved nitrogen use efficiency (NUE) that require less N but have substantial yields. Orphan crops such as millets are cultivated in limited regions and are well adapted to lower input conditions. Therefore, they serve as a rich source of beneficial traits that can be transferred into major crops to improve their NUE. This review highlights the tremendous potential of systems biology to unravel the enzymes and pathways involved in the N metabolism of millets, which can open new possibilities to generate transgenic crops with improved NUE.
Collapse
Affiliation(s)
- Piyoosh K Babele
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute for Microbiology and Infection Medicine, Cluster of Excellence 'Controlling Microbes to Fight Infections', Tübingen University, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| |
Collapse
|
36
|
Koley S, Chu KL, Mukherjee T, Morley SA, Klebanovych A, Czymmek KJ, Allen DK. Metabolic synergy in Camelina reproductive tissues for seed development. SCIENCE ADVANCES 2022; 8:eabo7683. [PMID: 36306367 PMCID: PMC9616503 DOI: 10.1126/sciadv.abo7683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Photosynthesis in fruits is well documented, but its contribution to seed development and yield remains largely unquantified. In oilseeds, the pods are green and elevated with direct access to sunlight. With 13C labeling in planta and through an intact pod labeling system, a unique multi-tissue comprehensive flux model mechanistically described how pods assimilate up to one-half (33 to 45%) of seed carbon by proximal photosynthesis in Camelina sativa. By capturing integrated tissue metabolism, the studies reveal the contribution of plant architecture beyond leaves, to enable seed filling and maximize the number of viable seeds. The latent capacity of the pod wall in the absence of leaves contributes approximately 79% of seed biomass, supporting greater seed sink capacity and higher theoretical yields that suggest an opportunity for crop productivity gains.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kevin L. Chu
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | - Stewart A. Morley
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| | | | | | - Doug K. Allen
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- United States Department of Agriculture-Agricultural Research Service, Donald Danforth Plant Science Center, St. Louis, MO, USA
| |
Collapse
|
37
|
Zhao S, Blum JA, Ma F, Wang Y, Borejsza-Wysocka E, Ma F, Cheng L, Li P. Anthocyanin Accumulation Provides Protection against High Light Stress While Reducing Photosynthesis in Apple Leaves. Int J Mol Sci 2022; 23:ijms232012616. [PMID: 36293472 PMCID: PMC9604341 DOI: 10.3390/ijms232012616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/24/2022] Open
Abstract
The photoprotective role of anthocyanin remains controversial. In this study, we explored the effects of anthocyanin on photosynthesis and photoprotection using transgenic ‘Galaxy Gala’ apple plants overexpressing MdMYB10 under high light stress. The overexpression of MdMYB10 dramatically enhanced leaf anthocyanin accumulation, allowing more visible light to be absorbed, particularly in the green region. However, through post-transcriptional regulation, anthocyanin accumulation lowered leaf photosynthesis in both photochemical reaction and CO2 fixation capacities. Anthocyanin accumulation also led to a decreased de-epoxidation state of the xanthophyll cycle and antioxidant capacities, but this is most likely a response to the light-shielding effect of anthocyanin, as indicated by a higher chlorophyll concentration and lower chlorophyll a/b ratio. Under laboratory conditions when detached leaves lost carbon fixation capacity due to the limitation of CO2 supply, the photoinhibition of detached transgenic red leaves was less severe under strong white, green, or blue light, but it became more severe in response to strong red light compared with that of the wild type. In field conditions when photosynthesis was performed normally in both green and transgenic red leaves, the degree of photoinhibition was comparable between transgenic red leaves and wild type leaves, but it was less severe in transgenic young shoot bark compared with the wild type. Taken together, these data show that anthocyanin protects plants from high light stress by absorbing excessive visible light despite reducing photosynthesis.
Collapse
Affiliation(s)
- Shanshan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Jeremie A. Blum
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fangfang Ma
- Donald Danforth Plant Science Center and Agricultural Research Service, US Department of Agriculture, St. Louis, MO 63132, USA
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yuzhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Ewa Borejsza-Wysocka
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (L.C.); (P.L.)
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Xianyang 712100, China
- Correspondence: (L.C.); (P.L.)
| |
Collapse
|
38
|
Du M, Zhang P, Wang G, Zhang X, Zhang W, Yang H, Bao Z, Ma F. H 2 S improves salt-stress recovery via organic acid turn-over in apple seedlings. PLANT, CELL & ENVIRONMENT 2022; 45:2923-2942. [PMID: 35906186 DOI: 10.1111/pce.14410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Signalling roles of hydrogen sulphide (H2 S) in stress biology are widely reported but not sufficiently established to urge its use in agronomic practice. Our lack of quantitative understanding of the metabolic rewiring in H2 S signalling makes it difficult to elucidate its functions in stress tolerance on the biochemical level. Here, Malus hupehensis Rehd. var. pingyiensis seedlings were first treated with salt stress for 2 weeks and then treated with four different concentrations of NaHS. Through vigorous investigations, including phenotypic analysis, 13 C transient labelling and targeted metabolic and transcriptomic analysis, for the first time in the seedlings of a woody fruit crop, we found out that H2 S recycles fixed carbons through glycolysis and tricarboxylic acid cycle to inhibit the futile accumulation of carbohydrates, to maintain an efficient CO2 assimilation, to keep a balanced starch metabolism, to produce sufficient H2 O2 , to maintain malate/γ-aminobutyric acid homeostasis via an H2 O2 -induced anion channel (aluminium-activated malate transporter) and eventually to improve salt-stress recovery. Our results systematically demonstrate the vital roles of central carbon metabolism in H2 S signalling and clarify the mode of action of H2 S in apple seedlings. We conclude that H2 S signalling interacts with central carbon metabolism in a bottom-up manner to recover plant growth after salt stress.
Collapse
Affiliation(s)
- Minghui Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ge Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xinyi Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weiwei Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hongqiang Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
39
|
Banh ATM, Thiele B, Chlubek A, Hombach T, Kleist E, Matsubara S. Combination of long-term 13CO 2 labeling and isotopolog profiling allows turnover analysis of photosynthetic pigments in Arabidopsis leaves. PLANT METHODS 2022; 18:114. [PMID: 36183136 PMCID: PMC9526918 DOI: 10.1186/s13007-022-00946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Living cells maintain and adjust structural and functional integrity by continual synthesis and degradation of metabolites and macromolecules. The maintenance and adjustment of thylakoid membrane involve turnover of photosynthetic pigments along with subunits of protein complexes. Quantifying their turnover is essential to understand the mechanisms of homeostasis and long-term acclimation of photosynthetic apparatus. Here we report methods combining whole-plant long-term 13CO2 labeling and liquid chromatography - mass spectrometry (LC-MS) analysis to determine the size of non-labeled population (NLP) of carotenoids and chlorophylls (Chl) in leaf pigment extracts of partially 13C-labeled plants. RESULTS The labeling chamber enabled parallel 13CO2 labeling of up to 15 plants of Arabidopsis thaliana with real-time environmental monitoring ([CO2], light intensity, temperature, relative air humidity and pressure) and recording. No significant difference in growth or photosynthetic pigment composition was found in leaves after 7-d exposure to normal CO2 (~ 400 ppm) or 13CO2 in the labeling chamber, or in ambient air outside the labeling chamber (control). Following chromatographic separation of the pigments and mass peak assignment by high-resolution Fourier-transform ion cyclotron resonance MS, mass spectra of photosynthetic pigments were analyzed by triple quadrupole MS to calculate NLP. The size of NLP remaining after the 7-d 13CO2 labeling was ~ 10.3% and ~ 11.5% for all-trans- and 9-cis-β-carotene, ~ 21.9% for lutein, ~ 18.8% for Chl a and 33.6% for Chl b, highlighting non-uniform turnover of these pigments in thylakoids. Comparable results were obtained in all replicate plants of the 13CO2 labeling experiment except for three that were showing anthocyanin accumulation and growth impairment due to insufficient water supply (leading to stomatal closure and less 13C incorporation). CONCLUSIONS Our methods allow 13CO2 labeling and estimation of NLP for photosynthetic pigments with high reproducibility despite potential variations in [13CO2] between the experiments. The results indicate distinct turnover rates of carotenoids and Chls in thylakoid membrane, which can be investigated in the future by time course experiments. Since 13C enrichment can be measured in a range of compounds, long-term 13CO2 labeling chamber, in combination with appropriate MS methods, facilitates turnover analysis of various metabolites and macromolecules in plants on a time scale of hours to days.
Collapse
Affiliation(s)
- Anh Thi-Mai Banh
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Björn Thiele
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
- IBG-3: Agrosphere, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Antonia Chlubek
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Thomas Hombach
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Einhard Kleist
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Shizue Matsubara
- IBG-2: Plant Sciences, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
40
|
Tian B, Chen M, Liu L, Rui B, Deng Z, Zhang Z, Shen T. 13C metabolic flux analysis: Classification and characterization from the perspective of mathematical modeling and application in physiological research of neural cell. Front Mol Neurosci 2022; 15:883466. [PMID: 36157075 PMCID: PMC9493264 DOI: 10.3389/fnmol.2022.883466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
13C metabolic flux analysis (13C-MFA) has emerged as a forceful tool for quantifying in vivo metabolic pathway activity of different biological systems. This technology plays an important role in understanding intracellular metabolism and revealing patho-physiology mechanism. Recently, it has evolved into a method family with great diversity in experiments, analytics, and mathematics. In this review, we classify and characterize the various branch of 13C-MFA from a unified perspective of mathematical modeling. By linking different parts in the model to each step of its workflow, the specific technologies of 13C-MFA are put into discussion, including the isotope labeling model (ILM), isotope pattern measuring technique, optimization algorithm and statistical method. Its application in physiological research in neural cell has also been reviewed.
Collapse
Affiliation(s)
- Birui Tian
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, China
| | - Meifeng Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Lunxian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Bin Rui
- Eurofins Lancaster Laboratories Professional Scientific Services, Lancaster, PA, United States
| | - Zhouhui Deng
- China Guizhou Science Data Center Gui’an Supercomputing Center, Guiyang, China
| | - Zhengdong Zhang
- College of Mathematics and Information Science, Guiyang University, Guiyang, China
- *Correspondence: Zhengdong Zhang,
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, China
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, China
- Tie Shen,
| |
Collapse
|
41
|
Huß S, Judd RS, Koper K, Maeda HA, Nikoloski Z. An automated workflow that generates atom mappings for large-scale metabolic models and its application to Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1486-1500. [PMID: 35819300 DOI: 10.1111/tpj.15903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Quantification of reaction fluxes of metabolic networks can help us understand how the integration of different metabolic pathways determines cellular functions. Yet, intracellular fluxes cannot be measured directly but are estimated with metabolic flux analysis (MFA), which relies on the patterns of isotope labeling of metabolites in the network. The application of MFA also requires a stoichiometric model with atom mappings that are currently not available for the majority of large-scale metabolic network models, particularly of plants. While automated approaches such as the Reaction Decoder Toolkit (RDT) can produce atom mappings for individual reactions, tracing the flow of individual atoms of the entire reactions across a metabolic model remains challenging. Here we establish an automated workflow to obtain reliable atom mappings for large-scale metabolic models by refining the outcome of RDT, and apply the workflow to metabolic models of Arabidopsis thaliana. We demonstrate the accuracy of RDT through a comparative analysis with atom mappings from a large database of biochemical reactions, MetaCyc. We further show the utility of our automated workflow by simulating 15 N isotope enrichment and identifying nitrogen (N)-containing metabolites which show enrichment patterns that are informative for flux estimation in future 15 N-MFA studies of A. thaliana. The automated workflow established in this study can be readily expanded to other species for which metabolic models have been established and the resulting atom mappings will facilitate MFA and graph-theoretic structural analyses with large-scale metabolic networks.
Collapse
Affiliation(s)
- Sebastian Huß
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24- 25, 14476, Potsdam, Germany
| | - Rika Siedah Judd
- Department of Botany, University of Wisconsin-Madison, 430, Lincoln, Dr. Madison, Wisconsin, 53706, USA
| | - Kaan Koper
- Department of Botany, University of Wisconsin-Madison, 430, Lincoln, Dr. Madison, Wisconsin, 53706, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, 430, Lincoln, Dr. Madison, Wisconsin, 53706, USA
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modelling Group, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24- 25, 14476, Potsdam, Germany
| |
Collapse
|
42
|
Bender ML, Zhu XG, Falkowski P, Ma F, Griffin K. On the rate of phytoplankton respiration in the light. PLANT PHYSIOLOGY 2022; 190:267-279. [PMID: 35652738 PMCID: PMC9434318 DOI: 10.1093/plphys/kiac254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The rate of algal and cyanobacterial respiration in the light is an important ecophysiological term that remains to be completely characterized and quantified. To address this issue, we exploited process-specific decarboxylation rates from flux balance analysis and isotopically nonstationary metabolic flux analysis. Our study, based on published data, suggested that decarboxylation is about 22% of net CO2 assimilation when the tricarboxylic acid cycle is completely open (characterized by the commitment of alpha ketoglutarate to amino acid synthesis and very low rates of succinate formation). This estimate was supported by calculating the decarboxylation rates required to synthesize the major components of biomass (proteins, lipids, and carbohydrates) at their typical abundance. Of the 22 CO2 molecules produced by decarboxylation (normalized to net assimilation = 100), approximately 13 were from pyruvate and 3 were from isocitrate. The remaining six units of decarboxylation were in the amino acid synthesis pathways outside the tricarboxylic acid cycle. A small additional flux came from photorespiration, decarboxylations of six phosphogluconate in the oxidative pentose phosphate pathway, and decarboxylations in the syntheses of lower-abundance compounds, including pigments and ribonucleic acids. This general approach accounted for the high decarboxylation rates in algae and cyanobacteria compared to terrestrial plants. It prompts a simple speculation for the origin of the Kok effect and helps constrain the photoautotrophic respiration rate, in the light, in the euphotic zone of the ocean and lakes.
Collapse
Affiliation(s)
| | - Xin-Guang Zhu
- State Key Laboratory of Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Paul Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Kevin Griffin
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York 10964, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York 10027, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
| |
Collapse
|
43
|
Medeiros DB, Ishihara H, Guenther M, Rosado de Souza L, Fernie AR, Stitt M, Arrivault S. 13CO2 labeling kinetics in maize reveal impaired efficiency of C4 photosynthesis under low irradiance. PLANT PHYSIOLOGY 2022; 190:280-304. [PMID: 35751609 PMCID: PMC9434203 DOI: 10.1093/plphys/kiac306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 06/01/2023]
Abstract
C4 photosynthesis allows faster photosynthetic rates and higher water and nitrogen use efficiency than C3 photosynthesis, but at the cost of lower quantum yield due to the energy requirement of its biochemical carbon concentration mechanism. It has also been suspected that its operation may be impaired in low irradiance. To investigate fluxes under moderate and low irradiance, maize (Zea mays) was grown at 550 µmol photons m-2 s-l and 13CO2 pulse-labeling was performed at growth irradiance or several hours after transfer to 160 µmol photons m-2 s-1. Analysis by liquid chromatography/tandem mass spectrometry or gas chromatography/mass spectrometry provided information about pool size and labeling kinetics for 32 metabolites and allowed estimation of flux at many steps in C4 photosynthesis. The results highlighted several sources of inefficiency in low light. These included excess flux at phosphoenolpyruvate carboxylase, restriction of decarboxylation by NADP-malic enzyme, and a shift to increased CO2 incorporation into aspartate, less effective use of metabolite pools to drive intercellular shuttles, and higher relative and absolute rates of photorespiration. The latter provides evidence for a lower bundle sheath CO2 concentration in low irradiance, implying that operation of the CO2 concentration mechanism is impaired in this condition. The analyses also revealed rapid exchange of carbon between the Calvin-Benson cycle and the CO2-concentration shuttle, which allows rapid adjustment of the balance between CO2 concentration and assimilation, and accumulation of large amounts of photorespiratory intermediates in low light that provides a major carbon reservoir to build up C4 metabolite pools when irradiance increases.
Collapse
Affiliation(s)
- David B Medeiros
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Hirofumi Ishihara
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Manuela Guenther
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
44
|
Wieloch T. High atmospheric CO 2 concentration causes increased respiration by the oxidative pentose phosphate pathway in chloroplasts. THE NEW PHYTOLOGIST 2022; 235:1310-1314. [PMID: 35575022 PMCID: PMC9546095 DOI: 10.1111/nph.18226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Thomas Wieloch
- Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeå90187Sweden
| |
Collapse
|
45
|
Bergman ME, Evans SE, Davis B, Hamid R, Bajwa I, Jayathilake A, Chahal AK, Phillips MA. An Arabidopsis GCMS chemical ionization technique to quantify adaptive responses in central metabolism. PLANT PHYSIOLOGY 2022; 189:2072-2090. [PMID: 35512197 PMCID: PMC9342981 DOI: 10.1093/plphys/kiac207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
We present a methodology to survey central metabolism in 13CO2-labeled Arabidopsis (Arabidopsis thaliana) rosettes by ammonia positive chemical ionization-gas chromatography-mass spectrometry. This technique preserves the molecular ion cluster of methyloxime/trimethylsilyl-derivatized analytes up to 1 kDa, providing unambiguous nominal mass assignment of >200 central metabolites and 13C incorporation rates into a subset of 111 from the tricarboxylic acid (TCA) cycle, photorespiratory pathway, amino acid metabolism, shikimate pathway, and lipid and sugar metabolism. In short-term labeling assays, we observed plateau labeling of ∼35% for intermediates of the photorespiratory cycle except for glyoxylate, which reached only ∼4% labeling and was also present at molar concentrations several fold lower than other photorespiratory intermediates. This suggests photorespiratory flux may involve alternate intermediate pools besides the generally accepted route through glyoxylate. Untargeted scans showed that in illuminated leaves, noncyclic TCA cycle flux and citrate export to the cytosol revert to a cyclic flux mode following methyl jasmonate (MJ) treatment. MJ also caused a block in the photorespiratory transamination of glyoxylate to glycine. Salicylic acid treatment induced the opposite effects in both cases, indicating the antagonistic relationship of these defense signaling hormones is preserved at the metabolome level. We provide complete chemical ionization spectra for 203 Arabidopsis metabolites from central metabolism, which uniformly feature the unfragmented pseudomolecular ion as the base peak. This unbiased, soft ionization technique is a powerful screening tool to identify adaptive metabolic trends in photosynthetic tissue and represents an important advance in methodology to measure plant metabolic flux.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Sonia E Evans
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Benjamin Davis
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5S 3G5
| | - Rehma Hamid
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Ibadat Bajwa
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Amreetha Jayathilake
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Anmol Kaur Chahal
- Department of Biology, University of Toronto—Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | | |
Collapse
|
46
|
Tang Q, Song Q, Ni X, Shi Z, Chen G, Zhu X. An integrated isotopic labeling and freeze sampling apparatus (ILSA) to support sampling leaf metabolomics at a centi-second scale. PLANT METHODS 2022; 18:97. [PMID: 35907895 PMCID: PMC9338585 DOI: 10.1186/s13007-022-00926-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Photosynthesis close interacts with respiration and nitrogen assimilation, which determine the photosynthetic efficiency of a leaf. Accurately quantifying the metabolic fluxes in photosynthesis, respiration and nitrogen assimilation benefit the design of photosynthetic efficiency improvement. To accurately estimate metabolic fluxes, time-series data including leaf metabolism and isotopic abundance changes should be collected under precisely controlled environments. But for isotopic labelled leaves under defined environments the, time cost of manually sampling usually longer than the turnover time of several intermediates in photosynthetic metabolism. In this case, the metabolic or physiological status of leaf sample would change during the sampling, and the accuracy of metabolomics data could be compromised. RESULTS Here we developed an integrated isotopic labeling and freeze sampling apparatus (ILSA), which could finish freeze sampling automatically in 0.05 s. ILSA can not only be used for sampling of photosynthetic metabolism measurement, but also suit for leaf isotopic labeling experiments under controlled environments ([CO2] and light). Combined with HPLC-MS/MS as the metabolic measurement method, we demonstrated: (1) how pool-size of photosynthetic metabolites change in dark-accumulated rice leaf, and (2) variation in photosynthetic metabolic flux between rice and Arabidopsis thaliana. CONCLUSIONS The development of ILSA supports the photosynthetic research on metabolism and metabolic flux analysis and provides a new tool for the study of leaf physiology.
Collapse
Affiliation(s)
- Qiming Tang
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingfeng Song
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaoxiang Ni
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zai Shi
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Genyun Chen
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinguang Zhu
- National Key Laboratory for Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
47
|
Yan S, Bhawal R, Yin Z, Thannhauser TW, Zhang S. Recent advances in proteomics and metabolomics in plants. MOLECULAR HORTICULTURE 2022; 2:17. [PMID: 37789425 PMCID: PMC10514990 DOI: 10.1186/s43897-022-00038-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 10/05/2023]
Abstract
Over the past decade, systems biology and plant-omics have increasingly become the main stream in plant biology research. New developments in mass spectrometry and bioinformatics tools, and methodological schema to integrate multi-omics data have leveraged recent advances in proteomics and metabolomics. These progresses are driving a rapid evolution in the field of plant research, greatly facilitating our understanding of the mechanistic aspects of plant metabolisms and the interactions of plants with their external environment. Here, we review the recent progresses in MS-based proteomics and metabolomics tools and workflows with a special focus on their applications to plant biology research using several case studies related to mechanistic understanding of stress response, gene/protein function characterization, metabolic and signaling pathways exploration, and natural product discovery. We also present a projection concerning future perspectives in MS-based proteomics and metabolomics development including their applications to and challenges for system biology. This review is intended to provide readers with an overview of how advanced MS technology, and integrated application of proteomics and metabolomics can be used to advance plant system biology research.
Collapse
Affiliation(s)
- Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, 139 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
48
|
Liu Z, Zhang Z, Liang S, Chen Z, Xie X, Shen T. CeCaFLUX: the first web server for standardized and visual instationary 13C metabolic flux analysis. Bioinformatics 2022; 38:3481-3483. [PMID: 35595250 DOI: 10.1093/bioinformatics/btac341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
SUMMARY The number of instationary 13C-metabolic flux (INST-MFA) studies grows every year, making it more important than ever to ensure the clarity, standardization and reproducibility of each study. We proposed CeCaFLUX, the first user-friendly web server that derives metabolic flux distribution from instationary 13C-labeled data. Flux optimization and statistical analysis are achieved through an evolutionary optimization in a parallel manner. It can visualize the flux optimizing process in real time and the ultimate flux outcome. It will also function as a database to enhance the consistency and to facilitate sharing of flux studies. AVAILABILITY AND IMPLEMENTATION CeCaFLUX is freely available at https://www.cecaflux.net, the source code can be downloaded at https://github.com/zhzhd82/CeCaFLUX. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhentao Liu
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China.,College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou, China
| | - Zhengdong Zhang
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China.,College of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou, China
| | - Sheng Liang
- College of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou, China
| | - Zhen Chen
- School of Mathematical Science, Guizhou Normal University, Guiyang, Guizhou, China
| | - Xiaoyao Xie
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China.,College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou, China
| | - Tie Shen
- Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang, Guizhou, China
| |
Collapse
|
49
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
50
|
Koley S, Chu KL, Gill SS, Allen DK. An efficient LC-MS method for isomer separation and detection of sugars, phosphorylated sugars, and organic acids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2938-2952. [PMID: 35560196 DOI: 10.1093/jxb/erac062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Assessing central carbon metabolism in plants can be challenging due to the dynamic range in pool sizes, with low levels of important phosphorylated sugars relative to more abundant sugars and organic acids. Here, we report a sensitive liquid chromatography-mass spectrometry method for analysing central metabolites on a hybrid column, where both anion-exchange and hydrophilic interaction chromatography (HILIC) ligands are embedded in the stationary phase. The liquid chromatography method was developed for enhanced selectivity of 27 central metabolites in a single run with sensitivity at femtomole levels observed for most phosphorylated sugars. The method resolved phosphorylated hexose, pentose, and triose isomers that are otherwise challenging. Compared with a standard HILIC approach, these metabolites had improved peak areas using our approach due to ion enhancement or low ion suppression in the biological sample matrix. The approach was applied to investigate metabolism in high lipid-producing tobacco leaves that exhibited increased levels of acetyl-CoA, a precursor for oil biosynthesis. The application of the method to isotopologue detection and quantification was considered through evaluating 13C-labeled seeds from Camelina sativa. The method provides a means to analyse intermediates more comprehensively in central metabolism of plant tissues.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Saba S Gill
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| |
Collapse
|