1
|
Tan H, Liu Y, Guo H. The biogenesis, regulation and functions of transitive siRNA in plants. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39376148 DOI: 10.3724/abbs.2024160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Small RNA (sRNA)-mediated RNA interference (RNAi) is a sequence-specific gene silencing mechanism that modulates gene expression in eukaryotes. As core molecules of RNAi, various sRNAs are encoded in the plant genome or derived from invading RNA molecules, and their biogenesis depends on distinct genetic pathways. Transitive small interfering RNAs (siRNAs), which are sRNAs produced from double-strand RNA (dsRNA) in a process that depends on RNA-dependent RNA polymerases (RDRs), can amplify and spread silencing signals to additional transcripts, thereby enabling a phenomenon termed "transitive RNAi". Members of this class of siRNAs function in various biological processes ranging from development to stress adaptation. In Arabidopsis thaliana, two RDRs participate in the generation of transitive siRNAs, acting cooperatively with various siRNA generation-related factors, such as the RNA-induced silencing complex (RISC) and aberrant RNAs. Transitive siRNAs are produced in diverse subcellular locations and structures under the control of various mechanisms, highlighting the intricacies of their biogenesis and functions. In this review, we discuss recent advances in understanding the molecular events of transitive siRNA biogenesis and its regulation, with a particular focus on factors involved in RDR recruitment. We aim to provide a comprehensive description of the generalized mechanism governing the biogenesis of transitive siRNAs. Additionally, we present an overview of the diverse biological functions of these siRNAs and raise some pressing questions in this area for further investigation.
Collapse
Affiliation(s)
- Huijun Tan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuelin Liu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2680-3. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Hayashi S, Souvan JM, Bally J, de Felippes FF, Waterhouse PM. Exploring the source of TYLCV resistance in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1404160. [PMID: 38863537 PMCID: PMC11165019 DOI: 10.3389/fpls.2024.1404160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Tomato Yellow Leaf Curl Virus (TYLCV) is one of the most devastating pathogens of tomato, worldwide. It is vectored by the globally prevalent whitefly, Bemisia tabaci, and is asymptomatic in a wide range of plant species that act as a virus reservoir. The most successful crop protection for tomato in the field has been from resistance genes, of which five loci have been introgressed fromwild relatives. Of these, the Ty-1/Ty-3 locus, which encodes an RNA-dependent RNA polymerase 3 (RDR3), has been the most effective. Nevertheless, several TYLCV strains that break this resistance are beginning to emerge, increasing the need for new sources of resistance. Here we use segregation analysis and CRISPR-mediated gene dysfunctionalisation to dissect the differential response of two isolates of Nicotiana benthamiana to TYLCV infection. Our study indicates the presence of a novel non-RDR3, but yet to be identified, TYLCV resistance gene in a wild accession of N. benthamiana. This gene has the potential to be incorporated into tomatoes.
Collapse
Affiliation(s)
- Satomi Hayashi
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jacqueline M. Souvan
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Julia Bally
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| | - Felipe F. de Felippes
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter M. Waterhouse
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
4
|
Shatskikh AS, Fefelova EA, Klenov MS. Functions of RNAi Pathways in Ribosomal RNA Regulation. Noncoding RNA 2024; 10:19. [PMID: 38668377 PMCID: PMC11054153 DOI: 10.3390/ncrna10020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration.
Collapse
Affiliation(s)
- Aleksei S. Shatskikh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena A. Fefelova
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
| | - Mikhail S. Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Hoffmann G, Incarbone M. A resilient bunch: stem cell antiviral immunity in plants. THE NEW PHYTOLOGIST 2024; 241:1415-1420. [PMID: 38058221 DOI: 10.1111/nph.19456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023]
Abstract
Stem cells are vital for plant development and reproduction. The stem cells within shoot apical meristems are known to possess exceptionally effective antiviral defenses against pathogenic viruses which preclude their infection, yet how this is achieved remains poorly understood and scarcely investigated. In this Tansley Insight, we connect very recent experimental results with previous work to summarize the known molecular mechanisms determining stem cell antiviral immunity. More broadly, we attempt to define the viral features triggering immunity and the global consequences of virus infection in these essential cells. This brief article will highlight how these phenomena are fascinating, complex and often crucial for virus-host interactions, while emphasizing the potential for discovery in their investigation.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| | - Marco Incarbone
- Max Planck Institute of Molecular Plant Physiology (MPIMP), 1 Am Mühlenberg Strasse, 14476, Potsdam, Germany
| |
Collapse
|
6
|
Vaucheret H, Voinnet O. The plant siRNA landscape. THE PLANT CELL 2024; 36:246-275. [PMID: 37772967 PMCID: PMC10827316 DOI: 10.1093/plcell/koad253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Whereas micro (mi)RNAs are considered the clean, noble side of the small RNA world, small interfering (si)RNAs are often seen as a noisy set of molecules whose barbarian acronyms reflect a large diversity of often elusive origins and functions. Twenty-five years after their discovery in plants, however, new classes of siRNAs are still being identified, sometimes in discrete tissues or at particular developmental stages, making the plant siRNA world substantially more complex and subtle than originally anticipated. Focusing primarily on the model Arabidopsis, we review here the plant siRNA landscape, including transposable elements (TE)-derived siRNAs, a vast array of non-TE-derived endogenous siRNAs, as well as exogenous siRNAs produced in response to invading nucleic acids such as viruses or transgenes. We primarily emphasize the extraordinary sophistication and diversity of their biogenesis and, secondarily, the variety of their known or presumed functions, including via non-cell autonomous activities, in the sporophyte, gametophyte, and shortly after fertilization.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH-Zurich), 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Jammes M, Golyaev V, Fuentes A, Laboureau N, Urbino C, Plissonneau C, Peterschmitt M, Pooggin MM. Transcriptome and small RNAome profiling uncovers how a recombinant begomovirus evades RDRγ-mediated silencing of viral genes and outcompetes its parental virus in mixed infection. PLoS Pathog 2024; 20:e1011941. [PMID: 38215155 PMCID: PMC10810479 DOI: 10.1371/journal.ppat.1011941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) causes severe disease of cultivated tomatoes. Geminiviruses replicate circular single-stranded genomic DNA via rolling-circle and recombination-dependent mechanisms, frequently generating recombinants in mixed infections. Circular double-stranded intermediates of replication also serve as templates for Pol II bidirectional transcription. IS76, a recombinant derivative of TYLCV with a short sequence in the bidirectional promoter/origin-of-replication region acquired from a related begomovirus, outcompetes TYLCV in mixed infection and breaks disease resistance in tomato Ty-1 cultivars. Ty-1 encodes a γ-clade RNA-dependent RNA polymerase (RDRγ) implicated in Dicer-like (DCL)-mediated biogenesis of small interfering (si)RNAs directing gene silencing. Here, we profiled transcriptome and small RNAome of Ty-1 resistant and control susceptible plants infected with TYLCV, IS76 or their combination at early and late infection stages. We found that RDRγ boosts production rates of 21, 22 and 24 nt siRNAs from entire genomes of both viruses and modulates DCL activities in favour of 22 and 24 nt siRNAs. Compared to parental TYLCV, IS76 undergoes faster transition to the infection stage favouring rightward transcription of silencing suppressor and coat protein genes, thereby evading RDRγ activity and facilitating its DNA accumulation in both single and mixed infections. In coinfected Ty-1 plants, IS76 efficiently competes for host replication and transcription machineries, thereby impairing TYLCV replication and transcription and forcing its elimination associated with further increased siRNA production. RDRγ is constitutively overexpressed in Ty-1 plants, which correlates with begomovirus resistance, while siRNA-generating DCLs (DCL2b/d, DCL3, DCL4) and genes implicated in siRNA amplification (α-clade RDR1) and function (Argonaute2) are upregulated to similar levels in TYLCV- and IS76-infected susceptible plants. Collectively, IS76 recombination facilitates replication and promotes expression of silencing suppressor and coat proteins, which allows the recombinant virus to evade the negative impact of RDRγ-boosted production of viral siRNAs directing transcriptional and posttranscriptional silencing.
Collapse
Affiliation(s)
- Margaux Jammes
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Nathalie Laboureau
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Cica Urbino
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Michel Peterschmitt
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| |
Collapse
|
8
|
Incarbone M, Bradamante G, Pruckner F, Wegscheider T, Rozhon W, Nguyen V, Gutzat R, Mérai Z, Lendl T, MacFarlane S, Nodine M, Scheid OM. Salicylic acid and RNA interference mediate antiviral immunity of plant stem cells. Proc Natl Acad Sci U S A 2023; 120:e2302069120. [PMID: 37824524 PMCID: PMC10589665 DOI: 10.1073/pnas.2302069120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023] Open
Abstract
Stem cells are essential for the development and organ regeneration of multicellular organisms, so their infection by pathogenic viruses must be prevented. Accordingly, mammalian stem cells are highly resistant to viral infection due to dedicated antiviral pathways including RNA interference (RNAi). In plants, a small group of stem cells harbored within the shoot apical meristem generate all postembryonic above-ground tissues, including the germline cells. Many viruses do not proliferate in these cells, yet the molecular bases of this exclusion remain only partially understood. Here, we show that a plant-encoded RNA-dependent RNA polymerase, after activation by the plant hormone salicylic acid, amplifies antiviral RNAi in infected tissues. This provides stem cells with RNA-based virus sequence information, which prevents virus proliferation. Furthermore, we find RNAi to be necessary for stem cell exclusion of several unrelated RNA viruses, despite their ability to efficiently suppress RNAi in the rest of the plant. This work elucidates a molecular pathway of great biological and economic relevance and lays the foundations for our future understanding of the unique systems underlying stem cell immunity.
Collapse
Affiliation(s)
- Marco Incarbone
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
- Max Planck Institute of Molecular Plant Physiology, Potsdam Science Park, Potsdam14476, Germany
| | - Gabriele Bradamante
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Florian Pruckner
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Tobias Wegscheider
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Wilfried Rozhon
- Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of Applied Sciences, Bernburg06406, Germany
| | - Vu Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Thomas Lendl
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna1030, Austria
| | - Stuart MacFarlane
- The James Hutton Institute, Invergowrie, ScotlandDD25DA, United Kingdom
| | - Michael Nodine
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University and Research, Wageningen6700 AP, The Netherlands
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| |
Collapse
|
9
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Leonetti P, Consiglio A, Arendt D, Golbik RP, Rubino L, Gursinsky T, Behrens SE, Pantaleo V. Exogenous and endogenous dsRNAs perceived by plant Dicer-like 4 protein in the RNAi-depleted cellular context. Cell Mol Biol Lett 2023; 28:64. [PMID: 37550627 PMCID: PMC10405411 DOI: 10.1186/s11658-023-00469-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/24/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND In plants, RNase III Dicer-like proteins (DCLs) act as sensors of dsRNAs and process them into short 21- to 24-nucleotide (nt) (s)RNAs. Plant DCL4 is involved in the biogenesis of either functional endogenous or exogenous (i.e. viral) short interfering (si)RNAs, thus playing crucial antiviral roles. METHODS In this study we expressed plant DCL4 in Saccharomyces cerevisiae, an RNAi-depleted organism, in which we could highlight the role of dicing as neither Argonautes nor RNA-dependent RNA polymerase is present. We have therefore tested the DCL4 functionality in processing exogenous dsRNA-like substrates, such as a replicase-assisted viral replicon defective-interfering RNA and RNA hairpin substrates, or endogenous antisense transcripts. RESULTS DCL4 was shown to be functional in processing dsRNA-like molecules in vitro and in vivo into 21- and 22-nt sRNAs. Conversely, DCL4 did not efficiently process a replicase-assisted viral replicon in vivo, providing evidence that viral RNAs are not accessible to DCL4 in membranes associated in active replication. Worthy of note, in yeast cells expressing DCL4, 21- and 22-nt sRNAs are associated with endogenous loci. CONCLUSIONS We provide new keys to interpret what was studied so far on antiviral DCL4 in the host system. The results all together confirm the role of sense/antisense RNA-based regulation of gene expression, expanding the sense/antisense atlas of S. cerevisiae. The results described herein show that S. cerevisiae can provide insights into the functionality of plant dicers and extend the S. cerevisiae tool to new biotechnological applications.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, National Research Council, Institute for Sustainable Plant Protection, Bari Unit, Bari, Italy
| | - Arianna Consiglio
- Department of Biomedical Sciences, National Research Council, Institute for Biomedical Technologies, Bari Unit, Bari, Italy
| | - Dennis Arendt
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Luisa Rubino
- Department of Biology, Agricultural and Food Sciences, National Research Council, Institute for Sustainable Plant Protection, Bari Unit, Bari, Italy
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Section Microbial Biotechnology, Martin Luther University Halle-Wittenberg, Halle Saale, Germany
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, National Research Council, Institute for Sustainable Plant Protection, Bari Unit, Bari, Italy.
| |
Collapse
|
11
|
Sharma S, Sett S, Das T, Prasad A, Prasad M. Recent perspective of non-coding RNAs at the nexus of plant-pathogen interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107852. [PMID: 37356385 DOI: 10.1016/j.plaphy.2023.107852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
In natural habitats, plants are exploited by pathogens in biotrophic or necrotrophic ways. Concurrently, plants have evolved their defense systems for rapid perception of pathogenic effectors and begin concerted cellular reprogramming pathways to confine the pathogens at the entry sites. During the reorganization of cellular signaling mechanisms following pathogen attack, non-coding RNAs serves an indispensable role either as a source of resistance or susceptibility. Besides the well-studied functions of non-coding RNAs related to plant development and abiotic stress responses, previous and recent discoveries have established that non-coding RNAs like miRNAs, siRNAs, lncRNAs and phasi-RNAs can fine tune plant defense responses by targeting various signaling pathways. In this review, recapitulation of previous reports associated with non-coding RNAs as a defense responder against virus, bacteria and fungus attacks and insightful discussion will lead us to conceive innovative ideas to fight against approaching threats of resistant breaking pathogens.
Collapse
Affiliation(s)
| | - Susmita Sett
- National Institute of Plant Genome Research, New Delhi, India.
| | - Tuhin Das
- National Institute of Plant Genome Research, New Delhi, India.
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India; Department of Plant Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
12
|
Bélanger S, Zhan J, Meyers BC. Phylogenetic analyses of seven protein families refine the evolution of small RNA pathways in green plants. PLANT PHYSIOLOGY 2023; 192:1183-1203. [PMID: 36869858 PMCID: PMC10231463 DOI: 10.1093/plphys/kiad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/01/2023]
Abstract
Several protein families participate in the biogenesis and function of small RNAs (sRNAs) in plants. Those with primary roles include Dicer-like (DCL), RNA-dependent RNA polymerase (RDR), and Argonaute (AGO) proteins. Protein families such as double-stranded RNA-binding (DRB), SERRATE (SE), and SUPPRESSION OF SILENCING 3 (SGS3) act as partners of DCL or RDR proteins. Here, we present curated annotations and phylogenetic analyses of seven sRNA pathway protein families performed on 196 species in the Viridiplantae (aka green plants) lineage. Our results suggest that the RDR3 proteins emerged earlier than RDR1/2/6. RDR6 is found in filamentous green algae and all land plants, suggesting that the evolution of RDR6 proteins coincides with the evolution of phased small interfering RNAs (siRNAs). We traced the origin of the 24-nt reproductive phased siRNA-associated DCL5 protein back to the American sweet flag (Acorus americanus), the earliest diverged, extant monocot species. Our analyses of AGOs identified multiple duplication events of AGO genes that were lost, retained, or further duplicated in subgroups, indicating that the evolution of AGOs is complex in monocots. The results also refine the evolution of several clades of AGO proteins, such as AGO4, AGO6, AGO17, and AGO18. Analyses of nuclear localization signal sequences and catalytic triads of AGO proteins shed light on the regulatory roles of diverse AGOs. Collectively, this work generates a curated and evolutionarily coherent annotation for gene families involved in plant sRNA biogenesis/function and provides insights into the evolution of major sRNA pathways.
Collapse
Affiliation(s)
| | - Junpeng Zhan
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Zhao L, Chen Y, Xiao X, Gao H, Cao J, Zhang Z, Guo Z. AGO2a but not AGO2b mediates antiviral defense against infection of wild-type cucumber mosaic virus in tomato. HORTICULTURE RESEARCH 2023; 10:uhad043. [PMID: 37188058 PMCID: PMC10177002 DOI: 10.1093/hr/uhad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Evolutionarily conserved antiviral RNA interference (RNAi) mediates a primary antiviral innate immunity preventing infection of broad-spectrum viruses in plants. However, the detailed mechanism in plants is still largely unknown, especially in important agricultural crops, including tomato. Varieties of pathogenic viruses evolve to possess viral suppressors of RNA silencing (VSRs) to suppress antiviral RNAi in the host. Due to the prevalence of VSRs, it is still unknown whether antiviral RNAi truly functions to prevent invasion by natural wild-type viruses in plants and animals. In this research, for the first time we applied CRISPR-Cas9 to generate ago2a, ago2b, or ago2ab mutants for two differentiated Solanum lycopersicum AGO2s, key effectors in antiviral RNAi. We found that AGO2a but not AGO2b was significantly induced to inhibit the propagation of not only VSR-deficient Cucumber mosaic virus (CMV) but also wild-type CMV-Fny in tomato; however, neither AGO2a nor AGO2b regulated disease induction after infection with either virus. Our findings firstly reveal a prominent role of AGO2a in antiviral RNAi innate immunity in tomato and demonstrate that antiviral RNAi evolves to defend against infection of natural wild-type CMV-Fny in tomato. However, AGO2a-mediated antiviral RNAi does not play major roles in promoting tolerance of tomato plants to CMV infection for maintaining health.
Collapse
Affiliation(s)
- Liling Zhao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650221 China
| | - Yingfang Chen
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Xingming Xiao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Haiying Gao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Jiamin Cao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Zhongkai Zhang
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650221 China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| |
Collapse
|
14
|
Malavika M, Prakash V, Chakraborty S. Recovery from virus infection: plant's armory in action. PLANTA 2023; 257:103. [PMID: 37115475 DOI: 10.1007/s00425-023-04137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
MAIN CONCLUSION This review focuses on different factors involved in promoting symptom recovery in plants post-virus infection such as epigenetics, transcriptional reprogramming, phytohormones with an emphasis on RNA silencing as well as role of abiotic factors such as temperature on symptom recovery. Plants utilize several different strategies to defend themselves in the battle against invading viruses. Most of the viral proteins interact with plant proteins and interfere with molecular dynamics in a cell which eventually results in symptom development. This initial symptom development is countered by the plant utilizing various factors including the plant's adaptive immunity to develop a virus tolerant state. Infected plants can specifically target and impede the transcription of viral genes as well as degrade the viral transcripts to restrict their proliferation by the production of small-interfering RNA (siRNA) generated from the viral nucleic acid, known as virus-derived siRNA (vsiRNA). To further escalate the degradation of viral nucleic acid, secondary siRNAs are generated. The production of virus-activated siRNA (vasiRNA) from the host genome causes differential regulation of the host transcriptome which plays a major role in establishing a virus tolerant state within the infected plant. The systemic action of vsiRNAs, vasiRNA, and secondary siRNAs with the help of defense hormones like salicylic acid can curb viral proliferation, and thus the newly emerged leaves develop fewer symptoms, maintaining a state of tolerance.
Collapse
Affiliation(s)
- M Malavika
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ved Prakash
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
15
|
Hang R, Xu Y, Wang X, Hu H, Flynn N, You C, Chen X. Arabidopsis HOT3/eIF5B1 constrains rRNA RNAi by facilitating 18S rRNA maturation. Proc Natl Acad Sci U S A 2023; 120:e2301081120. [PMID: 37011204 PMCID: PMC10104536 DOI: 10.1073/pnas.2301081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
Ribosome biogenesis is essential for protein synthesis in gene expression. Yeast eIF5B has been shown biochemically to facilitate 18S ribosomal RNA (rRNA) 3' end maturation during late-stage 40S ribosomal subunit assembly and gate the transition from translation initiation to elongation. But the genome-wide effects of eIF5B have not been studied at the single-nucleotide resolution in any organism, and 18S rRNA 3' end maturation is poorly understood in plants. Arabidopsis HOT3/eIF5B1 was found to promote development and heat stress acclimation by translational regulation, but its molecular function remained unknown. Here, we show that HOT3 is a late-stage ribosome biogenesis factor that facilitates 18S rRNA 3' end processing and is a translation initiation factor that globally impacts the transition from initiation to elongation. By developing and implementing 18S-ENDseq, we revealed previously unknown events in 18S rRNA 3' end maturation or metabolism. We quantitatively defined processing hotspots and identified adenylation as the prevalent nontemplated RNA addition at the 3' ends of pre-18S rRNAs. Aberrant 18S rRNA maturation in hot3 further activated RNA interference to generate RDR1- and DCL2/4-dependent risiRNAs mainly from a 3' portion of 18S rRNA. We further showed that risiRNAs in hot3 were predominantly localized in ribosome-free fractions and were not responsible for the 18S rRNA maturation or translation initiation defects in hot3. Our study uncovered the molecular function of HOT3/eIF5B1 in 18S rRNA maturation at the late 40S assembly stage and revealed the regulatory crosstalk among ribosome biogenesis, messenger RNA (mRNA) translation initiation, and siRNA biogenesis in plants.
Collapse
Affiliation(s)
- Runlai Hang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Ye Xu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Xufeng Wang
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Hao Hu
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Nora Flynn
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
| | - Chenjiang You
- College of Life Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong510642, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA92521
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing100871, China
| |
Collapse
|
16
|
Matsumura EE, Kormelink R. Small Talk: On the Possible Role of Trans-Kingdom Small RNAs during Plant-Virus-Vector Tritrophic Communication. PLANTS (BASEL, SWITZERLAND) 2023; 12:1411. [PMID: 36987098 PMCID: PMC10059270 DOI: 10.3390/plants12061411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Small RNAs (sRNAs) are the hallmark and main effectors of RNA silencing and therefore are involved in major biological processes in plants, such as regulation of gene expression, antiviral defense, and plant genome integrity. The mechanisms of sRNA amplification as well as their mobile nature and rapid generation suggest sRNAs as potential key modulators of intercellular and interspecies communication in plant-pathogen-pest interactions. Plant endogenous sRNAs can act in cis to regulate plant innate immunity against pathogens, or in trans to silence pathogens' messenger RNAs (mRNAs) and impair virulence. Likewise, pathogen-derived sRNAs can act in cis to regulate expression of their own genes and increase virulence towards a plant host, or in trans to silence plant mRNAs and interfere with host defense. In plant viral diseases, virus infection alters the composition and abundance of sRNAs in plant cells, not only by triggering and interfering with the plant RNA silencing antiviral response, which accumulates virus-derived small interfering RNAs (vsiRNAs), but also by modulating plant endogenous sRNAs. Here, we review the current knowledge on the nature and activity of virus-responsive sRNAs during virus-plant interactions and discuss their role in trans-kingdom modulation of virus vectors for the benefit of virus dissemination.
Collapse
|
17
|
Yun S, Zhang X. Genome-wide identification, characterization and expression analysis of AGO, DCL, and RDR families in Chenopodium quinoa. Sci Rep 2023; 13:3647. [PMID: 36871121 PMCID: PMC9985633 DOI: 10.1038/s41598-023-30827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
RNA interference is a highly conserved mechanism wherein several types of non-coding small RNAs regulate gene expression at the transcriptional or post-transcriptional level, modulating plant growth, development, antiviral defence, and stress responses. Argonaute (AGO), DCL (Dicer-like), and RNA-dependent RNA polymerase (RDR) are key proteins in this process. Here, these three protein families were identified in Chenopodium quinoa. Further, their phylogenetic relationships with Arabidopsis, their domains, three-dimensional structure modelling, subcellular localization, and functional annotation and expression were analysed. Whole-genome sequence analysis predicted 21 CqAGO, eight CqDCL, and 11 CqRDR genes in quinoa. All three protein families clustered into phylogenetic clades corresponding to those of Arabidopsis, including three AGO clades, four DCL clades, and four RDR clades, suggesting evolutionary conservation. Domain and protein structure analyses of the three gene families showed almost complete homogeneity among members of the same group. Gene ontology annotation revealed that the predicted gene families might be directly involved in RNAi and other important pathways. Largely, these gene families showed significant tissue-specific expression patterns, RNA-sequencing (RNA-seq) data revealed that 20 CqAGO, seven CqDCL, and ten CqRDR genes tended to have preferential expression in inflorescences. Most of them being downregulated in response to drought, cold, salt and low phosphate stress. To our knowledge, this is the first study to elucidate these key protein families involved in the RNAi pathway in quinoa, which are significant for understanding the mechanisms underlying stress responses in this plant.
Collapse
Affiliation(s)
- Shiyu Yun
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Xin Zhang
- Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan, 030031, China.
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
18
|
Vaucheret H. Epigenetic management of self and non-self: lessons from 40 years of transgenic plants. C R Biol 2023; 345:149-174. [PMID: 36847123 DOI: 10.5802/crbiol.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022]
Abstract
Plant varieties exhibiting unstable or variegated phenotypes, or showing virus recovery have long remained a mystery. It is only with the development of transgenic plants 40 years ago that the epigenetic features underlying these phenomena were elucidated. Indeed, the study of transgenic plants that did not express the introduced sequences revealed that transgene loci sometimes undergo transcriptional gene silencing (TGS) or post-transcriptional gene silencing (PTGS) by activating epigenetic defenses that naturally control transposable elements, duplicated genes or viruses. Even when they do not trigger TGS or PTGS spontaneously, stably expressed transgenes driven by viral promoters set apart from endogenous genes in their epigenetic regulation. As a result, transgenes driven by viral promoters are capable of undergoing systemic PTGS throughout the plant, whereas endogenous genes can only undergo local PTGS in cells where RNA quality control is impaired. Together, these results indicate that the host genome distinguishes self from non-self at the epigenetic level, allowing PTGS to eliminate non-self, and preventing PTGS to become systemic and kill the plant when it is locally activated against deregulated self.
Collapse
|
19
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
20
|
Marquez-Molins J, Juarez-Gonzalez VT, Gomez G, Pallas V, Martinez G. Occurrence of RNA post-transcriptional modifications in plant viruses and viroids and their correlation with structural and functional features. Virus Res 2023; 323:198958. [PMID: 36209921 PMCID: PMC10194119 DOI: 10.1016/j.virusres.2022.198958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Post-transcriptional modifications of RNA bases are widespread across all the tree of life and have been linked to RNA maturation, stability, and molecular interactions. RNA modifications have been extensively described in endogenous eukaryotic mRNAs, however, little is known about the presence of RNA modifications in plant viral and subviral RNAs. Here, we used a computational approach to infer RNA modifications in plant-pathogenic viruses and viroids using high-throughput annotation of modified ribonucleotides (HAMR), a software that predicts modified ribonucleotides using high-throughput RNA sequencing data. We analyzed datasets from representative members of different plant viruses and viroids and compared them to plant-endogenous mRNAs. Our approach was able to predict potential RNA chemical modifications (RCMs) in all analyzed pathogens. We found that both DNA and RNA viruses presented a wide range of RCM proportions while viroids had lowest values. Furthermore, we found that for viruses with segmented genomes, some genomic RNAs had a higher proportion of RCM. Interestingly, nuclear-replicating viroids showed most of the predicted modifications located in the pathogenesis region, pointing towards a possible functional role of RCMs in their infectious cycle. Thus, our results strongly suggest that plant viral and subviral RNAs might contain a variety of previously unreported RNA modifications, thus opening a new perspective in the multifaceted process of plant-pathogen interactions.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, Paterna 46980, Spain; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Vasti Thamara Juarez-Gonzalez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 750 07, Sweden
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, Paterna 46980, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 750 07, Sweden.
| |
Collapse
|
21
|
Tabara M, Yamanashi R, Kuriyama K, Koiwa H, Fukuhara T. The dicing activity of DCL3 and DCL4 is negatively affected by flavonoids. PLANT MOLECULAR BIOLOGY 2023; 111:107-116. [PMID: 36219366 DOI: 10.1007/s11103-022-01314-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The dicing activities of DCL3 and DCL4 are inhibited by accumulated metabolites in soybean leaves. Epicatechin and 7,4'-dihydroxyflavone inhibited Arabidopsis DCL3 and DCL4 in vitro. Flavonoids are major secondary metabolites in plants, and soybean (Glycine max L.) is a representative plant that accumulates flavonoids, including isoflavonoids, to high levels. Naturally-occurring RNA interference (RNAi) against the chalcone synthase (CHS) gene represses flavonoid (anthocyanin) biosynthesis in an organ-specific manner, resulting in a colorless (yellow) seed coat in many soybean cultivars. To better understand seed coat-specific naturally-occurring RNAi in soybean, we characterized soybean Dicer-like (DCL) 3 and 4, which play critical roles in RNAi. Using a previously established dicing assay, two dicing activities producing 24- and 21-nt siRNAs, corresponding to DCL3 and DCL4, respectively, were detected in soybean. Dicing activity was detected in colorless seed coats where RNAi against CHS genes was found, but no dicing activity was detected in leaves where CHS expression was prevalent. Biochemical analysis revealed that soybean leaves contained two types of inhibitors effective for Arabidopsis Dicers (AtDCL3 and AtDCL4), one of which was a heat-labile high molecular weight compound of 50 to 100 kD while another was a low molecular weight substance. We found that some flavonoids, such as epicatechin and 7,4'-dihydroxyflavone, inhibited both AtDCL3 and AtDCL4, but AtDCL4 was more sensitive to these flavonoids than AtDCL3. These results suggest that flavonoids inhibit the dicing activity of DCL4 and thereby attenuate RNAi in soybean leaves.
Collapse
Affiliation(s)
- Midori Tabara
- Ritsumeikan-Global Innovation Research Organization, Ritsumeikan University, 1-1-1, Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan.
| | - Riho Yamanashi
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Kazunori Kuriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| | - Hisashi Koiwa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Vegetable and Fruit Improvement Center and Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Toshiyuki Fukuhara
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, 183-8509, Japan
| |
Collapse
|
22
|
Jing X, Xu L, Huai X, Zhang H, Zhao F, Qiao Y. Genome-Wide Identification and Characterization of Argonaute, Dicer-like and RNA-Dependent RNA Polymerase Gene Families and Their Expression Analyses in Fragaria spp. Genes (Basel) 2023; 14:genes14010121. [PMID: 36672862 PMCID: PMC9859564 DOI: 10.3390/genes14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
In the growth and development of plants, some non-coding small RNAs (sRNAs) not only mediate RNA interference at the post-transcriptional level, but also play an important regulatory role in chromatin modification at the transcriptional level. In these processes, the protein factors Argonaute (AGO), Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) play very important roles in the synthesis of sRNAs respectively. Though they have been identified in many plants, the information about these gene families in strawberry was poorly understood. In this study, using a genome-wide analysis and a phylogenetic approach, 13 AGO, six DCL, and nine RDR genes were identified in diploid strawberry Fragaria vesca. We also identified 33 AGO, 18 DCL, and 28 RDR genes in octoploid strawberry Fragaria × ananassa, studied the expression patterns of these genes in various tissues and developmental stages of strawberry, and researched the response of these genes to some hormones, finding that almost all genes respond to the five hormone stresses. This study is the first report of a genome-wide analysis of AGO, DCL, and RDR gene families in Fragaria spp., in which we provide basic genomic information and expression patterns for these genes. Additionally, this study provides a basis for further research on the functions of these genes and some evidence for the evolution between diploid and octoploid strawberries.
Collapse
Affiliation(s)
- Xiaotong Jing
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Linlin Xu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xinjia Huai
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Hong Zhang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Fengli Zhao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
23
|
Zong W, Zhang T, Chen B, Lu Q, Cao X, Wang K, Yang Z, Chen Z, Yang Y. Emerging roles of noncoding micro RNAs and circular RNAs in bovine mastitis: Regulation, breeding, diagnosis, and therapy. Front Microbiol 2022; 13:1048142. [PMID: 36458189 PMCID: PMC9707628 DOI: 10.3389/fmicb.2022.1048142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2024] Open
Abstract
Bovine mastitis is one of the most troublesome and costly problems in the modern dairy industry, which is not only difficult to monitor, but can also cause economic losses while having significant implications on public health. However, efficacious preventative methods and therapy are still lacking. Moreover, new drugs and therapeutic targets are in increasing demand due to antibiotic restrictions. In recent years, noncoding RNAs have gained popularity as a topic in pathological and genetic studies. Meanwhile, there is growing evidence that they play a role in regulating various biological processes and developing novel treatment platforms. In light of this, this review focuses on two types of noncoding RNAs, micro RNAs and circular RNAs, and summarizes their characterizations, relationships, potential applications as selection markers, diagnostic or treatment targets and potential applications in RNA-based therapy, in order to shed new light on further research.
Collapse
Affiliation(s)
- Weicheng Zong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational MedicineXi’an Medical University, Xi’an, China
| | - Bing Chen
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, China
| | - Qinyue Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
24
|
Ecotype-specific blockage of tasiARF production by two different RNA viruses in Arabidopsis. PLoS One 2022; 17:e0275588. [PMID: 36197942 PMCID: PMC9534422 DOI: 10.1371/journal.pone.0275588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis thaliana is one of the most studied model organisms of plant biology with hundreds of geographical variants called ecotypes. One might expect that this enormous genetic variety could result in differential response to pathogens. Indeed, we observed previously that the Bur ecotype develops much more severe symptoms (upward curling leaves and wavy leaf margins) upon infection with two positive-strand RNA viruses of different families (turnip vein-clearing virus, TVCV, and turnip mosaic virus, TuMV). To find the genes potentially responsible for the ecotype-specific response, we performed a differential expression analysis of the mRNA and sRNA pools of TVCV and TuMV-infected Bur and Col plants along with the corresponding mock controls. We focused on the genes and sRNAs that showed an induced or reduced expression selectively in the Bur virus samples in both virus series. We found that the two ecotypes respond to the viral infection differently, yet both viruses selectively block the production of the TAS3-derived small RNA specimen called tasiARF only in the virus-infected Bur plants. The tasiARF normally forms a gradient through the adaxial and abaxial parts of the leaf (being more abundant in the adaxial part) and post-transcriptionally regulates ARF4, a major leaf polarity determinant in plants. The lack of tasiARF-mediated silencing could lead to an ectopically expressed ARF4 in the adaxial part of the leaf where the misregulation of auxin-dependent signaling would result in an irregular growth of the leaf blade manifesting as upward curling leaf and wavy leaf margin. QTL mapping using Recombinant Inbred Lines (RILs) suggests that the observed symptoms are the result of a multigenic interaction that allows the symptoms to develop only in the Bur ecotype. The particular nature of genetic differences leading to the ecotype-specific symptoms remains obscure and needs further study.
Collapse
|
25
|
Kong X, Yang M, Le BH, He W, Hou Y. The master role of siRNAs in plant immunity. MOLECULAR PLANT PATHOLOGY 2022; 23:1565-1574. [PMID: 35869407 PMCID: PMC9452763 DOI: 10.1111/mpp.13250] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 06/01/2023]
Abstract
Gene silencing mediated by small noncoding RNAs (sRNAs) is a fundamental gene regulation mechanism in eukaryotes that broadly governs cellular processes. It has been established that sRNAs are critical regulators of plant growth, development, and antiviral defence, while accumulating studies support positive roles of sRNAs in plant defence against bacteria and eukaryotic pathogens such as fungi and oomycetes. Emerging evidence suggests that plant sRNAs move between species and function as antimicrobial agents against nonviral parasites. Multiple plant pathosystems have been shown to involve a similar exchange of small RNAs between species. Recent analysis about extracellular sRNAs shed light on the understanding of the selection and transportation of sRNAs moving from plant to parasites. In this review, we summarize current advances regarding the function and regulatory mechanism of plant endogenous small interfering RNAs (siRNAs) in mediating plant defence against pathogen intruders including viruses, bacteria, fungi, oomycetes, and parasitic plants. Beyond that, we propose potential mechanisms behind the sorting of sRNAs moving between species and the idea that engineering siRNA-producing loci could be a useful strategy to improve disease resistance of crops.
Collapse
Affiliation(s)
- Xiuzhen Kong
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Meng Yang
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| | - Brandon H. Le
- Department of Botany and Plant Sciences, Institute of Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Wenrong He
- Plant Molecular and Cellular Biology LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Yingnan Hou
- Shanghai Collaborative Innovation Center of Agri‐Seeds/School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
26
|
Voloudakis AE, Kaldis A, Patil BL. RNA-Based Vaccination of Plants for Control of Viruses. Annu Rev Virol 2022; 9:521-548. [PMID: 36173698 DOI: 10.1146/annurev-virology-091919-073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.
Collapse
Affiliation(s)
- Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Basavaprabhu L Patil
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka State, India
| |
Collapse
|
27
|
Leibman D, Pashkovsky E, Shnaider Y, Shtarkman M, Gaba V, Gal-On A. Analysis of the RNA-Dependent RNA Polymerase 1 (RDR1) Gene Family in Melon. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141795. [PMID: 35890429 PMCID: PMC9320487 DOI: 10.3390/plants11141795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 05/14/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1) plays a crucial defense role against plant viruses by secondary amplification of viral double-stranded RNA in the gene-silencing pathway. In this study, it was found that melon (Cucumis melo) encodes four RDR1 genes (CmRDR1a, b, c1 and c2) similar to the CsRDR1 gene family of cucumber (C. sativus). However, in contrast to cucumber, melon harbors a truncated CmRDR1b gene. In healthy plants, CmRDR1a was expressed, whereas the expression of CmRDR1c1/c2 was not detected. CmRDR1a expression level increased 20-fold upon cucumber mosaic virus (CMV) infection and was not increased in melon plants infected with zucchini yellow mosaic virus (ZYMV), cucumber vein yellowing virus (CVYV) and cucumber green mottle mosaic virus (CGMMV). The expression of CmRDR1c1/c2 genes was induced differentially by infection with viruses from different families: high levels of ~340-, 172- and 115-fold increases were induced by CMV, CVYV and CGMMV, respectively, and relatively low-level increases by potyvirus infection (4- to 6-fold). CMV mutants lacking the viral silencing suppressor 2b protein did not cause increased CmRDR1c/c2 expression; knockout of CmRDR1c1/c2 by CRISPR/Cas9 increased susceptibility to CMV but not to ZYMV. Therefore, it is suggested that the sensitivity of melon to viruses from different families is a result of the loss of function of CmRDR1b.
Collapse
|
28
|
Fletcher SJ, Peters JR, Olaya C, Persley DM, Dietzgen RG, Carroll BJ, Pappu H, Mitter N. Tospoviruses Induce Small Interfering RNAs Targeting Viral Sequences and Endogenous Transcripts in Solanaceous Plants. Pathogens 2022; 11:pathogens11070745. [PMID: 35889991 PMCID: PMC9317859 DOI: 10.3390/pathogens11070745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Tospoviruses infect numerous crop species worldwide, causing significant losses throughout the supply chain. As a defence mechanism, plants use RNA interference (RNAi) to generate virus-derived small-interfering RNAs (vsiRNAs), which target viral transcripts for degradation. Small RNA sequencing and in silico analysis of capsicum and N. benthamiana infected by tomato spotted wilt virus (TSWV) or capsicum chlorosis virus (CaCV) demonstrated the presence of abundant vsiRNAs, with host-specific differences evident for each pathosystem. Despite the biogenesis of vsiRNAs in capsicum and N. benthamiana, TSWV and CaCV viral loads were readily detectable. In response to tospovirus infection, the solanaceous host species also generated highly abundant virus-activated small interfering RNAs (vasiRNAs) against many endogenous transcripts, except for an N. benthamiana accession lacking a functional RDR1 gene. Strong enrichment for ribosomal protein-encoding genes and for many genes involved in protein processing in the endoplasmic reticulum suggested co-localisation of viral and endogenous transcripts as a basis for initiating vasiRNA biogenesis. RNA-seq and RT-qPCR-based analyses of target transcript expression revealed an inconsistent role for vasiRNAs in modulating gene expression in N. benthamiana, which may be characteristic of this tospovirus-host pathosystem.
Collapse
Affiliation(s)
- Stephen J. Fletcher
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (S.J.F.); (J.R.P.); (R.G.D.)
| | - Jonathan R. Peters
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (S.J.F.); (J.R.P.); (R.G.D.)
| | - Cristian Olaya
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA;
| | - Denis M. Persley
- Queensland Department of Agriculture and Fisheries, AgriScience Queensland, EcoSciences Precinct, Dutton Park, Brisbane, QLD 4102, Australia;
| | - Ralf G. Dietzgen
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (S.J.F.); (J.R.P.); (R.G.D.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia;
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia;
| | - Hanu Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA;
- Correspondence: (H.P.); (N.M.)
| | - Neena Mitter
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (S.J.F.); (J.R.P.); (R.G.D.)
- Correspondence: (H.P.); (N.M.)
| |
Collapse
|
29
|
Allen H, Zeef L, Morreel K, Goeminne G, Kumar M, Gomez LD, Dean AP, Eckmann A, Casiraghi C, McQueen-Mason SJ, Boerjan W, Turner SR. Flexible and digestible wood caused by viral-induced alteration of cell wall composition. Curr Biol 2022; 32:3398-3406.e6. [PMID: 35732179 PMCID: PMC9616729 DOI: 10.1016/j.cub.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
Woody plant material represents a vast renewable resource that has the potential to produce biofuels and other bio-based products with favorable net CO2 emissions.1,2 Its potential has been demonstrated in a recent study that generated novel structural materials from flexible moldable wood.3 Apple rubbery wood (ARW) disease is the result of a viral infection that causes woody stems to exhibit increased flexibility.4 Although ARW disease is associated with the presence of an RNA virus5 known as apple rubbery wood virus (ARWV), how the unique symptoms develop is unknown. We demonstrate that the symptoms of ARWV infections arise from reduced lignification within the secondary cell wall of xylem fibers and result in increased wood digestibility. In contrast, the mid-lamellae region and xylem ray cells are largely unaffected by the infection. Gene expression and proteomic data from symptomatic xylem clearly show the downregulation of phenylalanine ammonia lyase (PAL), the enzyme catalyzing the first committed step in the phenylpropanoid pathway leading to lignin biosynthesis. A large increase in soluble phenolics in symptomatic xylem, including the lignin precursor phenylalanine, is also consistent with PAL downregulation. ARWV infection results in the accumulation of many host-derived virus-activated small interfering RNAs (vasiRNAs). PAL-derived vasiRNAs are among the most abundant vasiRNAs in symptomatic xylem and are likely the cause of reduced PAL activity. Apparently, the mechanism used by the virus to alter lignin exhibits similarities to the RNAi strategy used to alter lignin in genetically modified trees to generate comparable improvements in wood properties.6, 7, 8 Video abstract
Apple rubbery wood (ARW) symptoms are caused by decreased lignin in woody tissue RNA-seq, proteomics, and metabolomics suggest phenylalanine levels decrease Virus-activated small interfering RNAs (vasiRNAs) are generated in response to ARWV infection VasiRNAs cause siRNA-based downregulation of phenylalanine ammonia
Collapse
Affiliation(s)
- Holly Allen
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leo Zeef
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Metabolomics Core Gent, VIB, 9052 Zwijnaarde, Belgium
| | - Manoj Kumar
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Leonardo D Gomez
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Andrew P Dean
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Axel Eckmann
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Simon R Turner
- School of Biological Science, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
30
|
Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23:645-662. [PMID: 35710830 DOI: 10.1038/s41580-022-00496-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.
Collapse
|
31
|
Liu S, Chen M, Li R, Li WX, Gal-On A, Jia Z, Ding SW. Identification of positive and negative regulators of antiviral RNA interference in Arabidopsis thaliana. Nat Commun 2022; 13:2994. [PMID: 35637208 PMCID: PMC9151786 DOI: 10.1038/s41467-022-30771-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/18/2022] [Indexed: 02/06/2023] Open
Abstract
Virus-host coevolution often drives virus immune escape. However, it remains unknown whether natural variations of plant virus resistance are enriched in genes of RNA interference (RNAi) pathway known to confer essential antiviral defense in plants. Here, we report two genome-wide association study screens to interrogate natural variation among wild-collected Arabidopsis thaliana accessions in quantitative resistance to the endemic cucumber mosaic virus (CMV). We demonstrate that the highest-ranked gene significantly associated with resistance from both screens acts to regulate antiviral RNAi in ecotype Columbia-0. One gene, corresponding to Reduced Dormancy 5 (RDO5), enhances resistance by promoting amplification of the virus-derived small interfering RNAs (vsiRNAs). Interestingly, the second gene, designated Antiviral RNAi Regulator 1 (VIR1), dampens antiviral RNAi so its genetic inactivation by CRISPR/Cas9 editing enhances both vsiRNA production and CMV resistance. Our findings identify positive and negative regulators of the antiviral RNAi defense that may play important roles in virus-host coevolution.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, USA
| | - Meijuan Chen
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, USA
| | - Ruidong Li
- Department of Botany & Plant Sciences, University of California, Riverside, CA, USA
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, USA
| | - Amit Gal-On
- Department of Plant Pathology and Weed Science, Volcani Center, Rishon LeZion, 7528809, Israel
| | - Zhenyu Jia
- Department of Botany & Plant Sciences, University of California, Riverside, CA, USA.
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, USA.
| |
Collapse
|
32
|
Qi Y, Ding L, Zhang S, Yao S, Ong J, Li Y, Wu H, Du P. A plant immune protein enables broad antitumor response by rescuing microRNA deficiency. Cell 2022; 185:1888-1904.e24. [PMID: 35623329 DOI: 10.1016/j.cell.2022.04.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/18/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022]
Abstract
Cancer cells are featured with uncontrollable activation of cell cycle, and microRNA deficiency drives tumorigenesis. The RNA-dependent RNA polymerase (RDR) is essential for small-RNA-mediated immune response in plants but is absent in vertebrates. Here, we show that ectopic expression of plant RDR1 can generally inhibit cancer cell proliferation. In many human primary tumors, abnormal microRNA isoforms with 1-nt-shorter 3' ends are widely accumulated. RDR1 with nucleotidyltransferase activity can recognize and modify the problematic AGO2-free microRNA duplexes with mononucleotides to restore their 2 nt overhang structure, which eventually rescues AGO2-loading efficiency and elevates global miRNA expression to inhibit cancer cell-cycle specifically. The broad antitumor effects of RDR1, which can be delivered by an adeno-associated virus, are visualized in multiple xenograft tumor models in vivo. Altogether, we reveal the widespread accumulation of aberrant microRNA isoforms in tumors and develop a plant RDR1-mediated antitumor stratagem by editing and repairing defective microRNAs.
Collapse
Affiliation(s)
- Ye Qi
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Ding
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Siwen Zhang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shengze Yao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hong Wu
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
33
|
Chen X, Rechavi O. Plant and animal small RNA communications between cells and organisms. Nat Rev Mol Cell Biol 2022; 23:185-203. [PMID: 34707241 PMCID: PMC9208737 DOI: 10.1038/s41580-021-00425-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 01/09/2023]
Abstract
Since the discovery of eukaryotic small RNAs as the main effectors of RNA interference in the late 1990s, diverse types of endogenous small RNAs have been characterized, most notably microRNAs, small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs). These small RNAs associate with Argonaute proteins and, through sequence-specific gene regulation, affect almost every major biological process. Intriguing features of small RNAs, such as their mechanisms of amplification, rapid evolution and non-cell-autonomous function, bestow upon them the capacity to function as agents of intercellular communications in development, reproduction and immunity, and even in transgenerational inheritance. Although there are many types of extracellular small RNAs, and despite decades of research, the capacity of these molecules to transmit signals between cells and between organisms is still highly controversial. In this Review, we discuss evidence from different plants and animals that small RNAs can act in a non-cell-autonomous manner and even exchange information between species. We also discuss mechanistic insights into small RNA communications, such as the nature of the mobile agents, small RNA signal amplification during transit, signal perception and small RNA activity at the destination.
Collapse
Affiliation(s)
- Xuemei Chen
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Oded Rechavi
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
34
|
Ghorbani A, Izadpanah K, Tahmasebi A, Afsharifar A, Moghadam A, Dietzgen RG. Characterization of maize miRNAs responsive to maize Iranian mosaic virus infection. 3 Biotech 2022; 12:69. [PMID: 35223355 PMCID: PMC8837769 DOI: 10.1007/s13205-022-03134-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) play key regulatory roles in the plant's response to biotic and abiotic stresses and have fundamental functions in plant-virus interactions. The study of changes in miRNAs in response to virus infection can provide molecular details for a better understanding of virus-host interactions. Maize Iranian mosaic virus (MIMV) infects maize and certain other poaceous plants but miRNA changes in response to MIMV infection are unknown. In the present study, we compared the miRNA profiles of MIMV-infected and uninfected maize and characterized their predicted roles in response to the virus. Small RNA sequencing of maize identified 257 conserved miRNAs of 26 conserved families in uninfected and MIMV-infected maize libraries. Among them, miR395, miR166 and miR156 family members were highly represented. Small RNA data were confirmed using RT-qPCR. In addition, 33 potential novel miRNAs were predicted. The data show that 13 miRNAs were up-regulated and 113 were down-regulated in response to MIMV infection. Several of those miRNAs are known to be important in the response to plant pathogens. To determine the potential roles of individual miRNAs in response to MIMV, miRNA targets, predicted interactions with circular RNAs and comparative transcriptome data were analyzed. The expression profiles of different miRNAs in response to MIMV provide novel insights into the roles of miRNAs in the interaction between MIMV and maize plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03134-1.
Collapse
Affiliation(s)
- Abozar Ghorbani
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD Australia
| | | | - Ahmad Tahmasebi
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ralf G. Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD Australia
| |
Collapse
|
35
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
36
|
Wang C, Jiang F, Zhu S. Complex Small RNA-mediated Regulatory Networks between Viruses/Viroids/Satellites and Host Plants. Virus Res 2022; 311:198704. [DOI: 10.1016/j.virusres.2022.198704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/29/2022] [Indexed: 12/26/2022]
|
37
|
Lin KY, Wu SY, Hsu YH, Lin NS. MiR398-regulated antioxidants contribute to Bamboo mosaic virus accumulation and symptom manifestation. PLANT PHYSIOLOGY 2022; 188:593-607. [PMID: 34695209 PMCID: PMC9040666 DOI: 10.1093/plphys/kiab451] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Virus infections that cause mosaic or mottling in leaves commonly also induce increased levels of reactive oxygen species (ROS). However, how ROS contributes to symptoms is less well documented. Bamboo mosaic virus (BaMV) causes chlorotic mosaic symptoms in both Brachypodium distachyon and Nicotiana benthamiana. The BaMV △CPN35 mutant with an N-terminal deletion of its coat protein gene exhibits asymptomatic infection independently of virus titer. Histochemical staining of ROS in mock-, BaMV-, and BaMV△CPN35-infected leaves revealed that hydrogen peroxide (H2O2) accumulated solely in BaMV-induced chlorotic spots. Moreover, exogenous H2O2 treatment enhanced yellowish chlorosis in BaMV-infected leaves. Both BaMV and BaMV△CPN35 infection could induce the expression of Cu/Zu superoxide dismutase (CSD) antioxidants at messenger RNA and protein level. However, BaMV triggered the abundant accumulation of full-length NbCSD2 preprotein (prNbCSD2, without transit peptide cleavage), whereas BaMV△CPN35 induced a truncated prNbCSD2. Confocal microscopy showed that majority of NbCSD2-green fluorescent protein (GFP) predominantly localized in the cytosol upon BaMV infection, but BaMV△CPN35 infection tended to cause NbCSD2-GFP to remain in chloroplasts. By 5'-RNA ligase-mediated rapid amplification of cDNA ends, we validated CSDs are the targets of miR398 in vivo. Furthermore, BaMV infection increased the level of miR398, while the level of BaMV titer was regulated positively by miR398 but negatively by CSD2. In contrast, overexpression of cytosolic form NbCSD2, impairing the transport into chloroplasts, greatly enhanced BaMV accumulation. Taken together, our results indicate that induction of miR398 by BaMV infection may facilitate viral titer accumulation, and cytosolic prNbCSD2 induction may contribute to H2O2 accumulation, resulting in the development of BaMV chlorotic symptoms in plants.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Su-Yao Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
38
|
Small RNAs Participate in Plant-Virus Interaction and Their Application in Plant Viral Defense. Int J Mol Sci 2022; 23:ijms23020696. [PMID: 35054880 PMCID: PMC8775341 DOI: 10.3390/ijms23020696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Small RNAs are significant regulators of gene expression, which play multiple roles in plant development, growth, reproductive and stress response. It is generally believed that the regulation of plants’ endogenous genes by small RNAs has evolved from a cellular defense mechanism for RNA viruses and transposons. Most small RNAs have well-established roles in the defense response, such as viral response. During viral infection, plant endogenous small RNAs can direct virus resistance by regulating the gene expression in the host defense pathway, while the small RNAs derived from viruses are the core of the conserved and effective RNAi resistance mechanism. As a counter strategy, viruses evolve suppressors of the RNAi pathway to disrupt host plant silencing against viruses. Currently, several studies have been published elucidating the mechanisms by which small RNAs regulate viral defense in different crops. This paper reviews the distinct pathways of small RNAs biogenesis and the molecular mechanisms of small RNAs mediating antiviral immunity in plants, as well as summarizes the coping strategies used by viruses to override this immune response. Finally, we discuss the current development state of the new applications in virus defense based on small RNA silencing.
Collapse
|
39
|
Annacondia ML, Martinez G. Reprogramming of RNA silencing triggered by cucumber mosaic virus infection in Arabidopsis. Genome Biol 2021; 22:340. [PMID: 34911561 PMCID: PMC8672585 DOI: 10.1186/s13059-021-02564-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND RNA silencing has an important role mediating sequence-specific virus resistance in plants. The complex interaction of viruses with RNA silencing involves the loading of viral small interfering RNAs (vsiRNAs) into its host ARGONAUTE (AGO) proteins. As a side effect of their antiviral activity, vsiRNAs loading into AGO proteins can also mediate the silencing of endogenous genes. Here, we analyze at the genome-wide level both aspects of the interference of cucumber mosaic virus (CMV) with the RNA silencing machinery of Arabidopsis thaliana. RESULTS We observe CMV-derived vsiRNAs affect the levels of endogenous sRNA classes. Furthermore, we analyze the incorporation of vsiRNAs into AGO proteins with a described antiviral role and the viral suppressor of RNA silencing (VSR) 2b, by combining protein immunoprecipitation with sRNA high-throughput sequencing. Interestingly, vsiRNAs represent a substantial percentage of AGO-loaded sRNAs and displace other endogenous sRNAs. As a countermeasure, the VSR 2b loaded vsiRNAs and mRNA-derived siRNAs, which affect the expression of the genes they derive from. Additionally, we analyze how vsiRNAs incorporate into the endogenous RNA silencing pathways by exploring their target mRNAs using parallel analysis of RNA end (PARE) sequencing, which allow us to identify vsiRNA-targeted genes genome-wide. CONCLUSIONS This work exemplifies the complex relationship of RNA viruses with the endogenous RNA silencing machinery and the multiple aspects of virus resistance and virulence that this interaction induces.
Collapse
Affiliation(s)
- Maria Luz Annacondia
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
40
|
Kumari R, Kumar S, Leibman D, Abebie B, Shnaider Y, Ding S, Gal‐On A. Cucumber RDR1s and cucumber mosaic virus suppressor protein 2b association directs host defence in cucumber plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1317-1331. [PMID: 34355485 PMCID: PMC8518566 DOI: 10.1111/mpp.13112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 05/27/2023]
Abstract
RNA-dependent RNA polymerases (RDRs) regulate important aspects of plant development and resistance to pathogens. The role of RDRs in virus resistance has been demonstrated using siRNA signal amplification and through the methylation of viral genomes. Cucumber (Cucumis sativus) has four RDR1 genes that are differentially induced during virus infection: CsRDR1a, CsRDR1b, and duplicated CsRDR1c1/c2. The mode of action of CsRDR1s during viral infection is unknown. Transient expression of the cucumber mosaic virus (CMV)-2b protein (the viral suppressor of RNA silencing) in cucumber protoplasts induced the expression of CsRDR1c, but not of CsRDR1a/1b. Results from the yeast two-hybrid system showed that CsRDR1 proteins interacted with CMV-2b and this was confirmed by bimolecular fluorescence complementation assays. In protoplasts, CsRDR1s localized in the cytoplasm as punctate spots. Colocalization experiments revealed that CsRDR1s and CMV-2b were uniformly dispersed throughout the cytoplasm, suggesting that CsRDR1s are redistributed as a result of interactions. Transient overexpression of individual CsRDR1a/1b genes in protoplasts reduced CMV accumulation, indicating their antiviral role. However, overexpression of CsRDR1c in protoplasts resulted in relatively higher accumulation of CMV and CMVΔ2b. In single cells, CsRDR1c enhances viral replication, leading to CMV accumulation and blocking secondary siRNA amplification of CsRDR1c by CMV-2b protein. This suggests that CMV-2b acts as both a transcription factor that induces CsRDR1c (controlling virus accumulation) and a suppressor of CsRDR1c activity.
Collapse
Affiliation(s)
- Reenu Kumari
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
- College of Horticulture and ForestryDr YS Parmar University of Horticulture and ForestryMandiIndia
| | - Surender Kumar
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
- Plant Virology Lab, Biotechnology DivisionCSIR‐Institute of Himalayan Bioresource TechnologyPalampurIndia
| | - Diana Leibman
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Bekele Abebie
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Yulia Shnaider
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| | - Shou‐Wei Ding
- Department of Plant Pathology and Microbiology & Institute for Integrative Genome BiologyUniversity of CaliforniaRiversideCaliforniaUSA
| | - Amit Gal‐On
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
41
|
Tan ST, Liu F, Lv J, Liu QL, Luo HM, Xu Y, Ma Y, Chen XJ, Lan PX, Chen HR, Cao MJ, Li F. Identification of two novel poleroviruses and the occurrence of Tobacco bushy top disease causal agents in natural plants. Sci Rep 2021; 11:21045. [PMID: 34702954 PMCID: PMC8548504 DOI: 10.1038/s41598-021-99320-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
Tobacco bushy top disease (TBTD) is a devastating tobacco disease in the southwestern region of China. TBTD in the Yunnan Province is often caused by co-infections of several plant viruses: tobacco bushy top virus (TBTV), tobacco vein distorting virus (TVDV), tobacco bushy top virus satellite RNA (TBTVsatRNA) and tobacco vein distorting virus-associated RNA (TVDVaRNA). Through this study, two new poleroviruses were identified in two TBTD symptomatic tobacco plants and these two novel viruses are tentatively named as tobacco polerovirus 1 (TPV1) and tobacco polerovirus 2 (TPV2), respectively. Analyses of 244 tobacco samples collected from tobacco fields in the Yunnan Province through RT-PCR showed that a total of 80 samples were infected with TPV1 and/or TPV2, and the infection rates of TPV1 and TPV2 were 8.61% and 29.51%, respectively. Thirty-three TPV1 and/or TPV2-infected tobacco samples were selected for further test for TBTV, TVDV, TBTVsatRNA and TVDVaRNA infections. The results showed that many TPV1 and/or TPV2-infected plants were also infected with two or more other assayed viruses. In this study, we also surveyed TBTV, TVDV, TBTVsatRNA and TVDVaRNA infections in a total of 1713 leaf samples collected from field plants belonging to 29 plant species in 13 plant families and from 11 provinces/autonomous regions in China. TVDV had the highest infection rates of 37.5%, while TVDVaRNA, TBTV and TBTVsatRNA were found to be at 23.0%, 12.4% and 8.1%, respectively. In addition, TVDV, TBTV, TBTVsatRNA and TVDVaRNA were firstly detected of co-infection on 10 plants such as broad bean, pea, oilseed rape, pumpkin, tomato, crofton weed etc., and 1 to 4 of the TBTD causal agents were present in the samples collected from Guizhou, Hainan, Henan, Liaoning, Inner mongolia and Tibet autonomous regions. The results indicated that TBTD causal agents are expanding its host range and posing a risk to other crop in the field.
Collapse
Affiliation(s)
- Song-Tao Tan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Qin-Li Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng-Ming Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiao-Jiao Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping-Xiu Lan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Hai-Ru Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| | - Meng-Ji Cao
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| | - Fan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
42
|
Tóthné Bogdányi F, Boziné Pullai K, Doshi P, Erdős E, Gilián LD, Lajos K, Leonetti P, Nagy PI, Pantaleo V, Petrikovszki R, Sera B, Seres A, Simon B, Tóth F. Composted Municipal Green Waste Infused with Biocontrol Agents to Control Plant Parasitic Nematodes-A Review. Microorganisms 2021; 9:2130. [PMID: 34683451 PMCID: PMC8538326 DOI: 10.3390/microorganisms9102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
The last few years have witnessed the emergence of alternative measures to control plant parasitic nematodes (PPNs). We briefly reviewed the potential of compost and the direct or indirect roles of soil-dwelling organisms against PPNs. We compiled and assessed the most intensively researched factors of suppressivity. Municipal green waste (MGW) was identified and profiled. We found that compost, with or without beneficial microorganisms as biocontrol agents (BCAs) against PPNs, were shown to have mechanisms for the control of plant parasitic nematodes. Compost supports a diverse microbiome, introduces and enhances populations of antagonistic microorganisms, releases nematicidal compounds, increases the tolerance and resistance of plants, and encourages the establishment of a "soil environment" that is unsuitable for PPNs. Our compilation of recent papers reveals that while the scope of research on compost and BCAs is extensive, the role of MGW-based compost (MGWC) in the control of PPNs has been given less attention. We conclude that the most environmentally friendly and long-term, sustainable form of PPN control is to encourage and enhance the soil microbiome. MGW is a valuable resource material produced in significant amounts worldwide. More studies are suggested on the use of MGWC, because it has a considerable potential to create and maintain soil suppressivity against PPNs. To expand knowledge, future research directions shall include trials investigating MGWC, inoculated with BCAs.
Collapse
Affiliation(s)
| | - Krisztina Boziné Pullai
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (K.B.P.); (R.P.)
| | - Pratik Doshi
- ImMuniPot Independent Research Group, H-2100 Gödöllő, Hungary
| | - Eszter Erdős
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (E.E.); (K.L.)
| | - Lilla Diána Gilián
- Szent István Campus Dormitories, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary;
| | - Károly Lajos
- Doctoral School of Biological Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (E.E.); (K.L.)
| | - Paola Leonetti
- Bari Unit, Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection of the CNR, 70126 Bari, Italy; (P.L.); (V.P.)
| | - Péter István Nagy
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Vitantonio Pantaleo
- Bari Unit, Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection of the CNR, 70126 Bari, Italy; (P.L.); (V.P.)
| | - Renáta Petrikovszki
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (K.B.P.); (R.P.)
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Bozena Sera
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
| | - Anikó Seres
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| | - Barbara Simon
- Department of Soil Science, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary;
| | - Ferenc Tóth
- Department of Zoology and Ecology, Institute for Wildlife Management and Nature Conservation, Hungarian University of Agriculture and Life Sciences, H-2103 Gödöllő, Hungary; (P.I.N.); (A.S.)
| |
Collapse
|
43
|
Li S, Zhang Z, Zhou C, Li S. RNA-dependent RNA polymerase 1 delays the accumulation of viroids in infected plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1195-1208. [PMID: 34296816 PMCID: PMC8435232 DOI: 10.1111/mpp.13104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1) is essential for plant antiviral defence, but its role in plant defence against viroid infection remains unknown. The present study aimed to identify the function and mechanism of RDR1 in plant resistance to viroid infection. Overexpression of Nicotiana tabacum RDR1 (NtRDR1) delayed the accumulation of potato spindle tuber viroid (PSTVd) genomic RNA and PSTVd-derived small RNA (sRNA) in Nicotiana benthamiana plants at the early invasion stage, but not in the late stage of infection. Conversely, virus-induced gene silencing of tomato RDR1 (SlRDR1a) increased the susceptibility to PSTVd infection (increased viroid accumulation). Salicylic acid (SA) pretreatment induced SlRDR1a expression and enhanced the defence against PSTVd infection in tomato plants. Our study demonstrated that RDR1 is involved in SA-mediated defence and restricts the early systemic invasion by PSTVd in plants. The decreased PSTVd accumulation in N. benthamiana was not caused by efficient accumulation of PSTVd sRNAs. These results deepen our understanding of the mechanism of RDR1 in plant defence responses to viroid attack.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Citrus Research InstituteChinese Academy of Agricultural Sciences/Southwest UniversityChongqingChina
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Changyong Zhou
- Citrus Research InstituteChinese Academy of Agricultural Sciences/Southwest UniversityChongqingChina
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
- Environment and Plant Protection InstituteChinese Academy of Tropical Agricultural SciencesHaikouChina
| |
Collapse
|
44
|
Leonetti P, Stuttmann J, Pantaleo V. Regulation of plant antiviral defense genes via host RNA-silencing mechanisms. Virol J 2021; 18:194. [PMID: 34565394 PMCID: PMC8474839 DOI: 10.1186/s12985-021-01664-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background Plants in nature or crops in the field interact with a multitude of beneficial or parasitic organisms, including bacteria, fungi and viruses. Viruses are highly specialized to infect a limited range of host plants, leading in extreme cases to the full invasion of the host and a diseased phenotype. Resistance to viruses can be mediated by various passive or active mechanisms, including the RNA-silencing machinery and the innate immune system. Main text RNA-silencing mechanisms may inhibit viral replication, while viral components can elicit the innate immune system. Viruses that successfully enter the plant cell can elicit pattern-triggered immunity (PTI), albeit by yet unknown mechanisms. As a counter defense, viruses suppress PTI. Furthermore, viral Avirulence proteins (Avr) may be detected by intracellular immune receptors (Resistance proteins) to elicit effector-triggered immunity (ETI). ETI often culminates in a localized programmed cell death reaction, the hypersensitive response (HR), and is accompanied by a potent systemic defense response. In a dichotomous view, RNA silencing and innate immunity are seen as two separate mechanisms of resistance. Here, we review the intricate connections and similarities between these two regulatory systems, which are collectively required to ensure plant fitness and resilience. Conclusions The detailed understanding of immune regulation at the transcriptional level provides novel opportunities for enhancing plant resistance to viruses by RNA-based technologies. However, extensive use of RNA technologies requires a thorough understanding of the molecular mechanisms of RNA gene regulation. We describe the main examples of host RNA-mediated regulation of virus resistance.
Collapse
Affiliation(s)
- Paola Leonetti
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, Research Unit of Bari, CNR, 70126, Bari, Italy
| | - Johannes Stuttmann
- Institute of Biology, Department of Plant Genetics, Martin Luther University, Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, Research Unit of Bari, CNR, 70126, Bari, Italy. .,Institute of Biochemistry and Biotechnology, Martin Luther University, Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
45
|
Singh P, Dutta P, Chakrabarty D. miRNAs play critical roles in response to abiotic stress by modulating cross-talk of phytohormone signaling. PLANT CELL REPORTS 2021; 40:1617-1630. [PMID: 34159416 DOI: 10.1007/s00299-021-02736-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 05/06/2023]
Abstract
One of the most interesting signaling molecules that regulates a wide array of adaptive stress responses in plants are the micro RNAs (miRNAs) that are a unique class of non-coding RNAs constituting novel mechanisms of post-transcriptional gene regulation. Recent studies revealed the role of miRNAs in several biotic and abiotic stresses by regulating various phytohormone signaling pathways as well as by targeting a number of transcription factors (TFs) and defense related genes. Phytohormones are signal molecules modulating the plant growth and developmental processes by regulating gene expression. Studies concerning miRNAs in abiotic stress response also show their vital roles in abiotic stress signaling. Current research indicates that miRNAs may act as possible candidates to create abiotic stress tolerant crop plants by genetic engineering. Yet, the detailed mechanism governing the dynamic expression networks of miRNAs in response to stress tolerance remains unclear. In this review, we provide recent updates on miRNA-mediated regulation of phytohormones combating various stress and its role in adaptive stress response in crop plants.
Collapse
Affiliation(s)
- Puja Singh
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prasanna Dutta
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
46
|
Liao S, Chen X, Xu T, Jin Q, Xu Z, Xu D, Zhou X, Zhu C, Guang S, Feng X. Antisense ribosomal siRNAs inhibit RNA polymerase I-directed transcription in C. elegans. Nucleic Acids Res 2021; 49:9194-9210. [PMID: 34365510 PMCID: PMC8450093 DOI: 10.1093/nar/gkab662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that function in the nucleus. We previously found that erroneous rRNAs induce the generation of antisense ribosomal siRNAs (risiRNAs) which silence the expression of rRNAs via the nuclear RNAi defective (Nrde) pathway. To further understand the biological roles and mechanisms of this class of small regulatory RNAs, we conducted forward genetic screening to identify factors involved in risiRNA generation in Caenorhabditis elegans. We found that risiRNAs accumulated in the RNA exosome mutants. risiRNAs directed the association of NRDE proteins with pre-rRNAs and the silencing of pre-rRNAs. In the presence of risiRNAs, NRDE-2 accumulated in the nucleolus and colocalized with RNA polymerase I. risiRNAs inhibited the transcription elongation of RNA polymerase I by decreasing RNAP I occupancy downstream of the RNAi-targeted site. Meanwhile, exosomes mislocalized from the nucleolus to nucleoplasm in suppressor of siRNA (susi) mutants, in which erroneous rRNAs accumulated. These results established a novel model of rRNA surveillance by combining ribonuclease-mediated RNA degradation with small RNA-directed nucleolar RNAi system.
Collapse
Affiliation(s)
- Shimiao Liao
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Xiangyang Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Ting Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Qile Jin
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Zongxiu Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Demin Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Xufei Zhou
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Chengming Zhu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| | - Shouhong Guang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Hefei, Anhui 230027, P.R. China
| | - Xuezhu Feng
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P.R. China
| |
Collapse
|
47
|
The diversity of post-transcriptional gene silencing mediated by small silencing RNAs in plants. Essays Biochem 2021; 64:919-930. [PMID: 32885814 DOI: 10.1042/ebc20200006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022]
Abstract
In plants, post-transcriptional gene silencing (PTGS) tightly regulates development, maintains genome stability and protects plant against foreign genes. PTGS can be triggered by virus infection, transgene, and endogenous transcript, thus commonly serves as an RNA-based immune mechanism. Accordingly, based on the initiating factors, PTGS can be divided into viral-PTGS, transgene-PTGS, and endo-gene-PTGS. Unlike the intensely expressed invading transgenes and viral genes that frequently undergo PTGS, most endogenous genes do not trigger PTGS, except for a few that can produce endogenous small RNAs (sRNAs), including microRNA (miRNA) and small interfering RNA (siRNA). Different lengths of miRNA and siRNA, mainly 21-, 22- or 24-nucleotides (nt) exert diverse functions, ranging from target mRNA degradation, translational inhibition, or DNA methylation and chromatin modifications. The abundant 21-nt miRNA or siRNA, processed by RNase-III enzyme DICER-LIKE 1 (DCL1) and DCL4, respectively, have been well studied in the PTGS pathways. By contrast, the scarceness of endogenous 22-nt sRNAs that are primarily processed by DCL2 limits their research, although a few encouraging studies have been reported recently. Therefore, we review here our current understanding of diverse PTGS pathways triggered by a variety of sRNAs and summarize the distinct features of the 22-nt sRNA mediated PTGS.
Collapse
|
48
|
Liu P, Zhang X, Zhang F, Xu M, Ye Z, Wang K, Liu S, Han X, Cheng Y, Zhong K, Zhang T, Li L, Ma Y, Chen M, Chen J, Yang J. A virus-derived siRNA activates plant immunity by interfering with ROS scavenging. MOLECULAR PLANT 2021; 14:1088-1103. [PMID: 33798746 DOI: 10.1016/j.molp.2021.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/24/2021] [Accepted: 03/28/2021] [Indexed: 05/27/2023]
Abstract
Virus-derived small interference RNAs (vsiRNAs) not only suppress virus infection in plants via induction of RNA silencing but also enhance virus infection by regulating host defensive gene expression. However, the underlying mechanisms that control vsiRNA-mediated host immunity or susceptibility remain largely unknown. In this study, we generated several transgenic wheat lines using four artificial microRNA expression vectors carrying vsiRNAs from Wheat yellow mosaic virus (WYMV) RNA1. Laboratory and field tests showed that two transgenic wheat lines expressing amiRNA1 were highly resistant to WYMV infection. Further analyses showed that vsiRNA1 could modulate the expression of a wheat thioredoxin-like gene (TaAAED1), which encodes a negative regulator of reactive oxygen species (ROS) production in the chloroplast. The function of TaAAED1 in ROS scavenging could be suppressed by vsiRNA1 in a dose-dependent manner. Furthermore, transgenic expression of amiRNA1 in wheat resulted in broad-spectrum disease resistance to Chinese wheat mosaic virus, Barley stripe mosaic virus, and Puccinia striiformis f. sp. tritici infection, suggesting that vsiRNA1 is involved in wheat immunity via ROS signaling. Collectively, these findings reveal a previously unidentified mechanism underlying the arms race between viruses and plants.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaoxiang Zhang
- Institute of Agricultural Sciences in Lixiahe District of Jiangsu Province, Yangzhou, Jiangsu 225007, China
| | - Fan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Miaoze Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ke Wang
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaolei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Ye Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianye Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Linzhi Li
- Yantai Academy of Agricultural Science, Shandong Province, No. 26 Gangcheng West Street, Fushan District, Yantai City, Shandong 265500, P.R. China
| | - Youzhi Ma
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Chen
- National Key Facility for Crop Genetic Resources and Genetic Improvement, Key Laboratory of Crop Genetics and Breeding, Ministry of Agriculture, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
49
|
Butel N, Yu A, Le Masson I, Borges F, Elmayan T, Taochy C, Gursanscky NR, Cao J, Bi S, Sawyer A, Carroll BJ, Vaucheret H. Contrasting epigenetic control of transgenes and endogenous genes promotes post-transcriptional transgene silencing in Arabidopsis. Nat Commun 2021; 12:2787. [PMID: 33986281 PMCID: PMC8119426 DOI: 10.1038/s41467-021-22995-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/06/2021] [Indexed: 11/20/2022] Open
Abstract
Transgenes that are stably expressed in plant genomes over many generations could be assumed to behave epigenetically the same as endogenous genes. Here, we report that whereas the histone H3K9me2 demethylase IBM1, but not the histone H3K4me3 demethylase JMJ14, counteracts DNA methylation of Arabidopsis endogenous genes, JMJ14, but not IBM1, counteracts DNA methylation of expressed transgenes. Additionally, JMJ14-mediated specific attenuation of transgene DNA methylation enhances the production of aberrant RNAs that readily induce systemic post-transcriptional transgene silencing (PTGS). Thus, the JMJ14 chromatin modifying complex maintains expressed transgenes in a probationary state of susceptibility to PTGS, suggesting that the host plant genome does not immediately accept expressed transgenes as being epigenetically the same as endogenous genes. Accumulating evidences point to a discrepancy in the epigenetic behaviour of transgenes and endogenous genes. Here, via characterization of mutants impaired in histone demethylases JMJ14 and IBM1, the authors show that transgenes and endogenous genes are regulated by different epigenetic mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Nicolas Butel
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.,Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Agnès Yu
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Ivan Le Masson
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Filipe Borges
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Taline Elmayan
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Christelle Taochy
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nial R Gursanscky
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jiangling Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shengnan Bi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Bernard J Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, UMR 1318, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France.
| |
Collapse
|
50
|
Montes N, Cobos A, Gil-Valle M, Caro E, Pagán I. Arabidopsis thaliana Genes Associated with Cucumber mosaic virus Virulence and Their Link to Virus Seed Transmission. Microorganisms 2021; 9:692. [PMID: 33801693 PMCID: PMC8067046 DOI: 10.3390/microorganisms9040692] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Virulence, the effect of pathogen infection on progeny production, is a major determinant of host and pathogen fitness as it affects host fecundity and pathogen transmission. In plant-virus interactions, ample evidence indicates that virulence is genetically controlled by both partners. However, the host genetic determinants are poorly understood. Through a genome-wide association study (GWAS) of 154 Arabidopsis thaliana genotypes infected by Cucumber mosaic virus (CMV), we identified eight host genes associated with virulence, most of them involved in response to biotic stresses and in cell wall biogenesis in plant reproductive structures. Given that virulence is a main determinant of the efficiency of plant virus seed transmission, we explored the link between this trait and the genetic regulation of virulence. Our results suggest that the same functions that control virulence are also important for CMV transmission through seeds. In sum, this work provides evidence of a novel role for some previously known plant defense genes and for the cell wall metabolism in plant virus interactions.
Collapse
Affiliation(s)
- Nuria Montes
- Unidad de Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU Universities, Boadilla del Monte, 28003 Madrid, Spain;
- Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), 28006 Madrid, Spain
| | - Alberto Cobos
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Miriam Gil-Valle
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Departamento de Biotecnología-Biología Vegetal, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28045 Madrid, Spain; (A.C.); (M.G.-V.); (E.C.)
| |
Collapse
|