1
|
Peng K, Fu YX, Liang Y. Engineering cytokines for tumor-targeting and selective T cell activation. Trends Mol Med 2025:S1471-4914(25)00010-3. [PMID: 39955218 DOI: 10.1016/j.molmed.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 02/17/2025]
Abstract
Cytokines are promising therapeutic agents for cancer due to their immune-stimulating properties. However, their clinical application is limited by a narrow therapeutic window and dose-limiting on-target, off-tumor toxicity. Advances in protein engineering enable the selective delivery of cytokines to the tumor microenvironment (TME) and antigen-specific T cells, enhancing antitumor efficacy while reducing systemic side effects. This review focuses on selected cytokines and outlines their developmental trajectory for treating solid tumors. We highlight strategies for constructing cis-signaling immunocytokines and procytokines for precise delivery to tumor sites and discuss the biological mechanisms through which these cytokines reactivate antitumor immunity. We also discuss the challenges and future directions for creating more effective cytokine-based therapeutics.
Collapse
Affiliation(s)
- Kun Peng
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China; Changping Laboratory, Beijing, China
| | - Yang-Xin Fu
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China; Changping Laboratory, Beijing, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
| | - Yong Liang
- Center for Cancer Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Wu J, Bloch N, Chang AY, Bhavsar R, Wang Q, Crawford A, DiLillo DJ, Vazzana K, Mohrs K, Dudgeon D, Patel S, Ahmed H, Garg V, Amatulli M, Antao OQ, Yan Y, Wang S, Ramos W, Krueger P, Adler C, Ni M, Wei Y, Guo C, Macdonald L, Huang T, Ullman E, Hermann A, Yancopoulos GD, Murphy AJ, Davis S, Olson WC, Lin JC, Smith E, Zhang T. A PD-1-targeted, receptor-masked IL-2 immunocytokine that engages IL-2Rα strengthens T cell-mediated anti-tumor therapies. Cell Rep Med 2024; 5:101747. [PMID: 39326410 PMCID: PMC11513833 DOI: 10.1016/j.xcrm.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The clinical use of interleukin-2 (IL-2) for cancer immunotherapy is limited by severe toxicity. Emerging IL-2 therapies with reduced IL-2 receptor alpha (IL-2Rα) binding aim to mitigate toxicity and regulatory T cell (Treg) expansion but have had limited clinical success. Here, we show that IL-2Rα engagement is critical for the anti-tumor activity of systemic IL-2 therapy. A "non-α" IL-2 mutein induces systemic expansion of CD8+ T cells and natural killer (NK) cells over Tregs but exhibits limited anti-tumor efficacy. We develop a programmed cell death protein 1 (PD-1)-targeted, receptor-masked IL-2 immunocytokine, PD1-IL2Ra-IL2, which attenuates systemic IL-2 activity while maintaining the capacity to engage IL-2Rα on PD-1+ T cells. Mice treated with PD1-IL2Ra-IL2 show no systemic toxicities observed with unmasked IL-2 treatment yet achieve robust tumor growth control. Furthermore, PD1-IL2Ra-IL2 can be effectively combined with other T cell-mediated immunotherapies to enhance anti-tumor responses. These findings highlight the therapeutic potential of PD1-IL2Ra-IL2 as a targeted, receptor-masked, and "α-maintained" IL-2 therapy for cancer.
Collapse
Affiliation(s)
- Jiaxi Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Nicolin Bloch
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aaron Y Chang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Qingqing Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Hassan Ahmed
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Vidur Garg
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Olivia Q Antao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yuetian Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Shunhai Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Willy Ramos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Pamela Krueger
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Samuel Davis
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tong Zhang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
3
|
Santollani L, Maiorino L, Zhang YJ, Palmeri JR, Stinson JA, Duhamel LR, Qureshi K, Suggs JR, Porth OT, Pinney W, Msari RA, Walsh AA, Wittrup KD, Irvine DJ. Local delivery of cell surface-targeted immunocytokines programs systemic antitumor immunity. Nat Immunol 2024; 25:1820-1829. [PMID: 39112631 PMCID: PMC11436379 DOI: 10.1038/s41590-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/11/2024] [Indexed: 09/05/2024]
Abstract
Systemically administered cytokines are potent immunotherapeutics but can cause severe dose-limiting toxicities. To overcome this challenge, cytokines have been engineered for intratumoral retention after local delivery. However, despite inducing regression of treated lesions, tumor-localized cytokines often elicit only modest responses at distal untreated tumors. In the present study, we report a localized cytokine therapy that safely elicits systemic antitumor immunity by targeting the ubiquitous leukocyte receptor CD45. CD45-targeted immunocytokines have lower internalization rates relative to wild-type counterparts, leading to sustained downstream cis and trans signaling between lymphocytes. A single intratumoral dose of αCD45-interleukin (IL)-12 followed by a single dose of αCD45-IL-15 eradicated treated tumors and untreated distal lesions in multiple syngeneic mouse tumor models without toxicity. Mechanistically, CD45-targeted cytokines reprogrammed tumor-specific CD8+ T cells in the tumor-draining lymph nodes to have an antiviral transcriptional signature. CD45 anchoring represents a broad platform for protein retention by host immune cells for use in immunotherapy.
Collapse
Affiliation(s)
- Luciano Santollani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yiming J Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph R Palmeri
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordan A Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lauren R Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kashif Qureshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jack R Suggs
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Owen T Porth
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Riyam Al Msari
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Agnes A Walsh
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Feng B, Bai Z, Zhou X, Zhao Y, Xie YQ, Huang X, Liu Y, Enbar T, Li R, Wang Y, Gao M, Bonati L, Peng MW, Li W, Tao B, Charmoy M, Held W, Melenhorst JJ, Fan R, Guo Y, Tang L. The type 2 cytokine Fc-IL-4 revitalizes exhausted CD8 + T cells against cancer. Nature 2024; 634:712-720. [PMID: 39322665 PMCID: PMC11485240 DOI: 10.1038/s41586-024-07962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Current cancer immunotherapy predominately focuses on eliciting type 1 immune responses fighting cancer; however, long-term complete remission remains uncommon1,2. A pivotal question arises as to whether type 2 immunity can be orchestrated alongside type 1-centric immunotherapy to achieve enduring response against cancer3,4. Here we show that an interleukin-4 fusion protein (Fc-IL-4), a typical type 2 cytokine, directly acts on CD8+ T cells and enriches functional terminally exhausted CD8+ T (CD8+ TTE) cells in the tumour. Consequently, Fc-IL-4 enhances antitumour efficacy of type 1 immunity-centric adoptive T cell transfer or immune checkpoint blockade therapies and induces durable remission across several syngeneic and xenograft tumour models. Mechanistically, we discovered that Fc-IL-4 signals through both signal transducer and activator of transcription 6 (STAT6) and mammalian target of rapamycin (mTOR) pathways, augmenting the glycolytic metabolism and the nicotinamide adenine dinucleotide (NAD) concentration of CD8+ TTE cells in a lactate dehydrogenase A-dependent manner. The metabolic modulation mediated by Fc-IL-4 is indispensable for reinvigorating intratumoural CD8+ TTE cells. These findings underscore Fc-IL-4 as a potent type 2 cytokine-based immunotherapy that synergizes effectively with type 1 immunity to elicit long-lasting responses against cancer. Our study not only sheds light on the synergy between these two types of immune responses, but also unveils an innovative strategy for advancing next-generation cancer immunotherapy by integrating type 2 immune factors.
Collapse
Affiliation(s)
- Bing Feng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xiaolei Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland
| | - Yang Zhao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yu-Qing Xie
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xinyi Huang
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Yang Liu
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tom Enbar
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rongrong Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yi Wang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland
| | - Min Gao
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lucia Bonati
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mei-Wen Peng
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bo Tao
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mélanie Charmoy
- Department of Oncology, University of Lausanne, Epalinges, Switzerland
| | - Werner Held
- Department of Oncology, University of Lausanne, Epalinges, Switzerland
| | | | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| | - Yugang Guo
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
| |
Collapse
|
5
|
Wellhausen N, Gill S. CD45 threads the needle of cytokine cancer immunotherapy. Nat Immunol 2024; 25:1775-1777. [PMID: 39251801 DOI: 10.1038/s41590-024-01956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Affiliation(s)
- Nils Wellhausen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Center of Excellence in Hematopoietic Stem Cell Engineering, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Translational Center of Excellence in Hematopoietic Stem Cell Engineering, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Therapy and Transplantation, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Prodi E, Neri D, De Luca R. Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy. Onco Targets Ther 2024; 17:697-715. [PMID: 39224695 PMCID: PMC11368152 DOI: 10.2147/ott.s480787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.
Collapse
Affiliation(s)
- Eleonora Prodi
- Philochem AG, Otelfingen, 8112, Switzerland
- University of Trento, Italy, CiBIO (Department of Cellular, Computational and Integrative Biology), Povo, 38123, Trento
| | - Dario Neri
- Philogen Spa, Siena, 53100, Italy
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | | |
Collapse
|
7
|
Mehta NK, Rakhra K, Meetze KA, Li B, Momin N, Chang JY, Wittrup KD, Baeuerle PA, Michaelson JS. CLN-617 Retains IL2 and IL12 in Injected Tumors to Drive Robust and Systemic Immune-Mediated Antitumor Activity. Cancer Immunol Res 2024; 12:1022-1038. [PMID: 38842347 PMCID: PMC11292205 DOI: 10.1158/2326-6066.cir-23-0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/07/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Despite clinical evidence of antitumor activity, the development of cytokine therapies has been hampered by a narrow therapeutic window and limited response rates. Two cytokines of high interest for clinical development are interleukin 2 (IL2) and interleukin 12 (IL12), which potently synergize to promote the activation and proliferation of T cells and NK cells. However, the only approved human IL2 therapy, Proleukin, is rarely used in the clinic due to systemic toxicities, and no IL12 product has been approved to date due to severe dose-limiting toxicities. Here, we describe CLN-617, a first-in-class therapeutic for intratumoral (IT) injection that co-delivers IL2 and IL12 on a single molecule in a safe and effective manner. CLN-617 is a single-chain fusion protein comprised of IL2, leukocyte-associated immunoglobulin-like receptor 2 (LAIR2), human serum albumin (HSA), and IL12. LAIR2 and HSA function to retain CLN-617 in the treated tumor by binding collagen and increasing molecular weight, respectively. We found that IT administration of a murine surrogate of CLN-617, mCLN-617, eradicated established treated and untreated tumors in syngeneic models, significantly improved response to anti-PD1 checkpoint therapy, and generated a robust abscopal response dependent on cellular immunity and antigen cross-presentation. CLN-617 is being evaluated in a clinical trial in patients with advanced solid tumors (NCT06035744).
Collapse
Affiliation(s)
| | - Kavya Rakhra
- Cullinan Therapeutics, Inc., Cambridge, Massachusetts.
| | | | - Bochong Li
- Cullinan Therapeutics, Inc., Cambridge, Massachusetts.
| | - Noor Momin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Patrick A. Baeuerle
- Cullinan Therapeutics, Inc., Cambridge, Massachusetts.
- Institute for Immunology, Ludwig Maximilians University, München, Germany.
| | | |
Collapse
|
8
|
Daneels W, Van Parys A, Huyghe L, Rogge E, De Rouck S, Christiaen R, Zabeau L, Taveirne S, Van Dorpe J, Kley N, Cauwels A, Depla E, Tavernier J, Offner F. High efficacy of huCD20-targeted AcTaferon in humanized patient derived xenograft models of aggressive B cell lymphoma. Exp Hematol Oncol 2024; 13:59. [PMID: 38831452 PMCID: PMC11145843 DOI: 10.1186/s40164-024-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/13/2024] [Indexed: 06/05/2024] Open
Abstract
Type I interferon (IFN) is a potent antitumoral drug, with an important history in the treatment of hematologic malignancies. However, its pleiotropic nature leads to severe dose-limiting toxicities that blunt its therapeutic potential. To achieve selective targeting of specific immune or tumor cells, AcTakines (Activity-on-Target Cytokines), i.e., immunocytokines utilizing attenuated cytokines, and clinically optimized A-Kines™ were developed. In syngeneic murine models, the CD20-targeted murine IFNα2-based AcTaferons (AFNs) have demonstrated clear antitumoral effects, with excellent tolerability. The current study explores the antitumoral potential of the humanized huCD20-Fc-AFN in 5 different humanized patient derived xenograft (PDX) models of huCD20+ aggressive B non-Hodgkin lymphomas (B-NHLs). The huCD20-Fc-AFN consists of a huCD20-specific single-domain antibody (VHH) linked through a heterodimeric 'knob-in-hole' human IgG1 Fc molecule to an attenuated huIFNα2 sequence. An in vitro targeting efficacy of up to 1.000-fold could be obtained, without detectable in vivo toxicities, except for selective (on-target) and reversible B cell depletion. Treatment with huCD20-Fc-AFN significantly increased the median overall survival (mOS) in both non-humanized (mOS 31 to 45 days; HR = 0.26; p = 0.001), and humanized NSG/NOG mice (mOS 34 to 80 days; HR = 0.37; p < 0.0001). In humanized mice, there was a trend for increased survival when compared to equimolar rituximab (mOS 49 to 80 days; HR = 0.73; p = 0.09). The antitumoral effects of huCD20-Fc-AFN were partly due to direct effects of type I IFN on the tumor cells, but additional effects via the human immune system are essential to obtain long-term remissions. To conclude, huCD20-Fc-AFN could provide a novel therapeutic strategy for huCD20-expressing aggressive B-NHLs.
Collapse
Affiliation(s)
- Willem Daneels
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
- Department of Hematology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium.
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
| | - Alexander Van Parys
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Leander Huyghe
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Elke Rogge
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Steffi De Rouck
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | | | | | | | - Jo Van Dorpe
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Niko Kley
- Orionis Biosciences BV, Ghent, Belgium
| | - Anje Cauwels
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | | | - Jan Tavernier
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Fritz Offner
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Ren Z, Zhang X, Fu YX. Facts and Hopes on Chimeric Cytokine Agents for Cancer Immunotherapy. Clin Cancer Res 2024; 30:2025-2038. [PMID: 38190116 DOI: 10.1158/1078-0432.ccr-23-1160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/17/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Cytokines are key mediators of immune responses that can modulate the antitumor activity of immune cells. Cytokines have been explored as a promising cancer immunotherapy. However, there are several challenges to cytokine therapy, especially a lack of tumor targeting, resulting in high toxicity and limited efficacy. To overcome these limitations, novel approaches have been developed to engineer cytokines with improved properties, such as chimeric cytokines. Chimeric cytokines are fusion proteins that combine different cytokine domains or link cytokines to antibodies (immunocytokines) or other molecules that can target specific receptors or cells. Chimeric cytokines can enhance the selectivity and stability of cytokines, leading to reduced toxicity and improved efficacy. In this review, we focus on two promising cytokines, IL2 and IL15, and summarize the current advances and challenges of chimeric cytokine design and application for cancer immunotherapy. Most of the current approaches focus on increasing the potency of cytokines, but another important goal is to reduce toxicity. Cytokine engineering is promising for cancer immunotherapy as it can enhance tumor targeting while minimizing adverse effects.
Collapse
Affiliation(s)
| | - Xuhao Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yang-Xin Fu
- Changping Laboratory, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Hashimoto M, Ramalingam SS, Ahmed R. Harnessing CD8 T cell responses using PD-1-IL-2 combination therapy. Trends Cancer 2024; 10:332-346. [PMID: 38129234 PMCID: PMC11006586 DOI: 10.1016/j.trecan.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
There is considerable interest in developing more effective programmed cell death (PD)-1 combination therapies against cancer. One major obstacle to these efforts is a dysfunctional/exhausted state of CD8 T cells, which PD-1 monotherapy is not able to overcome. Recent studies have highlighted that PD-1+ T cell factor (TCF)-1+ stem-like CD8 T cells are not fate locked into the exhaustion program and their differentiation trajectory can be changed by interleukin (IL)-2 signals. Modifying the CD8 T cell exhaustion program and generating better effectors from stem-like CD8 T cells by IL-2 form the fundamental immunological basis for combining IL-2 with PD-1 therapy. Many versions of IL-2-based products are being tested and each product should be carefully evaluated for its ability to modulate dysfunctional states of anti-tumor CD8 T cells.
Collapse
Affiliation(s)
- Masao Hashimoto
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Suresh S Ramalingam
- Winship Cancer Institute of Emory University, Atlanta, GA, USA; Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
11
|
Cook KD, Tran T, Thomas VA, Devanaboyina SC, Rock DA, Pearson JT. Correlation of In Vitro Kinetic Stability to Preclinical In Vivo Pharmacokinetics for a Panel of Anti-PD-1 Monoclonal Antibody Interleukin 21 Mutein Immunocytokines. Drug Metab Dispos 2024; 52:228-235. [PMID: 38135505 DOI: 10.1124/dmd.123.001555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
The development of therapeutic fusion protein drugs is often impeded by the unintended consequences that occur from fusing together domains from independent naturally occurring proteins, consequences such as altered biodistribution, tissue uptake, or rapid clearance and potential immunogenicity. For therapeutic fusion proteins containing globular domains, we hypothesized that aberrant in vivo behavior could be related to low kinetic stability of these domains leading to local unfolding and susceptibility to partial proteolysis and/or salvage and uptake. Herein we describe an assay to measure kinetic stability of therapeutic fusion proteins by way of their sensitivity to the protease thermolysin. The results indicate that in vivo pharmacokinetics of a panel of anti-programmed cell death protein 1 monocolonal antibody:interleukin 21 immunocytokines in both mice and nonhuman primates are highly correlated with their in vitro susceptibility to thermolysin-mediated proteolysis. This assay can be used as a tool to quickly identify in vivo liabilities of globular domains of therapeutic proteins, thus aiding in the optimization and development of new multispecific drug candidates. SIGNIFICANCE STATEMENT: This work describes a novel assay utilizing protein kinetic stability to identify preclinical in vivo pharmacokinetic liabilities of multispecific therapeutic fusion proteins. This provides an efficient, inexpensive method to ascertain inherent protein stability in vitro before conducting in vivo studies, which can rapidly increase the speed of preclinical drug development.
Collapse
Affiliation(s)
- Kevin D Cook
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Thuy Tran
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Veena A Thomas
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | | | - Dan A Rock
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| | - Josh T Pearson
- Amgen Research, Pharmacokinetics & Drug Metabolism, South San Francisco, California
| |
Collapse
|
12
|
Santollani L, Zhang YJ, Maiorino L, Palmeri JR, Stinson JA, Duhamel LR, Qureshi K, Suggs JR, Porth OT, Pinney W, Msari RA, Wittrup KD, Irvine DJ. Local delivery of cell surface-targeted immunocytokines programs systemic anti-tumor immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.573641. [PMID: 38260254 PMCID: PMC10802272 DOI: 10.1101/2024.01.03.573641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Cytokine therapies are potent immunotherapy agents but exhibit severe dose-limiting toxicities. One strategy to overcome this involves engineering cytokines for intratumoral retention following local delivery. Here, we develop a localized cytokine therapy that elicits profound anti-tumor immunity by engineered targeting to the ubiquitous leukocyte receptor CD45. We designed CD45-targeted immunocytokines (αCD45-Cyt) that, upon injection, decorated the surface of leukocytes in the tumor and tumor-draining lymph node (TDLN) without systemic exposure. αCD45-Cyt therapy eradicated both directly treated tumors and untreated distal lesions in multiple syngeneic mouse tumor models. Mechanistically, αCD45-Cyt triggered prolonged pSTAT signaling and reprogrammed tumor-specific CD8+ T cells in the TDLN to exhibit an anti-viral transcriptional signature. CD45 anchoring represents a broad platform for protein retention by host immune cells for use in immunotherapy.
Collapse
Affiliation(s)
- Luciano Santollani
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
| | - Yiming J. Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Laura Maiorino
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
| | - Joseph R. Palmeri
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
| | - Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Lauren R. Duhamel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Kashif Qureshi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
| | - Jack R. Suggs
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
| | - Owen T. Porth
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - William Pinney
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Riyam Al Msari
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - K. Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge; MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA
- Howard Hughes Medical Institute; Chevy Chase, MD, USA
- Department of Materials Science and Engineering; Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
Momin N. Balancing safety and efficacy: tuning the biodistribution and pharmacokinetics of cytokine immunotherapies. Curr Opin Biotechnol 2023; 84:102994. [PMID: 37806081 DOI: 10.1016/j.copbio.2023.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/12/2023] [Accepted: 08/27/2023] [Indexed: 10/10/2023]
Abstract
Modulating the immune system shows promise in treating various conditions such as autoimmune, malignant, inflammatory, and infectious diseases. While immunotherapies can provide significant clinical benefits, they can also trigger debilitating immune-related toxicities. Achieving a balance between safety and efficacy of immunotherapy remains a significant engineering challenge. A complex immune response can be simplified into a sequence of coordinated signals with precise spatial and temporal arrangements. Mimicking or inhibiting these signals with protein immunotherapies relies on engineering them with specific biodistribution and pharmacokinetic properties. This review summarizes principles governing the movement of therapeutic proteins (i.e. biologics), focusing on cytokine immunotherapies injected intravenously or locally, and highlights approaches and considerations to balance their efficacy and safety.
Collapse
Affiliation(s)
- Noor Momin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Santollani L, Wittrup KD. Spatiotemporally programming cytokine immunotherapies through protein engineering. Immunol Rev 2023; 320:10-28. [PMID: 37409481 DOI: 10.1111/imr.13234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Cytokines have long been considered promising cancer immunotherapy agents due to their endogenous role in activating and proliferating lymphocytes. However, since the initial FDA approvals of Interleukin-2 (IL-2) and Interferon-ɑ (IFNɑ) for oncology over 30 years ago, cytokines have achieved little success in the clinic due to narrow therapeutic windows and dose-limiting toxicities. This is attributable to the discrepancy between the localized, regulated manner in which cytokines are deployed endogenously versus the systemic, untargeted administration used to date in most exogenous cytokine therapies. Furthermore, cytokines' ability to stimulate multiple cell types, often with paradoxical effects, may present significant challenges for their translation into effective therapies. Recently, protein engineering has emerged as a tool to address the shortcomings of first-generation cytokine therapies. In this perspective, we contextualize cytokine engineering strategies such as partial agonism, conditional activation and intratumoral retention through the lens of spatiotemporal regulation. By controlling the time, place, specificity, and duration of cytokine signaling, protein engineering can allow exogenous cytokine therapies to more closely approach their endogenous exposure profile, ultimately moving us closer to unlocking their full therapeutic potential.
Collapse
Affiliation(s)
- Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Mortensen M, Bertolini M, Mock J, Scheuermann J, Oehler S. Site-Specific Chemical Modification of a Cytokine Mimic for Small Molecule-Based Tumor Targeting. Bioconjug Chem 2023; 34:1374-1379. [PMID: 37462264 DOI: 10.1021/acs.bioconjchem.3c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The targeted delivery of bioactive proteins, such as cytokines, for cancer immunotherapy approaches mostly relies on antibodies or antibody fragments. However, fusion proteins may display low tissue penetration due to a large molecular size. Small molecule ligands with high affinity toward tumor-associated antigens provide a promising alternative for the selective delivery of cytokines to tumor lesions. We developed a one-pot procedure for the site-specific thiazolidine formation between an aldehyde bearing small molecule and the in situ generated N-terminal cysteine of a bioactive protein. Thereby, neoleukin-2/15 (Neo-2/15), a computationally engineered interleukin-2 and -15 mimic, was chemically conjugated to acetazolamide plus, a potent carbonic anhydrase IX (CAIX) ligand. The conjugate retained the biological activity of Neo-2/15 and revealed its ability to accumulate in renal cell carcinoma (SK-RC-52) xenografts upon systemic intravenous administration. The results highlight the potential of small molecule targeting moieties to drive the accumulation of a protein cargo to the respective disease site while conserving the small construct size.
Collapse
Affiliation(s)
- Michael Mortensen
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8112 Zürich, Switzerland
| | - Marco Bertolini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8112 Zürich, Switzerland
| | - Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8112 Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8112 Zürich, Switzerland
| | - Sebastian Oehler
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8112 Zürich, Switzerland
| |
Collapse
|
16
|
Larrosa C, Mora J, Cheung NK. Global Impact of Monoclonal Antibodies (mAbs) in Children: A Focus on Anti-GD2. Cancers (Basel) 2023; 15:3729. [PMID: 37509390 PMCID: PMC10378537 DOI: 10.3390/cancers15143729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Monoclonal antibodies (mAbs), as the name implies, are clonal antibodies that bind to the same antigen. mAbs are broadly used as diagnostic or therapeutic tools for neoplasms, autoimmune diseases, allergic conditions, and infections. Although most mAbs are approved for treating adult cancers, few are applicable to childhood malignancies, limited mostly to hematological cancers. As for solid tumors, only anti-disialoganglioside (GD2) mAbs are approved specifically for neuroblastoma. Inequities of drug access have continued, affecting most therapeutic mAbs globally. To understand these challenges, a deeper dive into the complex transition from basic research to the clinic, or between marketing and regulatory agencies, is timely. This review focuses on current mAbs approved or under investigation in pediatric cancer, with special attention on solid tumors and anti-GD2 mAbs, and the hurdles that limit their broad global access. Beyond understanding the mechanisms of drug resistance, the continual discovery of next generation drugs safer for children and easier to administer, the discovery of predictive biomarkers to avoid futility should ease the acceptance by patient, health care professionals and regulatory agencies, in order to expand clinical utility. With a better integration into the multimodal treatment for each disease, protocols that align with the regional clinical practice should also improve acceptance and cost-effectiveness. Communication and collaboration between academic institutions, pharmaceutical companies, and regulatory agencies should help to ensure accessible, affordable, and sustainable health care for all.
Collapse
Affiliation(s)
- Cristina Larrosa
- Pediatric Cancer Center Barcelona, 08950 Barcelona, Spain; (C.L.); (J.M.)
| | - Jaume Mora
- Pediatric Cancer Center Barcelona, 08950 Barcelona, Spain; (C.L.); (J.M.)
| | - Nai-Kong Cheung
- Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
17
|
Stinson JA, Sheen A, Momin N, Hampel J, Bernstein R, Kamerer R, Fadl-Alla B, Samuelson J, Fink E, Fan TM, Wittrup KD. Collagen-Anchored Interleukin-2 and Interleukin-12 Safely Reprogram the Tumor Microenvironment in Canine Soft-Tissue Sarcomas. Clin Cancer Res 2023; 29:2110-2122. [PMID: 37014656 PMCID: PMC10239368 DOI: 10.1158/1078-0432.ccr-23-0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE Cytokine therapies such as IL2 and IL12 suffer from impractically small therapeutic windows driven by their on-target, off-tumor activity, limiting their clinical potential despite potent antitumor effects. We previously engineered cytokines that bind and anchor to tumor collagen following intratumoral injection, and sought to test their safety and biomarker activity in spontaneous canine soft-tissue sarcomas (STS). EXPERIMENTAL DESIGN Collagen-binding cytokines were canine-ized to minimize immunogenicity and were used in a rapid dose-escalation study in healthy beagles to identify a maximum tolerated dose. Ten client-owned pet dogs with STS were then enrolled into trial, receiving cytokines at different intervals prior to surgical tumor excision. Tumor tissue was analyzed through IHC and NanoString RNA profiling for dynamic changes within treated tumors. Archived, untreated STS samples were analyzed in parallel as controls. RESULTS Intratumorally administered collagen-binding IL2 and IL12 were well tolerated by STS-bearing dogs, with only Grade 1/2 adverse events observed (mild fever, thrombocytopenia, neutropenia). IHC revealed enhanced T-cell infiltrates, corroborated by an enhancement in gene expression associated with cytotoxic immune function. We found concordant increases in expression of counter-regulatory genes that we hypothesize would contribute to a transient antitumor effect, and confirmed in mouse models that combination therapy to inhibit this counter-regulation can improve responses to cytokine therapy. CONCLUSIONS These results support the safety and activity of intratumorally delivered, collagen-anchoring cytokines for inflammatory polarization of the canine STS tumor microenvironment. We are further evaluating the efficacy of this approach in additional canine cancers, including oral malignant melanoma.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Bernstein
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bahaa Fadl-Alla
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan Samuelson
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, Urbana, IL, USA
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Quijano-Rubio A, Bhuiyan AM, Yang H, Leung I, Bello E, Ali LR, Zhangxu K, Perkins J, Chun JH, Wang W, Lajoie MJ, Ravichandran R, Kuo YH, Dougan SK, Riddell SR, Spangler JB, Dougan M, Silva DA, Baker D. A split, conditionally active mimetic of IL-2 reduces the toxicity of systemic cytokine therapy. Nat Biotechnol 2023; 41:532-540. [PMID: 36316485 PMCID: PMC10110466 DOI: 10.1038/s41587-022-01510-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
The therapeutic potential of recombinant cytokines has been limited by the severe side effects of systemic administration. We describe a strategy to reduce the dose-limiting toxicities of monomeric cytokines by designing two components that require colocalization for activity and that can be independently targeted to restrict activity to cells expressing two surface markers. We demonstrate the approach with a previously designed mimetic of cytokines interleukin-2 and interleukin-15-Neoleukin-2/15 (Neo-2/15)-both for trans-activating immune cells surrounding targeted tumor cells and for cis-activating directly targeted immune cells. In trans-activation mode, tumor antigen targeting of the two components enhanced antitumor activity and attenuated toxicity compared with systemic treatment in syngeneic mouse melanoma models. In cis-activation mode, immune cell targeting of the two components selectively expanded CD8+ T cells in a syngeneic mouse melanoma model and promoted chimeric antigen receptor T cell activation in a lymphoma xenograft model, enhancing antitumor efficacy in both cases.
Collapse
Affiliation(s)
- Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Monod Bio, Inc., Seattle, WA, USA
| | - Aladdin M Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Isabel Leung
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Zhangxu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jilliane Perkins
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jung-Ho Chun
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wentao Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Marc J Lajoie
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Outpace Bio, Seattle, WA, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Stanley R Riddell
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Michael Dougan
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel-Adriano Silva
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Monod Bio, Inc., Seattle, WA, USA.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
19
|
Yousefpour P, Ni K, Irvine DJ. Targeted modulation of immune cells and tissues using engineered biomaterials. NATURE REVIEWS BIOENGINEERING 2023; 1:107-124. [PMID: 37772035 PMCID: PMC10538251 DOI: 10.1038/s44222-022-00016-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 09/30/2023]
Abstract
Therapies modulating the immune system offer the prospect of treating a wide range of conditions including infectious diseases, cancer and autoimmunity. Biomaterials can promote specific targeting of immune cell subsets in peripheral or lymphoid tissues and modulate the dosage, timing and location of stimulation, thereby improving safety and efficacy of vaccines and immunotherapies. Here we review recent advances in biomaterials-based strategies, focusing on targeting of lymphoid tissues, circulating leukocytes, tissue-resident immune cells and immune cells at disease sites. These approaches can improve the potency and efficacy of immunotherapies by promoting immunity or tolerance against different diseases.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
20
|
Rybchenko VS, Aliev TK, Panina AA, Kirpichnikov MP, Dolgikh DA. Targeted Cytokine Delivery for Cancer Treatment: Engineering and Biological Effects. Pharmaceutics 2023; 15:pharmaceutics15020336. [PMID: 36839658 PMCID: PMC9960319 DOI: 10.3390/pharmaceutics15020336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Anti-tumor properties of several cytokines have already been investigated in multiple experiments and clinical trials. However, those studies evidenced substantial toxicities, even at low cytokine doses, and the lack of tumor specificity. These factors significantly limit clinical applications. Due to their high specificity and affinity, tumor-specific monoclonal antibodies or their antigen-binding fragments are capable of delivering fused cytokines to tumors and, therefore, of decreasing the number and severity of side effects, as well as of enhancing the therapeutic index. The present review surveys the actual antibody-cytokine fusion protein (immunocytokine) formats, their targets, mechanisms of action, and anti-tumor and other biological effects. Special attention is paid to the formats designed to prevent the off-target cytokine-receptor interactions, potentially inducing side effects. Here, we describe preclinical and clinical data and the efficacy of the antibody-mediated cytokine delivery approach, either as a single therapy or in combination with other agents.
Collapse
Affiliation(s)
- Vladislav S Rybchenko
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Teimur K Aliev
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anna A Panina
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry A Dolgikh
- Bioengineering Department, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
21
|
Way JC, Burrill DR, Silver PA. Bioinspired Design of Artificial Signaling Systems. Biochemistry 2023; 62:178-186. [PMID: 35984429 PMCID: PMC9851155 DOI: 10.1021/acs.biochem.2c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/09/2022] [Indexed: 02/02/2023]
Abstract
Natural systems use weak interactions and avidity effects to give biological systems high specificity and signal-to-noise ratios. Here we describe design principles for engineering fusion proteins that target therapeutic fusion proteins to membrane-bound signaling receptors by first binding to designer-chosen co-receptors on the same cell surface. The key design elements are separate protein modules, one that has no signaling activity and binds to a cell surface receptor with high affinity and a second that binds to a receptor with low or moderate affinity and carries out a desired signaling or inhibitory activity. These principles are inspired by natural cytokines such as CNTF, IL-2, and IL-4 that bind strongly to nonsignaling receptors and then signal through low-affinity receptors. Such designs take advantage of the fact that when a protein is anchored to a cell membrane, its local concentration is extremely high with respect to those of other membrane proteins, so a second-step, low-affinity binding event is favored. Protein engineers have used these principles to design treatments for cancer, anemia, hypoxia, and HIV infection.
Collapse
Affiliation(s)
- Jeffrey C. Way
- General
Biologics, Inc., 108
Fayerweather Street, Unit 2, Cambridge, Massachusetts 02138, United States
| | - Devin R. Burrill
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Pamela A. Silver
- Department
of Systems Biology, Harvard Medical School, 210 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
22
|
Deckers J, Anbergen T, Hokke AM, de Dreu A, Schrijver DP, de Bruin K, Toner YC, Beldman TJ, Spangler JB, de Greef TFA, Grisoni F, van der Meel R, Joosten LAB, Merkx M, Netea MG, Mulder WJM. Engineering cytokine therapeutics. NATURE REVIEWS BIOENGINEERING 2023; 1:286-303. [PMID: 37064653 PMCID: PMC9933837 DOI: 10.1038/s44222-023-00030-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering. In this Review, we discuss how the development of bioanalytical methods, such as sequencing and high-resolution imaging combined with genetic techniques, have facilitated a better understanding of cytokine biology. We then present an overview of therapeutics arising from cytokine re-engineering, targeting and delivery, mRNA therapeutics and cell therapy. We also highlight the application of these strategies to adjust the immunological imbalance in different immune-mediated disorders, including cancer, infection and autoimmune diseases. Finally, we look ahead to the hurdles that must be overcome before cytokine therapeutics can live up to their full potential.
Collapse
Affiliation(s)
- Jeroen Deckers
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tom Anbergen
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ayla M. Hokke
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - David P. Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Koen de Bruin
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Yohana C. Toner
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, Netherlands
| | - Francesca Grisoni
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Willem J. M. Mulder
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
23
|
Tursi NJ, Xu Z, Helble M, Walker S, Liaw K, Chokkalingam N, Kannan T, Wu Y, Tello-Ruiz E, Park DH, Zhu X, Wise MC, Smith TRF, Majumdar S, Kossenkov A, Kulp DW, Weiner DB. Engineered antibody cytokine chimera synergizes with DNA-launched nanoparticle vaccines to potentiate melanoma suppression in vivo. Front Immunol 2023; 14:1072810. [PMID: 36911698 PMCID: PMC9997082 DOI: 10.3389/fimmu.2023.1072810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Cancer immunotherapy has demonstrated great promise with several checkpoint inhibitors being approved as the first-line therapy for some types of cancer, and new engineered cytokines such as Neo2/15 now being evaluated in many studies. In this work, we designed antibody-cytokine chimera (ACC) scaffolding cytokine mimetics on a full-length tumor-specific antibody. We characterized the pharmacokinetic (PK) and pharmacodynamic (PD) properties of first-generation ACC TA99-Neo2/15, which synergized with DLnano-vaccines to suppress in vivo melanoma proliferation and induced significant systemic cytokine activation. A novel second-generation ACC TA99-HL2-KOA1, with retained IL-2Rβ/γ binding and attenuated but preserved IL-2Rα binding, induced lower systemic cytokine activation with non-inferior protection in murine tumor studies. Transcriptomic analyses demonstrated an upregulation of Type I interferon responsive genes, particularly ISG15, in dendritic cells, macrophages and monocytes following TA99-HL2-KOA1 treatment. Characterization of additional ACCs in combination with cancer vaccines will likely be an important area of research for treating melanoma and other types of cancer.
Collapse
Affiliation(s)
- Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michaela Helble
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Susanne Walker
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kevin Liaw
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Toshitha Kannan
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Yuanhan Wu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Edgar Tello-Ruiz
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Daniel H Park
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Xizhou Zhu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Megan C Wise
- Inovio Pharmaceuticals, Bluebell, PA, United States
| | | | - Sonali Majumdar
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Andrew Kossenkov
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
24
|
Lutz EA, Jailkhani N, Momin N, Huang Y, Sheen A, Kang BH, Wittrup KD, Hynes RO. Intratumoral nanobody-IL-2 fusions that bind the tumor extracellular matrix suppress solid tumor growth in mice. PNAS NEXUS 2022; 1:pgac244. [PMID: 36712341 PMCID: PMC9802395 DOI: 10.1093/pnasnexus/pgac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Confining cytokine exposure to the tumors would greatly enhance cancer immunotherapy safety and efficacy. Immunocytokines, cytokines fused to tumor-targeting antibodies, have been developed with this intention, but without significant clinical success to date. A critical limitation is uptake by receptor-expressing cells in the blood, that decreases the dose at the tumor and engenders toxicity. Small-format immunocytokines, constructed with antibody fragments, are hypothesized to improve tumor specificity due to rapid systemic clearance. However, effective design criteria for small-format immunocytokines need further examination. Here, we engineer small interleukin-2 (IL-2) immunocytokines fused to nanobodies with nanomolar to picomolar affinities for the tumor-specific EIIIB domain of fibronectin (also known as EDB). Upon intravenous delivery into immunocompetent mice, such immunocytokines led to similar tumor growth delay as size-matched untargeted IL-2. Intratumoral (i.t.) delivery imparted improved survival dependent on affinity to EIIIB. I.t. administration offers a promising avenue to deliver small-format immunocytokines, given effective affinity for the tumor microenvironment.
Collapse
Affiliation(s)
| | | | | | - Ying Huang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Byong H Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
25
|
Jung K, Yoo S, Kim JE, Kim W, Kim YS. Improved intratumoral penetration of IL12 immunocytokine enhances the antitumor efficacy. Front Immunol 2022; 13:1034774. [PMID: 36405748 PMCID: PMC9667294 DOI: 10.3389/fimmu.2022.1034774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 02/16/2024] Open
Abstract
Tumor-targeting antibody (Ab)-fused cytokines, referred to as immunocytokines, are designed to increase antitumor efficacy and reduce toxicity through the tumor-directed delivery of cytokines. However, the poor localization and intratumoral penetration of immunocytokines, especially in solid tumors, pose a challenge to effectively stimulate antitumor immune cells to kill tumor cells within the tumor microenvironment. Here, we investigated the influence of the tumor antigen-binding kinetics of a murine interleukin 12 (mIL12)-based immunocytokine on tumor localization and diffusive intratumoral penetration, and hence the consequent antitumor activity, by activating effector T cells in immunocompetent mice bearing syngeneic colon tumors. Based on tumor-associated antigen HER2-specific Ab Herceptin (HCT)-fused mIL12 carrying one molecule of mIL12 (HCT-mono-mIL12 immunocytokine), we generated a panel of HCT-mono-mIL12 variants with different affinities (K D) mainly varying in their dissociation rates (k off) for HER2. Systemic administration of HCT-mono-mIL12 required an anti-HER2 affinity above a threshold (K D = 130 nM) for selective localization and antitumor activity to HER2-expressing tumors versus HER2-negative tumors. However, the high affinity (K D = 0.54 or 46 nM) due to the slow k off from HER2 antigen limited the depth of intratumoral penetration of HCT-mono-mIL12 and the consequent tumor infiltration of T cells, resulting in inferior antitumor activity compared with that of HCT-mono-mIL12 with moderate affinity of (K D = 130 nM) and a faster k off. The extent of intratumoral penetration of HCT-mono-mIL12 variants was strongly correlated with their tumor infiltration and intratumoral activation of CD4+ and CD8+ T cells to kill tumor cells. Collectively, our results demonstrate that when developing antitumor immunocytokines, tumor antigen-binding kinetics and affinity of the Ab moiety should be optimized to achieve maximal antitumor efficacy.
Collapse
Affiliation(s)
- Keunok Jung
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Sojung Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jung-Eun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Yong-Sung Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
26
|
Alum-anchored intratumoral retention improves the tolerability and antitumor efficacy of type I interferon therapies. Proc Natl Acad Sci U S A 2022; 119:e2205983119. [PMID: 36037341 PMCID: PMC9457244 DOI: 10.1073/pnas.2205983119] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effective antitumor immunity in mice requires activation of the type I interferon (IFN) response pathway. IFNα and IFNβ therapies have proven promising in humans, but suffer from limited efficacy and high toxicity. Intratumoral IFN retention ameliorates systemic toxicity, but given the complexity of IFN signaling, it was unclear whether long-term intratumoral retention of type I IFNs would promote or inhibit antitumor responses. To this end, we compared the efficacy of IFNα and IFNβ that exhibit either brief or sustained retention after intratumoral injection in syngeneic mouse tumor models. Significant enhancement in tumor retention, mediated by anchoring these IFNs to coinjected aluminum-hydroxide (alum) particles, greatly improved both their tolerability and efficacy. The improved efficacy of alum-anchored IFNs could be attributed to sustained pleiotropic effects on tumor cells, immune cells, and nonhematopoietic cells. Alum-anchored IFNs achieved high cure rates of B16F10 tumors upon combination with either anti-PD-1 antibody or interleukin-2. Interestingly however, these alternative combination immunotherapies yielded disparate T cell phenotypes and differential resistance to tumor rechallenge, highlighting important distinctions in adaptive memory formation for combinations of type I IFNs with other immunotherapies.
Collapse
|
27
|
Viitanen R, Virtanen H, Liljenbäck H, Moisio O, Li XG, Nicolini V, Richard M, Klein C, Nayak T, Jalkanen S, Roivainen A. [68Ga]Ga-DOTA-Siglec-9 Detects Pharmacodynamic Changes of FAP-Targeted IL2 Variant Immunotherapy in B16-FAP Melanoma Mice. Front Immunol 2022; 13:901693. [PMID: 35874707 PMCID: PMC9298541 DOI: 10.3389/fimmu.2022.901693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible adhesion molecule, which supports contact between leukocytes and inflamed endothelium. There is evidence that VAP-1 is involved in the recruitment of leukocytes to melanoma tumors. Interleukin-2 (IL-2)-based immunotherapy is an efficient therapy that promotes immune system activity against cancers but is associated with toxicity. In the present study, we evaluated the feasibility of PET/CT imaging using the radiotracer [68Ga]Ga-DOTA-Siglec-9, which is targeted to VAP-1, to monitor pharmacodynamic effects of a novel FAP-IL2v immunocytokine (a genetically engineered variant of IL-2 fused with fibroblast activation protein) in the B16-FAP melanoma model. At 9 days after the inoculation of B16-FAP melanoma cells, mice were studied with [68Ga]Ga-DOTA-Siglec-9 PET/CT as a baseline measurement. Immediately after baseline imaging, mice were treated with FAP-IL2v or vehicle, and treatment was repeated 3 days later. Subsequent PET/CT imaging was performed 3, 5, and 7 days after baseline imaging. In addition to in vivo PET imaging, ex vivo autoradiography, histology, and immunofluorescence staining were performed on excised tumors. B16-FAP tumors were clearly detected with [68Ga]Ga-DOTA-Siglec-9 PET/CT during the follow-up period, without differences in tumor volume between FAP-IL2v-treated and vehicle-treated groups. Tumor-to-muscle uptake of [68Ga]Ga-DOTA-Siglec-9 was significantly higher in the FAP-IL2v-treated group than in the vehicle-treated group 7 days after baseline imaging, and this was confirmed by tumor autoradiography analysis. FAP-IL2v treatment did not affect VAP-1 expression on the tumor vasculature. However, FAP-IL2v treatment increased the number of CD8+ T cells and natural killer cells in tumors. The present study showed that [68Ga]Ga-DOTA-Siglec-9 can detect B16-FAP tumors and allows monitoring of FAP-IL2v treatment.
Collapse
Affiliation(s)
| | | | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Olli Moisio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Department of Chemistry, University of Turku, Turku, Finland
| | - Valeria Nicolini
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marine Richard
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Tapan Nayak
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Sirpa Jalkanen
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- *Correspondence: Anne Roivainen,
| |
Collapse
|
28
|
Ball K, Bruin G, Escandón E, Funk C, Pereira JNS, Yang TY, Yu H. Characterizing the Pharmacokinetics and Biodistribution of Therapeutic Proteins: An Industry White Paper. Drug Metab Dispos 2022; 50:858-866. [PMID: 35149542 DOI: 10.1124/dmd.121.000463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022] Open
Abstract
Characterization of the pharmacokinetics and biodistribution of therapeutic proteins (TPs) is a hot topic within the pharmaceutical industry, particularly with an ever-increasing catalog of novel modality TPs. Here, we review the current practices, and provide a summary of extensive cross-company discussions as well as a survey completed by International Consortium for Innovation and Quality members on this theme. A wide variety of in vitro, in vivo and in silico techniques are currently used to assess pharmacokinetics and biodistribution of TPs, and we discuss the relevance of these from an industry perspective, focusing on pharmacokinetic/pharmacodynamic understanding at the preclinical stage of development, and translation to human. We consider that the 'traditional in vivo biodistribution study' is becoming insufficient as a standalone tool, and thorough characterization of the interaction of the TP with its target(s), target biology, and off-target interactions at a microscopic scale are key to understand the overall biodistribution on a full-body scale. Our summary of the current challenges and our recommendations to address these issues could provide insight into the implementation of best practices in this area of drug development, and continued cross-company collaboration will be of tremendous value. SIGNIFICANCE STATEMENT: The Innovation and Quality Consortium Translational and ADME Sciences Leadership Group working group for the absorption, distribution, metabolism, and excretion of therapeutic proteins evaluates the current practices and challenges in characterizing the pharmacokinetics and biodistribution of therapeutic proteins during drug development, and proposes recommendations to address these issues. Incorporating the in vitro, in vivo and in silico approaches discussed herein may provide a pragmatic framework to increase early understanding of pharmacokinetic/pharmacodynamic relationships, and aid translational modeling for first-in-human dose predictions.
Collapse
Affiliation(s)
- Kathryn Ball
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Gerard Bruin
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Enrique Escandón
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Christoph Funk
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Joao N S Pereira
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Tong-Yuan Yang
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| | - Hongbin Yu
- Clinical Pharmacology & Quantitative Pharmacology, CPSS, R&D, AstraZeneca, Cambridge, United Kingdom (K.B.); Pharmacokinetic Sciences, Novartis Institutes for Biomedical Research, Basel, Switzerland (G.B.); PPDM ADME Biologics, Merck & Co., Inc., South San Francisco, California (E.E.); Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland (C.F.); Discovery & Development Technologies, Drug Disposition & Design, Merck Healthcare KGaA, Darmstadt, Germany (J.N.S.P.); Janssen BioTherapeutics, Janssen R&D, LLC, Spring House, Pennsylvania (T.-Y.Y.); and Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (H.Y.)
| |
Collapse
|
29
|
Wittrup KD, Kaufman HL, Schmidt MM, Irvine DJ. Intratumorally anchored cytokine therapy. Expert Opin Drug Deliv 2022; 19:725-732. [PMID: 35638290 PMCID: PMC9262866 DOI: 10.1080/17425247.2022.2084070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION On-target, off-tumor toxicity severely limits systemic dosing of cytokines and agonist antibodies for cancer. Intratumoral administration is increasingly being explored to mitigate this problem. Full exploitation of this mode of administration must include a mechanism for sustained retention of the drug; otherwise, rapid diffusion out of the tumor eliminates any advantage. AREAS COVERED We focus here on strategies for anchoring immune agonists in accessible formats. Such anchoring may utilize extracellular matrix components, cell surface receptor targets, or exogenously administered particulate materials. Promising alternative strategies not reviewed here include slow release from the interior of a material depot, expression following local transfection, and conditional proteolytic activation of masked molecules. EXPERT OPINION An effective mechanism for tissue retention is a critical component of intratumorally anchored cytokine therapy, as leakage leads to decreased tumor drug exposure and increased systemic toxicity. Matching variable drug release kinetics with receptor-mediated cellular uptake is an intrinsic requirement for the alternative strategies mentioned above. Bioavailability of an anchored form of the administered drug is key to obviating this balancing act.
Collapse
Affiliation(s)
- K. Dane Wittrup
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | | | | | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Howard Hughes Medical Institute, MD, USA
| |
Collapse
|
30
|
Di Trani CA, Cirella A, Arrizabalaga L, Fernandez-Sendin M, Bella A, Aranda F, Melero I, Berraondo P. Overcoming the limitations of cytokines to improve cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:107-141. [PMID: 35777862 DOI: 10.1016/bs.ircmb.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytokines are pleiotropic soluble proteins used by immune cells to orchestrate a coordinated response against pathogens and malignancies. In cancer immunotherapy, cytokine-based drugs can be developed potentiating pro-inflammatory cytokines or blocking immunosuppressive cytokines. However, the complexity of the mechanisms of action of cytokines requires the use of biotechnological strategies to minimize systemic toxicity, while potentiating the antitumor response. Sequence mutagenesis, fusion proteins and gene therapy strategies are employed to enhance the half-life in circulation, target the desired bioactivity to the tumor microenvironment, and to optimize the therapeutic window of cytokines. In this review, we provide an overview of the different strategies currently being pursued in pre-clinical and clinical studies to make the most of cytokines for cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
31
|
Abstract
Recombinant human IL-2 (rhIL-2) is now rarely used to treat patients with cancer because it too often causes severe toxicities. In this issue, Nirschl and colleagues report the development and preclinical characterization of an engineered IL-2 prodrug called WTX-124 that activates in the tumor microenvironment and has minimal systemic toxicity. It will be intriguing to watch the translation of this approach to the clinic. See related article by Nirschl et al. (5).
Collapse
Affiliation(s)
- Daniel-Adriano Silva
- Monod Bio, Inc, Seattle, Washington.,Institute for Protein Design, University of Washington, Seattle, Washington
| |
Collapse
|
32
|
Holder PG, Lim SA, Huang CS, Sharma P, Dagdas YS, Bulutoglu B, Sockolosky JT. Engineering interferons and interleukins for cancer immunotherapy. Adv Drug Deliv Rev 2022; 182:114112. [PMID: 35085624 DOI: 10.1016/j.addr.2022.114112] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
Abstract
Cytokines are a class of potent immunoregulatory proteins that are secreted in response to various stimuli and act locally to regulate many aspects of human physiology and disease. Cytokines play important roles in cancer initiation, progression, and elimination, and thus, there is a long clinical history associated with the use of recombinant cytokines to treat cancer. However, the use of cytokines as therapeutics has been limited by cytokine pleiotropy, complex biology, poor drug-like properties, and severe dose-limiting toxicities. Nevertheless, cytokines are crucial mediators of innate and adaptive antitumor immunity and have the potential to enhance immunotherapeutic approaches to treat cancer. Development of immune checkpoint inhibitors and combination immunotherapies has reinvigorated interest in cytokines as therapeutics, and a variety of engineering approaches are emerging to improve the safety and effectiveness of cytokine immunotherapy. In this review we highlight recent advances in cytokine biology and engineering for cancer immunotherapy.
Collapse
|
33
|
Zettlitz KA, Salazar FB, Yamada RE, Trinh KR, Vasuthasawat A, Timmerman JM, Morrison SL, Wu AM. 89Zr-ImmunoPET shows therapeutic efficacy of anti-CD20 interferon-α fusion protein in a murine B-cell lymphoma model. Mol Cancer Ther 2022; 21:607-615. [PMID: 35086952 DOI: 10.1158/1535-7163.mct-21-0732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/23/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Antibody-mediated tumor delivery of cytokines can overcome limitations of systemic administration (toxicity, short half-lives). Previous work showed improved anti-tumor potency of anti-CD20-interferon alpha (IFNα) fusion proteins in preclinical mouse models of B-cell lymphoma. Although tumor targeting is mediated by the antibody part of the fusion protein, the cytokine component might strongly influence biodistribution and pharmacokinetics, as a result of its affinity, size, valency and receptor distribution. Here, we used positron emission tomography (immunoPET) to study the in vivo biodistribution and tumor targeting of the anti-CD20 rituximab-murine IFNα1 fusion protein (Rit-mIFNα) and compared it to the parental mAb (rituximab, Rit). Rit-mIFNα and Rit were radiolabeled with zirconium-89 (89Zr, t1/2 78.4 h) and injected into C3H mice bearing syngeneic B-cell lymphomas (38C13-hCD20). Dynamic (2 h p.i.) and static (4, 24 and 72 h) PET scans were acquired. Ex vivo biodistribution was performed after the final scan. Both 89Zr-Rit-mIFNα and 89Zr-Rit specifically target hCD20-expressing B-cell lymphoma in vivo. 89Zr-Rit-mIFNα showed specific uptake in tumors (7.6 {plus minus} 1.0 %ID/g at 75 h p.i.), which was significantly lower than 89Zr-Rit (38.4 {plus minus} 9.9 %ID/g, p<0.0001). ImmunoPET studies also revealed differences in the biodistribution, 89Zr-Rit-mIFNα showed rapid blood clearance and high accumulation in the liver compared with 89Zr-Rit. Importantly, immunoPET clearly revealed a therapeutic effect of the single 89Zr-Rit-mIFNα dose, resulting in smaller tumors and fewer lymph node metastases compared to mice receiving 89Zr-Rit. Mice receiving 89Zr-Rit-mIFNα had enlarged spleens, suggesting that systemic immune activation contributes to therapeutic efficacy in addition to the direct antitumoral activity of IFNα. In conclusion, immunoPET allows the non-invasive tracking and quantification of the antibody-cytokine fusion protein and helps understand the in vivo behavior and therapeutic efficacy.
Collapse
Affiliation(s)
- Kirstin A Zettlitz
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Felix B Salazar
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Reiko E Yamada
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - K Ryan Trinh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Alex Vasuthasawat
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - John M Timmerman
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Sherie L Morrison
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
34
|
Xue D, Moon B, Liao J, Guo J, Zou Z, Han Y, Cao S, Wang Y, Fu YX, Peng H. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci Immunol 2022; 7:eabi6899. [PMID: 34995098 PMCID: PMC9009736 DOI: 10.1126/sciimmunol.abi6899] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is a challenge to effectively reactivate preexisting tumor-infiltrating lymphocytes (TILs) without causing severe toxicity. Interleukin-12 (IL-12) can potently activate lymphocytes, but its clinical use is limited by its short half-life and dose-related toxicity. In this study, we developed a tumor-conditional IL-12 (pro-IL-12), which masked IL-12 with selective extracellular receptor–binding domains of the IL-12 receptor while preferentially and persistently activating TILs after being unmasked by matrix metalloproteinases expressed by tumors. Systemic delivery of pro-IL-12 demonstrated reduced toxicity but better control of established tumors compared with IL-12-Fc. Mechanistically, antitumor responses induced by pro-IL-12 were dependent on TILs and IFNγ. Furthermore, direct binding of IL-12 to IL-12R on CD8+, not CD4+, T cells was essential for maximal effectiveness. Pro-IL-12 improved the efficacy of both immune checkpoint blockade and targeted therapy when used in combination. Therefore, our study demonstrated that pro-IL-12 could rejuvenate TILs, which then combined with current treatment modalities while limiting adverse effects for treating established tumors.
Collapse
Affiliation(s)
- Diyuan Xue
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Benjamin Moon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Jing Liao
- G uangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jingya Guo
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuangzhi Zou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfei Han
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaishuai Cao
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Immune Targeting Inc, Dallas, Texas 75247
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Cheloha RW, Fischer FA, Gardella TJ, Ploegh HL. Activation of a G protein-coupled receptor through indirect antibody-mediated tethering of ligands. RSC Chem Biol 2021; 2:1692-1700. [PMID: 34977584 PMCID: PMC8637866 DOI: 10.1039/d1cb00118c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Antibodies raised against many cell surface proteins, including G protein-coupled receptors, remain important tools for their functional characterization. By linking antibodies to ligands for cell surface proteins, such adducts can be targeted to the surface of a cell type of choice. Site-specific functionalization of full-size antibodies with synthetic moieties remains challenging. Here we present new approaches in which single domain antibodies (known as VHHs or nanobodies) that target either cell surface proteins or conventional antibodies are used to indirectly deliver ligands for GPCRs to their sites of action. The combination of high yield production of nanobodies, facile site-specific functionalization, and compatibility with commercially available mouse and rabbit antibodies should enable wide application of this approach. The use of antibodies to target membrane receptors enables specific and potent activation. But antibodies with appropriate specificity can be lacking. We present methods for targeting receptors without target-specific antibodies.![]()
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle Boston MA 02115 USA
| | - Fabian A Fischer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle Boston MA 02115 USA
| | - Thomas J Gardella
- Massachusetts General Hospital and Harvard Medical School, 50 Blossom Street Boston MA 02114 USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, 1 Blackfan Circle Boston MA 02115 USA
| |
Collapse
|
36
|
Kim J, Kang S, Kim KW, Heo MG, Park DI, Lee JH, Lim NJ, Min DH, Won C. Nanoparticle delivery of recombinant IL-2 (BALLkine-2) achieves durable tumor control with less systemic adverse effects in cancer immunotherapy. Biomaterials 2021; 280:121257. [PMID: 34839122 DOI: 10.1016/j.biomaterials.2021.121257] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
Recent strategies in cancer immunotherapy based on interleukin-2 (IL-2) are generally focused on reducing regulatory T cell (Treg) development by modifying IL-2 receptor alpha (IL-2Rα) domain. However, the clinical utility of high-dose IL-2 treatment is mainly limited by severe systemic toxicity. We find that peritumorally injectable 'BALLkine-2', recombinant human IL-2 (rIL-2) loaded porous nanoparticle, dramatically reduces systemic side effects of rIL-2 by minimizing systemic IL-2 exposure. Notably, in cynomolgus monkeys, subcutaneous (SC)-injection of BALLkine-2 not only dramatically reduces systemic circulation of rIL-2 in the blood, but also increases half-life of IL-2 compared to IV- or SC-injection of free rIL-2. Peritumorally-injected BALLkine-2 enhances intratumoral lymphocyte infiltration without inducing Treg development and more effectively synergizes with PD-1 blockade than high-dose rIL-2 administration in B16F10 melanoma model. BALLkine-2 could be a highly potent therapeutic option due to higher anti-tumor efficacy with lower and fewer doses and reduced systemic toxicity compared to systemic rIL-2.
Collapse
Affiliation(s)
- Jun Kim
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung Won Kim
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Myeong-Gang Heo
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Dae-In Park
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Joon-Hyung Lee
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Nam Ju Lim
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea
| | - Dal-Hee Min
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea; Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea; Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 06683, Republic of Korea.
| |
Collapse
|
37
|
Han L, Shi C, Zeng X, Cen L, Mei X, Fan J, Ju D, Zhu H. A Novel Bifunctional Fusion Protein, Vunakizumab-IL22, for Protection Against Pulmonary Immune Injury Caused by Influenza Virus. Front Immunol 2021; 12:727941. [PMID: 34504501 PMCID: PMC8421727 DOI: 10.3389/fimmu.2021.727941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus infection is usually associated with acute lung injury, which is typically characterized by tracheal mucosal barrier damage and an interleukin 17A (IL-17A)-mediated inflammatory response in lung tissues. Although targeting IL-17A has been proven to be beneficial for attenuating inflammation around lung cells, it still has a limited effect on pulmonary tissue recovery after influenza A virus infection. In this research, interleukin 22 (IL-22), a cytokine involved in the repair of the pulmonary mucosal barrier, was fused to the C-terminus of the anti-IL-17A antibody vunakizumab to endow the antibody with a tissue recovery function. The vunakizumab-IL22 (vmab-IL-22) fusion protein exhibits favorable stability and retains the biological activities of both the anti-IL-17A antibody and IL-22 in vitro. Mice infected with lethal H1N1 influenza A virus and treated with vmab-mIL22 showed attenuation of lung index scores and edema when compared to those of mice treated with saline or vmab or mIL22 alone. Our results also illustrate that vmab-mIL22 triggers the upregulation of MUC2 and ZO1, as well as the modulation of cytokines such as IL-1β, HMGB1 and IL-10, indicating the recovery of pulmonary goblet cells and the suppression of excessive inflammation in mice after influenza A virus infection. Moreover, transcriptome profiling analysis suggest the downregulation of fibrosis-related genes and signaling pathways, including genes related to focal adhesion, the inflammatory response pathway, the TGF-β signaling pathway and lung fibrosis upon vmab-mIL22 treatment, which indicates that the probable mechanism of vmab-mIL22 in ameliorating H1N1 influenza A-induced lung injury. Our results reveal that the bifunctional fusion protein vmab-mIL22 can trigger potent therapeutic effects in H1N1-infected mice by enhancing lung tissue recovery and inhibiting pulmonary inflammation, which highlights a potential approach for treating influenza A virus infection by targeting IL-17A and IL-22 simultaneously.
Collapse
Affiliation(s)
- Lei Han
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Chenchen Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Lifeng Cen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaobin Mei
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
38
|
Xu Y, Campos Carrascosa L, Yeung YA, Chu MLH, Yang W, Djuretic I, Pappas DC, Zeytounian J, Ge Z, de Ruiter V, Starbeck-Miller GR, Patterson J, Rigas D, Chen SH, Kraynov E, Boor PP, Noordam L, Doukas M, Tsao D, Ijzermans JN, Guo J, Grünhagen DJ, Erdmann J, Verheij J, van Royen ME, Doornebosch PG, Feldman R, Park T, Mahmoudi S, Dorywalska M, Ni I, Chin SM, Mistry T, Mosyak L, Lin L, Ching KA, Lindquist KC, Ji C, Londono LM, Kuang B, Rickert R, Kwekkeboom J, Sprengers D, Huang TH, Chaparro-Riggers J. An Engineered IL15 Cytokine Mutein Fused to an Anti-PD-1 Improves Intratumoral T-Cell Function and Antitumor Immunity. Cancer Immunol Res 2021; 9:1141-1157. [PMID: 34376502 DOI: 10.1158/2326-6066.cir-21-0058] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/04/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
The use of cytokines for immunotherapy shows clinical efficacy but is frequently accompanied by severe adverse events caused by excessive and systemic immune activation. Here, we set out to address these challenges by engineering a fusion protein of a single, potency-reduced, IL15 mutein and a PD-1-specific antibody (anti-PD1-IL15m). This immunocytokine was designed to deliver PD-1-mediated, avidity-driven IL2/15 receptor stimulation to PD-1+ tumor-infiltrating lymphocytes (TILs) while minimally affecting circulating peripheral natural killer (NK) cells and T cells. Treatment of tumor-bearing mice with a mouse cross-reactive fusion, anti-mPD1-IL15m demonstrated potent antitumor efficacy without exacerbating body weight loss in B16 and MC38 syngeneic tumor models. Moreover, anti-mPD1-IL15m was more efficacious than an IL15 superagonist, an anti-mPD-1, or the combination thereof in the B16 melanoma model. Mechanistically, anti-PD1-IL15m preferentially targeted CD8+ TILs and scRNA-seq analyses revealed that anti-mPD1-IL15m treatment induced the expansion of an exhausted CD8+ TILs cluster with high proliferative capacity and effector-like signatures. Antitumor efficacy of anti-mPD1-IL15m was dependent on CD8+ T cells, as depletion of CD8+ cells resulted in the loss of antitumor activity, whereas depletion of NK cells had little impact on efficacy. The impact of anti-hPD1-IL15m on primary human TILs from cancer patients was also evaluated. Anti-hPD1-IL15m robustly enhanced the proliferation, activation, and cytotoxicity of CD8+ and CD4+ TILs from human primary cancers in vitro, whereas tumor-derived regulatory T cells were largely unaffected. Taken together, we showed that anti-PD1-IL15m exhibits a high translational promise with improved efficacy and safety of IL15 for cancer immunotherapy via targeting PD-1+ TILs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Irene Ni
- Oncology Research Unit, Pfizer (United States)
| | | | | | | | | | - Keith A Ching
- Computational Biology/Oncology Research Unit, Pfizer Global R & D
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, Fu YX, Peng H. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res 2021; 31:1190-1198. [PMID: 34376814 DOI: 10.1038/s41422-021-00543-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
IL-15 is a promising cytokine to expand NK and CD8+ T cells for cancer immunotherapy, but its application is limited by dose-limiting, on-target off-tumor toxicity. Here, we have developed a next-generation IL-15 that is activated inside the tumor microenvironment (TME). This pro-IL-15 has the extracellular domain of IL-15Rβ fused to the N-terminus of sIL-15-Fc through a tumor-enriched Matrix Metalloproteinase (MMP) cleavable peptide linker to block its activity. Unlike sIL-15-Fc, pro-IL-15 does not activate the peripheral expansion of NK cells and T cells, thus reducing systemic toxicity, but it still preserves efficient anti-tumor abilities. In various mouse tumors, the anti-tumor effect of pro-IL-15 depends on intratumoral CD8+ T cells and IFN-γ. Pro-IL-15 increases the stem-like TCF1+Tim-3-CD8+ T cells within tumor tissue and helps overcome immune checkpoint blockade (ICB) resistance. Moreover, pro-IL-15 synergizes with current tyrosine kinase inhibitor (TKI) targeted-therapy in a poorly inflamed TUBO tumor model, suggesting that pro-IL-15 helps overcome targeted-therapy resistance. Our results demonstrate a next-generation IL-15 cytokine that can stimulate potent anti-tumor activity without severe toxicity.
Collapse
Affiliation(s)
- Jingya Guo
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Diyuan Xue
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiao Shen
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yueqi Cai
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiankun Zhu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Hua Peng
- Chinese Academy of Sciences Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Uricoli B, Birnbaum LA, Do P, Kelvin JM, Jain J, Costanza E, Chyong A, Porter CC, Rafiq S, Dreaden EC. Engineered Cytokines for Cancer and Autoimmune Disease Immunotherapy. Adv Healthc Mater 2021; 10:e2002214. [PMID: 33690997 PMCID: PMC8651077 DOI: 10.1002/adhm.202002214] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Cytokine signaling is critical to a range of biological processes including cell development, tissue repair, aging, and immunity. In addition to acting as key signal mediators of the immune system, cytokines can also serve as potent immunotherapies with more than 20 recombinant products currently Food and Drug Administration (FDA)-approved to treat conditions including hepatitis, multiple sclerosis, arthritis, and various cancers. Yet despite their biological importance and clinical utility, cytokine immunotherapies suffer from intrinsic challenges that limit their therapeutic potential including poor circulation, systemic toxicity, and low tissue- or cell-specificity. In the past decade in particular, methods have been devised to engineer cytokines in order to overcome such challenges and here, the myriad strategies are reviewed that may be employed in order to improve the therapeutic potential of cytokine and chemokine immunotherapies with applications in cancer and autoimmune disease therapy, as well as tissue engineering and regenerative medicine. For clarity, these strategies are collected and presented as they vary across size scales, ranging from single amino acid substitutions, to larger protein-polymer conjugates, nano/micrometer-scale particles, and macroscale implants. Together, this work aims to provide readers with a timely view of the field of cytokine engineering with an emphasis on early-stage therapeutic approaches.
Collapse
Affiliation(s)
- Biaggio Uricoli
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Lacey A. Birnbaum
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Priscilla Do
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - James M. Kelvin
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Juhi Jain
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
| | - Emma Costanza
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Andrew Chyong
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Christopher C. Porter
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology at Emory University School of Medicine
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Erik C. Dreaden
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Emory School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
41
|
Pires IS, Hammond PT, Irvine DJ. Engineering Strategies for Immunomodulatory Cytokine Therapies - Challenges and Clinical Progress. ADVANCED THERAPEUTICS 2021; 4:2100035. [PMID: 34734110 PMCID: PMC8562465 DOI: 10.1002/adtp.202100035] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Cytokines are immunoregulatory proteins involved in many pathological states with promising potential as therapeutic agents. A diverse array of cytokines have been studied in preclinical disease models since the 1950s, some of which became successful biopharmaceutical products with the advancement of recombinant protein technology in the 1980s. However, following these early approvals, clinical translation of these natural immune signaling molecules has been limited due to their pleiotropic action in many cell types, and the fact that they have evolved to act primarily locally in tissues. These characteristics, combined with poor pharmacokinetics, have hindered the delivery of cytokines via systemic administration routes due to dose-limiting toxicities. However, given their clinical potential and recent clinical successes in cancer immunotherapy, cytokines continue to be extensively pursued in preclinical and clinical studies, and a range of molecular and formulation engineering strategies are being applied to reduce treatment toxicity while maintaining or enhancing therapeutic efficacy. This review provides a brief background on the characteristics of cytokines and their history as clinical therapeutics, followed by a deeper discussion on the engineering strategies developed for cytokine therapies with a focus on the translational relevance of these approaches.
Collapse
Affiliation(s)
- Ivan S Pires
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
42
|
Sachdev S, Cabalteja CC, Cheloha RW. Strategies for targeting cell surface proteins using multivalent conjugates and chemical biology. Methods Cell Biol 2021; 166:205-222. [PMID: 34752333 PMCID: PMC8895325 DOI: 10.1016/bs.mcb.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Proper function of receptors on the cell surface is essential for homeostasis. Compounds that target cell surface receptors to address dysregulation have proven exceptionally successful as therapeutic agents; however, the development of compounds with the desired specificity for receptors, cells, and tissues of choice has proven difficult in some cases. The use of compounds that can engage more than one binding site at the cell surface offers a path toward improving biological specificity or pharmacological properties. In this chapter we summarize historical context for the development of such bivalent compounds. We focus on developments in chemical methods and biological engineering to provide bivalent compounds in which the high affinity and specificity of antibodies are leveraged to create multifunctional conjugates with new and useful properties. The development of methods to meld biological macromolecules with synthetic compounds will facilitate modulation of receptor biology in ways not previously possible.
Collapse
Affiliation(s)
- Shivani Sachdev
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States
| | - Chino C Cabalteja
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States
| | - Ross W Cheloha
- National Institutes of Health, National Institute of Diabetes, Digestive, and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry, Bethesda, MD, United States.
| |
Collapse
|
43
|
Xue D, Hsu E, Fu YX, Peng H. Next-generation cytokines for cancer immunotherapy. Antib Ther 2021; 4:123-133. [PMID: 34263141 PMCID: PMC8271143 DOI: 10.1093/abt/tbab014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Most studies focus on the first and second signals of T cell activation. However, the roles of cytokines in immunotherapy are not fully understood, and cytokines have not been widely used in patient care. Clinical application of cytokines is limited due to their short half-life in vivo, severe toxicity at therapeutic doses, and overall lack of efficacy. Several modifications have been engineered to extend their half-life and increase tumor targeting, including polyethylene glycol conjugation, fusion to tumor-targeting antibodies, and alteration of cytokine/cell receptor-binding affinity. These modifications demonstrate an improvement in either increased antitumor efficacy or reduced toxicity. However, these cytokine engineering strategies may still be improved further, as each strategy poses advantages and disadvantages in the delicate balance of targeting tumor cells, tumor-infiltrating lymphocytes, and peripheral immune cells. This review focuses on selected cytokines, including interferon-α, interleukin (IL)-2, IL-15, IL-21, and IL-12, in both preclinical studies and clinical applications. We review next-generation designs of these cytokines that improve half-life, tumor targeting, and antitumor efficacy. We also present our perspectives on the development of new strategies to potentiate cytokine-based immunotherapy.
Collapse
Affiliation(s)
- Diyuan Xue
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Peng
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China
| |
Collapse
|
44
|
Jin SM, Lee SN, Yoo YJ, Lim YT. Molecular and Macroscopic Therapeutic Systems for Cytokine‐Based Cancer Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seung Mo Jin
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Sang Nam Lee
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yeon Jeong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| | - Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, and Biomedical Institute for Convergence at SKKU Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
- Department of Chemical Engineering Sungkyunkwan University 2066 Seobu‐ro, Jangan‐gu Suwon Gyeonggi‐do 16419 Republic of Korea
| |
Collapse
|
45
|
Cytokine engineering for targeted cancer immunotherapy. Curr Opin Chem Biol 2021; 62:43-52. [PMID: 33684633 DOI: 10.1016/j.cbpa.2021.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/23/2021] [Accepted: 01/31/2021] [Indexed: 12/20/2022]
Abstract
Cytokines are key modulators of the immune responses and represent promising therapeutics for a variety of cancers. However, successful translation of cytokine-based therapy to the clinic is limited by, among others, severe toxicities and lack of efficacy due to cytokine pleiotropy and off-target activation of cells. Engineering cytokines with enhanced therapeutic properties has emerged as a promising strategy to overcome these challenges. Advances in protein engineering and protein-polymer conjugate technologies have fostered the generation of cytokines with enhanced target cell specificity and longer half-life than the native ones. These novel cytokines exhibit reduced systemic toxicities while focusing the activities at the tumor site, thus, enhancing antitumor immunity. The growing toolbox of cytokine engineering strategies will further stimulate the development of smart cytokine-based immunotherapies with enhanced efficacy and safety profiles.
Collapse
|
46
|
Van Den Eeckhout B, Tavernier J, Gerlo S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol 2021; 11:621931. [PMID: 33584721 PMCID: PMC7873566 DOI: 10.3389/fimmu.2020.621931] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The three-signal paradigm tries to capture how the innate immune system instructs adaptive immune responses in three well-defined actions: (1) presentation of antigenic peptides in the context of MHC molecules, which allows for a specific T cell response; (2) T cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines in the priming environment, thereby specializing T cell immunity. The three-signal model provides an empirical framework for innate instruction of adaptive immunity, but mainly discusses STAT-dependent cytokines in T cell activation and differentiation, while the multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often neglected. IL-1α and IL-1β are pro-inflammatory cytokines, produced following damage to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both DCs and T cells can further shape the adaptive immune response with variable outcomes. IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical polarizing cytokines, influences T cell differentiation under different conditions. The activities of IL-1 form a direct bridge between innate and adaptive immunity and could therefore be clinically translatable in the context of prophylactic and therapeutic strategies to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity during T cell activation thus could hold major implications for rational development of the next generation of vaccine adjuvants.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Stringhini M, Mock J, Fontana V, Murer P, Neri D. Antibody-mediated delivery of LIGHT to the tumor boosts natural killer cells and delays tumor progression. MAbs 2021; 13:1868066. [PMID: 33404287 PMCID: PMC7808322 DOI: 10.1080/19420862.2020.1868066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 11/05/2022] Open
Abstract
LIGHT is a member of the tumor necrosis factor superfamily, which has been claimed to mediate anti-tumor activity on the basis of cancer cures observed in immunocompetent mice bearing transgenic LIGHT-expressing tumors. The preclinical development of a LIGHT-based therapeutic has been hindered by the lack of functional stability exhibited by this protein. Here, we describe the cloning, expression, and characterization of five antibody-LIGHT fusion proteins, directed against the alternatively spliced extra domain A of fibronectin, a conserved tumor-associated antigen. Among the five tested formats, only the sequential fusion of the F8 antibody in single-chain diabody format, followed by the LIGHT homotrimer expressed as a single polypeptide, yielded a protein (termed "F8-LIGHT") that was not prone to aggregation. A quantitative biodistribution analysis in tumor-bearing mice, using radio-iodinated protein preparations, confirmed that F8-LIGHT was able to preferentially accumulate at the tumor site, with a tumor-to-blood ratio of ca. five to one 24 hours after intravenous administration. Tumor therapy experiments, performed in two murine tumor models (CT26 and WEHI-164), featuring different levels of lymphocyte infiltration into the neoplastic mass, revealed that F8-LIGHT could significantly reduce tumor-cell growth and was more potent than a similar fusion protein (KSF-LIGHT), directed against hen egg lysozyme and serving as negative control of irrelevant specificity in the mouse. At a mechanistic level, the activity of F8-LIGHT was mainly due to an intratumoral expansion of natural killer cells, whereas there was no evidence of expansion of CD8 + T cells, neither in the tumor, nor in draining lymph nodes. Abbreviations: CTLA-4: Cytotoxic T-lymphocytes-associated protein 4; EGFR: Epidermal growth factor receptor; HVEM: Herpesvirus entry mediator; IFNγ: Interferon-gamma; LIGHT: Lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes; LTβR: Lymphotoxin beta receptor; NF-κB: Nuclear factor "kappa-light-chain-enhancer" of activated B cells; NK: Natural killer cells; PD-1: Programmed cell death protein 1; PD-L1: Programmed death-ligand 1; TNF: Tumor necrosis factor.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/metabolism
- CHO Cells
- Cell Line, Tumor
- Cricetinae
- Cricetulus
- Disease Progression
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice, Inbred BALB C
- Neoplasms/drug therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacokinetics
- Recombinant Fusion Proteins/pharmacology
- Tissue Distribution
- Tumor Burden/drug effects
- Tumor Burden/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Mice
Collapse
Affiliation(s)
- Marco Stringhini
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Jacqueline Mock
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Vanessa Fontana
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Patrizia Murer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), Zürich, Switzerland
| |
Collapse
|
48
|
Mortensen MR, Mock J, Bertolini M, Stringhini M, Catalano M, Neri D. Targeting an engineered cytokine with interleukin-2 and interleukin-15 activity to the neovasculature of solid tumors. Oncotarget 2020; 11:3972-3983. [PMID: 33216834 PMCID: PMC7646832 DOI: 10.18632/oncotarget.27772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
There is a growing interest in the antibody-based delivery of cytokines to the tumor environment as a means to boost the anti-cancer activity of tumor-resident T cells and NK cells. Here, we describe the expression and characterization of fusion proteins, featuring the L19 antibody (specific to the alternatively-spliced EDB domain of fibronectin) and an engineered cytokine with interleukin-2 and interleukin-15 properties. The cytokine moiety was fused either at the N-terminal or at the C-terminal extremity and both fusion proteins showed a selective tumor accumulation in a quantitative biodistribution experiment. The N-terminal fusion inhibited tumor growth in immunocompetent mice bearing F9 carcinomas or WEHI-164 sarcomas when used as single agent. The anticancer activity was compared to the one of the same cytokine payload used as recombinant protein or fused to an anti-hen egg lysozyme antibody, serving as negative control of irrelevant specificity in the mouse. These results indicate that the antibody-based delivery of engineered cytokines to the tumor neovasculature may mediate a potent anticancer activity.
Collapse
Affiliation(s)
- Michael R Mortensen
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Jacqueline Mock
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Bertolini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Stringhini
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Marco Catalano
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences (D-CHAB), Institute for Pharmaceutical Sciences (IPW), 8093 Zurich, Switzerland
| |
Collapse
|
49
|
Chelliah V, Lazarou G, Bhatnagar S, Gibbs JP, Nijsen M, Ray A, Stoll B, Thompson RA, Gulati A, Soukharev S, Yamada A, Weddell J, Sayama H, Oishi M, Wittemer-Rump S, Patel C, Niederalt C, Burghaus R, Scheerans C, Lippert J, Kabilan S, Kareva I, Belousova N, Rolfe A, Zutshi A, Chenel M, Venezia F, Fouliard S, Oberwittler H, Scholer-Dahirel A, Lelievre H, Bottino D, Collins SC, Nguyen HQ, Wang H, Yoneyama T, Zhu AZX, van der Graaf PH, Kierzek AM. Quantitative Systems Pharmacology Approaches for Immuno-Oncology: Adding Virtual Patients to the Development Paradigm. Clin Pharmacol Ther 2020; 109:605-618. [PMID: 32686076 PMCID: PMC7983940 DOI: 10.1002/cpt.1987] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Drug development in oncology commonly exploits the tools of molecular biology to gain therapeutic benefit through reprograming of cellular responses. In immuno‐oncology (IO) the aim is to direct the patient’s own immune system to fight cancer. After remarkable successes of antibodies targeting PD1/PD‐L1 and CTLA4 receptors in targeted patient populations, the focus of further development has shifted toward combination therapies. However, the current drug‐development approach of exploiting a vast number of possible combination targets and dosing regimens has proven to be challenging and is arguably inefficient. In particular, the unprecedented number of clinical trials testing different combinations may no longer be sustainable by the population of available patients. Further development in IO requires a step change in selection and validation of candidate therapies to decrease development attrition rate and limit the number of clinical trials. Quantitative systems pharmacology (QSP) proposes to tackle this challenge through mechanistic modeling and simulation. Compounds’ pharmacokinetics, target binding, and mechanisms of action as well as existing knowledge on the underlying tumor and immune system biology are described by quantitative, dynamic models aiming to predict clinical results for novel combinations. Here, we review the current QSP approaches, the legacy of mathematical models available to quantitative clinical pharmacologists describing interaction between tumor and immune system, and the recent development of IO QSP platform models. We argue that QSP and virtual patients can be integrated as a new tool in existing IO drug development approaches to increase the efficiency and effectiveness of the search for novel combination therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Avijit Ray
- Abbvie Inc., North Chicago, Illinois, USA
| | | | | | - Abhishek Gulati
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Serguei Soukharev
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Akihiro Yamada
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Jared Weddell
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Hiroyuki Sayama
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | - Masayo Oishi
- Astellas Pharma Global Development Inc./Astellas Pharma Inc., Northbrook, Illinois, USA.,Astellas Pharma Global Development Inc./Astellas Pharma Inc., Tokyo or Tsukuba-shi, Japan
| | | | | | | | | | | | | | | | - Irina Kareva
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | | | - Alex Rolfe
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | - Anup Zutshi
- EMD Serono, Merck KGaA, Billerica, Massachusetts, USA
| | | | | | | | | | | | | | - Dean Bottino
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Sabrina C Collins
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Hoa Q Nguyen
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Haiqing Wang
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Tomoki Yoneyama
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | - Andy Z X Zhu
- Millennium Pharmaceuticals Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Ltd., Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
50
|
Momin N, Mehta NK, Bennett NR, Ma L, Palmeri JR, Chinn MM, Lutz EA, Kang B, Irvine DJ, Spranger S, Wittrup KD. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci Transl Med 2020; 11:11/498/eaaw2614. [PMID: 31243150 DOI: 10.1126/scitranslmed.aaw2614] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/29/2019] [Accepted: 06/04/2019] [Indexed: 12/23/2022]
Abstract
The clinical application of cytokine therapies for cancer treatment remains limited due to severe adverse reactions and insufficient therapeutic effects. Although cytokine localization by intratumoral administration could address both issues, the rapid escape of soluble cytokines from the tumor invariably subverts this effort. We find that intratumoral administration of a cytokine fused to the collagen-binding protein lumican prolongs local retention and markedly reduces systemic exposure. Combining local administration of lumican-cytokine fusions with systemic immunotherapies (tumor-targeting antibody, checkpoint blockade, cancer vaccine, or T cell therapy) improves efficacy without exacerbating toxicity in syngeneic tumor models and the BrafV600E /Ptenfl/fl genetically engineered melanoma model. Curative abscopal effects on noncytokine-injected tumors were also observed as a result of a protective and systemic CD8+ T cell response primed by local therapy. Cytokine collagen-anchoring constitutes a facile, tumor-agnostic strategy to safely potentiate otherwise marginally effective systemic immunotherapies.
Collapse
Affiliation(s)
- Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Naveen K Mehta
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Nitasha R Bennett
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Leyuan Ma
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Joseph R Palmeri
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Magnolia M Chinn
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Emi A Lutz
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Byong Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|