1
|
Szczupak D, LjungQvist Brinson L, Kolarcik CL. Brain connectivity, neural networks, and resilience in aging and neurodegeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00027-6. [PMID: 39863250 DOI: 10.1016/j.ajpath.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
The importance of complex systems has become increasingly evident in recent years. The nervous system is one such example with neural networks sitting at the intersection of complex networks and biology. A particularly exciting feature is the resilience of complex systems. For example, the ability of the nervous system to perform even in the face of challenges that include neuronal loss, neuroinflammation, protein accumulation, axonal disruptions, and metabolic stress is an intriguing and exciting line of investigation. In neurodegenerative diseases, neural network resilience is responsible for the time between the earliest disease-linked changes and clinical symptom onset and disease diagnosis. In this way, connectivity resilience of neurons within the complex network of cells that make up the nervous system has significant implications. This review provides an overview of relevant concepts related to complex systems with a focus on the connectivity of the nervous system. It discusses the development of the neural network and how a delicate balance determines how this complex system responds to injury with examples illustrating maladaptive plasticity. The review then addresses the implications of these concepts, methods to understand brain connectivity and neural networks, and recent research efforts aimed at understanding neurodegeneration from this perspective. The authors aim to provide foundational knowledge and an overview of current research directions in this evolving and exciting area of neuroscience.
Collapse
Affiliation(s)
| | | | - Christi L Kolarcik
- Center for the Neural Basis of Cognition; Department of Pathology; Department of Bioengineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Harris-Warrick RM, Pecchi E, Drouillas B, Brocard F, Bos R. Effect of size on expression of bistability in mouse spinal motoneurons. J Neurophysiol 2024; 131:577-588. [PMID: 38380829 PMCID: PMC11305636 DOI: 10.1152/jn.00320.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 02/22/2024] Open
Abstract
Bistability in spinal motoneurons supports tonic spike activity in the absence of excitatory drive. Earlier work in adult preparations suggested that smaller motoneurons innervating slow antigravity muscle fibers are more likely to generate bistability for postural maintenance. However, whether large motoneurons innervating fast-fatigable muscle fibers display bistability is still controversial. To address this, we examined the relationship between soma size and bistability in lumbar (L4-L5) ventrolateral α-motoneurons of choline acetyltransferase (ChAT)-green fluorescent protein (GFP) and Hb9-GFP mice during the first 4 wk of life. We found that as neuron size increases, the prevalence of bistability rises. Smaller α-motoneurons lack bistability, whereas larger fast α-motoneurons [matrix metalloproteinase-9 (MMP-9)+/Hb9+] with a soma area ≥ 400 µm2 exhibit significantly higher bistability. Ionic currents associated with bistability, including the persistent Nav1.6 current, the thermosensitive Trpm5 Ca2+-activated Na+ current, and the slowly inactivating Kv1.2 current, also scale with cell size. Serotonin evokes full bistability in large motoneurons with partial bistable properties but not in small motoneurons. Our study provides important insights into the neural mechanisms underlying bistability and how motoneuron size correlates with bistability in mice.NEW & NOTEWORTHY Bistability is not a common feature of all mouse spinal motoneurons. It is absent in small, slow motoneurons but present in most large, fast motoneurons. This difference results from differential expression of ionic currents that enable bistability, which are highly expressed in large motoneurons but small or absent in small motoneurons. These results support a possible role for fast motoneurons in maintenance of tonic posture in addition to their known roles in fast movements.
Collapse
Affiliation(s)
- Ronald M Harris-Warrick
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States
| | - Emilie Pecchi
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| | - Benoît Drouillas
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| | - Frédéric Brocard
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| | - Rémi Bos
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| |
Collapse
|
3
|
Kelly JJ, Wen H, Brehm P. Single-cell RNAseq analysis of spinal locomotor circuitry in larval zebrafish. eLife 2023; 12:RP89338. [PMID: 37975797 PMCID: PMC10656102 DOI: 10.7554/elife.89338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Identification of the neuronal types that form the specialized circuits controlling distinct behaviors has benefited greatly from the simplicity offered by zebrafish. Electrophysiological studies have shown that in addition to connectivity, understanding of circuitry requires identification of functional specializations among individual circuit components, such as those that regulate levels of transmitter release and neuronal excitability. In this study, we use single-cell RNA sequencing (scRNAseq) to identify the molecular bases for functional distinctions between motoneuron types that are causal to their differential roles in swimming. The primary motoneuron, in particular, expresses high levels of a unique combination of voltage-dependent ion channel types and synaptic proteins termed functional 'cassettes.' The ion channel types are specialized for promoting high-frequency firing of action potentials and augmented transmitter release at the neuromuscular junction, both contributing to greater power generation. Our transcriptional profiling of spinal neurons further assigns expression of this cassette to specific interneuron types also involved in the central circuitry controlling high-speed swimming and escape behaviors. Our analysis highlights the utility of scRNAseq in functional characterization of neuronal circuitry, in addition to providing a gene expression resource for studying cell type diversity.
Collapse
Affiliation(s)
- Jimmy J Kelly
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Hua Wen
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| | - Paul Brehm
- Vollum Institute, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
4
|
Trajano GS, Orssatto LBR, McCombe PA, Rivlin W, Tang L, Henderson RD. Longitudinal changes in intrinsic motoneuron excitability in amyotrophic lateral sclerosis are dependent on disease progression. J Physiol 2023; 601:4723-4735. [PMID: 37768183 DOI: 10.1113/jp285181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Increased amplitude of persistent inward currents (PICs) is observed in pre-symptomatic genetically modified SOD1 mice models of amyotrophic lateral sclerosis (ALS). However, at the symptomatic stage this reverses and there is a large reduction in PIC amplitude. It remains unclear whether these changes in PICs can be observed in humans, with cross-sectional studies in humans reporting contradictory findings. In people with ALS, we estimated the PIC contribution to self-sustained firing of motoneurons, using the paired-motor unit analysis to calculate the Δfrequency (ΔF), to compare the weaker and stronger muscles during the course of disease. We hypothesised that, with disease progression, ΔFs would relatively increase in the stronger muscles; and decline in the weaker muscles. Forty-three individuals with ALS were assessed in two occasions on average 17 weeks apart. Tibialis anterior high-density electromyograms were recorded during dorsiflexion (40% of maximal capacity) ramped contractions, followed by clinical tests. ∆F increased from 3.14 (2.57, 3.71) peaks per second (pps) to 3.55 (2.94, 4.17) pps on the stronger muscles (0.41 (0.041, 0.781) pps, standardised difference (d) = 0.287 (0.023, 0.552), P = 0.030). ∆F reduced from 3.38 (95% CI 2.92, 3.84) pps to 2.88 (2.40, 3.36) pps on the weaker muscles (-0.50 (-0.80, -0.21) pps, d = 0.353 (0.138, 0.567), P = 0.001). The ALSFRS-R score reduced 3.9 (2.3, 5.5) points. These data indicate that the contribution of PICs to motoneuron self-sustained firing increases over time in early stages of the disease when there is little weakness before decreasing as the disease progresses and muscle weakness exacerbates, in alignment with the findings from studies using SOD1 mice. KEY POINTS: Research on mouse model of amyotrophic lateral sclerosis (ALS) suggests that the amplitude of persistent inward currents (PICs) is increased in early stages before decreasing as the disease progresses. Cross-sectional studies in humans have reported contradictory findings with both higher and lower PIC contributions to motoneuron self-sustained firing. In this longitudinal (∼17 weeks) study we tracked changes in PIC contribution to motoneuron self-sustained firing, using the ΔF calculation (i.e. onset-offset hysteresis of motor unit pairs), in tibialis anterior muscles with normal strength and with clinical signs of weakness in people with ALS. ΔFs decreased over time in muscles with clinical signs of weakness. The PIC contribution to motoneuron self-sustained firing increases before the onset of muscle weakness, and subsequently decreases when muscle weakness progresses.
Collapse
Affiliation(s)
- Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Australia
| | - Pamela A McCombe
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Warwick Rivlin
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Lily Tang
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert D Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Kelly JJ, Wen H, Brehm P. Single cell RNA-seq analysis of spinal locomotor circuitry in larval zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543939. [PMID: 37333232 PMCID: PMC10274715 DOI: 10.1101/2023.06.06.543939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Identification of the neuronal types that form the specialized circuits controlling distinct behaviors has benefited greatly from the simplicity offered by zebrafish. Electrophysiological studies have shown that additional to connectivity, understanding of circuitry requires identification of functional specializations among individual circuit components, such as those that regulate levels of transmitter release and neuronal excitability. In this study we use single cell RNA sequencing (scRNAseq) to identify the molecular bases for functional distinctions between motoneuron types that are causal to their differential roles in swimming. The primary motoneuron (PMn) in particular, expresses high levels of a unique combination of voltage-dependent ion channel types and synaptic proteins termed functional 'cassettes'. The ion channel types are specialized for promoting high frequency firing of action potentials and augmented transmitter release at the neuromuscular junction, both contributing to greater power generation. Our transcriptional profiling of spinal neurons further assigns expression of this cassette to specific interneuron types also involved in the central circuitry controlling high speed swimming and escape behaviors. Our analysis highlights the utility of scRNAseq in functional characterization of neuronal circuitry, in addition to providing a gene expression resource for studying cell type diversity.
Collapse
Affiliation(s)
- Jimmy J Kelly
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Hua Wen
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul Brehm
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Bak AN, Djukic S, Kadlecova M, Braunstein TH, Jensen DB, Meehan CF. Cytoplasmic TDP-43 accumulation drives changes in C-bouton number and size in a mouse model of sporadic Amyotrophic Lateral Sclerosis. Mol Cell Neurosci 2023; 125:103840. [PMID: 36921783 DOI: 10.1016/j.mcn.2023.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/11/2023] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
An altered neuronal excitability of spinal motoneurones has consistently been implicated in Amyotrophic Lateral Sclerosis (ALS) leading to several investigations of synaptic input to these motoneurones. One such input that has repeatedly been shown to be affected is a population of large cholinergic synapses terminating mainly on the soma of the motoneurones referred to as C-boutons. Most research on these synapses during disease progression has used transgenic Superoxide Dismutase 1 (SOD1) mouse models of the disease which have not only produced conflicting findings, but also fail to recapitulate the key pathological feature seen in ALS; cytoplasmic accumulations of TAR DNA-binding protein 43 (TDP-43). Additionally, they fail to distinguish between slow and fast motoneurones, the latter of which have more C-boutons, but are lost earlier in the disease. To circumvent these issues, we quantified the frequency and volume of C-boutons on traced soleus and gastrocnemius motoneurones, representing predominantly slow and fast motor pools respectively. Experiments were performed using the TDP-43ΔNLS mouse model that carries a transgenic construct of TDP-43 devoid of its nuclear localization signal, preventing its nuclear import. This results in the emergence of pathological TDP-43 inclusions in the cytoplasm, modelling the main pathology seen in this disorder, accompanied by a severe and lethal ALS phenotype. Our results confirmed changes in both the number and volume of C-boutons with a decrease in number on the more vulnerable, predominantly fast gastrocnemius motoneurones and an increase in number on the less vulnerable, predominantly slow soleus motoneurones. Importantly, these changes were only found in male mice. However, both sexes and motor pools showed a decrease in C-bouton volume. Our experiments confirm that cytoplasmic TDP-43 accumulation is sufficient to drive C-bouton changes.
Collapse
Affiliation(s)
| | - Svetlana Djukic
- Department of Neuroscience, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
7
|
Elbasiouny SM. Motoneuron excitability dysfunction in ALS: Pseudo-mystery or authentic conundrum? J Physiol 2022; 600:4815-4825. [PMID: 36178320 PMCID: PMC9669170 DOI: 10.1113/jp283630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023] Open
Abstract
In amyotrophic lateral sclerosis (ALS), abnormalities in motoneuronal excitability are seen in early pathogenesis and throughout disease progression. Fully understanding motoneuron excitability dysfunction may lead to more effective treatments. Yet decades of research have not produced consensus on the nature, role or underlying mechanisms of motoneuron excitability dysfunction in ALS. For example, contrary to Ca excitotoxicity theory, predictions of motoneuronal hyper-excitability, normal and hypo-excitability have also been seen at various disease stages and in multiple ALS lines. Accordingly, motoneuron excitability dysfunction in ALS is a disputed topic in the field. Specifically, the form (hyper, hypo or unchanged) and what role excitability dysfunction plays in the disease (pathogenic or downstream of other pathologies; neuroprotective or detrimental) are currently unclear. Although several motoneuron properties that determine cellular excitability change in the disease, some of these changes are pro-excitable, whereas others are anti-excitable, making dynamic fluctuations in overall 'net' excitability highly probable. Because various studies assess excitability via differing methods and at differing disease stages, the conflicting reports in the literature are not surprising. Hence, the overarching process of excitability degradation and motoneuron degeneration is not fully understood. Consequently, the discrepancies on motoneuron excitability dysfunction in the literature represent a substantial barrier to our understanding of the disease. Emerging studies suggest that biological variables, variations in experimental protocols, issues of rigor and sampling/analysis strategies are key factors that may underlie conflicting data in the literature. This review highlights potential confounding factors for researchers to consider and also offers ideas on avoiding pitfalls and improving robustness of data.
Collapse
Affiliation(s)
- Sherif M. Elbasiouny
- Department of NeuroscienceCell Biology, and PhysiologyBoonshoft School of Medicine and College of Science and MathematicsWright State UniversityDaytonOHUSA,Department of BiomedicalIndustrial, and Human Factors EngineeringCollege of Engineering and Computer ScienceWright State UniversityDaytonOHUSA
| |
Collapse
|
8
|
Özyurt MG, Ojeda-Alonso J, Beato M, Nascimento F. In vitro longitudinal lumbar spinal cord preparations to study sensory and recurrent motor microcircuits of juvenile mice. J Neurophysiol 2022; 128:711-726. [PMID: 35946796 PMCID: PMC9485001 DOI: 10.1152/jn.00184.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vitro spinal cord preparations have been extensively used to study microcircuits involved in the control of movement. By allowing precise control of experimental conditions coupled with state-of-the-art genetics, imaging, and electrophysiological techniques, isolated spinal cords from mice have been an essential tool in detailing the identity, connectivity, and function of spinal networks. The majority of the research has arisen from in vitro spinal cords of neonatal mice, which are still undergoing important postnatal maturation. Studies from adults have been attempted in transverse slices, however, these have been quite challenging due to the poor motoneuron accessibility and viability, as well as the extensive damage to the motoneuron dendritic trees. In this work, we describe two types of coronal spinal cord preparations with either the ventral or the dorsal horn ablated, obtained from mice of different postnatal ages, spanning from preweaned to 1 mo old. These semi-intact preparations allow recordings of sensory-afferent and motor-efferent responses from lumbar motoneurons using whole cell patch-clamp electrophysiology. We provide details of the slicing procedure and discuss the feasibility of whole cell recordings. The in vitro dorsal and ventral horn-ablated spinal cord preparations described here are a useful tool to study spinal motor circuits in young mice that have reached the adult stages of locomotor development.NEW & NOTEWORTHY In the past 20 years, most of the research into the mammalian spinal circuitry has been limited to in vitro preparations from embryonic and neonatal mice. We describe two in vitro longitudinal lumbar spinal cord preparations from juvenile mice that allow the study of motoneuron properties and respective afferent or efferent spinal circuits through whole cell patch clamp. These preparations will be useful to those interested in the study of microcircuits at mature stages of motor development.
Collapse
Affiliation(s)
- Mustafa Görkem Özyurt
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom,2Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Julia Ojeda-Alonso
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom
| | - Marco Beato
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom
| | - Filipe Nascimento
- 1Department of Neuroscience Physiology and Pharmacology (NPP), grid.83440.3bUniversity College London, London, United Kingdom,2Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Blum JA, Gitler AD. Singling out motor neurons in the age of single-cell transcriptomics. Trends Genet 2022; 38:904-919. [PMID: 35487823 PMCID: PMC9378604 DOI: 10.1016/j.tig.2022.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 01/07/2023]
Abstract
Motor neurons are a remarkably powerful cell type in the central nervous system. They innervate and control the contraction of virtually every muscle in the body and their dysfunction underlies numerous neuromuscular diseases. Some motor neurons seem resistant to degeneration whereas others are vulnerable. The intrinsic heterogeneity of motor neurons in adult organisms has remained elusive. The development of high-throughput single-cell transcriptomics has changed the paradigm, empowering rapid isolation and profiling of motor neuron nuclei, revealing remarkable transcriptional diversity within the skeletal and autonomic nervous systems. Here, we discuss emerging technologies for defining motor neuron heterogeneity in the adult motor system as well as implications for disease and spinal cord injury. We establish a roadmap for future applications of emerging techniques - such as epigenetic profiling, spatial RNA sequencing, and single-cell somatic mutational profiling to adult motor neurons, which will revolutionize our understanding of the healthy and degenerating adult motor system.
Collapse
Affiliation(s)
- Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, USA.
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
10
|
Garcia-Ramirez DL, Singh S, McGrath JR, Ha NT, Dougherty KJ. Identification of adult spinal Shox2 neuronal subpopulations based on unbiased computational clustering of electrophysiological properties. Front Neural Circuits 2022; 16:957084. [PMID: 35991345 PMCID: PMC9385948 DOI: 10.3389/fncir.2022.957084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord neurons integrate sensory and descending information to produce motor output. The expression of transcription factors has been used to dissect out the neuronal components of circuits underlying behaviors. However, most of the canonical populations of interneurons are heterogeneous and require additional criteria to determine functional subpopulations. Neurons expressing the transcription factor Shox2 can be subclassified based on the co-expression of the transcription factor Chx10 and each subpopulation is proposed to have a distinct connectivity and different role in locomotion. Adult Shox2 neurons have recently been shown to be diverse based on their firing properties. Here, in order to subclassify adult mouse Shox2 neurons, we performed multiple analyses of data collected from whole-cell patch clamp recordings of visually-identified Shox2 neurons from lumbar spinal slices. A smaller set of Chx10 neurons was included in the analyses for validation. We performed k-means and hierarchical unbiased clustering approaches, considering electrophysiological variables. Unlike the categorizations by firing type, the clusters displayed electrophysiological properties that could differentiate between clusters of Shox2 neurons. The presence of clusters consisting exclusively of Shox2 neurons in both clustering techniques suggests that it is possible to distinguish Shox2+Chx10- neurons from Shox2+Chx10+ neurons by electrophysiological properties alone. Computational clusters were further validated by immunohistochemistry with accuracy in a small subset of neurons. Thus, unbiased cluster analysis using electrophysiological properties is a tool that can enhance current interneuronal subclassifications and can complement groupings based on transcription factor and molecular expression.
Collapse
Affiliation(s)
| | | | | | | | - Kimberly J. Dougherty
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
11
|
Hur SK, Hunter M, Dominique MA, Farag M, Cotton-Samuel D, Khan T, Trojanowski JQ, Spiller KJ, Lee VMY. Slow motor neurons resist pathological TDP-43 and mediate motor recovery in the rNLS8 model of amyotrophic lateral sclerosis. Acta Neuropathol Commun 2022; 10:75. [PMID: 35568882 PMCID: PMC9107273 DOI: 10.1186/s40478-022-01373-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 01/22/2023] Open
Abstract
In the intermediate stages of amyotrophic lateral sclerosis (ALS), surviving motor neurons (MNs) that show intrinsic resistance to TDP-43 proteinopathy can partially compensate for the loss of their more disease-susceptible counterparts. Elucidating the mechanisms of this compensation may reveal approaches for attenuating motor impairment in ALS patients. In the rNLS8 mouse model of ALS-like pathology driven by doxycycline-regulated neuronal expression of human TDP-43 lacking a nuclear localization signal (hTDP-43ΔNLS), slow MNs are more resistant to disease than fast-fatigable (FF) MNs and can mediate recovery following transgene suppression. In the present study, we used a viral tracing strategy to show that these disease-resistant slow MNs sprout to reinnervate motor endplates of adjacent muscle fibers vacated by degenerated FF MNs. Moreover, we found that neuromuscular junctions within fast-twitch skeletal muscle (tibialis anterior, TA) reinnervated by SK3-positive slow MNs acquire resistance to axonal dieback when challenged with a second course of hTDP-43ΔNLS pathology. The selective resistance of reinnervated neuromuscular junctions was specifically induced by the unique pattern of reinnervation following TDP-43-induced neurodegeneration, as recovery from unilateral sciatic nerve crush did not produce motor units resistant to subsequent hTDP-43ΔNLS. Using cross-reinnervation and self-reinnervation surgery in which motor axons are disconnected from their target muscle and reconnected to a new muscle, we show that FF MNs remain hTDP-43ΔNLS-susceptible and slow MNs remain resistant, regardless of which muscle fibers they control. Collectively, these findings demonstrate that MN identity dictates the susceptibility of neuromuscular junctions to TDP-43 pathology and slow MNs can drive recovery of motor systems due to their remarkable resilience to TDP-43-driven degeneration. This study highlights a potential pathway for regaining motor function with ALS pathology in the advent of therapies that halt the underlying neurodegenerative process.
Collapse
Affiliation(s)
- Seong Kwon Hur
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Mandana Hunter
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Myrna A. Dominique
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Madona Farag
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Dejania Cotton-Samuel
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Tahiyana Khan
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - John Q. Trojanowski
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| | - Krista J. Spiller
- grid.497530.c0000 0004 0389 4927Janssen Research and Development, Neuroscience Therapeutic Area, 1400 McKean Rd, Spring House, PA 19002 USA
| | - Virginia M.-Y. Lee
- grid.25879.310000 0004 1936 8972Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Maloney Building, 3rd Floor, 3600 Spruce Street, Philadelphia, PA 19104-2676 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Alzheimer’s Disease Research Center, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104 USA
| |
Collapse
|
12
|
Bos R, Rihan K, Quintana P, El-Bazzal L, Bernard-Marissal N, Da Silva N, Jabbour R, Mégarbané A, Bartoli M, Brocard F, Delague V. Altered action potential waveform and shorter axonal initial segment in hiPSC-derived motor neurons with mutations in VRK1. Neurobiol Dis 2022; 164:105609. [PMID: 34990802 DOI: 10.1016/j.nbd.2021.105609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/24/2021] [Accepted: 12/30/2021] [Indexed: 11/25/2022] Open
Abstract
We recently described new pathogenic variants in VRK1, in patients affected with distal Hereditary Motor Neuropathy associated with upper motor neurons signs. Specifically, we provided evidences that hiPSC-derived Motor Neurons (hiPSC-MN) from these patients display Cajal Bodies (CBs) disassembly and defects in neurite outgrowth and branching. We here focused on the Axonal Initial Segment (AIS) and the related firing properties of hiPSC-MNs from these patients. We found that the patient's Action Potential (AP) was smaller in amplitude, larger in duration, and displayed a more depolarized threshold while the firing patterns were not altered. These alterations were accompanied by a decrease in the AIS length measured in patients' hiPSC-MNs. These data indicate that mutations in VRK1 impact the AP waveform and the AIS organization in MNs and may ultimately lead to the related motor neuron disease.
Collapse
Affiliation(s)
- Rémi Bos
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France.
| | - Khalil Rihan
- Aix Marseille Univ, Inserm, MMG, U 1251, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Patrice Quintana
- Aix Marseille Univ, Inserm, MMG, U 1251, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Lara El-Bazzal
- Aix Marseille Univ, Inserm, MMG, U 1251, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Nathalie Bernard-Marissal
- Aix Marseille Univ, Inserm, MMG, U 1251, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Nathalie Da Silva
- Aix Marseille Univ, Inserm, MMG, U 1251, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Rosette Jabbour
- Neurology Division, Department of Internal Medicine, St George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | - André Mégarbané
- Department of Human Genetics, Gilbert and RoseMary Chagoury Hospital, Lebanese American University, Byblos, Lebanon
| | - Marc Bartoli
- Aix Marseille Univ, Inserm, MMG, U 1251, Institut Marseille Maladies Rares (MarMaRa), Marseille, France
| | - Frédéric Brocard
- Aix Marseille Univ, CNRS, Institut de Neurosciences de la Timone (INT), UMR 7289, Marseille, France
| | - Valérie Delague
- Aix Marseille Univ, Inserm, MMG, U 1251, Institut Marseille Maladies Rares (MarMaRa), Marseille, France.
| |
Collapse
|
13
|
Durand J, Filipchuk A. Electrical and Morphological Properties of Developing Motoneurons in Postnatal Mice and Early Abnormalities in SOD1 Transgenic Mice. ADVANCES IN NEUROBIOLOGY 2022; 28:353-373. [PMID: 36066832 DOI: 10.1007/978-3-031-07167-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this chapter, we review electrical and morphological properties of lumbar motoneurons during postnatal development in wild-type (WT) and transgenic superoxide dismutase 1 (SOD1) mice, models of amyotrophic lateral sclerosis. First we showed that sensorimotor reflexes do not develop normally in transgenic SOD1G85R pups. Fictive locomotor activity recorded in in vitro whole brainstem/spinal cord preparations was not induced in these transgenic SOD1G85R mice using NMDA and 5HT in contrast to WT mice. Further, abnormal electrical properties were detected as early as the second postnatal week in lumbar motoneurons of SOD1 mice while they develop clinical symptoms several months after birth. We compared two different strains of mice (G85R and G93A) at the same postnatal period using intracellular recordings and patch clamp recordings of WT and SOD1 motoneurons. We defined three types of motoneurons according to their discharge firing pattern (transient, sustained and delayed onset firing) when motor units are not yet mature. The delayed-onset firing motoneurons had the higher rheobase compared to the transient and sustained firing groups in the WT mice. We demonstrated hypoexcitability in the delayed onset-firing motoneurons of SOD1 mice. Intracellular staining of motoneurons revealed dendritic overbranching in SOD1 lumbar motoneurons that was more pronounced in the sustained firing motoneurons. We suggested that motoneuronal hypoexcitability is an early pathological sign affecting a subset of lumbar motoneurons in the spinal cord of SOD1 mice.
Collapse
Affiliation(s)
- Jacques Durand
- Institut de Neurosciences de la Timone (INT) P3M team, Aix Marseille Université, Marseille, cedex 05, France.
| | - Anton Filipchuk
- Department for Integrative and Computational Neuroscience (ICN), Paris-Saclay Institute of Neuroscience (NeuroPSI), Gif-sur-Yvette, France
| |
Collapse
|
14
|
Bączyk M, Manuel M, Roselli F, Zytnicki D. From Physiological Properties to Selective Vulnerability of Motor Units in Amyotrophic Lateral Sclerosis. ADVANCES IN NEUROBIOLOGY 2022; 28:375-394. [PMID: 36066833 DOI: 10.1007/978-3-031-07167-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal alpha-motoneurons are classified in several types depending on the contractile properties of the innervated muscle fibers. This diversity is further displayed in different levels of vulnerability of distinct motor units to neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS). We summarize recent data suggesting that, contrary to the excitotoxicity hypothesis, the most vulnerable motor units are hypoexcitable and experience a reduction in their firing prior to symptoms onset in ALS. We suggest that a dysregulation of activity-dependent transcriptional programs in these motoneurons alter crucial cellular functions such as mitochondrial biogenesis, autophagy, axonal sprouting capability and re-innervation of neuromuscular junctions.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Marin Manuel
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France
| |
Collapse
|
15
|
Zubov T, Silika S, Dukkipati SS, Hartzler LK, Santin JM. Characterization of laryngeal motor neuron properties in the American bullfrog, Lithobates catesbieanus. Respir Physiol Neurobiol 2021; 294:103745. [PMID: 34298168 DOI: 10.1016/j.resp.2021.103745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 11/29/2022]
Abstract
Motor neurons represent the final output from the central respiratory network. American bullfrogs, Lithobates catesbieanus, have provided insight into development and plasticity of the breathing control system, yet cellular aspects of bullfrog motor neurons are not well-described. In this study, we characterized properties of laryngeal motor neurons that produce motor outflow to the glottal dilator, a muscle that gates airflow to the lungs of anurans. To this end, we measured several intrinsic membrane properties of labeled laryngeal motor neurons in brain slices. Using unsupervised clustering analyses, we identified two broad classes of motor neurons: those with high firing rates and strong adaptation (∼70 %), and those with lower firing rates and less adaptation (∼30 %). These results suggest that two neuronal cell types innervate the glottal dilator, roughly aligning with the composition of fast and slower twitch fibers of this muscle. In sum, these data reinforce the need to consider cell-type when assessing motor neuron function in the respiratory network.
Collapse
Affiliation(s)
- Tanya Zubov
- The University of North Carolina at Greensboro, Department of Biology, United States
| | - Sara Silika
- The University of North Carolina at Greensboro, Department of Biology, United States
| | | | - Lynn K Hartzler
- Wright State University of Department of Biological Sciences, United States
| | - Joseph M Santin
- The University of North Carolina at Greensboro, Department of Biology, United States.
| |
Collapse
|
16
|
Allodi I, Montañana-Rosell R, Selvan R, Löw P, Kiehn O. Locomotor deficits in a mouse model of ALS are paralleled by loss of V1-interneuron connections onto fast motor neurons. Nat Commun 2021; 12:3251. [PMID: 34059686 PMCID: PMC8166981 DOI: 10.1038/s41467-021-23224-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
ALS is characterized by progressive inability to execute movements. Motor neurons innervating fast-twitch muscle-fibers preferentially degenerate. The reason for this differential vulnerability and its consequences on motor output is not known. Here, we uncover that fast motor neurons receive stronger inhibitory synaptic inputs than slow motor neurons, and disease progression in the SOD1G93A mouse model leads to specific loss of inhibitory synapses onto fast motor neurons. Inhibitory V1 interneurons show similar innervation pattern and loss of synapses. Moreover, from postnatal day 63, there is a loss of V1 interneurons in the SOD1G93A mouse. The V1 interneuron degeneration appears before motor neuron death and is paralleled by the development of a specific locomotor deficit affecting speed and limb coordination. This distinct ALS-induced locomotor deficit is phenocopied in wild-type mice but not in SOD1G93A mice after appearing of the locomotor phenotype when V1 spinal interneurons are silenced. Our study identifies a potential source of non-autonomous motor neuronal vulnerability in ALS and links ALS-induced changes in locomotor phenotype to inhibitory V1-interneurons.
Collapse
Affiliation(s)
- Ilary Allodi
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| | - Roser Montañana-Rosell
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Raghavendra Selvan
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen N, Denmark
| | - Peter Löw
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Alkaslasi MR, Piccus ZE, Hareendran S, Silberberg H, Chen L, Zhang Y, Petros TJ, Le Pichon CE. Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat Commun 2021; 12:2471. [PMID: 33931636 PMCID: PMC8087807 DOI: 10.1038/s41467-021-22691-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
In vertebrates, motor control relies on cholinergic neurons in the spinal cord that have been extensively studied over the past hundred years, yet the full heterogeneity of these neurons and their different functional roles in the adult remain to be defined. Here, we develop a targeted single nuclear RNA sequencing approach and use it to identify an array of cholinergic interneurons, visceral and skeletal motor neurons. Our data expose markers for distinguishing these classes of cholinergic neurons and their rich diversity. Specifically, visceral motor neurons, which provide autonomic control, can be divided into more than a dozen transcriptomic classes with anatomically restricted localization along the spinal cord. The complexity of the skeletal motor neurons is also reflected in our analysis with alpha, gamma, and a third subtype, possibly corresponding to the elusive beta motor neurons, clearly distinguished. In combination, our data provide a comprehensive transcriptomic description of this important population of neurons that control many aspects of physiology and movement and encompass the cellular substrates for debilitating degenerative disorders.
Collapse
Affiliation(s)
- Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Zoe E Piccus
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Sangeetha Hareendran
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Silberberg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Li Chen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Yajun Zhang
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Timothy J Petros
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
18
|
Mousa MH, Elbasiouny SM. Estimating the effects of slicing on the electrophysiological properties of spinal motoneurons under normal and disease conditions. J Neurophysiol 2021; 125:1450-1467. [PMID: 33689515 PMCID: PMC8282222 DOI: 10.1152/jn.00543.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022] Open
Abstract
Although slice recordings from spinal motoneurons (MNs) are being widely used, the effects of slicing on the measured MN electrical properties under normal and disease conditions have not been assessed. Using high-fidelity cell models of neonatal wild-type (WT) and superoxide dismutase-1 (SOD) cells, we examined the effects of slice thickness, soma position within the slice, and slice orientation to estimate the error induced in measured MN electrical properties from spinal slices. Our results show that most MN electrical properties are not adversely affected by slicing, except for cell time constant, cell capacitance, and Ca2+ persistent inward current (PIC), which all exhibited large errors, regardless of the slice condition. Among the examined factors, soma position within the slice appears to be the strongest factor in influencing the magnitude of error in measured MN electrical properties. Transverse slices appear to have the least impact on measured MN electrical properties. Surprisingly, and despite their anatomical enlargement, we found that G85R-SOD MNs experience similar error in their measured electrical properties to those of WT MNs, but their errors are more sensitive to the soma position within the slice than WT MNs. Unless in thick and symmetrical slices, slicing appears to reduce motoneuron type differences. Accordingly, slice studies should attempt to record from MNs at the slice center to avoid large and inconsistent errors in measured cell properties and have valid cell measurements' comparisons. Our results, therefore, offer information that would enhance the rigor of MN electrophysiological data measured from the slice preparation under normal and disease conditions.NEW & NOTEWORTHY Although slice recordings from motoneurons are being widely used, the effects of slicing on the measured motoneuron electrical properties under normal and disease conditions have not been assessed. Using high-fidelity cell models of neonatal WT and SOD cells, we examined the effects of slice thickness, soma position within the slice, and slice orientation. Our results offer information that enhances the rigor of MN electrophysiological data measured from the slice preparation under normal and disease conditions.
Collapse
Affiliation(s)
- Mohamed H Mousa
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| | - Sherif M Elbasiouny
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, Ohio
- Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, Dayton, Ohio
| |
Collapse
|
19
|
Early Hypoexcitability in a Subgroup of Spinal Motoneurons in Superoxide Dismutase 1 Transgenic Mice, a Model of Amyotrophic Lateral Sclerosis. Neuroscience 2021; 463:337-353. [PMID: 33556455 DOI: 10.1016/j.neuroscience.2021.01.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/22/2021] [Accepted: 01/31/2021] [Indexed: 11/24/2022]
Abstract
In amyotrophic lateral sclerosis (ALS), large motoneurons degenerate first, causing muscle weakness. Transgenic mouse models with a mutation in the gene encoding the enzyme superoxide dismutase 1 (SOD1) revealed that motoneurons innervating the fast-fatigable muscular fibres disconnect very early. The cause of this peripheric disconnection has not yet been established. Early pathological signs were described in motoneurons during the postnatal period of SOD1 transgenic mice. Here, we investigated whether the early changes of electrical and morphological properties previously reported in the SOD1G85R strain also occur in the SOD1G93A-low expressor line with particular attention to the different subsets of motoneurons defined by their discharge firing pattern (transient, sustained, or delayed-onset firing). Intracellular staining and recording were performed in lumbar motoneurons from entire brainstem-spinal cord preparations of SOD1G93A-low transgenic mice and their WT littermates during the second postnatal week. Our results show that SOD1G93A-low motoneurons exhibit a dendritic overbranching similar to that described previously in the SOD1G85R strain at the same age. Further we found an hypoexcitability in the delayed-onset firing SOD1G93A-low motoneurons (lower gain and higher voltage threshold). We conclude that dendritic overbranching and early hypoexcitability are common features of both low expressor SOD1 mutants (G85R and G93A-low). In the high-expressor SOD1G93A line, we found hyperexcitability in the sustained firing motoneurons at the same period, suggesting a delay in compensatory mechanisms. Overall, our results suggest that the hypoexcitability indicate an early dysfunction of the delayed-onset motoneurons and could account as early pathological signs of the disease.
Collapse
|
20
|
Manzano R, Toivonen JM, Moreno-Martínez L, de la Torre M, Moreno-García L, López-Royo T, Molina N, Zaragoza P, Calvo AC, Osta R. What skeletal muscle has to say in amyotrophic lateral sclerosis: Implications for therapy. Br J Pharmacol 2020; 178:1279-1297. [PMID: 32986860 DOI: 10.1111/bph.15276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult onset disorder characterized by progressive neuromuscular junction (NMJ) dismantling and degeneration of motor neurons leading to atrophy and paralysis of voluntary muscles responsible for motion and breathing. Except for a minority of patients harbouring genetic mutations, the origin of most ALS cases remains elusive. Peripheral tissues, and particularly skeletal muscle, have lately demonstrated an active contribution to disease pathology attracting a growing interest for these tissues as therapeutic targets in ALS. In this sense, molecular mechanisms essential for cell and tissue homeostasis have been shown to be deregulated in the disease. These include muscle metabolism and mitochondrial activity, RNA processing, tissue-resident stem cell function responsible for muscle regeneration, and proteostasis that regulates muscle mass in adulthood. This review aims to compile scientific evidence that demonstrates the role of skeletal muscle in ALS pathology and serves as reference for development of novel therapeutic strategies targeting this tissue to delay disease onset and progression. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Raquel Manzano
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Janne Markus Toivonen
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Laura Moreno-Martínez
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Miriam de la Torre
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Leticia Moreno-García
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Tresa López-Royo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Nora Molina
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain.,Geriatrics Service, Hospital Nuestra Señora de Gracia, Zaragoza, Spain
| | - Pilar Zaragoza
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Ana Cristina Calvo
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| | - Rosario Osta
- Department of Anatomy, Embryology and Animal Genetics, University of Zaragoza, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), Zaragoza, Spain
| |
Collapse
|
21
|
Housley SN, Nardelli P, Powers RK, Rich MM, Cope TC. Chronic defects in intraspinal mechanisms of spike encoding by spinal motoneurons following chemotherapy. Exp Neurol 2020; 331:113354. [PMID: 32511953 PMCID: PMC7937189 DOI: 10.1016/j.expneurol.2020.113354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/11/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Chemotherapy-induced sensorimotor disabilities, including gait and balance disorders, as well as physical fatigue often persist for months and sometimes years into disease free survival from cancer. While associated with impaired sensory function, chronic sensorimotor disorders might also depend on chemotherapy-induced defects in other neuron types. In this report, we extend consideration to motoneurons, which, if chronically impaired, would necessarily degrade movement behavior. The present study was undertaken to determine whether motoneurons qualify as candidate contributors to chronic sensorimotor disability independently from sensory impairment. We tested this possibility in vivo from rats 5 weeks following human-scaled treatment with one of the platinum-based compounds, oxaliplatin, widely used in chemotherapy for a variety of cancers. Action potential firing of spinal motoneurons responding to different fixed levels of electrode-current injection was measured in order to assess the neurons' intrinsic capacity for stimulus encoding. The encoding of stimulus duration and intensity corroborated in untreated control rats was severely degraded in oxaliplatin treated rats, in which motoneurons invariably exhibited erratic firing that was unsustained, unpredictable from one stimulus trial to the next, and unresponsive to changes in current strength. Direct measurements of interspike oscillations in membrane voltage combined with computer modeling pointed to aberrations in subthreshold conductances as a plausible contributor to impaired firing behavior. These findings authenticate impaired spike encoding as a candidate contributor to, in the case of motoneurons, deficits in mobility and fatigue. Aberrant firing also becomes a deficit worthy of testing in other CNS neurons as a potential contributor to perceptual and cognitive disorders induced by chemotherapy in patients.
Collapse
Affiliation(s)
- Stephen N Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Paul Nardelli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Randal K Powers
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Timothy C Cope
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA.
| |
Collapse
|
22
|
Spinal Motoneuron TMEM16F Acts at C-boutons to Modulate Motor Resistance and Contributes to ALS Pathogenesis. Cell Rep 2020; 30:2581-2593.e7. [DOI: 10.1016/j.celrep.2020.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/12/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
|
23
|
LoRusso E, Hickman JJ, Guo X. Ion channel dysfunction and altered motoneuron excitability in ALS. NEUROLOGICAL DISORDERS & EPILEPSY JOURNAL 2019; 3:124. [PMID: 32313901 PMCID: PMC7170321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dysregulated excitability is a hallmark of Amyotrophic Lateral Sclerosis (ALS) pathology both in ALS research models and in clinical settings. This primarily results from the dysfunction of Na+, K+, and Ca2+ ion channels responsible for maintaining neuronal thresholds and executing signal transduction or synaptic transmission. The exact dysfunction that each of these ion channel currents display in ALS pathology can vary between different ALS models, mainly induced pluripotent stem cell (iPSC) derived human motoneurons and ALS mouse models. Moreover, results can vary further across ALS mutations and between different developmental periods of these disease models. This review attempts to gather observations regarding ion channel dysfunction contributing to both hyperexcitable and hypoexcitable phenotypes in ALS motoneurons both in vivo and in vitro, so as to assess their potential as therapeutic targets.
Collapse
|
24
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Manuel M, Zytnicki D. Molecular and electrophysiological properties of mouse motoneuron and motor unit subtypes. CURRENT OPINION IN PHYSIOLOGY 2018; 8:23-29. [PMID: 32551406 DOI: 10.1016/j.cophys.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The field of motoneuron and motor unit physiology in mammals has deeply evolved the last decade thanks to the parallel development of mouse genetics and transcriptomic analysis and of in vivo mouse preparations that allow intracellular electrophysiological recordings of motoneurons. We review the efforts made to investigate the electrophysiological properties of the different functional subtypes of mouse motoneurons, to decipher the mosaic of molecular markers specifically expressed in each subtype, and to elucidate which of those factors drive the identity of motoneurons.
Collapse
Affiliation(s)
- Marin Manuel
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| | - Daniel Zytnicki
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| |
Collapse
|
26
|
Driven to decay: Excitability and synaptic abnormalities in amyotrophic lateral sclerosis. Brain Res Bull 2018; 140:318-333. [PMID: 29870780 DOI: 10.1016/j.brainresbull.2018.05.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/26/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease and is clinically characterised by the death of corticospinal motor neurons (CSMNs), spinal and brainstem MNs and the degeneration of the corticospinal tract. Degeneration of CSMNs and MNs leads inexorably to muscle wastage and weakness, progressing to eventual death within 3-5 years of diagnosis. The CSMNs, located within layer V of the primary motor cortex, project axons constituting the corticospinal tract, forming synaptic connections with brainstem and spinal cord interneurons and MNs. Clinical ALS may be divided into familial (∼10% of cases) or sporadic (∼90% of cases), based on apparent random incidence. The emergence of transgenic murine models, expressing different ALS-associated mutations has accelerated our understanding of ALS pathogenesis, although precise mechanisms remain elusive. Multiple avenues of investigation suggest that cortical electrical abnormalities have pre-eminence in the pathophysiology of ALS. In addition, glutamate-mediated functional and structural alterations in both CSMNs and MNs are present in both sporadic and familial forms of ALS. This review aims to promulgate debate in the field with regard to the common aetiology of sporadic and familial ALS. A specific focus on a nexus point in ALS pathogenesis, namely, the synaptic and intrinsic hyperexcitability of CSMNs and MNs and alterations to their structure are comprehensively detailed. The association of extramotor dysfunction with neuronal structural/functional alterations will be discussed. Finally, the implications of the latest research on the dying-forward and dying-back controversy are considered.
Collapse
|
27
|
Zhang JJ, Zhou QM, Chen S, Le WD. Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1-G93A mouse model. CNS Neurosci Ther 2018; 24:1163-1174. [PMID: 29656576 DOI: 10.1111/cns.12855] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/27/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS To investigate the effect and mechanisms of carbamazepine (CBZ) on the onset and progression of amyotrophic lateral sclerosis (ALS) in SOD1-G93A mouse model. METHODS Starting from 64 days of age, SOD1-G93A mice were orally administered with CBZ at 200 mg/kg once daily until death. The disease onset and life span of SOD1-G93A mice were recorded. Motor neurons (MNs) in anterior horn of spinal cord were quantified by Nissl staining and SMI-32 immunostaining. Hematoxylin and eosin (H&E), nicotinamide adenine dinucleotide hydrogen (NADH), modified Gomori trichrome (MGT), and α-bungarotoxin-ATTO-488 staining were also performed to evaluate muscle and neuromuscular junction (NMJ) damage. Expressions of aggregated SOD1 protein and autophagy-related proteins were further detected by Western blot and immunofluorescent staining. RESULTS Carbamazepine treatment could delay the disease onset and extend life span of SOD1-G93A mice by about 14.5% and 13.9%, respectively. Furthermore, CBZ treatment reduced MNs loss by about 46.6% and ameliorated the altered muscle morphology and NMJ. Much more interestingly, mechanism study revealed that CBZ treatment activated autophagy via AMPK-ULK1 pathway and promoted the clearance of mutant SOD1 aggregation. CONCLUSION Our findings uncovered the therapeutic effects of CBZ against disease pathogenesis in SOD1-G93A mice, indicating a promising clinical utilization of CBZ in ALS therapy.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Chifeng Municipal Hospital, Chifeng, China
| | - Qin-Ming Zhou
- Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Dong Le
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, China.,Collaborative Innovation Center for Brain Science, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
28
|
Kelley KW, Ben Haim L, Schirmer L, Tyzack GE, Tolman M, Miller JG, Tsai HH, Chang SM, Molofsky AV, Yang Y, Patani R, Lakatos A, Ullian EM, Rowitch DH. Kir4.1-Dependent Astrocyte-Fast Motor Neuron Interactions Are Required for Peak Strength. Neuron 2018; 98:306-319.e7. [PMID: 29606582 PMCID: PMC5919779 DOI: 10.1016/j.neuron.2018.03.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/08/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Diversified neurons are essential for sensorimotor function, but whether astrocytes become specialized to optimize circuit performance remains unclear. Large fast α-motor neurons (FαMNs) of spinal cord innervate fast-twitch muscles that generate peak strength. We report that ventral horn astrocytes express the inward-rectifying K+ channel Kir4.1 (a.k.a. Kcnj10) around MNs in a VGLUT1-dependent manner. Loss of astrocyte-encoded Kir4.1 selectively altered FαMN size and function and led to reduced peak strength. Overexpression of Kir4.1 in astrocytes was sufficient to increase MN size through activation of the PI3K/mTOR/pS6 pathway. Kir4.1 was downregulated cell autonomously in astrocytes derived from amyotrophic lateral sclerosis (ALS) patients with SOD1 mutation. However, astrocyte Kir4.1 was dispensable for FαMN survival even in the mutant SOD1 background. These findings show that astrocyte Kir4.1 is essential for maintenance of peak strength and suggest that Kir4.1 downregulation might uncouple symptoms of muscle weakness from MN cell death in diseases like ALS. Kir4.1 is upregulated in astrocytes around high-activity alpha motor neurons (MNs) Astrocyte Kir4.1 KO caused decreased peak strength without alpha MN loss ALS patient-derived astrocytes show cell-autonomous Kir4.1 downregulation Astrocyte Kir4.1 regulates MN size through PI3K/mTOR/pS6 activation
Collapse
Affiliation(s)
- Kevin W Kelley
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucile Ben Haim
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lucas Schirmer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Giulia E Tyzack
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Michaela Tolman
- Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - John G Miller
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hui-Hsin Tsai
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sandra M Chang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna V Molofsky
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yongjie Yang
- Sackler School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Rickie Patani
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London WC1N 3BG, UK; The Francis Crick Institute, London NW1 1AT, UK
| | - Andras Lakatos
- John van Geest Centre for Brain Repair and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB20QQ, UK
| | - Erik M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Departments of Pediatrics and Neurosurgery, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Paediatrics and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB20QQ, UK.
| |
Collapse
|
29
|
Martínez-Silva MDL, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli F, Zytnicki D, Manuel M. Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. eLife 2018; 7:30955. [PMID: 29580378 PMCID: PMC5922970 DOI: 10.7554/elife.30955] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperexcitability has been suggested to contribute to motoneuron degeneration in amyotrophic lateral sclerosis (ALS). If this is so, and given that the physiological type of a motor unit determines the relative susceptibility of its motoneuron in ALS, then one would expect the most vulnerable motoneurons to display the strongest hyperexcitability prior to their degeneration, whereas the less vulnerable should display a moderate hyperexcitability, if any. We tested this hypothesis in vivo in two unrelated ALS mouse models by correlating the electrical properties of motoneurons with their physiological types, identified based on their motor unit contractile properties. We found that, far from being hyperexcitable, the most vulnerable motoneurons become unable to fire repetitively despite the fact that their neuromuscular junctions were still functional. Disease markers confirm that this loss of function is an early sign of degeneration. Our results indicate that intrinsic hyperexcitability is unlikely to be the cause of motoneuron degeneration. Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a fatal disorder of the nervous system. Early symptoms include muscle weakness, unsteadiness and slurred speech. These symptoms arise because the neurons that control muscles – the motoneurons – lose their ability to make the muscles contract. Eventually, the muscles become paralyzed, with more and more muscles affected over time. Most patients die within a few years of diagnosis when the disease destroys the muscles that control breathing. Muscles are made up of muscle fibers. Each motoneuron controls a bundle of muscle fibers, and the motoneuron and its muscle fibers together make up a motor unit. A single muscle contains hundreds of motor units. These consist of several different types, which differ in how many muscle fibers they contain, how fast those muscle fibers can contract, and how fatigable the muscle fibers are. In ALS, motoneurons become detached from their muscle fibers, causing motor units to break down. But what triggers this process? One long-standing idea is that motoneurons begin to respond excessively to commands from the brain and spinal cord. In other words, they become hyperexcitable, which ultimately leads to their death. But some more recent studies of ALS suggest the opposite, namely that motoneurons become less active, or hypoexcitable. To distinguish between these possibilities, Martinez-Silva et al. took advantage of the fact that different types of motor unit break down at different rates in ALS. Large motor units containing fast-contracting muscle fibers break down before smaller motor units. By measuring the activity of motor units in two mouse models of ALS, Martinez-Silva et al. showed that large motoneurons are hypoexcitable. In other words, the motoneurons that are most vulnerable to ALS respond too little to commands from the nervous system, rather than too much. Studies of specific proteins inside the cells confirmed that hypoexcitable motoneurons are further along in the disease process than other motoneurons. Hypoexcitability is thus a key player in the ALS disease process. Developing drugs to target this hypoexcitability may be a promising strategy for the future of this condition.
Collapse
Affiliation(s)
| | - Rebecca D Imhoff-Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Aarti Sharma
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | - C J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Therapy and Human Movement Science, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Neil A Shneider
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | | | - Daniel Zytnicki
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Marin Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
30
|
Ferrante M, Tahvildari B, Duque A, Hadzipasic M, Salkoff D, Zagha EW, Hasselmo ME, McCormick DA. Distinct Functional Groups Emerge from the Intrinsic Properties of Molecularly Identified Entorhinal Interneurons and Principal Cells. Cereb Cortex 2018; 27:3186-3207. [PMID: 27269961 DOI: 10.1093/cercor/bhw143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Inhibitory interneurons are an important source of synaptic inputs that may contribute to network mechanisms for coding of spatial location by entorhinal cortex (EC). The intrinsic properties of inhibitory interneurons in the EC of the mouse are mostly undescribed. Intrinsic properties were recorded from known cell types, such as, stellate and pyramidal cells and 6 classes of molecularly identified interneurons (regulator of calcineurin 2, somatostatin, serotonin receptor 3a, neuropeptide Y neurogliaform (NGF), neuropeptide Y non-NGF, and vasoactive intestinal protein) in acute brain slices. We report a broad physiological diversity between and within cell classes. We also found differences in the ability to produce postinhibitory rebound spikes and in the frequency and amplitude of incoming EPSPs. To understand the source of this intrinsic variability we applied hierarchical cluster analysis to functionally classify neurons. These analyses revealed physiologically derived cell types in EC that mostly corresponded to the lines identified by biomarkers with a few unexpected and important differences. Finally, we reduced the complex multidimensional space of intrinsic properties to the most salient five that predicted the cellular biomolecular identity with 81.4% accuracy. These results provide a framework for the classification of functional subtypes of cortical neurons by their intrinsic membrane properties.
Collapse
Affiliation(s)
- Michele Ferrante
- Center for Memory and Brain.,Center for Systems Neuroscience.,Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Babak Tahvildari
- Department of Neurobiology.,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520-8001, USA
| | - Alvaro Duque
- Department of Neurobiology.,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520-8001, USA
| | - Muhamed Hadzipasic
- Interdepartmental Program in Neuroscience, Yale School of Medicine, New Haven, CT 06520-8001, USA
| | - David Salkoff
- Department of Neurobiology.,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520-8001, USA
| | - Edward William Zagha
- Department of Neurobiology.,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520-8001, USA
| | - Michael E Hasselmo
- Center for Memory and Brain.,Center for Systems Neuroscience.,Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - David A McCormick
- Department of Neurobiology.,Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06520-8001, USA
| |
Collapse
|
31
|
Fogarty MJ, Mu EWH, Lavidis NA, Noakes PG, Bellingham MC. Motor Areas Show Altered Dendritic Structure in an Amyotrophic Lateral Sclerosis Mouse Model. Front Neurosci 2017; 11:609. [PMID: 29163013 PMCID: PMC5672020 DOI: 10.3389/fnins.2017.00609] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
Objective: Motor neurons (MNs) die in amyotrophic lateral sclerosis (ALS), a clinically heterogeneous neurodegenerative disease of unknown etiology. In human or rodent studies, MN loss is preceded by increased excitability. As increased neuronal excitability correlates with structural changes in dendritic arbors and spines, we have examined longitudinal changes in dendritic structure in vulnerable neuron populations in a mouse model of familial ALS. Methods: We used a modified Golgi-Cox staining method to determine the progressive changes in dendritic structure of hippocampal CA1 pyramidal neurons, striatal medium spiny neurons, and resistant (trochlear, IV) or susceptible (hypoglossal, XII; lumbar) MNs from brainstem and spinal cord of mice over-expressing the human SOD1G93A (SOD1) mutation, in comparison to wild-type (WT) mice, at four postnatal (P) ages of 8–15, 28–35, 65–75, and 120 days. Results: In SOD1 mice, dendritic changes occur at pre-symptomatic ages in both XII and spinal cord lumbar MNs. Spine loss without dendritic changes was present in striatal neurons from disease onset. Spine density increases were present at all ages studied in SOD1 XII MNs. Spine density increased in neonatal lumbar MNs, before decreasing to control levels by P28-35 and was decreased by P120. SOD1 XII MNs and lumbar MNs, but not trochlear MNs showed vacuolization from the same time-points. Trochlear MN dendrites were unchanged. Interpretation: Dendritic structure and spine alterations correlate with the neuro-motor phenotype in ALS and with cognitive and extra-motor symptoms seen in patients. Prominent early changes in dendritic arbors and spines occur in susceptible cranial and spinal cord MNs, but are absent in MNs resistant to loss in ALS.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Erica W H Mu
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Nickolas A Lavidis
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| | - Peter G Noakes
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia.,Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
32
|
Lamotte d'Incamps B, Bhumbra GS, Foster JD, Beato M, Ascher P. Segregation of glutamatergic and cholinergic transmission at the mixed motoneuron Renshaw cell synapse. Sci Rep 2017. [PMID: 28642492 PMCID: PMC5481398 DOI: 10.1038/s41598-017-04266-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In neonatal mice motoneurons excite Renshaw cells by releasing both acetylcholine (ACh) and glutamate. These two neurotransmitters activate two types of nicotinic receptors (nAChRs) (the homomeric α7 receptors and the heteromeric α*ß* receptors) as well as the two types of glutamate receptors (GluRs) (AMPARs and NMDARs). Using paired recordings, we confirm that a single motoneuron can release both transmitters on a single post-synaptic Renshaw cell. We then show that co-transmission is preserved in adult animals. Kinetic analysis of miniature EPSCs revealed quantal release of mixed events associating AMPARs and NMDARs, as well as α7 and α*ß* nAChRs, but no evidence was found for mEPSCs associating nAChRs with GluRs. Bayesian Quantal Analysis (BQA) of evoked EPSCs showed that the number of functional contacts on a single Renshaw cell is more than halved when the nicotinic receptors are blocked, confirming that the two neurotransmitters systems are segregated. Our observations can be explained if ACh and glutamate are released from common vesicles onto spatially segregated post-synaptic receptors clusters, but a pre-synaptic segregation of cholinergic and glutamatergic release sites is also possible.
Collapse
Affiliation(s)
- Boris Lamotte d'Incamps
- Center for Neurophysics, Physiology and Pathologies, CNRS UMR 8119, Université Paris Descartes, Paris, France.
| | - Gardave S Bhumbra
- Department of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London, United Kingdom
| | - Joshua D Foster
- Department of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London, United Kingdom
| | - Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London, United Kingdom
| | - Philippe Ascher
- Physiologie cérébrale, CNRS UMR 8118, Université Paris Descartes, Paris, France
| |
Collapse
|
33
|
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:863-885. [PMID: 28409282 PMCID: PMC5427160 DOI: 10.1007/s00401-017-1708-8] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022]
Abstract
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
Collapse
|
34
|
Ohgomori T, Yamasaki R, Takeuchi H, Kadomatsu K, Kira JI, Jinno S. Differential involvement of vesicular and glial glutamate transporters around spinal α-motoneurons in the pathogenesis of SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience 2017; 356:114-124. [PMID: 28526579 DOI: 10.1016/j.neuroscience.2017.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/31/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
From a view point of the glutamate excitotoxicity theory, several studies have suggested that abnormal glutamate homeostasis via dysfunction of glial glutamate transporter-1 (GLT-1) may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). However, the detailed role of GLT-1 in the pathogenies of ALS remains controversial. To assess this issue, here we elucidated structural alterations associated with dysregulation of glutamate homeostasis using SOD1G93A mice, a genetic model of familial ALS. We first examined the viability of α-motoneurons in the lumbar spinal cord of SOD1G93A mice. Measurement of the soma size and density indicated that α-motoneurons might be intact at 9weeks of age (presymptomatic stage), then soma shrinkage began at 15weeks of age (progressive stage), and finally neuronal density declined at 21weeks of age (end stage). Next, we carried out the line profile analysis, and found that the coverage of α-motoneurons by GLT-1-positive (GLT-1+) astrocytic processes was decreased only at 21weeks of age, while the reduction of coverage of α-motoneurons by synaptophysin-positive (SYP+) presynaptic terminals began at 15weeks of age. Interestingly, the coverage of α-motoneurons by VGluT2+ presynaptic terminals was transiently increased at 9weeks of age, and then gradually decreased towards 21weeks of age. On the other hand, there were no time-dependent alterations in the coverage of α-motoneurons by GABAergic presynaptic terminals. These findings suggest that VGluT2 and GLT-1 may be differentially involved in the pathogenesis of ALS via abnormal glutamate homeostasis at the presymptomatic stage and end stage of disease, respectively.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
35
|
Transfer of pathogenic and nonpathogenic cytosolic proteins between spinal cord motor neurons in vivo in chimeric mice. Proc Natl Acad Sci U S A 2017; 114:E3139-E3148. [PMID: 28348221 DOI: 10.1073/pnas.1701465114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent studies have reported spread of pathogenic proteins in the mammalian nervous system, but whether nonpathogenic ones spread is unknown. We initially investigated whether spread of a mutant amyotrophic lateral sclerosis-associated cytosolic superoxide dismutase 1 (SOD1) protein between motor neurons could be detected in intact chimeric mice. Eight-cell embryos from G85R SOD1YFP and G85R SOD1CFP mice were aggregated, and spinal cords of adult chimeric progeny were examined for motor neurons with cytosolic double fluorescence. By 3 mo of age, we observed extensive double fluorescence, including in amyotrophic lateral sclerosis-affected cranial nerve motor nuclei but not in the relatively spared extraocular nuclei. Chimeras of nonpathogenic wtSOD1YFP and G85R SOD1CFP also exhibited double fluorescence. In a third chimera, mitochondrial mCherry did not transfer to G85R SOD1YFP motor neurons, suggesting that neither RNA nor organelles transfer, but mito-mCherry neurons received G85R SOD1YFP. In a chimera of ChAT promoter-EGFP and mito-mCherry, EGFP efficiently transferred to mito-mCherry+ cells. Thus, nonpathogenic cytosolic proteins appear capable of transfer. During study of both the SOD1FP and EGFP chimeras, we observed fluorescence also in small cells neighboring the motor neurons, identified as mature gray matter oligodendrocytes. Double fluorescence in the G85R SOD1FP chimera and observation of the temporal development of fluorescence first in motor neurons and then in these oligodendrocytes suggest that they may be mediators of transfer of cytosolic proteins between motor neurons.
Collapse
|
36
|
An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na +-Activated K + Channels in Aplysia Neurons. J Neurosci 2017; 37:2258-2265. [PMID: 28119399 DOI: 10.1523/jneurosci.3102-16.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/29/2016] [Accepted: 01/10/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations that alter levels of Slack (KCNT1) Na+-activated K+ current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica, a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na+ from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na+-activated K+ channels in neurons.SIGNIFICANCE STATEMENT Slack Na+-activated K+ channels (KCNT1, KNa1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal development and function. We find that injection of oligomers of mutant superoxide dismutase 1 (SOD1) into the cytoplasm of invertebrate neurons rapidly suppresses these Na+-activated K+ currents and that this effect is mediated by a MAP kinase cascade, including ASK1 and c-Jun N-terminal kinase. Because amyotrophic lateral sclerosis is a fatal adult-onset neurodegenerative disease produced by mutations in SOD1 that cause the enzyme to form toxic oligomers, our findings suggest that suppression of Slack channels may be an early step in the progression of the disease.
Collapse
|
37
|
Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice. Proc Natl Acad Sci U S A 2016; 113:E7600-E7609. [PMID: 27821773 DOI: 10.1073/pnas.1616832113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease prominently featuring motor neuron (MN) loss and paralysis. A recent study using whole-cell patch clamp recording of MNs in acute spinal cord slices from symptomatic adult ALS mice showed that the fastest firing MNs are preferentially lost. To measure the in vivo effects of such loss, awake symptomatic-stage ALS mice performing self-initiated walking on a wheel were studied. Both single-unit extracellular recordings within spinal cord MN pools for lower leg flexor and extensor muscles and the electromyograms (EMGs) of the corresponding muscles were recorded. In the ALS mice, we observed absent or truncated high-frequency firing of MNs at the appropriate time in the step cycle and step-to-step variability of the EMG, as well as flexor-extensor coactivation. In turn, kinematic analysis of walking showed step-to-step variability of gait. At the MN level, the higher frequencies absent from recordings from mutant mice corresponded with the upper range of frequencies observed for fast-firing MNs in earlier slice measurements. These results suggest that, in SOD1-linked ALS mice, symptoms are a product of abnormal MN firing due at least in part to loss of neurons that fire at high frequency, associated with altered EMG patterns and hindlimb kinematics during gait.
Collapse
|
38
|
Leroy F, Lamotte d'Incamps B. The Preparation of Oblique Spinal Cord Slices for Ventral Root Stimulation. J Vis Exp 2016. [PMID: 27768090 DOI: 10.3791/54525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Electrophysiological recordings from spinal cord slices have proven to be a valuable technique to investigate a wide range of questions, from cellular to network properties. We show how to prepare viable oblique slices of the spinal cord of young mice (P2 - P11). In this preparation, the motoneurons retain their axons coming out from the ventral roots of the spinal cord. Stimulation of these axons elicits back-propagating action potentials invading the motoneuron somas and exciting the motoneuron collaterals within the spinal cord. Recording of antidromic action potentials is an immediate, definitive and elegant way to characterize motoneuron identity, which surpasses other identification methods. Furthermore, stimulating the motoneuron collaterals is a simple and reliable way to excite the collateral targets of the motoneurons within the spinal cord, such as other motoneurons or Renshaw cells. In this protocol, we present antidromic recordings from the motoneuron somas as well as Renshaw cell excitation, resulting from ventral root stimulation.
Collapse
Affiliation(s)
- Félix Leroy
- Centre National de la Recherche Scientifique (UMR 8119), Centre de Neurophysique, Physiologie et Pathologie, Université Paris Descartes;
| | - Boris Lamotte d'Incamps
- Centre National de la Recherche Scientifique (UMR 8119), Centre de Neurophysique, Physiologie et Pathologie, Université Paris Descartes
| |
Collapse
|
39
|
Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, Okuda T, Ohara S, Murayama S, Takao M, Uchida S, Yamanaka K, Misawa H. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep 2016; 6:27354. [PMID: 27264390 PMCID: PMC4893611 DOI: 10.1038/srep27354] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Differential vulnerability among motor neuron (MN) subtypes is a fundamental feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) MNs are more vulnerable than fast fatigue-resistant (FR) or slow (S) MNs. The reason for this selective vulnerability remains enigmatic. We report here that the extracellular matrix (ECM) protein osteopontin (OPN) is selectively expressed by FR and S MNs and ALS-resistant motor pools, whereas matrix metalloproteinase-9 (MMP-9) is selectively expressed by FF MNs. OPN is secreted and accumulated as extracellular granules in ECM in three ALS mouse models and a human ALS patient. In SOD1(G93A) mice, OPN/MMP-9 double positivity marks remodeled FR and S MNs destined to compensate for lost FF MNs before ultimately dying. Genetic ablation of OPN in SOD1(G93A) mice delayed disease onset but then accelerated disease progression. OPN induced MMP-9 up-regulation via αvβ3 integrin in ChAT-expressing Neuro2a cells, and also induced CD44-mediated astrocyte migration and microglial phagocytosis in a non-cell-autonomous manner. Our results demonstrate that OPN expressed by FR/S MNs is involved in the second-wave neurodegeneration by up-regulating MMP-9 through αvβ3 integrin in the mouse model of ALS. The differences in OPN/MMP-9 expression profiles in MN subsets partially explain the selective MN vulnerability in ALS.
Collapse
Affiliation(s)
- Yuta Morisaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Mamiko Niikura
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Mizuho Watanabe
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Kosuke Onishi
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Shogo Tanabe
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yasuhiro Moriwaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Takashi Okuda
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Chushin-Matsumoto Hospital, Matsumoto 399-0021, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masaki Takao
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Sae Uchida
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
40
|
Extended survival of misfolded G85R SOD1-linked ALS mice by transgenic expression of chaperone Hsp110. Proc Natl Acad Sci U S A 2016; 113:5424-8. [PMID: 27114530 DOI: 10.1073/pnas.1604885113] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have indicated that mammalian cells contain a cytosolic protein disaggregation machinery comprised of Hsc70, DnaJ homologs, and Hsp110 proteins, the last of which acts to accelerate a rate-limiting step of nucleotide exchange of Hsc70. We tested the ability of transgenic overexpression of a Thy1 promoter-driven human Hsp110 protein, HspA4L (Apg1), in neuronal cells of a transgenic G85R SOD1YFP ALS mouse strain to improve survival. Notably, G85R is a mutant version of Cu/Zn superoxide dismutase 1 (SOD1) that is unable to reach native form and that is prone to aggregation, with prominent YFP-fluorescent aggregates observed in the motor neurons of the transgenic mice as early as 1 mo of age. The several-fold overexpression of Hsp110 in motor neurons of these mice was associated with an increased median survival from ∼5.5 to 7.5 mo and increased maximum survival from 6.5 to 12 mo. Improvement of survival was also observed for a G93A mutant SOD1 ALS strain. We conclude that neurodegeneration associated with cytosolic misfolding and aggregation can be ameliorated by overexpression of Hsp110, likely enhancing the function of a cytosolic disaggregation machinery.
Collapse
|
41
|
Kubat Öktem E, Mruk K, Chang J, Akin A, Kobertz WR, Brown RH. Mutant SOD1 protein increases Nav1.3 channel excitability. J Biol Phys 2016; 42:351-70. [PMID: 27072680 DOI: 10.1007/s10867-016-9411-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/10/2016] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal paralytic disease caused by the degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) are present in ~20% of familial ALS and ~2% of all ALS cases. The most common SOD1 gene mutation in North America is a missense mutation substituting valine for alanine (A4V). In this study, we analyze sodium channel currents in oocytes expressing either wild-type or mutant (A4V) SOD1 protein. We demonstrate that the A4V mutation confers a propensity to hyperexcitability on a voltage-dependent sodium channel (Nav1.3) mediated by heightened total Na(+) conductance and a hyperpolarizing shift in the voltage dependence of Nav1.3 activation. To estimate the impact of these channel effects on excitability in an intact neuron, we simulated these changes in the program NEURON; this shows that the changes induced by mutant SOD1 increase the spontaneous firing frequency of the simulated neuron. These findings are consistent with the view that excessive excitability of neurons is one component in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Elif Kubat Öktem
- Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey. .,REMER (Regenerative and Restorative Medicine Research Center), Istanbul Medipol University, Istanbul, Turkey.
| | - Karen Mruk
- Departments of Chemical and Systems Biology and Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Chang
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ata Akin
- Department of Medical Engineering, Acıbadem University, Istanbul, Turkey
| | - William R Kobertz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
42
|
Anderson WD, Makadia HK, Vadigepalli R. Molecular variability elicits a tunable switch with discrete neuromodulatory response phenotypes. J Comput Neurosci 2016; 40:65-82. [PMID: 26621106 PMCID: PMC4867553 DOI: 10.1007/s10827-015-0584-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023]
Abstract
Recent single cell studies show extensive molecular variability underlying cellular responses. We evaluated the impact of molecular variability in the expression of cell signaling components and ion channels on electrophysiological excitability and neuromodulation. We employed a computational approach that integrated neuropeptide receptor-mediated signaling with electrophysiology. We simulated a population of neurons in which expression levels of a neuropeptide receptor and multiple ion channels were simultaneously varied within a physiological range. We analyzed the effects of variation on the electrophysiological response to a neuropeptide stimulus. Our results revealed distinct response patterns associated with low versus high receptor levels. Neurons with low receptor levels showed increased excitability and neurons with high receptor levels showed reduced excitability. These response patterns were separated by a narrow receptor level range forming a separatrix. The position of this separatrix was dependent on the expression levels of multiple ion channels. To assess the relative contributions of receptor and ion channel levels to the response profiles, we categorized the responses into six phenotypes based on response kinetics and magnitude. We applied several multivariate statistical approaches and found that receptor and channel expression levels influence the neuromodulation response phenotype through a complex though systematic mapping. Our analyses extended our understanding of how cellular responses to neuromodulation vary as a function of molecular expression. Our study showed that receptor expression and biophysical state interact with distinct relative contributions to neuronal excitability.
Collapse
Affiliation(s)
- Warren D Anderson
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Graduate program in Neuroscience, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Hirenkumar K Makadia
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
- Graduate program in Neuroscience, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
- Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust St, Philadelphia, PA, 19107, USA.
| |
Collapse
|
43
|
Direct Lineage Reprogramming Reveals Disease-Specific Phenotypes of Motor Neurons from Human ALS Patients. Cell Rep 2015; 14:115-128. [PMID: 26725112 DOI: 10.1016/j.celrep.2015.12.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 10/17/2015] [Accepted: 11/23/2015] [Indexed: 12/12/2022] Open
Abstract
Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here, we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification.
Collapse
|
44
|
Leroy F, Zytnicki D. Is hyperexcitability really guilty in amyotrophic lateral sclerosis? Neural Regen Res 2015; 10:1413-5. [PMID: 26604899 PMCID: PMC4625504 DOI: 10.4103/1673-5374.165308] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Felix Leroy
- Centre de Neurophysique, Physiologie et Pathologie, UMR 8119, Université Paris Descartes, UMR 8119, 45 rue des Saints-Pères, 752070 Paris Cedex 06, France
| | - Daniel Zytnicki
- Centre de Neurophysique, Physiologie et Pathologie, UMR 8119, Université Paris Descartes, UMR 8119, 45 rue des Saints-Pères, 752070 Paris Cedex 06, France
| |
Collapse
|
45
|
Durand J, Filipchuk A, Pambo-Pambo A, Amendola J, Borisovna Kulagina I, Guéritaud JP. Developing electrical properties of postnatal mouse lumbar motoneurons. Front Cell Neurosci 2015; 9:349. [PMID: 26388736 PMCID: PMC4557103 DOI: 10.3389/fncel.2015.00349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/20/2015] [Indexed: 11/13/2022] Open
Abstract
We studied the rapid changes in electrical properties of lumbar motoneurons between postnatal days 3 and 9 just before mice weight-bear and walk. The input conductance and rheobase significantly increased up to P8. A negative correlation exists between the input resistance (Rin) and rheobase. Both parameters are significantly correlated with the total dendritic surface area of motoneurons, the largest motoneurons having the lowest Rin and the highest rheobase. We classified the motoneurons into three groups according to their discharge firing patterns during current pulse injection (transient, delayed onset, sustained). The delayed onset firing type has the highest rheobase and the fastest action potential (AP) whereas the transient firing group has the lowest rheobase and the less mature AP. We found 32 and 10% of motoneurons with a transient firing at P3-P5 and P8, respectively. About 20% of motoneurons with delayed onset firing were detected at P8. At P9, all motoneurons exhibit a sustained firing. We defined five groups of motoneurons according to their discharge firing patterns in response to ascending and descending current ramps. In addition to the four classical types, we defined a fifth type called transient for the quasi-absence of discharge during the descending phase of the ramp. This transient type represents about 40% between P3-P5 and tends to disappear with age. Types 1 and 2 (linear and clockwise hysteresis) are the most preponderant at P6-P7. Types 3 and 4 (prolonged sustained and counter clockwise hysteresis) emerge at P8-P9. The emergence of types 3 and 4 probably depends on the maturation of L type calcium channels in the dendrites of motoneurons. No correlation was found between groups defined by step or triangular ramp of currents with the exception of transient firing patterns. Our data support the idea that a switch in the electrical properties of lumbar motoneurons might exist in the second postnatal week of life in mice.
Collapse
Affiliation(s)
- Jacques Durand
- Institut de Neurosciences de la Timone, Aix Marseille Université - CNRS, UMR 7289 Marseille, France
| | - Anton Filipchuk
- Institut de Neurosciences de la Timone, Aix Marseille Université - CNRS, UMR 7289 Marseille, France
| | - Arnaud Pambo-Pambo
- Institut de Neurosciences de la Timone, Aix Marseille Université - CNRS, UMR 7289 Marseille, France
| | - Julien Amendola
- Institut de Neurosciences de la Timone, Aix Marseille Université - CNRS, UMR 7289 Marseille, France
| | | | - Jean-Patrick Guéritaud
- Institut de Neurosciences de la Timone, Aix Marseille Université - CNRS, UMR 7289 Marseille, France
| |
Collapse
|
46
|
Milan L, Courtand G, Cardoit L, Masmejean F, Barrière G, Cazalets JR, Garret M, Bertrand SS. Age-Related Changes in Pre- and Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93A Lumbar Motoneurons. PLoS One 2015; 10:e0135525. [PMID: 26305672 PMCID: PMC4549056 DOI: 10.1371/journal.pone.0135525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/22/2015] [Indexed: 11/19/2022] Open
Abstract
Large cholinergic synaptic terminals known as C-boutons densely innervate the soma and proximal dendrites of motoneurons that are prone to neurodegeneration in amyotrophic lateral sclerosis (ALS). Studies using the Cu/Zn-superoxide dismutase (SOD1) mouse model of ALS have generated conflicting data regarding C-bouton alterations exhibited during ALS pathogenesis. In the present work, a longitudinal study combining immunohistochemistry, biochemical approaches and extra- and intra-cellular electrophysiological recordings revealed that the whole spinal cholinergic system is modified in the SOD1 mouse model of ALS compared to wild type (WT) mice as early as the second postnatal week. In WT motoneurons, both C-bouton terminals and associated M2 postsynaptic receptors presented a complex age-related dynamic that appeared completely disrupted in SOD1 motoneurons. Indeed, parallel to C-bouton morphological alterations, analysis of confocal images revealed a clustering process of M2 receptors during WT motoneuron development and maturation that was absent in SOD1 motoneurons. Our data demonstrated for the first time that the lamina X cholinergic interneurons, the neuronal source of C-boutons, are over-abundant in high lumbar segments in SOD1 mice and are subject to neurodegeneration in the SOD1 animal model. Finally, we showed that early C-bouton system alterations have no physiological impact on the cholinergic neuromodulation of newborn motoneurons. Altogether, these data suggest a complete reconfiguration of the spinal cholinergic system in SOD1 spinal networks that could be part of the compensatory mechanisms established during spinal development.
Collapse
Affiliation(s)
- Léa Milan
- INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | - Gilles Courtand
- INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | - Laura Cardoit
- INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | | | | | | | - Maurice Garret
- INCIA, Université de Bordeaux, CNRS UMR5287, Bordeaux, France
| | | |
Collapse
|
47
|
Fernández-Borges N, Eraña H, Venegas V, Elezgarai SR, Harrathi C, Castilla J. Animal models for prion-like diseases. Virus Res 2015; 207:5-24. [PMID: 25907990 DOI: 10.1016/j.virusres.2015.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a β-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid β peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease.
Collapse
Affiliation(s)
| | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Chafik Harrathi
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain.
| |
Collapse
|