1
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
3
|
Power G, Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Integrating molecular and cellular components of endothelial shear stress mechanotransduction. Am J Physiol Heart Circ Physiol 2024; 327:H989-H1003. [PMID: 39178024 PMCID: PMC11482243 DOI: 10.1152/ajpheart.00431.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
The lining of blood vessels is constantly exposed to mechanical forces exerted by blood flow against the endothelium. Endothelial cells detect these tangential forces (i.e., shear stress), initiating a host of intracellular signaling cascades that regulate vascular physiology. Thus, vascular health is tethered to the endothelial cells' capacity to transduce shear stress. Indeed, the mechanotransduction of shear stress underlies a variety of cardiovascular benefits, including some of those associated with increased physical activity. However, endothelial mechanotransduction is impaired in aging and disease states such as obesity and type 2 diabetes, precipitating the development of vascular disease. Understanding endothelial mechanotransduction of shear stress, and the molecular and cellular mechanisms by which this process becomes defective, is critical for the identification and development of novel therapeutic targets against cardiovascular disease. In this review, we detail the primary mechanosensitive structures that have been implicated in detecting shear stress, including junctional proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1), the extracellular glycocalyx and its components, and ion channels such as piezo1. We delineate which molecules are truly mechanosensitive and which may simply be indispensable for the downstream transmission of force. Furthermore, we discuss how these mechanosensors interact with other cellular structures, such as the cytoskeleton and membrane lipid rafts, which are implicated in translating shear forces to biochemical signals. Based on findings to date, we also seek to integrate these cellular and molecular mechanisms with a view of deciphering endothelial mechanotransduction of shear stress, a tenet of vascular physiology.
Collapse
Affiliation(s)
- Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
| | | | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
4
|
Tiberio F, Coda ARD, Tosi DD, Luzi D, Polito L, Liso A, Lattanzi W. Mechanobiology and Primary Cilium in the Pathophysiology of Bone Marrow Myeloproliferative Diseases. Int J Mol Sci 2024; 25:8860. [PMID: 39201546 PMCID: PMC11354938 DOI: 10.3390/ijms25168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Philadelphia-Negative Myeloproliferative neoplasms (MPNs) are a diverse group of blood cancers leading to excessive production of mature blood cells. These chronic diseases, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), can significantly impact patient quality of life and are still incurable in the vast majority of the cases. This review examines the mechanobiology within a bone marrow niche, emphasizing the role of mechanical cues and the primary cilium in the pathophysiology of MPNs. It discusses the influence of extracellular matrix components, cell-cell and cell-matrix interactions, and mechanosensitive structures on hematopoietic stem cell (HSC) behavior and disease progression. Additionally, the potential implications of the primary cilium as a chemo- and mechanosensory organelle in bone marrow cells are explored, highlighting its involvement in signaling pathways crucial for hematopoietic regulation. This review proposes future research directions to better understand the dysregulated bone marrow niche in MPNs and to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Federica Tiberio
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Domiziano Dario Tosi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Debora Luzi
- S.C. Oncoematologia, Azienda Ospedaliera di Terni, 05100 Terni, Italy;
| | - Luca Polito
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
| | - Arcangelo Liso
- Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy
| | - Wanda Lattanzi
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.T.); (D.D.T.); (L.P.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
5
|
Sharma A, Gupta DK, Bisen S, Singh NK. Comparative evaluation of trypsin and elastase digestion techniques for isolation of murine retinal vasculature. Microvasc Res 2024; 154:104682. [PMID: 38521153 PMCID: PMC11180566 DOI: 10.1016/j.mvr.2024.104682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Dysfunctional pericytes and disruption of adherens or tight junctions are related to many microvascular diseases, including diabetic retinopathy. In this context, visualizing retinal vascular architecture becomes essential for understanding retinal vascular disease pathophysiology. Although flat mounts provide a demonstration of the retinal blood vasculature, they often lack a clear view of microaneurysms and capillary architecture. Trypsin and elastase digestion are the two techniques for isolating retinal vasculatures in rats, mice, and other animal models. Our observations in the present study reveal that trypsin digestion impacts the association between pericytes and endothelial cells. In contrast, elastase digestion effectively preserves these features in the blood vessels. Furthermore, trypsin digestion disrupts endothelial adherens and tight junctions that elastase digestion does not. Therefore, elastase digestion emerges as a superior technique for isolating retinal vessels, which can be utilized to collect reliable and consistent data to comprehend the pathophysiology of disorders involving microvascular structures.
Collapse
Affiliation(s)
- Anamika Sharma
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Dhiraj Kumar Gupta
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Shivantika Bisen
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA
| | - Nikhlesh K Singh
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA; Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
6
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Van Schoor K, Bruet E, Jones EAV, Migeotte I. Origin and flow-mediated remodeling of the murine and human extraembryonic circulation systems. Front Physiol 2024; 15:1395006. [PMID: 38818524 PMCID: PMC11137303 DOI: 10.3389/fphys.2024.1395006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
The transduction of mechanical stimuli produced by blood flow is an important regulator of vascular development. The vitelline and umbilico-placental circulations are extraembryonic vascular systems that are required for proper embryonic development in mammalian embryos. The morphogenesis of the extraembryonic vasculature and the cardiovascular system of the embryo are hemodynamically and molecularly connected. Here we provide an overview of the establishment of the murine and human vitelline and umbilico-placental vascular systems and how blood flow influences various steps in their development. A deeper comprehension of extraembryonic vessel development may aid the establishment of stem-cell based embryo models and provide novel insights to understanding pregnancy complications related to the umbilical cord and placenta.
Collapse
Affiliation(s)
- Kristof Van Schoor
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emmanuel Bruet
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elizabeth Anne Vincent Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Department of Cardiology CARIM School for Cardiovascular Diseases Maastricht University, Maastricht, Netherlands
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
8
|
Seo T, Lowery AM, Xu H, Giang W, Troyanovsky SM, Vincent PA, Kowalczyk AP. MARCH family E3 ubiquitin ligases selectively target and degrade cadherin family proteins. PLoS One 2024; 19:e0290485. [PMID: 38722959 PMCID: PMC11081302 DOI: 10.1371/journal.pone.0290485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.
Collapse
Affiliation(s)
- Tadahiko Seo
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Anthony M. Lowery
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Haifang Xu
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Sergey M. Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Andrew P. Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| |
Collapse
|
9
|
Cheng L, Shi H, Du L, Liu Q, Yue H, Zhang H, Liu X, Xie J, Shen Y. Hemodynamic force dictates endothelial angiogenesis through MIEN1-ERK/MAPK-signaling axis. J Cell Physiol 2024; 239:e31177. [PMID: 38214132 DOI: 10.1002/jcp.31177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
It is well-recognized that blood flow at branches and bends of arteries generates disturbed shear stress, which plays a crucial in driving atherosclerosis. Flow-generated fluid shear stress (FSS), as one of the key hemodynamic factors, is appreciated for its critical involvement in regulating angiogenesis to facilitate wound healing and tissue repair. Endothelial cells can directly sense FSS but the mechanobiological mechanism by which they decode different patterns of FSS to trigger angiogenesis remains unclear. In the current study, laminar shear stress (LSS, 15 dyn/cm2) was employed to mimic physiological blood flow, while disturbed shear stress (DSS, ranging from 0.5 ± 4 dyn/cm2) was applied to simulate pathological conditions. The aim was to investigate how these distinct types of blood flow regulated endothelial angiogenesis. Initially, we observed that DSS impaired angiogenesis and downregulated endogenous vascular endothelial growth factor B (VEGFB) expression compared to LSS. We further found that the changes in membrane protein, migration and invasion enhancer 1 (MIEN1) play a role in regulating ERK/MAPK signaling, thereby contributing to endothelial angiogenesis in response to FSS. We also showed the involvement of MIEN1-directed cytoskeleton organization. These findings suggest the significance of shear stress in endothelial angiogenesis, thereby enhancing our understanding of the alterations in angiogenesis that occur during the transition from physiological to pathological blood flow.
Collapse
Affiliation(s)
- Lin Cheng
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Huiyu Shi
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Lingyu Du
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Qiao Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hongyan Yue
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Huaiyi Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Shen
- West China School of Basic Medical Sciences & Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
10
|
Wendong Y, Jiali J, Qiaomei F, Yayun W, Xianze X, Zheng S, Wei H. Biomechanical forces and force-triggered drug delivery in tumor neovascularization. Biomed Pharmacother 2024; 171:116117. [PMID: 38171243 DOI: 10.1016/j.biopha.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Tumor angiogenesis is one of the typical hallmarks of tumor occurrence and development, and tumor neovascularization also exhibits distinct characteristics from normal blood vessels. As the number of cells and matrix inside the tumor increases, the biomechanical force is enhanced, specifically manifested as solid stress, fluid stress, stiffness, and topology. This mechanical microenvironment also provides shelter for tumors and intensifies angiogenesis, providing oxygen and nutritional support for tumor progression. During tumor development, the biomechanical microenvironment also emerges, which in turn feeds back to regulate the tumor progression, including tumor angiogenesis, and biochemical and biomechanical signals can regulate tumor angiogenesis. Blood vessels possess inherent sensitivity to mechanical stimuli, but compared to the extensive research on biochemical signal regulation, the study of the regulation of tumor neovascularization by biomechanical signals remains relatively scarce. Biomechanical forces can affect the phenotypic characteristics and mechanical signaling pathways of tumor blood vessels, directly regulating angiogenesis. Meanwhile, they can indirectly regulate tumor angiogenesis by causing an imbalance in angiogenesis signals and affecting stromal cell function. Understanding the regulatory mechanism of biomechanical forces in tumor angiogenesis is beneficial for better identifying and even taming the mechanical forces involved in angiogenesis, providing new therapeutic targets for tumor vascular normalization. Therefore, we summarized the composition of biomechanical forces and their direct or indirect regulation of tumor neovascularization. In addition, this review discussed the use of biomechanical forces in combination with anti-angiogenic therapies for the treatment of tumors, and biomechanical forces triggered delivery systems.
Collapse
Affiliation(s)
- Yao Wendong
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Jiang Jiali
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Fan Qiaomei
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Weng Yayun
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Xie Xianze
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China
| | - Shi Zheng
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China.
| | - Huang Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310005, China.
| |
Collapse
|
11
|
Johnson BM, Johnson AM, Heim M, Buckley M, Mortimer B, Berry JL, Sewell-Loftin MK. Biomechanical stimulation promotes blood vessel growth despite VEGFR-2 inhibition. BMC Biol 2023; 21:290. [PMID: 38072992 PMCID: PMC10712065 DOI: 10.1186/s12915-023-01792-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Angiogenesis, or the growth of new vasculature from existing blood vessels, is widely considered a primary hallmark of cancer progression. When a tumor is small, diffusion is sufficient to receive essential nutrients; however, as the tumor grows, a vascular supply is needed to deliver oxygen and nutrients into the increasing mass. Several anti-angiogenic cancer therapies target VEGF and the receptor VEGFR-2, which are major promoters of blood vessel development. Unfortunately, many of these cancer treatments fail to completely stop angiogenesis in the tumor microenvironment (TME). Since these therapies focus on the biochemical activation of VEGFR-2 via VEGF ligand binding, we propose that mechanical cues, particularly those found in the TME, may be a source of VEGFR-2 activation that promotes growth of blood vessel networks even in the presence of VEGF and VEGFR-2 inhibitors. RESULTS In this paper, we analyzed phosphorylation patterns of VEGFR-2, particularly at Y1054/Y1059 and Y1214, stimulated via either VEGF or biomechanical stimulation in the form of tensile strains. Our results show prolonged and enhanced activation at both Y1054/Y1059 and Y1214 residues when endothelial cells were stimulated with strain, VEGF, or a combination of both. We also analyzed Src expression, which is downstream of VEGFR-2 and can be activated through strain or the presence of VEGF. Finally, we used fibrin gels and microfluidic devices as 3D microtissue models to simulate the TME. We determined that regions of mechanical strain promoted increased vessel growth, even with VEGFR-2 inhibition through SU5416. CONCLUSIONS Overall, understanding both the effects that biomechanical and biochemical stimuli have on VEGFR-2 activation and angiogenesis is an important factor in developing effective anti-angiogenic therapies. This paper shows that VEGFR-2 can be mechanically activated through strain, which likely contributes to increased angiogenesis in the TME. These proof-of-concept studies show that small molecular inhibitors of VEGFR-2 do not fully prevent angiogenesis in 3D TME models when mechanical strains are introduced.
Collapse
Affiliation(s)
- Bronte Miller Johnson
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
| | - Allison McKenzie Johnson
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
| | - Michael Heim
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
| | - Molly Buckley
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
| | - Bryan Mortimer
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Joel L Berry
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1824 6th Avenue South, Wallace Tumor Institute, Room 630A, Birmingham, AL, 35294, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
12
|
Bao L, Kong H, Ja Y, Wang C, Qin L, Sun H, Dai S. The relationship between cancer and biomechanics. Front Oncol 2023; 13:1273154. [PMID: 37901315 PMCID: PMC10602664 DOI: 10.3389/fonc.2023.1273154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
The onset, development, diagnosis, and treatment of cancer involve intricate interactions among various factors, spanning the realms of mechanics, physics, chemistry, and biology. Within our bodies, cells are subject to a variety of forces such as gravity, magnetism, tension, compression, shear stress, and biological static force/hydrostatic pressure. These forces are perceived by mechanoreceptors as mechanical signals, which are then transmitted to cells through a process known as mechanical transduction. During tumor development, invasion and metastasis, there are significant biomechanical influences on various aspects such as tumor angiogenesis, interactions between tumor cells and the extracellular matrix (ECM), interactions between tumor cells and other cells, and interactions between tumor cells and the circulatory system and vasculature. The tumor microenvironment comprises a complex interplay of cells, ECM and vasculature, with the ECM, comprising collagen, fibronectins, integrins, laminins and matrix metalloproteinases, acting as a critical mediator of mechanical properties and a key component within the mechanical signaling pathway. The vasculature exerts appropriate shear forces on tumor cells, enabling their escape from immune surveillance, facilitating their dissemination in the bloodstream, dictating the trajectory of circulating tumor cells (CTCs) and playing a pivotal role in regulating adhesion to the vessel wall. Tumor biomechanics plays a critical role in tumor progression and metastasis, as alterations in biomechanical properties throughout the malignant transformation process trigger a cascade of changes in cellular behavior and the tumor microenvironment, ultimately culminating in the malignant biological behavior of the tumor.
Collapse
Affiliation(s)
- Liqi Bao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Ja
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengchao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Dai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Hanson BE, Casey DP. Intermittent versus continuous handgrip exercise and peripheral endothelial function: impact of shear rate fluctuations. J Appl Physiol (1985) 2023; 135:892-901. [PMID: 37650140 DOI: 10.1152/japplphysiol.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
Sustained exercise-induced elevations in shear rate (SR) have been well established as beneficial for improving endothelial function. However, the impact of intermittent fluctuations in SR is not understood. We investigated the effect of intermittent SR elevations compared with sustained elevations on peripheral endothelial function. Brachial artery flow-mediated dilation (FMD) was assessed in 13 adults (9 M/4 F; 22 ± 4 yr) before and after 30 min of handgrip exercise. Three different rhythmic forearm exercise interventions were performed at a rate of 20 contractions/min. Intermittent exercises (6 × 3 min exercise interspersed by 2 min of rest) were performed at 25% (INT-25%) and 15% (INT-15%) maximum voluntary contraction (MVC), and continuous exercise was completed at 15% MVC. Brachial artery diameter and velocity were measured using Doppler ultrasound. The total increase in SR above baseline throughout exercise was greater during INT-25% (4,441 ± 516 s-1) and continuous (4,070 ± 407 s-1) compared with INT-15% (2,811 ± 342 s-1, P < 0.05). The %FMD increased following all exercises (INT-25%: 5.7 ± 1.2% to 8.1 ± 1.2%; INT-15%: 5.2 ± 1.2% to 7.0 ± 1.1%; continuous: 5.5 ± 1.3% to 6.8 ± 1.3%, P < 0.05 for all). The increase following INT-25% was significantly greater than INT-15% and continuous (P < 0.05 for both). Normalized FMD to shear rate area under the curve increased with intermittent exercise (INT-25%: 2.2 ± 0.2% to 3.4 ± 0.3%; INT-15%: 2.1 ± 0.2% to 3.2 ± 0.2%, P < 0.05 for both) but did not following continuous (2.1 ± 0.2% to 2.5 ± 0.1%, P = 0.06). The increase in normalized FMD with intermittent exercises were greater than continuous (P < 0.05 for both). These findings suggest intermittent fluctuations in SR during handgrip exercise may be more beneficial than sustained elevations on improving peripheral endothelial function.NEW & NOTEWORTHY Exercise-induced increases in shear rate is a well-established stimulus for improving peripheral endothelial function. This study presents novel findings that intermittent elevations in shear rate may be more effective at acutely improving endothelial function compared with continuous elevations. Despite similar increases in total shear rate during handgrip exercise intermittent elevations produced a significantly greater increase in endothelial function when compared with continuous elevations potentially indicating intermittent elevations as a more effective stimulus for acute improvements.
Collapse
Affiliation(s)
- Brady E Hanson
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Darren P Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
14
|
Seo T, Lowery AM, Xu H, Giang W, Troyanovsky SM, Vincent PA, Kowalczyk AP. MARCH family E3 ubiquitin ligases selectively target and degrade cadherin family proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552739. [PMID: 37609155 PMCID: PMC10441400 DOI: 10.1101/2023.08.10.552739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation. We find that MARCH2 selectively downregulates VE-cadherin, resulting in loss of adherens junction proteins at cell borders and a loss of endothelial barrier function. Interestingly, N-cadherin is refractory to MARCH ligase expression, demonstrating that different classical cadherin family proteins are differentially regulated by MARCH family ligases. Using chimeric cadherins, we find that the specificity of different MARCH family ligases for different cadherins is conferred by the cadherin transmembrane domain. Further, juxta-membrane lysine residues are required for cadherin degradation by MARCH proteins. These findings expand our understanding of cadherin regulation and highlight a new role for mammalian MARCH family ubiquitin ligases in differentially regulating cadherin turnover.
Collapse
Affiliation(s)
- Tadahiko Seo
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Anthony M. Lowery
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Haifang Xu
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - William Giang
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Sergey M. Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peter A. Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Andrew P. Kowalczyk
- Departments of Dermatology and Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
15
|
Bosseboeuf E, Chikh A, Chaker AB, Mitchell TP, Vignaraja D, Rajendrakumar R, Khambata RS, Nightingale TD, Mason JC, Randi AM, Ahluwalia A, Raimondi C. Neuropilin-1 interacts with VE-cadherin and TGFBR2 to stabilize adherens junctions and prevent activation of endothelium under flow. Sci Signal 2023; 16:eabo4863. [PMID: 37220183 PMCID: PMC7614756 DOI: 10.1126/scisignal.abo4863] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Linear and disturbed flow differentially regulate gene expression, with disturbed flow priming endothelial cells (ECs) for a proinflammatory, atheroprone expression profile and phenotype. Here, we investigated the role of the transmembrane protein neuropilin-1 (NRP1) in ECs exposed to flow using cultured ECs, mice with an endothelium-specific knockout of NRP1, and a mouse model of atherosclerosis. We demonstrated that NRP1 was a constituent of adherens junctions that interacted with VE-cadherin and promoted its association with p120 catenin, stabilizing adherens junctions and inducing cytoskeletal remodeling in alignment with the direction of flow. We also showed that NRP1 interacted with transforming growth factor-β (TGF-β) receptor II (TGFBR2) and reduced the plasma membrane localization of TGFBR2 and TGF-β signaling. NRP1 knockdown increased the abundance of proinflammatory cytokines and adhesion molecules, resulting in increased leukocyte rolling and atherosclerotic plaque size. These findings describe a role for NRP1 in promoting endothelial function and reveal a mechanism by which NRP1 reduction in ECs may contribute to vascular disease by modulating adherens junction signaling and promoting TGF-β signaling and inflammation.
Collapse
Affiliation(s)
- Emy Bosseboeuf
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anissa Chikh
- Molecular and Clinical Sciences Research Institute, St. George’s, University of London, London SW17 0RE, UK
| | - Ahmed Bey Chaker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Tom P. Mitchell
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Dhilakshani Vignaraja
- Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Ridhi Rajendrakumar
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rayomand S. Khambata
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Thomas D. Nightingale
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre for Microvascular Research, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Justin C. Mason
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Anna M. Randi
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK
| | - Amrita Ahluwalia
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claudio Raimondi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Centre of Cardiovascular Medicine and Devices, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
16
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
17
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
18
|
Inflammation of the Human Dental Pulp Induces Phosphorylation of eNOS at Thr495 in Blood Vessels. Biomedicines 2022; 10:biomedicines10071586. [PMID: 35884891 PMCID: PMC9313222 DOI: 10.3390/biomedicines10071586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
The activity of endothelial nitric oxide synthase (eNOS) in endothelial cells increased with the phosphorylation of the enzyme at Ser1177 and decreased at Thr495. The regulation of the phosphorylation sites of eNOS at Ser1177 and Thr495 in blood vessels of the healthy and inflamed human dental pulp is unknown. To investigate this, healthy and carious human third molars were immersion-fixed and decalcified. The localization of eNOS, Ser1177, and Thr495 in healthy and inflamed blood vessels was examined in consecutive cryo-sections using quantitative immunohistochemical methods. We found that the staining intensity of Ser1177 in healthy blood vessels decreased in inflamed blood vessels, whereas the weak staining intensity of Thr495 in healthy blood vessels strongly increased in inflamed blood vessels. In blood vessels of the healthy pulp, eNOS is active with phosphorylation of the enzyme at Ser1177. The phosphorylation of eNOS at Thr495 in inflamed blood vessels leads to a decrease in eNOS activity, contributing to eNOS uncoupling and giving evidence for a decrease in NO and an increase in O2− production. Since the formation of the tertiary dentin matrix depends on intact pulp circulation, eNOS uncoupling and phosphorylation of eNOS at Thr495 in the inflamed pulp blood vessels should be considered during caries therapy.
Collapse
|
19
|
He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics. Pharmacol Ther 2022; 235:108152. [PMID: 35122834 DOI: 10.1016/j.pharmthera.2022.108152] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Atherosclerotic vascular disease and its complications are among the top causes of mortality worldwide. In the vascular lumen, atherosclerotic plaques are not randomly distributed. Instead, they are preferentially localized at the curvature and bifurcations along the arterial tree, where shear stress is low or disturbed. Numerous studies demonstrate that endothelial cell phenotypic change (e.g., inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis, autophagy, endothelial-mesenchymal transition, endothelial permeability, epigenetic regulation, and endothelial metabolic adaptation) induced by oscillatory shear force play a fundamental role in the initiation and progression of atherosclerosis. Mechano-sensors, adaptor proteins, kinases, and transcriptional factors work closely at different layers to transduce the shear stress force from the plasma membrane to the nucleus in endothelial cells, thereby controlling the expression of genes that determine cell fate and phenotype. An in-depth understanding of these mechano-sensitive signaling cascades shall provide new translational strategies for therapeutic intervention of atherosclerotic vascular disease. This review updates the recent advances in endothelial mechano-transduction and its role in the pathogenesis of atherosclerosis, and highlights the perspective of new anti-atherosclerosis therapies through targeting these mechano-regulated signaling molecules.
Collapse
Affiliation(s)
- Lei He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Cheng-Lin Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Qinghua Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
21
|
Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood–Brain Barrier Modeling. J EVOL BIOCHEM PHYS+ 2022; 58:781-806. [PMID: 35789679 PMCID: PMC9243926 DOI: 10.1134/s0022093022030139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
Here, we discuss pathophysiological approaches to the defining
of endothelial dysfunction criteria (i.e., endothelial activation,
impaired endothelial mechanotransduction, endothelial-to-mesenchymal
transition, reduced nitric oxide release, compromised endothelial
integrity, and loss of anti-thrombogenic properties) in different
in vitro and in vivo models. The canonical definition of endothelial
dysfunction includes insufficient production of vasodilators, pro-thrombotic
and pro-inflammatory activation of endothelial cells, and pathologically
increased endothelial permeability. Among the clinical consequences
of endothelial dysfunction are arterial hypertension, macro- and
microangiopathy, and microalbuminuria. We propose to extend the definition
of endothelial dysfunction by adding altered endothelial mechanotransduction
and endothelial-to-mesenchymal transition to its criteria. Albeit
interleukin-6, interleukin-8, and MCP-1/CCL2 dictate the pathogenic
paracrine effects of dysfunctional endothelial cells and are therefore
reliable endothelial dysfunction biomarkers in vitro, they are non-specific
for endothelial cells and cannot be used for the diagnostics of
endothelial dysfunction in vivo. Conceptual improvements in the
existing methods to model endothelial dysfunction, specifically,
in relation to the blood–brain barrier, include endothelial cell
culturing under pulsatile flow, collagen IV coating of flow chambers,
and endothelial lysate collection from the blood vessels of laboratory
animals in situ for the subsequent gene and protein expression profiling.
Combined with the simulation of paracrine effects by using conditioned
medium from dysfunctional endothelial cells, these flow-sensitive
models have a high physiological relevance, bringing the experimental
conditions to the physiological scenario.
Collapse
Affiliation(s)
- A. G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - D. K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - E. A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - M. Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A. V. Sinitskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - V. E. Markova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
22
|
Li-Villarreal N, Wong RLY, Garcia MD, Udan RS, Poché RA, Rasmussen TL, Rhyner AM, Wythe JD, Dickinson ME. FOXO1 represses sprouty 2 and sprouty 4 expression to promote arterial specification and vascular remodeling in the mouse yolk sac. Development 2022; 149:274922. [PMID: 35297995 PMCID: PMC8995087 DOI: 10.1242/dev.200131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.25, loss of Foxo1 in Tie2-cre expressing cells resulted in increased sprouty 2 (Spry2) and Spry4 expression, reduced arterial gene expression and reduced Kdr (also known as Vegfr2 and Flk1) transcripts without affecting overall endothelial cell identity, survival or proliferation. Using a Dll4-BAC-nlacZ reporter line, we found that one of the earliest expressed arterial genes, delta like 4, is significantly reduced in Foxo1 mutant YS without being substantially affected in the embryo proper. We show that FOXO1 binds directly to previously identified Spry2 gene regulatory elements (GREs) and newly identified, evolutionarily conserved Spry4 GREs to repress their expression. Furthermore, overexpression of Spry4 in transient transgenic embryos largely recapitulates the reduced expression of arterial genes seen in conditional Foxo1 mutants. Together, these data reveal a novel role for FOXO1 as a key transcriptional repressor regulating both pre-flow arterial specification and subsequent vessel remodeling within the murine YS.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rebecca Lee Yean Wong
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Monica D. Garcia
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ryan S. Udan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ross A. Poché
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tara L. Rasmussen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alexander M. Rhyner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joshua D. Wythe
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
23
|
Li H, Zhou WY, Xia YY, Zhang JX. Endothelial Mechanosensors for Atheroprone and Atheroprotective Shear Stress Signals. J Inflamm Res 2022; 15:1771-1783. [PMID: 35300215 PMCID: PMC8923682 DOI: 10.2147/jir.s355158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial cells (ECs), derived from the mesoderm, form a single layer of squamous cells that covers the inner surface of blood vessels. In addition to being regulated by chemical signals from the extracellular matrix (ECM) and blood, ECs are directly confronted to complex hemodynamic environment. These physical inputs are translated into biochemical signals, dictating multiple aspects of cell behaviour and destination, including growth, differentiation, migration, adhesion, death and survival. Mechanosensors are initial responders to changes in mechanical environments, and the overwhelming majority of them are located on the plasma membrane. Physical forces affect plasma membrane fluidity and change of protein complexes on plasma membrane, accompanied by altering intercellular connections, cell-ECM adhesion, deformation of the cytoskeleton, and consequently, transcriptional responses in shaping specific phenotypes. Among the diverse forces exerted on ECs, shear stress (SS), defined as tangential friction force exerted by blood flow, has been extensively studied, from mechanosensing to mechanotransduction, as well as corresponding phenotypes. However, the precise mechanosensors and signalling pathways that determine atheroprone and atheroprotective phenotypes of arteries remain unclear. Moreover, it is worth to mention that some established mechanosensors of atheroprotective SS, endothelial glycocalyx, for example, might be dismantled by atheroprone SS. Therefore, we provide an overview of the current knowledge on mechanosensors in ECs for SS signals. We emphasize how these ECs coordinate or differentially participate in phenotype regulation induced by atheroprone and atheroprotective SS.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Wen-Ying Zhou
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Yi-Yuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
| | - Jun-Xia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China
- Correspondence: Jun-Xia Zhang, Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People’s Republic of China, Tel +86 15366155682, Email
| |
Collapse
|
24
|
Czaja B, de Bouter J, Heisler M, Závodszky G, Karst S, Sarunic M, Maberley D, Hoekstra A. The effect of stiffened diabetic red blood cells on wall shear stress in a reconstructed 3D microaneurysm. Comput Methods Biomech Biomed Engin 2022; 25:1691-1709. [PMID: 35199620 DOI: 10.1080/10255842.2022.2034794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Blood flow within the vasculature of the retina has been found to influence the progression of diabetic retinopathy. In this research cell resolved blood flow simulations are used to study the pulsatile flow of whole blood through a segmented retinal microaneurysm. Images were collected using adaptive optics optical coherence tomography of the retina of a patient with diabetic retinopathy, and a sidewall (sacciform) microaneurysm was segmented from the volumetric data. The original microaneurysm neck width was varied to produce two additional aneurysm geometries in order to probe the influence of neck width on the transport of red blood cells and platelets into the aneurysm. Red blood cell membrane stiffness was also increased to resolve the impact of rigid red blood cells, as a result of diabetes, in blood flow. Wall shear stress and wall shear stress gradients were calculated throughout the aneurysm domains, and the quantification of the influence of the red blood cells is presented. Average wall shear stress and wall shear stress gradients increased due to the increase of red blood cell membrane stiffness. Stiffened red blood cells were also found to induce higher local wall shear stress and wall shear stress gradients as they passed through the leading and draining parental vessels. Stiffened red blood cells were found to penetrate the aneurysm sac more than healthy red blood cells, as well as decreasing the margination of platelets to the vessel walls of the parental vessel, which caused a decrease in platelet penetration into the aneurysm sac.
Collapse
Affiliation(s)
- Benjamin Czaja
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan de Bouter
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Morgan Heisler
- School of Engineering Science, Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gábor Závodszky
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands.,Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sonja Karst
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Marinko Sarunic
- School of Engineering Science, Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David Maberley
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alfons Hoekstra
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Miller B, Sewell-Loftin MK. Mechanoregulation of Vascular Endothelial Growth Factor Receptor 2 in Angiogenesis. Front Cardiovasc Med 2022; 8:804934. [PMID: 35087885 PMCID: PMC8787114 DOI: 10.3389/fcvm.2021.804934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelial cells that compose the vascular system in the body display a wide range of mechanotransductive behaviors and responses to biomechanical stimuli, which act in concert to control overall blood vessel structure and function. Such mechanosensitive activities allow blood vessels to constrict, dilate, grow, or remodel as needed during development as well as normal physiological functions, and the same processes can be dysregulated in various disease states. Mechanotransduction represents cellular responses to mechanical forces, translating such factors into chemical or electrical signals which alter the activation of various cell signaling pathways. Understanding how biomechanical forces drive vascular growth in healthy and diseased tissues could create new therapeutic strategies that would either enhance or halt these processes to assist with treatments of different diseases. In the cardiovascular system, new blood vessel formation from preexisting vasculature, in a process known as angiogenesis, is driven by vascular endothelial growth factor (VEGF) binding to VEGF receptor 2 (VEGFR-2) which promotes blood vessel development. However, physical forces such as shear stress, matrix stiffness, and interstitial flow are also major drivers and effectors of angiogenesis, and new research suggests that mechanical forces may regulate VEGFR-2 phosphorylation. In fact, VEGFR-2 activation has been linked to known mechanobiological agents including ERK/MAPK, c-Src, Rho/ROCK, and YAP/TAZ. In vascular disease states, endothelial cells can be subjected to altered mechanical stimuli which affect the pathways that control angiogenesis. Both normalizing and arresting angiogenesis associated with tumor growth have been strategies for anti-cancer treatments. In the field of regenerative medicine, harnessing biomechanical regulation of angiogenesis could enhance vascularization strategies for treating a variety of cardiovascular diseases, including ischemia or permit development of novel tissue engineering scaffolds. This review will focus on the impact of VEGFR-2 mechanosignaling in endothelial cells (ECs) and its interaction with other mechanotransductive pathways, as well as presenting a discussion on the relationship between VEGFR-2 activation and biomechanical forces in the extracellular matrix (ECM) that can help treat diseases with dysfunctional vascular growth.
Collapse
Affiliation(s)
- Bronte Miller
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
Mahendra Y, He M, Rouf MA, Tjakra M, Fan L, Wang Y, Wang G. Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation. Clin Biomech (Bristol, Avon) 2021; 88:105417. [PMID: 34246943 DOI: 10.1016/j.clinbiomech.2021.105417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Arteriovenous malformations are congenital vascular lesions characterized by a direct and tangled connection between arteries and veins, which disrupts oxygen circulation and normal blood flow. Arteriovenous malformations often occur in the patient with hereditary hemorrhagic telangiectasia. The attempts to elucidate the causative factors and pathogenic mechanisms of arteriovenous malformations are now still in progress. Some studies reported that shear stress in blood flow is one of the factors involved in arteriovenous malformations manifestation. Through several mechanotransducers harboring the endothelial cells membrane, the signal from shear stress is transduced towards the responsible signaling pathways in endothelial cells to maintain cell homeostasis. Any disruption in this well-established communication will give rise to abnormal endothelial cells differentiation and specification, which will later promote arteriovenous malformations. In this review, we discuss the update of several mechanotransducers that have essential roles in shear stress-induced signaling pathways, such as activin receptor-like kinase 1, Endoglin, Notch, vascular endothelial growth factor receptor 2, Caveolin-1, Connexin37, and Connexin40. Any disruption of these signaling potentially causes arteriovenous malformations. We also present some recent insights into the fundamental analysis, which attempts to determine potential and alternative solutions to battle arteriovenous malformations, especially in a less invasive and risky way, such as gene treatments.
Collapse
Affiliation(s)
- Yoga Mahendra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Mei He
- Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Muhammad Abdul Rouf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Marco Tjakra
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Longling Fan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
28
|
Li H, Luo Q, Shan W, Cai S, Tie R, Xu Y, Lin Y, Qian P, Huang H. Biomechanical cues as master regulators of hematopoietic stem cell fate. Cell Mol Life Sci 2021; 78:5881-5902. [PMID: 34232331 PMCID: PMC8316214 DOI: 10.1007/s00018-021-03882-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) perceive both soluble signals and biomechanical inputs from their microenvironment and cells themselves. Emerging as critical regulators of the blood program, biomechanical cues such as extracellular matrix stiffness, fluid mechanical stress, confined adhesiveness, and cell-intrinsic forces modulate multiple capacities of HSCs through mechanotransduction. In recent years, research has furthered the scientific community's perception of mechano-based signaling networks in the regulation of several cellular processes. However, the underlying molecular details of the biomechanical regulatory paradigm in HSCs remain poorly elucidated and researchers are still lacking in the ability to produce bona fide HSCs ex vivo for clinical use. This review presents an overview of the mechanical control of both embryonic and adult HSCs, discusses some recent insights into the mechanisms of mechanosensing and mechanotransduction, and highlights the application of mechanical cues aiming at HSC expansion or differentiation.
Collapse
Affiliation(s)
- Honghu Li
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Qian Luo
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Wei Shan
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Shuyang Cai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Yu Lin
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
29
|
Okamoto T, Park EJ, Kawamoto E, Usuda H, Wada K, Taguchi A, Shimaoka M. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166168. [PMID: 33991620 DOI: 10.1016/j.bbadis.2021.166168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases including blood vessel disorders represent a major cause of death globally. The essential roles played by local and systemic vascular inflammation in the pathogenesis of cardiovascular diseases have been increasingly recognized. Vascular inflammation triggers the aberrant activation of endothelial cells, which leads to the functional and structural abnormalities in vascular vessels. In addition to humoral mediators such as pro-inflammatory cytokines and prostaglandins, the alteration of physical and mechanical microenvironment - including vascular stiffness and shear stress - modify the gene expression profiles and metabolic profiles of endothelial cells via mechano-transduction pathways, thereby contributing to the pathogenesis of vessel disorders. Notably, connexins and integrins crosstalk each other in response to the mechanical stress, and, thereby, play an important role in regulating the mechano-transduction of endothelial cells. Here, we provide an overview on how the inter-play between connexins and integrins in endothelial cells unfold during the mechano-transduction in vascular inflammation.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan.
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan.
| |
Collapse
|
30
|
Ruan T, Jiang L, Xu J, Zhou J. Abiraterone suppresses irradiated lung cancer cells-induced angiogenic capacities of endothelial cells. J Bioenerg Biomembr 2021; 53:343-349. [PMID: 33821396 DOI: 10.1007/s10863-021-09894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) threatens human life globally with high morbidity and mortality and radiotherapy is one of the most effective methods for the treatment of NSCLC. However, it is currently reported that the angiogenesis of tumors can be induced by a low dosage of irradiation. Abiraterone is an oral anti-tumor agent for the treatment of castration-resistant prostate cancer (CRPC). In the present study, the anti-angiogenesis effect of Abiraterone against HUVECs incubated with irradiated lung cancer cell medium will be investigated. The HUVECs were incubated with a cultural medium of the NSCLC cell line-A549, Abiraterone-treated A549 cells, irradiation-treated A549 cells, and Abiraterone and irradiation co-treated A549 cells. The tolerable concentration of Abiraterone against HUVECs was determined using MTT assay. The migration and angiogenesis abilities of HUVECs were evaluated using transwell and tube formation assays, respectively. The expression levels of VEGF, MMP-2, and MMP-9 in the treated HUVECs were detected using qRT-PCR and ELISA. Western blot was used to determine the expressions of p-PI3K and p-AKT. The tolerable concentration of Abiraterone used in the present study was 50 nM. First, the migration rate and numbers of formed tubes were significantly decreased by the A549 medium treated with Abiraterone and elevated by the A549 medium treated with irradiation but greatly suppressed by the co-treatment with Abiraterone. Subsequently, VEGF, MMP-2, and MMP-9 were significantly downregulated by the A549 medium treated with Abiraterone and upregulated by the A549 medium treated with irradiation but greatly inhibited by the co-treatment with Abiraterone. Lastly, the activated PI3K/AKT signaling pathway induced by the A549 medium treated with irradiation was significantly suppressed by the A549 medium treated with both irradiation and Abiraterone. Abiraterone suppressed irradiated lung cancer cells-induced angiogenic capacities of endothelial cells.
Collapse
Affiliation(s)
- Tingyan Ruan
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, No.899 Pinghai Road, Suzhou, 215006, Jiangsu, China
| | - Liping Jiang
- Department of Gynecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Nanjing, China
| | - Junying Xu
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, Jiangsu, China
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, No.899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
31
|
Shin HY, Fukuda S, Schmid-Schönbein GW. Fluid shear stress-mediated mechanotransduction in circulating leukocytes and its defect in microvascular dysfunction. J Biomech 2021; 120:110394. [PMID: 33784517 DOI: 10.1016/j.jbiomech.2021.110394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Leukocytes (neutrophils, monocytes) in the active circulation exhibit multiple phenotypic indicators for a low level of cellular activity, like lack of pseudopods and minimal amounts of activated, cell-adhesive integrins on their surfaces. In contrast, before these cells enter the circulation in the bone marrow or when they recross the endothelium into extravascular tissues of peripheral organs they are fully activated. We review here a multifaceted mechanism mediated by fluid shear stress that can serve to deactivate leukocytes in the circulation. The fluid shear stress controls pseudopod formation via the FPR receptor, the same receptor responsible for pseudopod projection by localized actin polymerization. The bioactivity of macromolecular factors in the blood plasma that interfere with receptor stimulation by fluid flow, such as proteolytic cleavage in the extracellular domain of the receptor or the membrane actions of cholesterol, leads to a defective ability to respond to fluid shear stress by actin depolymerization. The cell reaction to fluid shear involves CD18 integrins, nitric oxide, cGMP and Rho GTPases, is attenuated in the presence of inflammatory mediators and modified by glucocorticoids. The mechanism is abolished in disease models (genetic hypertension and hypercholesterolemia) leading to an increased number of activated leukocytes in the circulation with enhanced microvascular resistance and cell entrapment. In addition to their role in binding to biochemical agonists/antagonists, membrane receptors appear to play a second role: to monitor local fluid shear stress levels. The fluid shear stress control of many circulating cell types such as lymphocytes, stem cells, tumor cells remains to be elucidated.
Collapse
Affiliation(s)
- Hainsworth Y Shin
- F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States; Division of Biology, Chemistry, and Materials Science, Office of Science and Engineering Laboratories Center for Devices and Radiological Health, The Food & Drive Administration, Silver Spring, MD, United States
| | - Shunichi Fukuda
- Department of Neurosurgery, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | | |
Collapse
|
32
|
Gifre-Renom L, Jones EAV. Vessel Enlargement in Development and Pathophysiology. Front Physiol 2021; 12:639645. [PMID: 33716786 PMCID: PMC7947306 DOI: 10.3389/fphys.2021.639645] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
From developmental stages until adulthood, the circulatory system remodels in response to changes in blood flow in order to maintain vascular homeostasis. Remodeling processes can be driven by de novo formation of vessels or angiogenesis, and by the restructuration of already existing vessels, such as vessel enlargement and regression. Notably, vessel enlargement can occur as fast as in few hours in response to changes in flow and pressure. The high plasticity and responsiveness of blood vessels rely on endothelial cells. Changes within the bloodstream, such as increasing shear stress in a narrowing vessel or lowering blood flow in redundant vessels, are sensed by endothelial cells and activate downstream signaling cascades, promoting behavioral changes in the involved cells. This way, endothelial cells can reorganize themselves to restore normal circulation levels within the vessel. However, the dysregulation of such processes can entail severe pathological circumstances with disturbances affecting diverse organs, such as human hereditary telangiectasias. There are different pathways through which endothelial cells react to promote vessel enlargement and mechanisms may differ depending on whether remodeling occurs in the adult or in developmental models. Understanding the molecular mechanisms involved in the fast-adapting processes governing vessel enlargement can open the door to a new set of therapeutical approaches to be applied in occlusive vascular diseases. Therefore, we have outlined here the latest advances in the study of vessel enlargement in physiology and pathology, with a special insight in the pathways involved in its regulation.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
33
|
Mohana Sundaram P, Rangharajan KK, Akbari E, Hadick TJ, Song JW, Prakash S. Direct current electric field regulates endothelial permeability under physiologically relevant fluid forces in a microfluidic vessel bifurcation model. LAB ON A CHIP 2021; 21:319-330. [PMID: 33319218 PMCID: PMC7855772 DOI: 10.1039/d0lc00507j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Previous in vitro studies have reported on the use of direct current electric fields (DC-EFs) to regulate vascular endothelial permeability, which is important for tissue regeneration and wound healing. However, these studies have primarily used static 2D culture models that lack the fluid mechanical forces associated with blood flow experienced by endothelial cells (ECs) in vivo. Hence, the effect of DC-EF on ECs under physiologically relevant fluid forces is yet to be systematically evaluated. Using a 3D microfluidic model of a bifurcating vessel, we report the role of DC-EF on regulating endothelial permeability when co-applied with physiologically relevant fluid forces that arise at the vessel bifurcation. The application of a 70 V m-1 DC-EF simultaneously with 1 μL min-1 low perfusion rate (generating 3.8 dyn cm-2 stagnation pressure at the bifurcation point and 0.3 dyn cm-2 laminar shear stress in the branched vessel) increased the endothelial permeability 7-fold compared to the static control condition (i.e., without flow and DC-EF). When the perfusion rate was increased to 10 μL min-1 (generating 38 dyn cm-2 stagnation pressure at the bifurcation point and 3 dyn cm-2 laminar shear stress in the branched vessel) while maintaining the same electrical stimulation, a 4-fold increase in endothelial permeability compared to the static control was observed. The lower increase in endothelial permeability for the higher fluid forces but the same DC-EF suggests a competing role between fluid forces and the applied DC-EF. Moreover, the observed increase in endothelial permeability due to combined DC-EF and flow was transient and dependent on the Akt signalling pathway. Collectively, these findings provide significant new insights into how the endothelium serves as an electro-mechanical interface for regulating vessel permeability.
Collapse
|
34
|
Fiorenza M, Gliemann L, Brandt N, Bangsbo J. Hormetic modulation of angiogenic factors by exercise-induced mechanical and metabolic stress in human skeletal muscle. Am J Physiol Heart Circ Physiol 2020; 319:H824-H834. [PMID: 32822216 DOI: 10.1152/ajpheart.00432.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study used an integrative experimental model in humans to investigate whether muscle angiogenic factors are differentially modulated by exercise stimuli eliciting different degrees of mechanical and metabolic stress. In a randomized crossover design, 12 men performed two low-volume high-intensity exercise regimens, including short sprint intervals (SSI) or long sprint intervals (LSI) inducing pronounced mechanical/metabolic stress, and a high-volume moderate-intensity continuous exercise protocol (MIC) inducing mild but prolonged mechanical/metabolic stress. Gene and protein expression of angiogenic factors was determined in vastus lateralis muscle samples obtained before and after exercise. Exercise upregulated muscle VEGF mRNA to a greater extent in LSI and MIC compared with SSI. Analysis of angiogenic factors sensitive to shear stress revealed more marked exercise-induced VEGF receptor 2 (VEGF-R2) mRNA responses in MIC than SSI, as well as greater platelet endothelial cell adhesion molecule (PECAM-1) and endothelial nitric oxide synthase (eNOS) mRNA responses in LSI than SSI. No apparent exercise-induced phosphorylation of shear stress-sensory proteins VEGF-R2Tyr1175, PECAM-1Tyr713, and eNOSSer1177 was observed despite robust elevations in femoral artery shear stress. Exercise evoked greater mRNA responses of the mechanical stretch sensor matrix metalloproteinase-9 (MMP9) in SSI than MIC. Exercise-induced mRNA responses of the metabolic stress sensor hypoxia-inducible factor-1α (HIF-1α) were more profound in LSI than SSI. These results suggest that low-volume high-intensity exercise transcriptionally activates angiogenic factors in a mechanical/metabolic stress-dependent manner. Furthermore, the angiogenic potency of low-volume high-intensity exercise appears similar to that of high-volume moderate-intensity exercise, but only on condition of eliciting severe mechanical/metabolic stress. We conclude that the angiogenic stimulus produced by exercise depends on both magnitude and protraction of myocellular homeostatic perturbations.NEW & NOTEWORTHY Skeletal muscle capillary growth is orchestrated by angiogenic factors sensitive to mechanical and metabolic signals. In this study, we employed an integrative exercise model to synergistically target, yet to different extents and for different durations, the mechanical and metabolic components of muscle activity that promote angiogenesis. Our results suggest that the magnitude of the myocellular perturbations incurred during exercise determines the amplitude of the angiogenic molecular signals, implying hormetic modulation of skeletal muscle angiogenesis by exercise-induced mechanical and metabolic stress.
Collapse
Affiliation(s)
- M Fiorenza
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - L Gliemann
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - N Brandt
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Rouaud F, Sluysmans S, Flinois A, Shah J, Vasileva E, Citi S. Scaffolding proteins of vertebrate apical junctions: structure, functions and biophysics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183399. [DOI: 10.1016/j.bbamem.2020.183399] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
|
36
|
Recruitment and maturation of the coronary collateral circulation: Current understanding and perspectives in arteriogenesis. Microvasc Res 2020; 132:104058. [PMID: 32798552 DOI: 10.1016/j.mvr.2020.104058] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/09/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
The coronary collateral circulation is a rich anastomotic network of primitive vessels which have the ability to augment in size and function through the process of arteriogenesis. In this review, we evaluate the current understandings of the molecular and cellular mechanisms by which this process occurs, specifically focussing on elevated fluid shear stress (FSS), inflammation, the redox state and gene expression along with the integrative, parallel and simultaneous process by which this occurs. The initiating step of arteriogenesis occurs following occlusion of an epicardial coronary artery, with an increase in FSS detected by mechanoreceptors within the endothelium. This must occur within a 'redox window' where an equilibrium of oxidative and reductive factors are present. These factors initially result in an inflammatory milieu, mediated by neutrophils as well as lymphocytes, with resultant activation of a number of downstream molecular pathways resulting in increased expression of proteins involved in monocyte attraction and adherence; namely vascular cell adhesion molecule 1 (VCAM-1), monocyte chemoattractant protein 1 (MCP-1) and transforming growth factor beta (TGF-β). Once monocytes and other inflammatory cells adhere to the endothelium they enter the extracellular matrix and differentiate into macrophages in an effort to create a favourable environment for vessel growth and development. Activated macrophages secrete inflammatory cytokines such as tumour necrosis factor-α (TNF-α), growth factors such as fibroblast growth factor-2 (FGF-2) and matrix metalloproteinases. Finally, vascular smooth muscle cells proliferate and switch to a contractile phenotype, resulting in an increased diameter and functionality of the collateral vessel, thereby allowing improved perfusion of the distal myocardium subtended by the occluded vessel. This simultaneously reduces FSS within the collateral vessel, inhibiting further vessel growth.
Collapse
|
37
|
Chen MK, Hsu JL, Hung MC. Nuclear receptor tyrosine kinase transport and functions in cancer. Adv Cancer Res 2020; 147:59-107. [PMID: 32593407 DOI: 10.1016/bs.acr.2020.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Signaling functions of plasma membrane-localized receptor tyrosine kinases (RTKs) have been extensively studied after they were first described in the mid-1980s. Plasma membrane RTKs are activated by extracellular ligands and cellular stress stimuli, and regulate cellular responses by activating the downstream effector proteins to initiate a wide range of signaling cascades in the cells. However, increasing evidence indicates that RTKs can also be transported into the intracellular compartments where they phosphorylate traditional effector proteins and non-canonical substrate proteins. In general, internalization that retains the RTK's transmembrane domain begins with endocytosis, and endosomal RTK remains active before being recycled or degraded. Further RTK retrograde transport from endosome-Golgi-ER to the nucleus is primarily dependent on membranes vesicles and relies on the interaction with the COP-I vesicle complex, Sec61 translocon complex, and importin. Internalized RTKs have non-canonical substrates that include transcriptional co-factors and DNA damage response proteins, and many nuclear RTKs harbor oncogenic properties and can enhance cancer progression. Indeed, nuclear-localized RTKs have been shown to positively correlate with cancer recurrence, therapeutic resistance, and poor prognosis of cancer patients. Therefore, understanding the functions of nuclear RTKs and the mechanisms of nuclear RTK transport will further improve our knowledge to evaluate the potential of targeting nuclear RTKs or the proteins involved in their transport as new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Jennifer L Hsu
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
38
|
Stanicek L, Lozano-Vidal N, Bink DI, Hooglugt A, Yao W, Wittig I, van Rijssel J, van Buul JD, van Bergen A, Klems A, Ramms AS, Le Noble F, Hofmann P, Szulcek R, Wang S, Offermanns S, Ercanoglu MS, Kwon HB, Stainier D, Huveneers S, Kurian L, Dimmeler S, Boon RA. Long non-coding RNA LASSIE regulates shear stress sensing and endothelial barrier function. Commun Biol 2020; 3:265. [PMID: 32457386 PMCID: PMC7251106 DOI: 10.1038/s42003-020-0987-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Blood vessels are constantly exposed to shear stress, a biomechanical force generated by blood flow. Normal shear stress sensing and barrier function are crucial for vascular homeostasis and are controlled by adherens junctions (AJs). Here we show that AJs are stabilized by the shear stress-induced long non-coding RNA LASSIE (linc00520). Silencing of LASSIE in endothelial cells impairs cell survival, cell-cell contacts and cell alignment in the direction of flow. LASSIE associates with junction proteins (e.g. PECAM-1) and the intermediate filament protein nestin, as identified by RNA affinity purification. The AJs component VE-cadherin showed decreased stabilization, due to reduced interaction with nestin and the microtubule cytoskeleton in the absence of LASSIE. This study identifies LASSIE as link between nestin and VE-cadherin, and describes nestin as crucial component in the endothelial response to shear stress. Furthermore, this study indicates that LASSIE regulates barrier function by connecting AJs to the cytoskeleton. Stanicek et al identify a shear stress-induced long non-coding RNA they name LASSIE, which stabilises junctions between endothelial cells through interactions with junctional and cytoskeletal proteins. This study provides insights into how a transcript that does not encode a protein controls endothelial response to forces associated with blood flow and endothelial barrier function.
Collapse
Affiliation(s)
- Laura Stanicek
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany
| | - Noelia Lozano-Vidal
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Diewertje Ilse Bink
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Aukie Hooglugt
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Biochemistry, Vascular Microenvironment and Integrity, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Wenjie Yao
- Institute for Neurophysiology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ilka Wittig
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt, Germany
| | - Jos van Rijssel
- Molecular Cell Biology Laboratory, Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Jaap Diederik van Buul
- Molecular Cell Biology Laboratory, Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center Amsterdam, University of Amsterdam, 1066 CX, Amsterdam, The Netherlands
| | - Anke van Bergen
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Alina Klems
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Anne Sophie Ramms
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ferdinand Le Noble
- Department of Cell and Developmental Biology, Institute of Zoology (ZOO), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Patrick Hofmann
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Robert Szulcek
- Dept. of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - ShengPeng Wang
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Meryem Seda Ercanoglu
- Institute of Virology, University Hospital Cologne, 50935, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stephan Huveneers
- Department of Medical Biochemistry, Vascular Microenvironment and Integrity, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Center, 1105 AZ, Amsterdam, The Netherlands
| | - Leo Kurian
- Institute for Neurophysiology, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany.,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany
| | - Reinier Abraham Boon
- Dept. of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands. .,Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe-University, Frankfurt, Germany. .,German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Berlin, Germany.
| |
Collapse
|
39
|
Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells 2020; 9:E929. [PMID: 32290100 PMCID: PMC7226820 DOI: 10.3390/cells9040929] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.
Collapse
Affiliation(s)
- Erica Lafoz
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Maria Ruart
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Aina Anton
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Anna Oncins
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Virginia Hernández-Gea
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
40
|
Marchetti M, Meloni M, Anwar M, Al-Haj-Zen A, Sala-Newby G, Slater S, Ford K, Caporali A, Emanueli C. MicroRNA-24-3p Targets Notch and Other Vascular Morphogens to Regulate Post-ischemic Microvascular Responses in Limb Muscles. Int J Mol Sci 2020; 21:E1733. [PMID: 32138369 PMCID: PMC7084374 DOI: 10.3390/ijms21051733] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRs) regulate complex processes, including angiogenesis, by targeting multiple mRNAs. miR-24-3p-3p directly represses eNOS, GATA2, and PAK4 in endothelial cells (ECs), thus inhibiting angiogenesis during development and in the infarcted heart. miR-24-3p is widely expressed in cardiovascular cells, suggesting that it could additionally regulate angiogenesis by acting on vascular mural cells. Here, we have investigated: 1) new miR-24-3p targets; 2) the expression and the function of miR-24-3p in human vascular ECs; 3) the impact of miR-24-3p inhibition in the angiogenesis reparative response to limb ischemia in mice. Using bioinformatics target prediction platforms and 3'-UTR luciferase assays, we newly identified Notch1 and its Delta-like ligand 1 (Dll1) to be directly targeted by miR-24-3p. miR-24-3p was expressed in human ECs and pericytes cultured under normal conditions. Exposure to hypoxia increased miR-24-3p in ECs but not in pericytes. Transfection with a miR-24-3p precursor (pre-miR-24-3p) increased miR-24-3p expression in ECs, reducing the cell survival, proliferation, and angiogenic capacity. Opposite effects were caused by miR-24-3p inhibition. The anti-angiogenic action of miR-24-3p overexpression could be prevented by simultaneous adenovirus (Ad)-mediated delivery of constitutively active Notch intracellular domain (NICD) into cultured ECs. We next demonstrated that reduced Notch signalling contributes to the anti-angiogenic effect of miR-24-3p in vitro. In a mouse unilateral limb ischemia model, local miR-24-3p inhibition (by adenovirus-mediated miR-24-3p decoy delivery) restored endothelial Notch signalling and increased capillary density. However, the new vessels appeared disorganised and twisted, worsening post-ischemic blood perfusion recovery. To better understand the underpinning mechanisms, we widened the search for miR-24-3p target genes, identifying several contributors to vascular morphogenesis, such as several members of the Wingless (Wnt) signalling pathway, β-catenin signalling components, and VE-cadherin, which synergise to regulate angiogenesis, pericytes recruitment to neoformed capillaries, maturation, and stabilization of newly formed vessels. Among those, we next focussed on β-catenin to demonstrate that miR-24-3p inhibition reduces β-catenin expression in hypoxic ECs, which is accompanied by reduced adhesion of pericytes to ECs. In summary, miR-24-3p differentially targets several angiogenesis modulators and contributes to autonomous and non-autonomous EC crosstalk. In ischemic limbs, miR-24-3p inhibition increases the production of dysfunctional microvessels, impairing perfusion. Caution should be observed in therapeutic targeting of miR-24-3p.
Collapse
Affiliation(s)
- Micol Marchetti
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.M.); (M.M.); (A.A.-H.-Z.); (G.S.-N.); (S.S.); (K.F.); (A.C.)
| | - Marco Meloni
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.M.); (M.M.); (A.A.-H.-Z.); (G.S.-N.); (S.S.); (K.F.); (A.C.)
| | - Maryam Anwar
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK;
| | - Ayman Al-Haj-Zen
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.M.); (M.M.); (A.A.-H.-Z.); (G.S.-N.); (S.S.); (K.F.); (A.C.)
| | - Graciela Sala-Newby
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.M.); (M.M.); (A.A.-H.-Z.); (G.S.-N.); (S.S.); (K.F.); (A.C.)
| | - Sadie Slater
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.M.); (M.M.); (A.A.-H.-Z.); (G.S.-N.); (S.S.); (K.F.); (A.C.)
| | - Kerrie Ford
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.M.); (M.M.); (A.A.-H.-Z.); (G.S.-N.); (S.S.); (K.F.); (A.C.)
| | - Andrea Caporali
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.M.); (M.M.); (A.A.-H.-Z.); (G.S.-N.); (S.S.); (K.F.); (A.C.)
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH164TJ, UK
| | - Costanza Emanueli
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol BS2 8HW, UK; (M.M.); (M.M.); (A.A.-H.-Z.); (G.S.-N.); (S.S.); (K.F.); (A.C.)
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK;
| |
Collapse
|
41
|
Fresta CG, Fidilio A, Caruso G, Caraci F, Giblin FJ, Marco Leggio G, Salomone S, Drago F, Bucolo C. A New Human Blood-Retinal Barrier Model Based on Endothelial Cells, Pericytes, and Astrocytes. Int J Mol Sci 2020; 21:E1636. [PMID: 32121029 PMCID: PMC7084779 DOI: 10.3390/ijms21051636] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Blood-retinal barrier (BRB) dysfunction represents one of the most significant changes occurring during diabetic retinopathy. We set up a high-reproducible human-based in vitro BRB model using retinal pericytes, retinal astrocytes, and retinal endothelial cells in order to replicate the human in vivo environment with the same numerical ratio and layer order. Our findings showed that high glucose exposure elicited BRB breakdown, enhanced permeability, and reduced the levels of junction proteins such as ZO-1 and VE-cadherin. Furthermore, an increased expression of pro-inflammatory mediators (IL-1β, IL-6) and oxidative stress-related enzymes (iNOS, Nox2) along with an increased production of reactive oxygen species were observed in our triple co-culture paradigm. Finally, we found an activation of immune response-regulating signaling pathways (Nrf2 and HO-1). In conclusion, the present model mimics the closest human in vivo milieu, providing a valuable tool to study the impact of high glucose in the retina and to develop novel molecules with potential effect on diabetic retinopathy.
Collapse
Affiliation(s)
- Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (C.G.F.); (G.M.L.); (S.S.)
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
| | | | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina, Italy;
| | - Frank J. Giblin
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA;
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (C.G.F.); (G.M.L.); (S.S.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (C.G.F.); (G.M.L.); (S.S.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (C.G.F.); (G.M.L.); (S.S.)
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95125 Catania, Italy; (C.G.F.); (G.M.L.); (S.S.)
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA;
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95125 Catania, Italy
| |
Collapse
|
42
|
Kluever AK, Braumandl A, Fischer S, Preissner KT, Deindl E. The Extraordinary Role of Extracellular RNA in Arteriogenesis, the Growth of Collateral Arteries. Int J Mol Sci 2019; 20:ijms20246177. [PMID: 31817879 PMCID: PMC6940760 DOI: 10.3390/ijms20246177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023] Open
Abstract
Arteriogenesis is an intricate process in which increased shear stress in pre-existing arteriolar collaterals induces blood vessel expansion, mediated via endothelial cell activation, leukocyte recruitment and subsequent endothelial and smooth muscle cell proliferation. Extracellular RNA (eRNA), released from stressed cells or damaged tissue under pathological conditions, has recently been discovered to be liberated from endothelial cells in response to increased shear stress and to promote collateral growth. Until now, eRNA has been shown to enhance coagulation and inflammation by inducing cytokine release, leukocyte recruitment, and endothelial permeability, the latter being mediated by vascular endothelial growth factor (VEGF) signaling. In the context of arteriogenesis, however, eRNA has emerged as a transmitter of shear stress into endothelial activation, mediating the sterile inflammatory process essential for collateral remodeling, whereby the stimulatory effects of eRNA on the VEGF signaling axis seem to be pivotal. In addition, eRNA might influence subsequent steps of the arteriogenesis cascade as well. This article provides a comprehensive overview of the beneficial effects of eRNA during arteriogenesis, laying the foundation for further exploration of the connection between the damaging and non-damaging effects of eRNA in the context of cardiovascular occlusive diseases and of sterile inflammation.
Collapse
Affiliation(s)
- Anna-Kristina Kluever
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
| | - Anna Braumandl
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
| | - Silvia Fischer
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany; (S.F.); (K.T.P.)
| | - Klaus T. Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig-University, 35392 Giessen, Germany; (S.F.); (K.T.P.)
| | - Elisabeth Deindl
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (A.-K.K.); (A.B.)
- Correspondence: ; Tel.: +49-89-2180-76504
| |
Collapse
|
43
|
Li J, Zhao Y, Coleman P, Chen J, Ting KK, Choi JP, Zheng X, Vadas MA, Gamble JR. Low fluid shear stress conditions contribute to activation of cerebral cavernous malformation signalling pathways. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165519. [DOI: 10.1016/j.bbadis.2019.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/18/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023]
|
44
|
The NAE Pathway: Autobahn to the Nucleus for Cell Surface Receptors. Cells 2019; 8:cells8080915. [PMID: 31426451 PMCID: PMC6721735 DOI: 10.3390/cells8080915] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Various growth factors and full-length cell surface receptors such as EGFR are translocated from the cell surface to the nucleoplasm, baffling cell biologists to the mechanisms and functions of this process. Elevated levels of nuclear EGFR correlate with poor prognosis in various cancers. In recent years, nuclear EGFR has been implicated in regulating gene transcription, cell proliferation and DNA damage repair. Different models have been proposed to explain how the receptors are transported into the nucleus. However, a clear consensus has yet to be reached. Recently, we described the nuclear envelope associated endosomes (NAE) pathway, which delivers EGFR from the cell surface to the nucleus. This pathway involves transport, docking and fusion of NAEs with the outer membrane of the nuclear envelope. EGFR is then presumed to be transported through the nuclear pore complex, extracted from membranes and solubilised. The SUN1/2 nuclear envelope proteins, Importin-beta, nuclear pore complex proteins and the Sec61 translocon have been implicated in the process. While this framework can explain the cell surface to nucleus traffic of EGFR and other cell surface receptors, it raises several questions that we consider in this review, together with implications for health and disease.
Collapse
|
45
|
Schacher NM, Raaz-Schrauder D, Pasutto F, Stumpfe FM, Tauchi M, Dietel B, Achenbach S, Urschel K. Impact of single nucleotide polymorphisms in the VEGFR2 gene on endothelial cell activation under non‑uniform shear stress. Int J Mol Med 2019; 44:1366-1376. [PMID: 31432097 PMCID: PMC6713417 DOI: 10.3892/ijmm.2019.4301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in vascular endothelial growth factor receptor 2 (VEGFR2) are associated with coronary artery disease, hypertension and myocardial infarction. However, their association with atherosclerosis remains to be fully elucidated. The purpose of the present study was to determine whether SNPs are involved in atherogenesis, by analyzing their impact on human umbilical vein endothelial cells (HUVECs) under laminar and non‑uniform shear stress in a well‑established in vitro model that simulates shear stress‑induced proatherogenic processes at vessel bifurcations. All experiments were performed using freshly isolated HUVECs. Three SNPs in the VEGFR2 gene (rs1870377 T>A, rs2071559 A>G and rs2305948 C>T) were genotyped and the expression levels of VEGFR2 were semi‑quantitatively determined using western blotting. Subsequently, the HUVECs were seeded in bifurcating flow‑through cell culture slides and flow (9.6 ml/min) was applied for 19 h, including tumor necrosis factor‑α stimulation during the final 2 h of flow. The protein expression levels of VCAM‑1, E‑selectin and VEGFR2 and the adhesion of THP‑1 cells were analyzed in laminar and non‑uniform shear stress regions. Data were analyzed for associations with the respective SNPs. The total expression of VEGFR2 was significantly lower under non‑uniform shear stress than under laminar shear stress conditions, independent of the genotype. The expression of VEGFR2 between the different shear stress patterns was not significantly altered by the different SNPs. The expression levels of VCAM‑1 and E‑selectin were lower in the A/A genotype compared with those in other genotypes in rs1870377 T>A and rs2071559 A>G. In conclusion, the results suggested that SNPs within the VEGFR2 gene have a significant impact on shear stress‑related endothelial activation.
Collapse
Affiliation(s)
- Nora M Schacher
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Dorette Raaz-Schrauder
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91051 Erlangen, Germany
| | - Florian M Stumpfe
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Comprehensive Cancer Center Erlangen‑EMN, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Miyuki Tauchi
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Barbara Dietel
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Stephan Achenbach
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| | - Katharina Urschel
- Department of Medicine 2‑Cardiology and Angiology, Erlangen University Hospital, Friedrich‑Alexander University Erlangen‑Nürnberg, D‑91054 Erlangen, Germany
| |
Collapse
|
46
|
Zanotelli MR, Reinhart-King CA. Mechanical Forces in Tumor Angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1092:91-112. [PMID: 30368750 PMCID: PMC6986816 DOI: 10.1007/978-3-319-95294-9_6] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A defining hallmark of cancer and cancer development is upregulated angiogenesis. The vasculature formed in tumors is structurally abnormal, not organized in the conventional hierarchical arrangement, and more permeable than normal vasculature. These features contribute to leaky, tortuous, and dilated blood vessels, which act to create heterogeneous blood flow, compression of vessels, and elevated interstitial fluid pressure. As such, abnormalities in the tumor vasculature not only affect the delivery of nutrients and oxygen to the tumor, but also contribute to creating an abnormal tumor microenvironment that further promotes tumorigenesis. The role of chemical signaling events in mediating tumor angiogenesis has been well researched; however, the relative contribution of physical cues and mechanical regulation of tumor angiogenesis is less understood. Growing research indicates that the physical microenvironment plays a significant role in tumor progression and promoting abnormal tumor vasculature. Here, we review how mechanical cues found in the tumor microenvironment promote aberrant tumor angiogenesis. Specifically, we discuss the influence of matrix stiffness and mechanical stresses in tumor tissue on tumor vasculature, as well as the mechanosensory pathways utilized by endothelial cells to respond to the physical cues found in the tumor microenvironment. We also discuss the impact of the resulting aberrant tumor vasculature on tumor progression and therapeutic treatment.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
47
|
Ho RXY, Tahboub R, Amraei R, Meyer RD, Varongchayakul N, Grinstaff M, Rahimi N. The cell adhesion molecule IGPR-1 is activated by and regulates responses of endothelial cells to shear stress. J Biol Chem 2019; 294:13671-13680. [PMID: 31341021 DOI: 10.1074/jbc.ra119.008548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial cells respond to blood flow-induced shear stress. However, the mechanisms through which endothelial cells transduce mechanical signals to cellular responses remain poorly understood. In this report, using tensile-force assays, immunofluorescence and atomic force microscopy, we demonstrate that immunoglobulin and proline-rich receptor-1 (IGPR-1) responds to mechanical stimulation and increases the stiffness of endothelial cells. We observed that IGPR-1 is activated by shear stress and tensile force and that flow shear stress-mediated IGPR-1 activation modulates remodeling of endothelial cells. We found that under static conditions, IGPR-1 is present at the cell-cell contacts; however, under shear stress, it redistributes along the cell borders into the flow direction. IGPR-1 activation stimulated actin stress fiber assembly and cross-linking with vinculin. Moreover, we noted that IGPR-1 stabilizes cell-cell junctions of endothelial cells as determined by staining of cells with ZO1. Mechanistically, shear stress stimulated activation of AKT Ser/Thr kinase 1 (AKT1), leading to phosphorylation of IGPR-1 at Ser-220. Inhibition of this phosphorylation prevented shear stress-induced actin fiber assembly and endothelial cell remodeling. Our findings indicate that IGPR-1 is an important player in endothelial cell mechanosensing, insights that have important implications for the pathogenesis of common maladies, including ischemic heart diseases and inflammation.
Collapse
Affiliation(s)
- Rachel Xi-Yeen Ho
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| | - Rawan Tahboub
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| | - Razie Amraei
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| | - Rosana D Meyer
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| | - Nitinun Varongchayakul
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215
| | - Mark Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215
| | - Nader Rahimi
- Department of Pathology, School of Medicine, Boston University Medical Campus, Boston, Massachusetts 02118
| |
Collapse
|
48
|
Leiphart RJ, Chen D, Peredo AP, Loneker AE, Janmey PA. Mechanosensing at Cellular Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7509-7519. [PMID: 30346180 DOI: 10.1021/acs.langmuir.8b02841] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At the plasma membrane interface, cells use various adhesions to sense their extracellular environment. These adhesions facilitate the transmission of mechanical signals that dictate cell behavior. This review discusses the mechanisms by which these mechanical signals are transduced through cell-matrix and cell-cell adhesions and how this mechanotransduction influences cell processes. Cell-matrix adhesions require the activation of and communication between various transmembrane protein complexes such as integrins. These links at the plasma membrane affect how a cell senses and responds to its matrix environment. Cells also communicate with each other through cell-cell adhesions, which further regulate cell behavior on a single- and multicellular scale. Coordination and competition between cell-cell and cell-matrix adhesions in multicellular aggregates can, to a significant extent, be modeled by differential adhesion analyses between the different interfaces even without knowing the details of cellular signaling. In addition, cell-matrix and cell-cell adhesions are connected by an intracellular cytoskeletal network that allows for direct communication between these distinct adhesions and activation of specific signaling pathways. Other membrane-embedded protein complexes, such as growth factor receptors and ion channels, play additional roles in mechanotransduction. Overall, these mechanoactive elements show the dynamic interplay between the cell, its matrix, and neighboring cells and how these relationships affect cellular function.
Collapse
Affiliation(s)
- Ryan J Leiphart
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- McKay Orthopedic Research Laboratory , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Dongning Chen
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Ana P Peredo
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- McKay Orthopedic Research Laboratory , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Abigail E Loneker
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| | - Paul A Janmey
- Department of Bioengineering , University of Pennsylvania , 210 S 33rd St , Philadelphia , Pennsylvania 19104 , United States
- Institute for Medicine and Engineering, Department of Physiology , University of Pennsylvania , 3340 Smith Walk , Philadelphia , Pennsylvania 19104 , United States
- Center for Engineering Mechanobiology , University of Pennsylvania , Philadelphia , Pennsylvania , United States
| |
Collapse
|
49
|
Dabagh M, Randles A. Role of deformable cancer cells on wall shear stress-associated-VEGF secretion by endothelium in microvasculature. PLoS One 2019; 14:e0211418. [PMID: 30794550 PMCID: PMC6386247 DOI: 10.1371/journal.pone.0211418] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Endothelial surface layer (glycocalyx) is the major physiological regulator of tumor cell adhesion to endothelium. Cancer cells express vascular endothelial growth factor (VEGF) which increases the permeability of a microvessel wall by degrading glycocalyx. Endothelial cells lining large arteries have also been reported, in vitro and in vivo, to mediate VEGF expression significantly under exposure to high wall shear stress (WSS) > 0.6 Pa. The objective of the present study is to explore whether local hemodynamic conditions in the vicinity of a migrating deformable cancer cell can influence the function of endothelial cells to express VEGF within the microvasculature. A three-dimensional model of deformable cancer cells (DCCs) migrating within a capillary is developed by applying a massively parallel hemodynamics application to simulate the fluid-structure interaction between the DCC and fluid surrounding the DCC. We study how dynamic interactions between the DCC and its local microenvironment affect WSS exposed on endothelium, under physiological conditions of capillaries with different diameters and flow conditions. Moreover, we quantify the area of endothelium affected by the DCC. Our results show that the DCC alters local hemodynamics in its vicinity up to an area as large as 40 times the cancer cell lateral surface. In this area, endothelium experiences high WSS values in the range of 0.6–12 Pa. Endothelial cells exposed to this range of WSS have been reported to express VEGF. Furthermore, we demonstrate that stiffer cancer cells expose higher WSS on the endothelium. A strong impact of cell stiffness on its local microenvironment is observed in capillaries with diameters <16 μm. WSS-induced-VEGF by endothelium represents an important potential mechanism for cancer cell adhesion and metastasis in the microvasculature. This work serves as an important first step in understanding the mechanisms driving VEGF-expression by endothelium and identifying the underlying mechanisms of glycocalyx degradation by endothelium in microvasculature. The identification of angiogenesis factors involved in early stages of cancer cell-endothelium interactions and understanding their regulation will help, first to develop anti-angiogenic strategies applied to diagnostic studies and therapeutic interventions, second to predict accurately where different cancer cell types most likely adhere in microvasculature, and third to establish accurate criteria predisposing the cancer metastasis.
Collapse
Affiliation(s)
- Mahsa Dabagh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Amanda Randles
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Gliemann L, Rytter N, Piil P, Nilton J, Lind T, Nyberg M, Cocks M, Hellsten Y. The Endothelial Mechanotransduction Protein Platelet Endothelial Cell Adhesion Molecule-1 Is Influenced by Aging and Exercise Training in Human Skeletal Muscle. Front Physiol 2018; 9:1807. [PMID: 30618819 PMCID: PMC6305393 DOI: 10.3389/fphys.2018.01807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Aim: The aim was to determine the role of aging and exercise training on endothelial mechanosensor proteins and the hyperemic response to shear stress by passive leg movement. Methods: We examined the expression of mechanosensor proteins and vascular function in young (n = 14, 25 ± 3 years) and old (n = 14, 72 ± 5 years) healthy male subjects with eight weeks of aerobic exercise training. Before and after training, the hyperaemic response to passive leg movement was determined and a thigh muscle biopsy was obtained before and after passive leg movement to assess the acute effect of increased shear stress. Biopsies were analyzed for protein amount and phosphorylation of mechanosensor proteins; Platelet endothelial cell adhesion molecule-1 (PECAM-1), Vascular endothelial cadherin, Vascular endothelial growth factor receptor-2 and endothelial nitric oxide synthase (eNOS). Results: Before training, the old group presented a lower hyperaemic response to passive leg movement and a 35% lower (P < 0.05) relative basal phosphorylation level of PECAM-1 whereas there was no difference for the other mechanosensor proteins. After training, the eNOS protein amount, the amount of PECAM-1 protein and the passive leg movement-induced phosphorylation of PECAM-1 were higher in both groups. The hyperaemic response to passive leg movement was higher after training in the young group only. Conclusion: Aged individuals have a lower hyperaemic response to passive leg movement and a lower relative basal phosphorylation of PECAM-1 than young. The higher PECAM-1 phosphorylation despite a similar hyperemic level in the aged observed after training, suggests that training improved shear stress responsiveness of this mechanotransduction protein.
Collapse
Affiliation(s)
- Lasse Gliemann
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai Rytter
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Piil
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jannik Nilton
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lind
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Cocks
- Exercise Metabolism Research Group, School of Sport and Exercise Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, Section for Integrative Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|