1
|
Benton A, Liu B, Gartenhaus LE, Hanna JA. Genomic landscape and preclinical models of angiosarcoma. Mol Oncol 2024. [PMID: 39367667 DOI: 10.1002/1878-0261.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Angiosarcoma is a cancer that develops in blood or lymphatic vessels that presents a significant clinical challenge due to its rarity and aggressive features. Clinical outcomes have not improved in decades, highlighting a need for innovative therapeutic strategies to treat the disease. Genetically, angiosarcomas exhibit high heterogeneity and complexity with many recurrent mutations. However, recent studies have identified some common features within anatomic and molecular subgroups. To identify potential therapeutic vulnerabilities, it is essential to understand and integrate the mutational landscape of angiosarcoma with the models that exist to study the disease. In this review, we will summarize the insights gained from reported genomic alterations in molecular and anatomic subtypes of angiosarcoma, discuss several potential actionable targets, and highlight the preclinical disease models available in the field.
Collapse
Affiliation(s)
- Annaleigh Benton
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Bozhi Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Lauren E Gartenhaus
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Jason A Hanna
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Cormerais Y, Lapp SC, Kalafut KC, Cissé MY, Shin J, Stefadu B, Personnaz J, Schrotter S, D’Amore A, Martin ER, Salussolia CL, Sahin M, Menon S, Byles V, Manning BD. AKT-mediated phosphorylation of TSC2 controls stimulus- and tissue-specific mTORC1 signaling and organ growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614519. [PMID: 39386441 PMCID: PMC11463511 DOI: 10.1101/2024.09.23.614519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates diverse intracellular and extracellular growth signals to regulate cell and tissue growth. How the molecular mechanisms regulating mTORC1 signaling established through biochemical and cell biological studies function under physiological states in specific mammalian tissues are unknown. Here, we characterize a genetic mouse model lacking the 5 phosphorylation sites on the tuberous sclerosis complex 2 (TSC2) protein through which the growth factor-stimulated protein kinase AKT can active mTORC1 signaling in cell culture models. These phospho-mutant mice (TSC2-5A) are developmentally normal but exhibit reduced body weight and the weight of specific organs, such as brain and skeletal muscle, associated with cell intrinsic decreases in growth factor-stimulated mTORC1 signaling. The TSC2-5A mouse model demonstrates that TSC2 phosphorylation is a primary mechanism of mTORC1 activation in some, but not all, tissues and provides a genetic tool to facilitate studies on the physiological regulation of mTORC1.
Collapse
Affiliation(s)
- Yann Cormerais
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Samuel C. Lapp
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Krystle C. Kalafut
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Madi Y. Cissé
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Jong Shin
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
- These authors contributed equally
| | - Benjamin Stefadu
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jean Personnaz
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Sandra Schrotter
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: Cell Signaling Technologies, Inc, Beverly, MA, 01915, USA
| | - Angelica D’Amore
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Emma R. Martin
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Catherine L. Salussolia
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Suchithra Menon
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Present address: Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA
| | - Vanessa Byles
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Sidorov VY, Sidorova TN, Samson PC, Reiserer RS, Britt CM, Neely MD, Ess KC, Wikswo JP. Contractile and Genetic Characterization of Cardiac Constructs Engineered from Human Induced Pluripotent Stem Cells: Modeling of Tuberous Sclerosis Complex and the Effects of Rapamycin. Bioengineering (Basel) 2024; 11:234. [PMID: 38534508 DOI: 10.3390/bioengineering11030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The implementation of three-dimensional tissue engineering concurrently with stem cell technology holds great promise for in vitro research in pharmacology and toxicology and modeling cardiac diseases, particularly for rare genetic and pediatric diseases for which animal models, immortal cell lines, and biopsy samples are unavailable. It also allows for a rapid assessment of phenotype-genotype relationships and tissue response to pharmacological manipulation. Mutations in the TSC1 and TSC2 genes lead to dysfunctional mTOR signaling and cause tuberous sclerosis complex (TSC), a genetic disorder that affects multiple organ systems, principally the brain, heart, skin, and kidneys. Here we differentiated healthy (CC3) and tuberous sclerosis (TSP8-15) human induced pluripotent stem cells (hiPSCs) into cardiomyocytes to create engineered cardiac tissue constructs (ECTCs). We investigated and compared their mechano-elastic properties and gene expression and assessed the effects of rapamycin, a potent inhibitor of the mechanistic target of rapamycin (mTOR). The TSP8-15 ECTCs had increased chronotropy compared to healthy ECTCs. Rapamycin induced positive inotropic and chronotropic effects (i.e., increased contractility and beating frequency, respectively) in the CC3 ECTCs but did not cause significant changes in the TSP8-15 ECTCs. A differential gene expression analysis revealed 926 up- and 439 down-regulated genes in the TSP8-15 ECTCs compared to their healthy counterparts. The application of rapamycin initiated the differential expression of 101 and 31 genes in the CC3 and TSP8-15 ECTCs, respectively. A gene ontology analysis showed that in the CC3 ECTCs, the positive inotropic and chronotropic effects of rapamycin correlated with positively regulated biological processes, which were primarily related to the metabolism of lipids and fatty and amino acids, and with negatively regulated processes, which were predominantly associated with cell proliferation and muscle and tissue development. In conclusion, this study describes for the first time an in vitro TSC cardiac tissue model, illustrates the response of normal and TSC ECTCs to rapamycin, and provides new insights into the mechanisms of TSC.
Collapse
Affiliation(s)
- Veniamin Y Sidorov
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Tatiana N Sidorova
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Philip C Samson
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - Ronald S Reiserer
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - Clayton M Britt
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
| | - M Diana Neely
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kevin C Ess
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John P Wikswo
- Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37212, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Yamahara K, Yasuda-Yamahara M, Kume S. A novel therapeutic target for kidney diseases: Lessons learned from starvation response. Pharmacol Ther 2024; 254:108590. [PMID: 38286162 DOI: 10.1016/j.pharmthera.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, making the disease an urgent clinical challenge. Caloric restriction has various anti-aging and organ-protective effects, and unraveling its molecular mechanisms may provide insight into the pathophysiology of CKD. In response to changes in nutritional status, intracellular nutrient signaling pathways show adaptive changes. When nutrients are abundant, signals such as mechanistic target of rapamycin complex 1 (mTORC1) are activated, driving cell proliferation and other processes. Conversely, others, such as sirtuins and AMP-activated protein kinase, are activated during energy scarcity, in an attempt to compensate. Autophagy, a cellular self-maintenance mechanism that is regulated by such signals, has also been reported to contribute to the progression of various kidney diseases. Furthermore, in recent years, ketone bodies, which have long been considered to be detrimental, have been reported to play a role as starvation signals, and thereby to have renoprotective effects, via the inhibition of mTORC1. Therefore, in this review, we discuss the role of mTORC1, which is one of the most extensively studied nutrient-related signals associated with kidney diseases, autophagy, and ketone body metabolism; and kidney energy metabolism as a novel therapeutic target for CKD.
Collapse
Affiliation(s)
- Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan.
| |
Collapse
|
5
|
Sparta B, Kosaisawe N, Pargett M, Patankar M, DeCuzzi N, Albeck JG. Continuous sensing of nutrients and growth factors by the mTORC1-TFEB axis. eLife 2023; 12:e74903. [PMID: 37698461 PMCID: PMC10547473 DOI: 10.7554/elife.74903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/11/2023] [Indexed: 09/13/2023] Open
Abstract
mTORC1 senses nutrients and growth factors and phosphorylates downstream targets, including the transcription factor TFEB, to coordinate metabolic supply and demand. These functions position mTORC1 as a central controller of cellular homeostasis, but the behavior of this system in individual cells has not been well characterized. Here, we provide measurements necessary to refine quantitative models for mTORC1 as a metabolic controller. We developed a series of fluorescent protein-TFEB fusions and a multiplexed immunofluorescence approach to investigate how combinations of stimuli jointly regulate mTORC1 signaling at the single-cell level. Live imaging of individual MCF10A cells confirmed that mTORC1-TFEB signaling responds continuously to individual, sequential, or simultaneous treatment with amino acids and the growth factor insulin. Under physiologically relevant concentrations of amino acids, we observe correlated fluctuations in TFEB, AMPK, and AKT signaling that indicate continuous activity adjustments to nutrient availability. Using partial least squares regression modeling, we show that these continuous gradations are connected to protein synthesis rate via a distributed network of mTORC1 effectors, providing quantitative support for the qualitative model of mTORC1 as a homeostatic controller and clarifying its functional behavior within individual cells.
Collapse
Affiliation(s)
- Breanne Sparta
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nont Kosaisawe
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Madhura Patankar
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nicholaus DeCuzzi
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
6
|
Yang F, Liu X, Li Y, Yu Z, Huang X, Yang G, Xu S. Evolutionary analysis of the mTOR pathway provide insights into lifespan extension across mammals. BMC Genomics 2023; 24:456. [PMID: 37582720 PMCID: PMC10426088 DOI: 10.1186/s12864-023-09554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/03/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Lifespan extension has independently evolved several times during mammalian evolution, leading to the emergence of a group of long-lived animals. Though mammalian/mechanistic target of rapamycin (mTOR) signaling pathway is shown as a central regulator of lifespan and aging, the underlying influence of mTOR pathway on the evolution of lifespan in mammals is not well understood. RESULTS Here, we performed evolution analyses of 72 genes involved in the mTOR network across 48 mammals to explore the underlying mechanism of lifespan extension. We identified a total of 20 genes with significant evolution signals unique to long-lived species, including 12 positively selected genes, four convergent evolution genes, and five longevity associated genes whose evolution rate related to the maximum lifespan (MLS). Of these genes, four positively selected genes, two convergent evolution genes and one longevity-associated gene were involved in the autophagy response and aging-related diseases, while eight genes were known as cancer genes, indicating the long-lived species might have evolved effective regulation mechanisms of autophagy and cancer to extend lifespan. CONCLUSION Our study revealed genes with significant evolutionary signals unique to long-lived species, which provided new insight into the lifespan extension of mammals and might bring new strategies to extend human lifespan.
Collapse
Affiliation(s)
- Fei Yang
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xing Liu
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yi Li
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiverity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Pietrobon A, Stanford WL. Tuberous Sclerosis Complex Kidney Lesion Pathogenesis: A Developmental Perspective. J Am Soc Nephrol 2023; 34:1135-1149. [PMID: 37060140 PMCID: PMC10356159 DOI: 10.1681/asn.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The phenotypic diversity of tuberous sclerosis complex (TSC) kidney pathology is enigmatic. Despite a well-established monogenic etiology, an incomplete understanding of lesion pathogenesis persists. In this review, we explore the question: How do TSC kidney lesions arise? We appraise literature findings in the context of mutational timing and cell-of-origin. Through a developmental lens, we integrate the critical results from clinical studies, human specimens, and genetic animal models. We also review novel insights gleaned from emerging organoid and single-cell sequencing technologies. We present a new model of pathogenesis which posits a phenotypic continuum, whereby lesions arise by mutagenesis during development from variably timed second-hit events. This model can serve as a conceptual framework for testing hypotheses of TSC lesion pathogenesis, both in the kidney and in other affected tissues.
Collapse
Affiliation(s)
- Adam Pietrobon
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Kashii H, Kasai S, Sato A, Hagino Y, Nishito Y, Kobayashi T, Hino O, Mizuguchi M, Ikeda K. Tsc2 mutation rather than Tsc1 mutation dominantly causes a social deficit in a mouse model of tuberous sclerosis complex. Hum Genomics 2023; 17:4. [PMID: 36732866 PMCID: PMC9893559 DOI: 10.1186/s40246-023-00450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that is associated with neurological symptoms, including autism spectrum disorder. Tuberous sclerosis complex is caused by pathogenic germline mutations of either the TSC1 or TSC2 gene, but somatic mutations were identified in both genes, and the combined effects of TSC1 and TSC2 mutations have been unknown. METHODS The present study investigated social behaviors by the social interaction test and three-chambered sociability tests, effects of rapamycin treatment, and gene expression profiles with a gene expression microarray in Tsc1 and Tsc2 double heterozygous mutant (TscD+/-) mice. RESULTS TscD+/- mice exhibited impairments in social behaviors, and the severity of impairments was similar to Tsc2+/- mice rather than Tsc1+/- mice. Impairments in social behaviors were rescued by rapamycin treatment in all mutant mice. Gene expression profiles in the brain were greatly altered in TscD+/- mice more than in Tsc1+/- and Tsc2+/- mice. The gene expression changes compared with wild type (WT) mice were similar between TscD+/- and Tsc2+/- mice, and the overlapping genes whose expression was altered in mutant mice compared with WT mice were enriched in the neoplasm- and inflammation-related canonical pathways. The "signal transducer and activator of transcription 3, interferon regulatory factor 1, interferon regulatory factor 4, interleukin-2R α chain, and interferon-γ" signaling pathway, which is initiated from signal transducer and activator of transcription 4 and PDZ and LIM domain protein 2, was associated with impairments in social behaviors in all mutant mice. LIMITATIONS It is unclear whether the signaling pathway also plays a critical role in autism spectrum disorders not caused by Tsc1 and Tsc2 mutations. CONCLUSIONS These findings suggest that TSC1 and TSC2 double mutations cause autistic behaviors similarly to TSC2 mutations, although significant changes in gene expression were attributable to the double mutations. These findings contribute to the knowledge of genotype-phenotype correlations in TSC and suggest that mutations in both the TSC1 and TSC2 genes act in concert to cause neurological symptoms, including autism spectrum disorder.
Collapse
Affiliation(s)
- Hirofumi Kashii
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan ,grid.417106.5Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042 Japan
| | - Shinya Kasai
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Atsushi Sato
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan ,grid.412708.80000 0004 1764 7572Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655 Japan
| | - Yoko Hagino
- grid.272456.00000 0000 9343 3630Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Yasumasa Nishito
- grid.272456.00000 0000 9343 3630Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506 Japan
| | - Toshiyuki Kobayashi
- grid.258269.20000 0004 1762 2738Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Okio Hino
- grid.258269.20000 0004 1762 2738Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421 Japan
| | - Masashi Mizuguchi
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, 1-1-10 Komone, Itabashi-Ku, Tokyo, 173-0037 Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-Ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
9
|
Shimada T, Yamagata K. Spine morphogenesis and synapse formation in tubular sclerosis complex models. Front Mol Neurosci 2022; 15:1019343. [PMID: 36606143 PMCID: PMC9807618 DOI: 10.3389/fnmol.2022.1019343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is caused by mutations in the Tsc1 or Tsc2 genes, whose products form a complex and inactivate the small G-protein Rheb1. The activation of Rheb1 may cause refractory epilepsy, intellectual disability, and autism, which are the major neuropsychiatric manifestations of TSC. Abnormalities in dendritic spines and altered synaptic structure are hallmarks of epilepsy, intellectual disability, and autism. In addition, spine dysmorphology and aberrant synapse formation are observed in TSC animal models. Therefore, it is important to investigate the molecular mechanism underlying the regulation of spine morphology and synapse formation in neurons to identify therapeutic targets for TSC. In this review, we focus on the representative proteins regulated by Rheb1 activity, mTORC1 and syntenin, which are pivotal downstream factors of Rheb1 in the alteration of spine formation and synapse function in TSC neurons.
Collapse
Affiliation(s)
- Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,*Correspondence: Tadayuki Shimada,
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan,Department of Psychiatry, Takada Nishishiro Hospital, Niigata, Japan,Kanato Yamagata,
| |
Collapse
|
10
|
Renal organoid modeling of tuberous sclerosis complex reveals lesion features arise from diverse developmental processes. Cell Rep 2022; 40:111048. [PMID: 35793620 DOI: 10.1016/j.celrep.2022.111048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/15/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a multisystem tumor-forming disorder caused by loss of TSC1 or TSC2. Renal manifestations predominately include cysts and angiomyolipomas. Despite a well-described monogenic etiology, the cellular pathogenesis remains elusive. We report a genetically engineered human renal organoid model that recapitulates pleiotropic features of TSC kidney disease in vitro and upon orthotopic xenotransplantation. Time course single-cell RNA sequencing demonstrates that loss of TSC1 or TSC2 affects multiple developmental processes in the renal epithelial, stromal, and glial compartments. First, TSC1 or TSC2 ablation induces transitional upregulation of stromal-associated genes. Second, epithelial cells in the TSC1-/- and TSC2-/- organoids exhibit a rapamycin-insensitive epithelial-to-mesenchymal transition. Third, a melanocytic population forms exclusively in TSC1-/- and TSC2-/- organoids, branching from MITF+ Schwann cell precursors. Together, these results illustrate the pleiotropic developmental consequences of biallelic inactivation of TSC1 or TSC2 and offer insight into TSC kidney lesion pathogenesis.
Collapse
|
11
|
Emerging Link between Tsc1 and FNIP Co-Chaperones of Hsp90 and Cancer. Biomolecules 2022; 12:biom12070928. [PMID: 35883484 PMCID: PMC9312812 DOI: 10.3390/biom12070928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Heat shock protein-90 (Hsp90) is an ATP-dependent molecular chaperone that is tightly regulated by a group of proteins termed co-chaperones. This chaperone system is essential for the stabilization and activation of many key signaling proteins. Recent identification of the co-chaperones FNIP1, FNIP2, and Tsc1 has broadened the spectrum of Hsp90 regulators. These new co-chaperones mediate the stability of critical tumor suppressors FLCN and Tsc2 as well as the various classes of Hsp90 kinase and non-kinase clients. Many early observations of the roles of FNIP1, FNIP2, and Tsc1 suggested functions independent of FLCN and Tsc2 but have not been fully delineated. Given the broad cellular impact of Hsp90-dependent signaling, it is possible to explain the cellular activities of these new co-chaperones by their influence on Hsp90 function. Here, we review the literature on FNIP1, FNIP2, and Tsc1 as co-chaperones and discuss the potential downstream impact of this regulation on normal cellular function and in human diseases.
Collapse
|
12
|
Wang J, Eming SA, Ding X. Role of mTOR Signaling Cascade in Epidermal Morphogenesis and Skin Barrier Formation. BIOLOGY 2022; 11:biology11060931. [PMID: 35741452 PMCID: PMC9220260 DOI: 10.3390/biology11060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The skin epidermis is a stratified multilayered epithelium that provides a life-sustaining protective and defensive barrier for our body. The barrier machinery is established and maintained through a tightly regulated keratinocyte differentiation program. Under normal conditions, the basal layer keratinocytes undergo active proliferation and migration upward, differentiating into the suprabasal layer cells. Perturbation of the epidermal differentiation program often results in skin barrier defects and inflammatory skin disorders. The protein kinase mechanistic target of rapamycin (mTOR) is the central hub of cell growth, metabolism and nutrient signaling. Over the past several years, we and others using transgenic mouse models have unraveled that mTOR signaling is critical for epidermal differentiation and barrier formation. On the other hand, there is increasing evidence that disturbed activation of mTOR signaling is significantly implicated in the development of various skin diseases. In this review, we focus on the formation of skin barrier and discuss the current understanding on how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal differentiation and skin barrier formation. We hope this review will help us better understand the metabolic signaling in the epidermis, which may open new vistas for epidermal barrier defect-associated disease therapy. Abstract The skin epidermis, with its capacity for lifelong self-renewal and rapid repairing response upon injury, must maintain an active status in metabolism. Mechanistic target of rapamycin (mTOR) signaling is a central controller of cellular growth and metabolism that coordinates diverse physiological and pathological processes in a variety of tissues and organs. Recent evidence with genetic mouse models highlights an essential role of the mTOR signaling network in epidermal morphogenesis and barrier formation. In this review, we focus on the recent advances in understanding how mTOR signaling networks, including upstream inputs, kinases and downstream effectors, regulate epidermal morphogenesis and skin barrier formation. Understanding the details of the metabolic signaling will be critical for the development of novel pharmacological approaches to promote skin barrier regeneration and to treat epidermal barrier defect-associated diseases.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Sabine A. Eming
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| | - Xiaolei Ding
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China;
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.A.E.); (X.D.); Tel.: +86-137-6457-1130 (X.D.)
| |
Collapse
|
13
|
Schrötter S, Yuskaitis CJ, MacArthur MR, Mitchell SJ, Hosios AM, Osipovich M, Torrence ME, Mitchell JR, Hoxhaj G, Sahin M, Manning BD. The non-essential TSC complex component TBC1D7 restricts tissue mTORC1 signaling and brain and neuron growth. Cell Rep 2022; 39:110824. [PMID: 35584673 PMCID: PMC9175135 DOI: 10.1016/j.celrep.2022.110824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/23/2022] [Indexed: 11/16/2022] Open
Abstract
The tuberous sclerosis complex (TSC) 1 and 2 proteins associate with TBC1D7 to form the TSC complex, which is an essential suppressor of mTOR complex 1 (mTORC1), a ubiquitous driver of cell and tissue growth. Loss-of-function mutations in TSC1 or TSC2, but not TBC1D7, give rise to TSC, a pleiotropic disorder with aberrant activation of mTORC1 in various tissues. Here, we characterize mice with genetic deletion of Tbc1d7, which are viable with normal growth and development. Consistent with partial loss of function of the TSC complex, Tbc1d7 knockout (KO) mice display variable increases in tissue mTORC1 signaling with increased muscle fiber size but with strength and motor defects. Their most pronounced phenotype is brain overgrowth due to thickening of the cerebral cortex, with enhanced neuron-intrinsic mTORC1 signaling and growth. Thus, TBC1D7 is required for full TSC complex function in tissues, and the brain is particularly sensitive to its growth-suppressing activities.
Collapse
Affiliation(s)
- Sandra Schrötter
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher J Yuskaitis
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael R MacArthur
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sarah J Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aaron M Hosios
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Maria Osipovich
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Margaret E Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gerta Hoxhaj
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mustafa Sahin
- Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ 2022; 29:961-971. [PMID: 35396345 PMCID: PMC9090748 DOI: 10.1038/s41418-022-00996-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor TP53 is a master regulator of several cellular processes that collectively suppress tumorigenesis. The TP53 gene is mutated in ~50% of human cancers and these defects usually confer poor responses to therapy. The TP53 protein functions as a homo-tetrameric transcription factor, directly regulating the expression of ~500 target genes, some of them involved in cell death, cell cycling, cell senescence, DNA repair and metabolism. Originally, it was thought that the induction of apoptotic cell death was the principal mechanism by which TP53 prevents the development of tumours. However, gene targeted mice lacking the critical effectors of TP53-induced apoptosis (PUMA and NOXA) do not spontaneously develop tumours. Indeed, even mice lacking the critical mediators for TP53-induced apoptosis, G1/S cell cycle arrest and cell senescence, namely PUMA, NOXA and p21, do not spontaneously develop tumours. This suggests that TP53 must activate additional cellular responses to mediate tumour suppression. In this review, we will discuss the processes by which TP53 regulates cell death, cell cycling/cell senescence, DNA damage repair and metabolic adaptation, and place this in context of current understanding of TP53-mediated tumour suppression.
Collapse
Affiliation(s)
- Annabella F Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Niescier RF, Lin YC. The Potential Role of AMPA Receptor Trafficking in Autism and Other Neurodevelopmental Conditions. Neuroscience 2021; 479:180-191. [PMID: 34571086 DOI: 10.1016/j.neuroscience.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Autism Spectrum Disorder (ASD) is a multifaceted condition associated with difficulties in social interaction and communication. It also shares several comorbidities with other neurodevelopmental conditions. Intensive research examining the molecular basis and characteristics of ASD has revealed an association with a large number and variety of low-penetrance genes. Many of the variants associated with ASD are in genes underlying pathways involved in long-term potentiation (LTP) or depression (LTD). These mechanisms then control the tuning of neuronal connections in response to experience by modifying and trafficking ionotropic glutamate receptors at the post-synaptic areas. Despite the high genetic heterogeneity in ASD, surface trafficking of the α-amino-3-hydroxy-5-Methyl-4-isoxazolepropionate (AMPA) receptor is a vulnerable pathway in ASD. In this review, we discuss autism-related alterations in the trafficking of AMPA receptors, whose surface density and composition at the post-synapse determine the strength of the excitatory connection between neurons. We highlight genes associated with neurodevelopmental conditions that share the autism comorbidity, including Fragile X syndrome, Rett Syndrome, and Tuberous Sclerosis, as well as the autism-risk genes NLGNs, IQSEC2, DOCK4, and STXBP5, all of which are involved in regulating AMPAR trafficking to the post-synaptic surface.
Collapse
Affiliation(s)
- Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA.
| |
Collapse
|
16
|
Sato A, Ikeda K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:95-105. [PMID: 36325164 PMCID: PMC9616270 DOI: 10.1016/j.bpsgos.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an individual’s reciprocal social interaction and communication ability. Numerous genetic and environmental conditions are associated with ASD, including tuberous sclerosis complex, phosphatase and tensin homolog hamartoma tumor syndrome, fragile X syndrome, and neurofibromatosis 1. The pathogenic molecular mechanisms of these diseases are integrated into the hyperactivation of mTORC1 (mechanistic target of rapamycin complex 1). Rodent models of these diseases have shown high mTORC1 activity in the brain and ASD-related behavioral deficits, which were reversed by the mTORC1 inhibitor rapamycin. Environmental stress can also affect this signaling pathway. In utero exposure to valproate caused ASD in offspring and enhanced mTORC1 activity in the brain, which was sensitive to mTORC1 inhibition. mTORC1 is a signaling hub for diverse cellular functions, including protein synthesis, through the phosphorylation of its targets, such as ribosomal protein S6 kinases. Metabotropic glutamate receptor 5–mediated synaptic function is also affected by the dysregulation of mTORC1 activity, such as in fragile X syndrome and tuberous sclerosis complex. Reversing these downstream changes that are associated with mTORC1 activation normalizes behavioral defects in rodents. Despite abundant preclinical evidence, few clinical studies have investigated the treatment of ASD and cognitive deficits. Therapeutics other than mTORC1 inhibitors failed to show efficacy in fragile X syndrome and neurofibromatosis 1. mTORC1 inhibitors have been tested mainly in tuberous sclerosis complex, and their effects on ASD and neuropsychological deficits are promising. mTORC1 is a promising target for the pharmacological treatment of ASD associated with mTORC1 activation.
Collapse
|
17
|
Bassetti D, Luhmann HJ, Kirischuk S. Effects of Mutations in TSC Genes on Neurodevelopment and Synaptic Transmission. Int J Mol Sci 2021; 22:7273. [PMID: 34298906 PMCID: PMC8305053 DOI: 10.3390/ijms22147273] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in TSC1 or TSC2 genes are linked to alterations in neuronal function which ultimately lead to the development of a complex neurological phenotype. Here we review current research on the effects that reduction in TSC1 or TSC2 can produce on the developing neural network. A crucial feature of the disease pathophysiology appears to be an early deviation from typical neurodevelopment, in the form of structural abnormalities. Epileptic seizures are one of the primary early manifestation of the disease in the CNS, followed by intellectual deficits and autism spectrum disorders (ASD). Research using mouse models suggests that morphological brain alterations might arise from the interaction of different cellular types, and hyperexcitability in the early postnatal period might be transient. Moreover, the increased excitation-to-inhibition ratio might represent a transient compensatory adjustment to stabilize the developing network rather than a primary factor for the development of ASD symptoms. The inhomogeneous results suggest region-specificity as well as an evolving picture of functional alterations along development. Furthermore, ASD symptoms and epilepsy might originate from different but potentially overlapping mechanisms, which can explain recent observations obtained in patients. Potential treatment is determined not only by the type of medicament, but also by the time point of treatment.
Collapse
Affiliation(s)
- Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany; (H.J.L.); (S.K.)
| | | | | |
Collapse
|
18
|
Kumar P, Zadjali F, Yao Y, Siroky B, Astrinidis A, Gross KW, Bissler JJ. Tsc Gene Locus Disruption and Differences in Renal Epithelial Extracellular Vesicles. Front Physiol 2021; 12:630933. [PMID: 34262466 PMCID: PMC8273388 DOI: 10.3389/fphys.2021.630933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 12/31/2022] Open
Abstract
In tuberous sclerosis complex (TSC), Tsc2 mutations are associated with more severe disease manifestations than Tsc1 mutations and the role of extracellular vesicles (EVs) in this context is not yet studied. We report a comparative analysis of EVs derived from isogenic renal cells except for Tsc1 or Tsc2 gene status and hypothesized that in spite of having similar physical characteristics, EVs modulate signaling pathways differently, thus leading to TSC heterogenicity. We used mouse inner medullary collecting duct (mIMCD3) cells with the Tsc1 (T1G cells) or Tsc2 (T2J cells) gene disrupted by CRISPR/CAS9. EVs were isolated from the cell culture media by size-exclusion column chromatography followed by detailed physical and chemical characterization. Physical characterization of EVs was accessed by tunable resistive pulse sensing and dynamic light scattering, revealing similar average sizes and zeta potentials (at pH 7.4) for EVs from mIMCD3 (123.5 ± 5.7 nm and −16.3 ± 2.1 mV), T1G cells (131.5 ± 8.3 nm and −19.8 ± 2.7 mV), and T2J cells (127.3 ± 4.9 nm and −20.2 ± 2.1 mV). EVs derived from parental mIMCD3 cells and both mutated cell lines were heterogeneous (>90% of EVs < 150 nm) in nature. Immunoblotting detected cilial Hedgehog signaling protein Arl13b; intercellular proteins TSG101 and Alix; and transmembrane proteins CD63, CD9, and CD81. Compared to Tsc2 deletion, Tsc1 deletion cells had reduced EV production and release rates. EVs from Tsc1 mutant cells altered mTORC1, autophagy, and β-catenin pathways differently than EVs from Tsc2-mutated cells. Quantitative PCR analysis revealed the down regulation of miR-212a-3p and miR-99a-5p in EVs from Tsc2-mutated cells compared to EVs from Tsc1-mutant cells. Thus, EV-derived miR-212-3p and mIR-99a-5p axes may represent therapeutic targets or biomarkers for TSC disease.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Fahad Zadjali
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States.,Department of Clinical Biochemistry, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ying Yao
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Brian Siroky
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Aristotelis Astrinidis
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - John J Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, United States.,Department of Pediatrics, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
19
|
Deng Y, Yang Q, Yang Y, Li Y, Peng H, Wu S, Zhang S, Yao B, Li S, Gao Y, Li X, Li L, Deng Y. Conditional knockout of Tsc1 in RORγt-expressing cells induces brain damage and early death in mice. J Neuroinflammation 2021; 18:107. [PMID: 33957945 PMCID: PMC8101034 DOI: 10.1186/s12974-021-02153-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Tuberous sclerosis complex 1 (Tsc1) is known to regulate the development and function of various cell types, and RORγt is a critical transcription factor in the immune system. However, whether Tsc1 participates in regulating RORγt-expressing cells remains unknown. Methods We generated a mouse model in which Tsc1 was conditionally deleted from RORγt-expressing cells (Tsc1RORγt) to study the role of RORγt-expressing cells with Tsc1 deficiency in brain homeostasis. Results Type 3 innate lymphoid cells (ILC3s) in Tsc1RORγt mice displayed normal development and function, and the mice showed normal Th17 cell differentiation. However, Tsc1RORγt mice exhibited spontaneous tonic-clonic seizures and died between 4 and 6 weeks after birth. At the age of 4 weeks, mice in which Tsc1 was specifically knocked out in RORγt-expressing cells had cortical neuron defects and hippocampal structural abnormalities. Notably, over-activation of neurons and astrogliosis were observed in the cortex and hippocampus of Tsc1RORγt mice. Moreover, expression of the γ-amino butyric acid (GABA) receptor in the brains of Tsc1RORγt mice was decreased, and GABA supplementation prolonged the lifespan of the mice to some extent. Further experiments revealed the presence of a group of rare RORγt-expressing cells with high metabolic activity in the mouse brain. Conclusions Our study verifies the critical role of previously unnoticed RORγt-expressing cells in the brain and demonstrates that the Tsc1 signaling pathway in RORγt-expressing cells is important for maintaining brain homeostasis. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02153-8.
Collapse
Affiliation(s)
- Yafei Deng
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, 410000, China
| | - Qinglan Yang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, 410000, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yana Li
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, 410000, China
| | - Hongyan Peng
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, 410000, China
| | - Shuting Wu
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, 410000, China
| | - Shuju Zhang
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, 410000, China
| | - Baige Yao
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Shuhui Li
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuan Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Liping Li
- Hunan Children's Research Institute (HCRI), Hunan Children's Hospital, Changsha, 410000, China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
20
|
Karalis V, Bateup HS. Current Approaches and Future Directions for the Treatment of mTORopathies. Dev Neurosci 2021; 43:143-158. [PMID: 33910214 PMCID: PMC8440338 DOI: 10.1159/000515672] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a kinase at the center of an evolutionarily conserved signaling pathway that orchestrates cell growth and metabolism. mTOR responds to an array of intra- and extracellular stimuli and in turn controls multiple cellular anabolic and catabolic processes. Aberrant mTOR activity is associated with numerous diseases, with particularly profound impact on the nervous system. mTOR is found in two protein complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2), which are governed by different upstream regulators and have distinct cellular actions. Mutations in genes encoding for mTOR regulators result in a collection of neurodevelopmental disorders known as mTORopathies. While these disorders can affect multiple organs, neuropsychiatric conditions such as epilepsy, intellectual disability, and autism spectrum disorder have a major impact on quality of life. The neuropsychiatric aspects of mTORopathies have been particularly challenging to treat in a clinical setting. Current therapeutic approaches center on rapamycin and its analogs, drugs that are administered systemically to inhibit mTOR activity. While these drugs show some clinical efficacy, adverse side effects, incomplete suppression of mTOR targets, and lack of specificity for mTORC1 or mTORC2 may limit their utility. An increased understanding of the neurobiology of mTOR and the underlying molecular, cellular, and circuit mechanisms of mTOR-related disorders will facilitate the development of improved therapeutics. Animal models of mTORopathies have helped unravel the consequences of mTOR pathway mutations in specific brain cell types and developmental stages, revealing an array of disease-related phenotypes. In this review, we discuss current progress and potential future directions for the therapeutic treatment of mTORopathies with a focus on findings from genetic mouse models.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
21
|
Mallela K, Shivananda S, Gopinath KS, Kumar A. Oncogenic role of MiR-130a in oral squamous cell carcinoma. Sci Rep 2021; 11:7787. [PMID: 33833339 PMCID: PMC8032739 DOI: 10.1038/s41598-021-87388-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant activation of the PI3K/AKT/mTOR pathway is attributed to the pathogenesis of oral squamous cell carcinoma (OSCC). In recent years, increasing evidence suggests the involvement of microRNAs (miRNAs) in oral carcinogenesis by acting as tumor suppressors or oncogenes. TSC1, as a component of the above pathway, regulates several cellular functions such as cell proliferation, apoptosis, migration and invasion. Downregulation of TSC1 is reported in oral as well as several other cancers and is associated with an unfavourable clinical outcome in patients. Here we show that oncogenic miR-130a binds to the 3′UTR of TSC1 and represses its expression. MiR-130a-mediated repression of TSC1 increases cell proliferation, anchorage independent growth and invasion of OSCC cells, which is dependent on the presence of the 3′UTR in TSC1. We observe an inverse correlation between the expression levels of miR-130a and TSC1 in OSCC samples, suggesting that their interaction is physiologically relevant. Delivery of antagomiR-130a to OSCC cells results in a significant decrease in xenograft size. Taken together, the findings of the study indicate that miR-130a-mediated TSC1 downregulation is not only a novel mechanism in OSCC, but also the restoration of TSC1 levels by antagomiR-130a may be a potential therapeutic strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
22
|
Kútna V, O'Leary VB, Newman E, Hoschl C, Ovsepian SV. Revisiting Brain Tuberous Sclerosis Complex in Rat and Human: Shared Molecular and Cellular Pathology Leads to Distinct Neurophysiological and Behavioral Phenotypes. Neurotherapeutics 2021; 18:845-858. [PMID: 33398801 PMCID: PMC8423952 DOI: 10.1007/s13311-020-01000-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a dominant autosomal genetic disorder caused by loss-of-function mutations in TSC1 and TSC2, which lead to constitutive activation of the mammalian target of rapamycin C1 (mTORC1) with its decoupling from regulatory inputs. Because mTORC1 integrates an array of molecular signals controlling protein synthesis and energy metabolism, its unrestrained activation inflates cell growth and division, resulting in the development of benign tumors in the brain and other organs. In humans, brain malformations typically manifest through a range of neuropsychiatric symptoms, among which mental retardation, intellectual disabilities with signs of autism, and refractory seizures, which are the most prominent. TSC in the rat brain presents the first-rate approximation of cellular and molecular pathology of the human brain, showing many instructive characteristics. Nevertheless, the developmental profile and distribution of lesions in the rat brain, with neurophysiological and behavioral manifestation, deviate considerably from humans, raising numerous research and translational questions. In this study, we revisit brain TSC in human and Eker rats to relate their histopathological, electrophysiological, and neurobehavioral characteristics. We discuss shared and distinct aspects of the pathology and consider factors contributing to phenotypic discrepancies. Given the shared genetic cause and molecular pathology, phenotypic deviations suggest an incomplete understanding of the disease. Narrowing the knowledge gap in the future should not only improve the characterization of the TSC rat model but also explain considerable variability in the clinical manifestation of the disease in humans.
Collapse
Affiliation(s)
- Viera Kútna
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Ehren Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cyril Hoschl
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic
| | - Saak V Ovsepian
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
- Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, Ruská 87, 100 00, Prague, Czech Republic.
| |
Collapse
|
23
|
Mallela K, Kumar A. Role of TSC1 in physiology and diseases. Mol Cell Biochem 2021; 476:2269-2282. [PMID: 33575875 DOI: 10.1007/s11010-021-04088-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Since its initial discovery as the gene altered in Tuberous Sclerosis Complex (TSC), an autosomal dominant disorder, the interest in TSC1 (Tuberous Sclerosis Complex 1) has steadily risen. TSC1, an essential component of the pro-survival PI3K/AKT/MTOR signaling pathway, plays an important role in processes like development, cell growth and proliferation, survival, autophagy and cilia development by co-operating with a variety of regulatory molecules. Recent studies have emphasized the tumor suppressive role of TSC1 in several human cancers including liver, lung, bladder, breast, ovarian, and pancreatic cancers. TSC1 perceives inputs from various signaling pathways, including TNF-α/IKK-β, TGF-β-Smad2/3, AKT/Foxo/Bim, Wnt/β-catenin/Notch, and MTOR/Mdm2/p53 axis, thereby regulating cancer cell proliferation, metabolism, migration, invasion, and immune regulation. This review provides a first comprehensive evaluation of TSC1 and illuminates its diverse functions apart from its involvement in TSC genetic disorder. Further, we have summarized the physiological functions of TSC1 in various cellular events and conditions whose dysregulation may lead to several pathological manifestations including cancer.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
24
|
Li X, Hu T, Liu J, Fang B, Geng X, Xiong Q, Zhang L, Jin Y, Liu X, Li L, Wang Y, Li R, Bai X, Yang H, Dai Y. A Bama miniature pig model of monoallelic TSC1 mutation for human tuberous sclerosis complex. J Genet Genomics 2020; 47:735-742. [PMID: 33612456 DOI: 10.1016/j.jgg.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
Tuberous sclerosis complex (TSC) is a dominant genetic neurocutaneous syndrome characterized by multiple organ hamartomas. Although rodent models bearing a germline mutation in either TSC1 or TSC2 gene have been generated, they do not develop pathogenic lesions matching those seen in patients with TSC because of the significant differences between mice and humans, highlighting the need for an improved large animal model of TSC. Here, we successfully generate monoallelic TSC1-modified Bama miniature pigs using the CRISPR/Cas9 system along with somatic cell nuclear transfer (SCNT) technology. The expression of phosphorylated target ribosomal protein S6 is significantly enhanced in the piglets, indicating that disruption of a TSC1 allele activate the mechanistic target of rapamycin (mTOR) signaling pathway. Notably, differing from the mouse TSC models reported previously, the TSC1+/- Bama miniature pig developed cardiac rhabdomyoma and subependymal nodules, resembling the major clinical features that occur in patients with TSC. These TSC1+/- Bama miniature pigs could serve as valuable large animal models for further elucidation of the pathogenesis of TSC and the development of therapeutic strategies for TSC disease.
Collapse
Affiliation(s)
- Xiaoxue Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Tingdong Hu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Jiying Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Bin Fang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xue Geng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Xiong
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Lining Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Xiaorui Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China
| | - Lin Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Ying Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiaochun Bai
- Department of Cell Biology, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China.
| |
Collapse
|
25
|
Tsc1 Regulates the Proliferation Capacity of Bone-Marrow Derived Mesenchymal Stem Cells. Cells 2020; 9:cells9092072. [PMID: 32927859 PMCID: PMC7565438 DOI: 10.3390/cells9092072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
TSC1 is a tumor suppressor that inhibits cell growth via negative regulation of the mammalian target of rapamycin complex (mTORC1). TSC1 mutations are associated with Tuberous Sclerosis Complex (TSC), characterized by multiple benign tumors of mesenchymal and epithelial origin. TSC1 modulates self-renewal and differentiation in hematopoietic stem cells; however, its effects on mesenchymal stem cells (MSCs) are unknown. We investigated the impact of Tsc1 inactivation in murine bone marrow (BM)-MSCs, using tissue-specific, transgelin (Tagln)-mediated cre-recombination, targeting both BM-MSCs and smooth muscle cells. Tsc1 mutants were viable, but homozygous inactivation led to a dwarfed appearance with TSC-like pathologies in multiple organs and reduced survival. In young (28 day old) mice, Tsc1 deficiency-induced significant cell expansion of non-hematopoietic BM in vivo, and MSC colony-forming potential in vitro, that was normalized upon treatment with the mTOR inhibitor, everolimus. The hyperproliferative BM-MSC phenotype was lost in aged (1.5 yr) mice, and Tsc1 inactivation was also accompanied by elevated ROS and increased senescence. ShRNA-mediated knockdown of Tsc1 in BM-MSCs replicated the hyperproliferative BM-MSC phenotype and led to impaired adipogenic and myogenic differentiation. Our data show that Tsc1 is a negative regulator of BM-MSC proliferation and support a pivotal role for the Tsc1-mTOR axis in the maintenance of the mesenchymal progenitor pool.
Collapse
|
26
|
Feliciano DM. The Neurodevelopmental Pathogenesis of Tuberous Sclerosis Complex (TSC). Front Neuroanat 2020; 14:39. [PMID: 32765227 PMCID: PMC7381175 DOI: 10.3389/fnana.2020.00039] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a model disorder for understanding brain development because the genes that cause TSC are known, many downstream molecular pathways have been identified, and the resulting perturbations of cellular events are established. TSC, therefore, provides an intellectual framework to understand the molecular and biochemical pathways that orchestrate normal brain development. The TSC1 and TSC2 genes encode Hamartin and Tuberin which form a GTPase activating protein (GAP) complex. Inactivating mutations in TSC genes (TSC1/TSC2) cause sustained Ras homologue enriched in brain (RHEB) activation of the mammalian isoform of the target of rapamycin complex 1 (mTORC1). TOR is a protein kinase that regulates cell size in many organisms throughout nature. mTORC1 inhibits catabolic processes including autophagy and activates anabolic processes including mRNA translation. mTORC1 regulation is achieved through two main upstream mechanisms. The first mechanism is regulation by growth factor signaling. The second mechanism is regulation by amino acids. Gene mutations that cause too much or too little mTORC1 activity lead to a spectrum of neuroanatomical changes ranging from altered brain size (micro and macrocephaly) to cortical malformations to Type I neoplasias. Because somatic mutations often underlie these changes, the timing, and location of mutation results in focal brain malformations. These mutations, therefore, provide gain-of-function and loss-of-function changes that are a powerful tool to assess the events that have gone awry during development and to determine their functional physiological consequences. Knowledge about the TSC-mTORC1 pathway has allowed scientists to predict which upstream and downstream mutations should cause commensurate neuroanatomical changes. Indeed, many of these predictions have now been clinically validated. A description of clinical imaging and histochemical findings is provided in relation to laboratory models of TSC that will allow the reader to appreciate how human pathology can provide an understanding of the fundamental mechanisms of development.
Collapse
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
27
|
Qian J, Su S, Liu P. Experimental Approaches in Delineating mTOR Signaling. Genes (Basel) 2020; 11:E738. [PMID: 32630768 PMCID: PMC7397015 DOI: 10.3390/genes11070738] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
The mTOR signaling controls essential biological functions including proliferation, growth, metabolism, autophagy, ageing, and others. Hyperactivation of mTOR signaling leads to a plethora of human disorders; thus, mTOR is an attractive drug target. The discovery of mTOR signaling started from isolation of rapamycin in 1975 and cloning of TOR genes in 1993. In the past 27 years, numerous research groups have contributed significantly to advancing our understanding of mTOR signaling and mTOR biology. Notably, a variety of experimental approaches have been employed in these studies to identify key mTOR pathway members that shape up the mTOR signaling we know today. Technique development drives mTOR research, while canonical biochemical and yeast genetics lay the foundation for mTOR studies. Here in this review, we summarize major experimental approaches used in the past in delineating mTOR signaling, including biochemical immunoprecipitation approaches, genetic approaches, immunofluorescence microscopic approaches, hypothesis-driven studies, protein sequence or motif search driven approaches, and bioinformatic approaches. We hope that revisiting these distinct types of experimental approaches will provide a blueprint for major techniques driving mTOR research. More importantly, we hope that thinking and reasonings behind these experimental designs will inspire future mTOR research as well as studies of other protein kinases beyond mTOR.
Collapse
Affiliation(s)
- Jiayi Qian
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.Q.); (S.S.)
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
28
|
Asrani K, Murali S, Lam B, Na CH, Phatak P, Sood A, Kaur H, Khan Z, Noë M, Anchoori RK, Talbot CC, Smith B, Skaro M, Lotan TL. mTORC1 feedback to AKT modulates lysosomal biogenesis through MiT/TFE regulation. J Clin Invest 2020; 129:5584-5599. [PMID: 31527310 DOI: 10.1172/jci128287] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
The microphthalmia family of transcription factors (MiT/TFEs) controls lysosomal biogenesis and is negatively regulated by the nutrient sensor mTORC1. However, the mechanisms by which cells with constitutive mTORC1 signaling maintain lysosomal catabolism remain to be elucidated. Using the murine epidermis as a model system, we found that epidermal Tsc1 deletion resulted in a phenotype characterized by wavy hair and curly whiskers, and was associated with increased EGFR and HER2 degradation. Unexpectedly, constitutive mTORC1 activation with Tsc1 loss increased lysosomal content via upregulated expression and activity of MiT/TFEs, whereas genetic deletion of Rheb or Rptor or prolonged pharmacologic mTORC1 inactivation had the reverse effect. This paradoxical increase in lysosomal biogenesis by mTORC1 was mediated by feedback inhibition of AKT, and a resulting suppression of AKT-induced MiT/TFE downregulation. Thus, inhibiting hyperactive AKT signaling in the context of mTORC1 loss-of-function fully restored MiT/TFE expression and activity. These data suggest that signaling feedback loops work to restrain or maintain cellular lysosomal content during chronically inhibited or constitutively active mTORC1 signaling, respectively, and reveal a mechanism by which mTORC1 regulates upstream receptor tyrosine kinase signaling.
Collapse
Affiliation(s)
| | | | | | - Chan-Hyun Na
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pornima Phatak
- Baltimore Veteran Affairs Medical Center, Baltimore, Maryland, USA
| | | | | | | | | | | | | | - Barbara Smith
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
29
|
Kadoya M, Sasai N. Negative Regulation of mTOR Signaling Restricts Cell Proliferation in the Floor Plate. Front Neurosci 2019; 13:1022. [PMID: 31607856 PMCID: PMC6773814 DOI: 10.3389/fnins.2019.01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
The neural tube is composed of a number of neural progenitors and postmitotic neurons distributed in a quantitatively and spatially precise manner. The floor plate, located in the ventral-most region of the neural tube, has a lot of unique characteristics, including a low cell proliferation rate. The mechanisms by which this region-specific proliferation rate is regulated remain elusive. Here we show that the activity of the mTOR signaling pathway, which regulates the proliferation of the neural progenitor cells, is significantly lower in the floor plate than in other domains of the embryonic neural tube. We identified the forkhead-type transcription factor FoxA2 as a negative regulator of mTOR signaling in the floor plate, and showed that FoxA2 transcriptionally induces the expression of the E3 ubiquitin ligase RNF152, which together with its substrate RagA, regulates cell proliferation via the mTOR pathway. Silencing of RNF152 led to the aberrant upregulation of the mTOR signal and aberrant cell division in the floor plate. Taken together, the present findings suggest that floor plate cell number is controlled by the negative regulation of mTOR signaling through the activity of FoxA2 and its downstream effector RNF152.
Collapse
Affiliation(s)
- Minori Kadoya
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
30
|
Abstract
The PI3K/AKT/mTOR pathway is frequently activated in various human cancers and has been considered a promising therapeutic target. Many of the positive regulators of the PI3K/AKT/mTOR axis, including the catalytic (p110α) and regulatory (p85α), of class IA PI3K, AKT, RHEB, mTOR, and eIF4E, possess oncogenic potentials, as demonstrated by transformation assays in vitro and by genetically engineered mouse models in vivo. Genetic evidences also indicate their roles in malignancies induced by activation of the upstream oncoproteins including receptor tyrosine kinases and RAS and those induced by the loss of the negative regulators of the PI3K/AKT/mTOR pathway such as PTEN, TSC1/2, LKB1, and PIPP. Possible mechanisms by which the PI3K/AKT/mTOR axis contributes to oncogenic transformation include stimulation of proliferation, survival, metabolic reprogramming, and invasion/metastasis, as well as suppression of autophagy and senescence. These phenotypic changes are mediated by eIF4E-induced translation of a subset of mRNAs and by other downstream effectors of mTORC1 including S6K, HIF-1α, PGC-1α, SREBP, and ULK1 complex.
Collapse
|
31
|
Salussolia CL, Klonowska K, Kwiatkowski DJ, Sahin M. Genetic Etiologies, Diagnosis, and Treatment of Tuberous Sclerosis Complex. Annu Rev Genomics Hum Genet 2019; 20:217-240. [PMID: 31018109 DOI: 10.1146/annurev-genom-083118-015354] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that affects multiple organ systems due to an inactivating variant in either TSC1 or TSC2, resulting in the hyperactivation of the mechanistic target of rapamycin (mTOR) pathway. Dysregulated mTOR signaling results in increased cell growth and proliferation. Clinically, TSC patients exhibit great phenotypic variability, but the neurologic and neuropsychiatric manifestations of the disease have the greatest morbidity and mortality. TSC-associated epilepsy occurs in nearly all patients and is often difficult to treat because it is refractory to multiple antiseizure medications. The advent of mTOR inhibitors offers great promise in the treatment of TSC-associated epilepsy and other neurodevelopmental manifestations of the disease; however, the optimal timing of therapeutic intervention is not yet fully understood.
Collapse
Affiliation(s)
- Catherine L Salussolia
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Katarzyna Klonowska
- Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
32
|
Kramer K, Yang J, Swanson WB, Hayano S, Toda M, Pan H, Kim JK, Krebsbach PH, Mishina Y. Rapamycin rescues BMP mediated midline craniosynostosis phenotype through reduction of mTOR signaling in a mouse model. Genesis 2018; 56:e23220. [PMID: 30134066 DOI: 10.1002/dvg.23220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Abstract
Craniosynostosis is defined as congenital premature fusion of one or more cranial sutures. While the genetic basis for about 30% of cases is known, the causative genes for the diverse presentations of the remainder of cases are unknown. The recently discovered cranial suture stem cell population affords an opportunity to identify early signaling pathways that contribute to craniosynostosis. We previously demonstrated that enhanced BMP signaling in neural crest cells (caA3 mutants) leads to premature cranial suture fusion resulting in midline craniosynostosis. Since enhanced mTOR signaling in neural crest cells leads to craniofacial bone lesions, we investigated the extent to which mTOR signaling is involved in the pathogenesis of BMP-mediated craniosynostosis by affecting the suture stem cell population. Our results demonstrate a loss of suture stem cells in the caA3 mutant mice by the newborn stage. We have found increased activation of mTOR signaling in caA3 mutant mice during embryonic stages, but not at the newborn stage. Our study demonstrated that inhibition of mTOR signaling via rapamycin in a time specific manner partially rescued the loss of the suture stem cell population. This study provides insight into how enhanced BMP signaling regulates suture stem cells via mTOR activation.
Collapse
Affiliation(s)
- Kaitrin Kramer
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109
| | - Jingwen Yang
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109
| | | | - Satoru Hayano
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109.,Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masako Toda
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109
| | - Haichun Pan
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109
| | - Jin Koo Kim
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109.,Los Angeles School of Dentistry, Section of Periodontics, University of California, Los Angeles, California, 90095
| | - Paul H Krebsbach
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109.,Los Angeles School of Dentistry, Section of Periodontics, University of California, Los Angeles, California, 90095
| | - Yuji Mishina
- Department of Biologic & Materials Sciences, School of Dentistry, University Michigan, Ann Arbor, Michigan, 48109
| |
Collapse
|
33
|
Tachibana N, Touahri Y, Dixit R, David LA, Adnani L, Cantrup R, Aavani T, Wong RO, Logan C, Kurek KC, Schuurmans C. Hamartoma-like lesions in the mouse retina: an animal model of Pten hamartoma tumour syndrome. Dis Model Mech 2018; 11:dmm.031005. [PMID: 29716894 PMCID: PMC5992614 DOI: 10.1242/dmm.031005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 04/16/2018] [Indexed: 12/15/2022] Open
Abstract
PTEN hamartoma tumour syndrome (PHTS) is a heterogeneous group of rare, autosomal dominant disorders associated with PTEN germline mutations. PHTS patients routinely develop hamartomas, which are benign tissue overgrowths comprised of disorganized 'normal' cells. Efforts to generate PHTS animal models have been largely unsuccessful due to the early lethality of homozygous germline mutations in Pten, together with the lack of hamartoma formation in most conditional mutants generated to date. We report herein a novel PHTS mouse model that reproducibly forms hamartoma-like lesions in the central retina by postnatal day 21. Specifically, we generated a Pten conditional knockout (cKO) using a retinal-specific Pax6::Cre driver that leads to a nearly complete deletion of Pten in the peripheral retina but produces a mosaic of 'wild-type' and Pten cKO cells centrally. Structural defects were only observed in the mosaic central retina, including in Müller glia and in the outer and inner limiting membranes, suggesting that defective mechanical integrity partly underlies the hamartoma-like pathology. Finally, we used this newly developed model to test whether rapamycin, an mTOR inhibitor that is currently the only PHTS therapy, can block hamartoma growth. When administered in the early postnatal period, prior to hamartoma formation, rapamycin reduces hamartoma size, but also induces new morphological abnormalities in the Pten cKO retinal periphery. In contrast, administration of rapamycin after hamartoma initiation fails to reduce lesion size. We have thus generated and used an animal model of retinal PHTS to show that, although current therapies can reduce hamartoma formation, they might also induce new retinal dysmorphologies.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nobuhiko Tachibana
- Biological Sciences Platform, Sunnybrook Research Institute, Room 116, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Yacine Touahri
- Biological Sciences Platform, Sunnybrook Research Institute, Room 116, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Rajiv Dixit
- Biological Sciences Platform, Sunnybrook Research Institute, Room 116, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Luke Ajay David
- Biological Sciences Platform, Sunnybrook Research Institute, Room 116, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Lata Adnani
- Biological Sciences Platform, Sunnybrook Research Institute, Room 116, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada.,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Robert Cantrup
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tooka Aavani
- Biological Sciences Platform, Sunnybrook Research Institute, Room 116, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195-7420, USA
| | - Cairine Logan
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Kyle C Kurek
- Department of Pathology and Laboratory Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute, Room 116, 2075 Bayview Ave, Toronto, ON, M4N 3M5, Canada .,Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
34
|
Alsidawi S, Kasi PM. Exceptional response to everolimus in a novel tuberous sclerosis complex-2 mutation-associated metastatic renal-cell carcinoma. Cold Spring Harb Mol Case Stud 2018; 4:mcs.a002220. [PMID: 29610387 PMCID: PMC5880255 DOI: 10.1101/mcs.a002220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/28/2017] [Indexed: 01/05/2023] Open
Abstract
Everolimus, an oral inhibitor of the mammalian target of rapamycin (mTOR) pathway, is currently approved for treatment of advanced renal-cell carcinoma (RCC) after failure of initial treatment with the tyrosine kinase inhibitors. Patients with tuberous sclerosis complex (TSC) syndrome can also develop RCC primarily mediated through mTOR signaling. However, the efficacy and duration of response of mTOR inhibition in patients with TSC-associated RCC is not well known. Herein, we describe a case of a patient with TSC2-associated metastatic RCC with mutations H1620R and Y1650C who has had an exceptional response to everolimus in the frontline setting and continues to derive benefit from mTOR inhibition 2 yr into therapy. Furthermore, the alteration H1620R in exon 37 resulting in a missense mutation is likely deleterious given our findings and previous analyses of the TSC2 gene. Further studies of somatic mutations in extended responders to mTOR inhibitors will help personalize therapy for these patients. It also emphasizes the value of targeted therapies based on genomic analyses.
Collapse
Affiliation(s)
- Samer Alsidawi
- Division of Hematology/Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
35
|
Bykhovskaya Y, Fardaei M, Khaled ML, Nejabat M, Salouti R, Dastsooz H, Liu Y, Inaloo S, Rabinowitz YS. TSC1 Mutations in Keratoconus Patients With or Without Tuberous Sclerosis. Invest Ophthalmol Vis Sci 2017; 58:6462-6469. [PMID: 29261847 PMCID: PMC5760196 DOI: 10.1167/iovs.17-22819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose To test candidate genes TSC1 and TSC2 in a family affected by tuberous sclerosis complex (TSC) where proband was also diagnosed with bilateral keratoconus (KC) and to test the hypothesis that defects in the same gene may lead to a nonsyndromic KC. Methods Next-generation sequencing of TSC1 and TSC2 genes was performed in a proband affected by TSC and KC. Identified mutation was confirmed by Sanger DNA sequencing. Whole exome sequencing (WES) was performed in patients with nonsyndromic KC. Sanger DNA sequencing was used to confirm WES results and to screen additional patients. RT-PCR was used to investigate TSC1 expression in seven normal human corneas and eight corneas from patients with KC. Various in silico tools were employed to model functional consequences of identified mutations. Results A heterozygous nonsense TSC1 mutation g.132902703C>T (c.2293C>T, p.Gln765Ter) was identified in a patient with TSC and KC. Two heterozygous missense TSC1 variants g.132896322A>T (c.3408A>T, p.Asp1136Glu) and g.132896452G>A (c.3278G>A, p.Arg1093Gln) were identified in three patients with nonsyndromic KC. Two mutations were not present in The Genome Aggregation (GnomAD), The Exome Aggregation (ExAC), and 1000 Genomes (1000G) databases, while the third one was present in GnomAD and 1000G with minor allele frequencies (MAF) of 0.00001 and 0.0002, respectively. We found TSC1 expressed in normal corneas and KC corneas, albeit with various levels. Conclusions Here for the first time we found TSC1 gene to be involved in bilateral KC and TSC as well as with nonsyndromic KC, supporting the hypothesis that diverse germline mutations of the same gene can cause genetic disorders with overlapping clinical features.
Collapse
Affiliation(s)
- Yelena Bykhovskaya
- Department of Surgery and Board of the Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States.,Cornea Genetic Eye Institute, Beverly Hills, California, United States
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mariam Lotfy Khaled
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Mahmood Nejabat
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ramin Salouti
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Dastsooz
- Comprehensive Medical Genetics Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, Georgia, United States
| | - Soroor Inaloo
- Department of Pediatrics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yaron S Rabinowitz
- Department of Surgery and Board of the Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States.,Cornea Genetic Eye Institute, Beverly Hills, California, United States.,The Jules Stein Eye Institute, University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
36
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
37
|
Hughes J, Dawson R, Tea M, McAninch D, Piltz S, Jackson D, Stewart L, Ricos MG, Dibbens LM, Harvey NL, Thomas P. Knockout of the epilepsy gene Depdc5 in mice causes severe embryonic dysmorphology with hyperactivity of mTORC1 signalling. Sci Rep 2017; 7:12618. [PMID: 28974734 PMCID: PMC5626732 DOI: 10.1038/s41598-017-12574-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 09/08/2017] [Indexed: 12/15/2022] Open
Abstract
DEPDC5 mutations have recently been shown to cause epilepsy in humans. Evidence from in vitro studies has implicated DEPDC5 as a negative regulator of mTORC1 during amino acid insufficiency as part of the GATOR1 complex. To investigate the role of DEPDC5 in vivo we generated a null mouse model using targeted CRISPR mutagenesis. Depdc5 homozygotes display severe phenotypic defects between 12.5-15.5 dpc, including hypotrophy, anaemia, oedema, and cranial dysmorphology as well as blood and lymphatic vascular defects. mTORC1 hyperactivity was observed in the brain of knockout embryos and in fibroblasts and neurospheres isolated from knockout embryos and cultured in nutrient deprived conditions. Heterozygous mice appeared to be normal and we found no evidence of increased susceptibility to seizures or tumorigenesis. Together, these data support mTORC1 hyperactivation as the likely pathogenic mechanism that underpins DEPDC5 loss of function in humans and highlights the potential utility of mTORC1 inhibitors in the treatment of DEPDC5-associated epilepsy.
Collapse
Affiliation(s)
- James Hughes
- School of Biological Sciences, University of Adelaide, Adelaide, SA, AUS 5005, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, AUS 5005, Australia
| | - Ruby Dawson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, AUS 5005, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, AUS 5005, Australia
| | - Melinda Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, AUS 5000, Australia
| | - Dale McAninch
- School of Biological Sciences, University of Adelaide, Adelaide, SA, AUS 5005, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, AUS 5005, Australia
| | - Sandra Piltz
- School of Biological Sciences, University of Adelaide, Adelaide, SA, AUS 5005, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, AUS 5005, Australia
| | - Dominique Jackson
- School of Biological Sciences, University of Adelaide, Adelaide, SA, AUS 5005, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, AUS 5005, Australia
| | - Laura Stewart
- School of Biological Sciences, University of Adelaide, Adelaide, SA, AUS 5005, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, AUS 5005, Australia
| | - Michael G Ricos
- University of South Australia, Epilepsy Research Program, School of Pharmacy and Medical Sciences, Adelaide, SA, AUS 5000, Australia
| | - Leanne M Dibbens
- University of South Australia, Epilepsy Research Program, School of Pharmacy and Medical Sciences, Adelaide, SA, AUS 5000, Australia
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, AUS 5000, Australia
| | - Paul Thomas
- School of Biological Sciences, University of Adelaide, Adelaide, SA, AUS 5005, Australia. .,Robinson Research Institute, University of Adelaide, Adelaide, SA, AUS 5005, Australia.
| |
Collapse
|
38
|
Pleniceanu O, Shukrun R, Omer D, Vax E, Kanter I, Dziedzic K, Pode-Shakked N, Mark-Daniei M, Pri-Chen S, Gnatek Y, Alfandary H, Varda-Bloom N, Bar-Lev DD, Bollag N, Shtainfeld R, Armon L, Urbach A, Kalisky T, Nagler A, Harari-Steinberg O, Arbiser JL, Dekel B. Peroxisome proliferator-activated receptor gamma (PPARγ) is central to the initiation and propagation of human angiomyolipoma, suggesting its potential as a therapeutic target. EMBO Mol Med 2017; 9:508-530. [PMID: 28275008 PMCID: PMC5376758 DOI: 10.15252/emmm.201506111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiomyolipoma (AML), the most common benign renal tumor, can result in severe morbidity from hemorrhage and renal failure. While mTORC1 activation is involved in its growth, mTORC1 inhibitors fail to eradicate AML, highlighting the need for new therapies. Moreover, the identity of the AML cell of origin is obscure. AML research, however, is hampered by the lack of in vivo models. Here, we establish a human AML‐xenograft (Xn) model in mice, recapitulating AML at the histological and molecular levels. Microarray analysis demonstrated tumor growth in vivo to involve robust PPARG‐pathway activation. Similarly, immunostaining revealed strong PPARG expression in human AML specimens. Accordingly, we demonstrate that while PPARG agonism accelerates AML growth, PPARG antagonism is inhibitory, strongly suppressing AML proliferation and tumor‐initiating capacity, via a TGFB‐mediated inhibition of PDGFB and CTGF. Finally, we show striking similarity between AML cell lines and mesenchymal stem cells (MSCs) in terms of antigen and gene expression and differentiation potential. Altogether, we establish the first in vivo human AML model, which provides evidence that AML may originate in a PPARG‐activated renal MSC lineage that is skewed toward adipocytes and smooth muscle and away from osteoblasts, and uncover PPARG as a regulator of AML growth, which could serve as an attractive therapeutic target.
Collapse
Affiliation(s)
- Oren Pleniceanu
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Racheli Shukrun
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Einav Vax
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itamar Kanter
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Klaudyna Dziedzic
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Pode-Shakked
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mark-Daniei
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sara Pri-Chen
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Hadas Alfandary
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Institute of Nephrology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nira Varda-Bloom
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel
| | - Dekel D Bar-Lev
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Naomi Bollag
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rachel Shtainfeld
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Leah Armon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Achia Urbach
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Tomer Kalisky
- Faculty of Engineering, Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Arnon Nagler
- Division of Hematology and Cord Blood Bank, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orit Harari-Steinberg
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.,Winship Cancer Institute, Atlanta Veterans Administration Hospital, Atlanta, GA, USA
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel .,Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Jones RG, Pearce EJ. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity 2017; 46:730-742. [PMID: 28514674 DOI: 10.1016/j.immuni.2017.04.028] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts.
Collapse
Affiliation(s)
- Russell G Jones
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
40
|
Yu JSL, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2017; 143:3050-60. [PMID: 27578176 DOI: 10.1242/dev.137075] [Citation(s) in RCA: 708] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphatidylinositide 3 kinases (PI3Ks) and their downstream mediators AKT and mammalian target of rapamycin (mTOR) constitute the core components of the PI3K/AKT/mTOR signalling cascade, regulating cell proliferation, survival and metabolism. Although these functions are well-defined in the context of tumorigenesis, recent studies - in particular those using pluripotent stem cells - have highlighted the importance of this pathway to development and cellular differentiation. Here, we review the recent in vitro and in vivo evidence for the role PI3K/AKT/mTOR signalling plays in the control of pluripotency and differentiation, with a particular focus on the molecular mechanisms underlying these functions.
Collapse
Affiliation(s)
- Jason S L Yu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Wei Cui
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
41
|
Lipton JO, Boyle LM, Yuan ED, Hochstrasser KJ, Chifamba FF, Nathan A, Tsai PT, Davis F, Sahin M. Aberrant Proteostasis of BMAL1 Underlies Circadian Abnormalities in a Paradigmatic mTOR-opathy. Cell Rep 2017; 20:868-880. [PMID: 28746872 PMCID: PMC5603761 DOI: 10.1016/j.celrep.2017.07.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/24/2017] [Accepted: 07/06/2017] [Indexed: 01/02/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder characterized by mutations in either the TSC1 or TSC2 genes, whose products form a critical inhibitor of the mechanistic target of rapamycin (mTOR). Loss of TSC1/2 gene function renders an mTOR-overactivated state. Clinically, TSC manifests with epilepsy, intellectual disability, autism, and sleep dysfunction. Here, we report that mouse models of TSC have abnormal circadian rhythms. We show that mTOR regulates the proteostasis of the core clock protein BMAL1, affecting its translation, degradation, and subcellular localization. This results in elevated levels of BMAL1 and a dysfunctional clock that displays abnormal timekeeping under constant conditions and exaggerated responses to phase resetting. Genetically lowering the dose of BMAL1 rescues circadian behavioral phenotypes in TSC mouse models. These findings indicate that BMAL1 deregulation is a feature of the mTOR-activated state and suggest a molecular mechanism for mitigating circadian phenotypes in a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Jonathan O Lipton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Lara M Boyle
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Elizabeth D Yuan
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin J Hochstrasser
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Fortunate F Chifamba
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ashwin Nathan
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Peter T Tsai
- Department of Neurology and Neurotherapeutics, University of Texas at Southwestern Medical Center, Dallas 73590, TX 75390, USA
| | - Fred Davis
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Mustafa Sahin
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Klover PJ, Thangapazham RL, Kato J, Wang JA, Anderson SA, Hoffmann V, Steagall WK, Li S, McCart E, Nathan N, Bernstock JD, Wilkerson MD, Dalgard CL, Moss J, Darling TN. Tsc2 disruption in mesenchymal progenitors results in tumors with vascular anomalies overexpressing Lgals3. eLife 2017; 6. [PMID: 28695825 PMCID: PMC5505700 DOI: 10.7554/elife.23202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 06/01/2017] [Indexed: 12/19/2022] Open
Abstract
Increased mTORC1 signaling from TSC1/TSC2 inactivation is found in cancer and causes tuberous sclerosis complex (TSC). The role of mesenchymal-derived cells in TSC tumorigenesis was investigated through disruption of Tsc2 in craniofacial and limb bud mesenchymal progenitors. Tsc2cKOPrrx1-cre mice had shortened lifespans and extensive hamartomas containing abnormal tortuous, dilated vessels prominent in the forelimbs. Abnormalities were blocked by the mTORC1 inhibitor sirolimus. A Tsc2/mTORC1 expression signature identified in Tsc2-deficient fibroblasts was also increased in bladder cancers with TSC1/TSC2 mutations in the TCGA database. Signature component Lgals3 encoding galectin-3 was increased in Tsc2-deficient cells and serum of Tsc2cKOPrrx1-cre mice. Galectin-3 was increased in TSC-related skin tumors, angiomyolipomas, and lymphangioleiomyomatosis with serum levels in patients with lymphangioleiomyomatosis correlating with impaired lung function and angiomyolipoma presence. Our results demonstrate Tsc2-deficient mesenchymal progenitors cause aberrant morphogenic signals, and identify an expression signature including Lgals3 relevant for human disease of TSC1/TSC2 inactivation and mTORC1 hyperactivity. DOI:http://dx.doi.org/10.7554/eLife.23202.001 Tuberous sclerosis complex is a genetic condition that causes non-cancerous tumours with lots of blood vessels. It is caused by mutations that inactivate either of two genes known as TSC1 and TSC2. A signalling molecule called mTOR also contributes to the disease, and drugs that block its activity provide some relief for patients. However, mTOR regulates a wide variety of molecules and so researchers are looking for which ones are responsible for the formation of the tumours. Mesenchymal cells produce bone, muscle and other structural tissues in the body. They also support the formation of blood vessels. Mice – which are often used as model animals in health research – also have mesenchymal cells and a gene that is very similar to the human TSC2 gene (known as Tsc2). Klover et al. hypothesized that disrupting the Tsc2 gene specifically in the mesenchymal cells of mice may mimic aspects of tuberous sclerosis complex in humans. The experiments show that disrupting Tsc2 in mesenchymal cells does indeed mimic features of the human disease; the mice had shorter lifespans and they developed many tumours with dilated and winding blood vessels. Treating the mice with a drug that inhibits mTOR caused the tumours to shrink. Further experiments show that the loss of Tsc2 alters the production of many proteins involved metabolism, cell growth and sensing the levels of oxygen. For example, mouse cells that lack Tsc2 produce more of a protein called galectin-3, which appears to help blood vessels and tumours to grow in cancers. Klover et al. also studied tumours from patients with tuberous sclerosis complex and a lung disease that is caused by mutations in TSC2 (called lymphangioleiomyomatosis). The experiments found that many tumours produce higher levels of galactin-3 than normal cells. Bladder cancers with mutations in TSC1 or TSC2 also had higher levels of galectin-3, suggesting that other diseases linked with mutations in these genes may also result in increased production of galectin-3. The findings of Klover et al. suggest that galectin-3 may be a useful marker to assess the severity of tuberous sclerosis complex, lymphangioleiomyomatosis and to detect cancers with mutations in TSC1 or TSC2. The next step is to investigate whether galectin-3 alters blood vessels and tumour growth in these conditions. DOI:http://dx.doi.org/10.7554/eLife.23202.002
Collapse
Affiliation(s)
- Peter J Klover
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Rajesh L Thangapazham
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Jiro Kato
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ji-An Wang
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Stasia A Anderson
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Victoria Hoffmann
- Diagnostic and Research Services Branch, National Institutes of Health, Bethesda, United States
| | - Wendy K Steagall
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Shaowei Li
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Elizabeth McCart
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Neera Nathan
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, United States.,Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Joshua D Bernstock
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Matthew D Wilkerson
- Department of Anatomy Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Clifton L Dalgard
- Department of Anatomy Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, United States
| | - Joel Moss
- Cardiovascular and Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, United States
| |
Collapse
|
43
|
Hino O, Kobayashi T. Mourning Dr. Alfred G. Knudson: the two-hit hypothesis, tumor suppressor genes, and the tuberous sclerosis complex. Cancer Sci 2017; 108:5-11. [PMID: 27862655 PMCID: PMC5276834 DOI: 10.1111/cas.13116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/05/2016] [Indexed: 12/16/2022] Open
Abstract
On July 10, 2016, Alfred G. Knudson, Jr., MD, PhD, a leader in cancer research, died at the age of 93 years. We deeply mourn his loss. Knudson's two-hit hypothesis, published in 1971, has been fundamental for understanding tumor suppressor genes and familial tumor-predisposing syndromes. To understand the molecular mechanism of two-hit-initiated tumorigenesis, Knudson used an animal model of a dominantly inherited tumor, the Eker rat. From the molecular identification of Tsc2 germline mutations, the Eker rat became a model for tuberous sclerosis complex (TSC), a familial tumor-predisposing syndrome. Animal models, including the fly, have greatly contributed to TSC research. Because the product of the TSC2/Tsc2 gene (tuberin) together with hamartin, the product of another TSC gene (TSC1/Tsc1), suppresses mammalian/mechanistic target of rapamycin complex 1 (mTORC1), rapalogs have been used as therapeutic drugs for TSC. Although significant activity of these drugs has been reported, there are still problems such as recurrence of residual tumors and adverse effects. Recent studies indicate that there are mTORC1-independent signaling pathways downstream of hamartin/tuberin, which may represent new therapeutic targets. The establishment of cellular models, such as pluripotent stem cells with TSC2/Tsc2 gene mutations, will facilitate the understanding of new aspects of TSC pathogenesis and the development of novel treatment options. In this review, we look back at the history of Knudson and animal models of TSC and introduce recent progress in TSC research.
Collapse
Affiliation(s)
- Okio Hino
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Kobayashi
- Department of Pathology and Oncology, Juntendo University Faculty of Medicine, Tokyo, Japan.,Department of Molecular Pathogenesis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Abstract
Focal cortical dysplasia is a common cause of medication resistant epilepsy. A better understanding of its presentation, pathophysiology and consequences have helped us improved its treatment and outcome. This paper reviews the most recent classification, pathophysiology and imaging findings in clinical research as well as the knowledge gained from studying genetic and lesional animal models of focal cortical dysplasia. This review of this recently gained knowledge will most likely help develop new research models and new therapeutic targets for patients with epilepsy associated with focal cortical dysplasia.
Collapse
|
45
|
Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, Lecas S, Liang N, Treins C, Pende M, Roussel D, Le Van Quyen M, Mashimo T, Kaneko T, Yamamoto T, Sakuma T, Mahon S, Miles R, Leguern E, Charpier S, Baulac S. Depdc5 knockout rat: A novel model of mTORopathy. Neurobiol Dis 2016; 89:180-9. [PMID: 26873552 DOI: 10.1016/j.nbd.2016.02.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
Abstract
DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Elise Marsan
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Saeko Ishida
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Adrien Schramm
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Weckhuysen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Giuseppe Muraca
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Lecas
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Ning Liang
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Caroline Treins
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Delphine Roussel
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Michel Le Van Quyen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Séverine Mahon
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Richard Miles
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Eric Leguern
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Stéphane Charpier
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Stéphanie Baulac
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.
| |
Collapse
|
46
|
Sato A. mTOR, a Potential Target to Treat Autism Spectrum Disorder. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2016; 15:533-43. [PMID: 27071790 PMCID: PMC5070418 DOI: 10.2174/1871527315666160413120638] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key regulator in various cellular processes, including cell growth, gene expression, and synaptic functions. Autism spectrum disorder (ASD) is frequently accompanied by monogenic disorders, such as tuberous sclerosis complex, phosphatase and tensin homolog tumor hamartoma syndrome, neurofibromatosis 1, and fragile X syndrome, in which mTOR is hyperactive. Mutations in the genes involved in the mTOR-mediated signaling pathway have been identified in some cases of syndromic ASD. Evidences indicate a pathogenic role for hyperactive mTOR-mediated signaling in ASD associated with these monogenic disorders, and mTOR inhibitors are a potential pharmacotherapy for ASD. Abnormal synaptic transmission through metabotropic glutamate receptor 5 may underlie in a part of ASD associated with hyperactive mTOR-mediated signaling. In this review, the relationship between mTOR and ASD is discussed.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113- 8655, Japan.
| |
Collapse
|
47
|
Monogenic mouse models of autism spectrum disorders: Common mechanisms and missing links. Neuroscience 2015; 321:3-23. [PMID: 26733386 DOI: 10.1016/j.neuroscience.2015.12.040] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 01/16/2023]
Abstract
Autism spectrum disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral assessment with circuit-level analysis in genetically modified models with strong construct validity.
Collapse
|
48
|
Abstract
The evolutionarily conserved target of rapamycin complex 1 (TORC1) is a master regulator of cell growth and metabolism. In mammals, growth factors and cellular energy stimulate mTORC1 activity through inhibition of the TSC complex (TSC1-TSC2-TBC1D7), a negative regulator of mTORC1. Amino acids signal to mTORC1 independently of the TSC complex. Here, we review recently identified regulators that link amino acid sufficiency to mTORC1 activity and how mutations affecting these regulators cause human disease.
Collapse
|
49
|
Fritsch M, Schmidt N, Gröticke I, Frisk AL, Keator CS, Koch M, Slayden OD. Application of a Patient Derived Xenograft Model for Predicative Study of Uterine Fibroid Disease. PLoS One 2015; 10:e0142429. [PMID: 26588841 PMCID: PMC4654507 DOI: 10.1371/journal.pone.0142429] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
Human uterine fibroids, benign tumors derived from the smooth muscle layers of the uterus, impose a major health burden to up to 50% of premenopausal women in their daily life. To improve our understanding of this disease, we developed and characterized a patient-derived xenograft model by subcutaneous transplantation of pieces of human uterine fibroid tissue into three different strains of severe combined immunodeficient mice. Engrafted uterine fibroid tissue preserved the classical morphology with interwoven bundles of smooth muscle cells and an abundant deposition of collagenous matrix, similar to uterine fibroids in situ. The grafts expressed both estrogen receptor 1 and progesterone receptor. Additionally, both receptors were up-regulated by estrogen treatment. Growth of the fibroid grafts was dependent on 17β-estradiol and progesterone supplementation at levels similar to women with the disease and was studied for up to 60 days at maximum. Co-treatment with the antiprogestin mifepristone reduced graft growth (four independent donors, p<0.0001 two-sided t-test), as did treatment with the mTOR inhibitor rapamycin (three independent donors, p<0.0001 two-sided t-test). This in vivo animal model preserves the main histological and functional characteristics of human uterine fibroids, is amenable to intervention by pharmacological treatment, and can thus serve as an adequate model for the development of novel therapies.
Collapse
Affiliation(s)
- Martin Fritsch
- Bayer Pharma AG, Global Drug Discovery, Berlin, Germany
- * E-mail:
| | | | - Ina Gröticke
- Bayer Pharma AG, Global Drug Discovery, Berlin, Germany
| | | | - Christopher S. Keator
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Markus Koch
- Bayer Pharma AG, Global Drug Discovery, Berlin, Germany
| | - Ov D. Slayden
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
50
|
DNA methylation Landscape of body size variation in sheep. Sci Rep 2015; 5:13950. [PMID: 26472088 PMCID: PMC4607979 DOI: 10.1038/srep13950] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/07/2015] [Indexed: 12/25/2022] Open
Abstract
Sub-populations of Chinese Mongolian sheep exhibit significant variance in body mass. In the present study, we sequenced the whole genome DNA methylation in these breeds to detect whether DNA methylation plays a role in determining the body mass of sheep by Methylated DNA immunoprecipitation – sequencing method. A high quality methylation map of Chinese Mongolian sheep was obtained in this study. We identified 399 different methylated regions located in 93 human orthologs, which were previously reported as body size related genes in human genome-wide association studies. We tested three regions in LTBP1, and DNA methylation of two CpG sites showed significant correlation with its RNA expression. Additionally, a particular set of differentially methylated windows enriched in the “development process” (GO: 0032502) was identified as potential candidates for association with body mass variation. Next, we validated small part of these windows in 5 genes; DNA methylation of SMAD1, TSC1 and AKT1 showed significant difference across breeds, and six CpG were significantly correlated with RNA expression. Interestingly, two CpG sites showed significant correlation with TSC1 protein expression. This study provides a thorough understanding of body size variation in sheep from an epigenetic perspective.
Collapse
|