1
|
Mason SL, Junges L, Woldman W, Ftouni S, Anderson C, Terry JR, Bagshaw AP. Associating EEG functional networks and the effect of sleep deprivation as measured using psychomotor vigilance tests. Sci Rep 2024; 14:27999. [PMID: 39543217 PMCID: PMC11564749 DOI: 10.1038/s41598-024-78814-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
People are routinely forced to undertake cognitive challenges under the effect of sleep deprivation, due to professional and social obligations forcing them to ignore their circadian clock. However, low intra-individual and high inter-individual differences in behavioural outcomes are known to occur when people are sleep deprived, leading to the conclusion that trait-like differences to sleep deprivation could explain the differing levels of resilience. Within this study we consider if trait-like resilience to sleep deprivation, measured using psychomotor vigilance tests over a 40 h protocol, could be associated with graph metrics (mean node strength, clustering coefficient, characteristic path length and stability) calculated from EEG functional networks acquired when participants ([Formula: see text]) are well rested (baseline). Furthermore, we investigated how stability (the consistency of a participant's functional network over time measured using 2-D correlation) changed over the constant routine. We showed evidence of strong significant correlations between high mean node strength, low characteristic path length and high stability at baseline with a general resilience to extended sleep deprivation, although the same features lead to vulnerability during the period of natural sleep onset, highlighting non-uniform correlations over time. We also show significant differences in the levels of stability between resilient and vulnerable groups.
Collapse
Affiliation(s)
- Sophie L Mason
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, UK.
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, UK
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, UK
- Neuronostics Limited, Engine Shed, Station Approach, Bristol, UK
| | - Suzanne Ftouni
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Clare Anderson
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - John R Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, B15 2TT, UK
- Neuronostics Limited, Engine Shed, Station Approach, Bristol, UK
| | - Andrew P Bagshaw
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
2
|
Jurkovičová L, Páleník J, Kudlička P, Pezlar L, Ružičková A, Juřík V, Mareček R, Roman R, Braithwaite JJ, Sandberg K, Near J, Brázdil M. Subjective visual sensitivity in neurotypical adults: insights from a magnetic resonance spectroscopy study. Front Neurosci 2024; 18:1417996. [PMID: 39391756 PMCID: PMC11465554 DOI: 10.3389/fnins.2024.1417996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Altered subjective visual sensitivity manifests as feelings of discomfort or overload elicited by intense and irritative visual stimuli. This can result in a host of visual aberrations including visual distortions, elementary visual hallucinations and visceral responses like dizziness and nausea, collectively referred to as "pattern glare." Current knowledge of the underlying neural mechanisms has focused on overall excitability of the visual cortex, but the individual contribution of excitatory and inhibitory systems has not yet been quantified. Methods In this study, we focus on the role of glutamate and γ-aminobutyric acid (GABA) as potential mediators of individual differences in subjective visual sensitivity, measured by a computerized Pattern Glare Test-a series of monochromatic square-wave gratings with three different spatial frequencies, while controlling for psychological variables related to sensory sensitivity with multiple questionnaires. Resting neurotransmitter concentrations in primary visual cortex (V1) and right anterior insula were studied in 160 healthy participants using magnetic resonance spectroscopy. Results Data showed significant differences in the perception of visual distortions (VD) and comfort scores between men and women, with women generally reporting more VD, and therefore the modulatory effect of sex was considered in a further examination. A general linear model analysis showed a negative effect of occipital glutamate on a number of reported visual distortions, but also a significant role of several background psychological traits. When assessing comfort scores in women, an important intervening variable was the menstrual cycle. Discussion Our findings do not support that baseline neurotransmitter levels have a significant role in overreactivity to aversive stimuli in neurotypical population. However, we demonstrated that biological sex can have a significant impact on subjective responses. Based on this additional finding, we suggest that future studies investigate aversive visual stimuli while examining the role of biological sex.
Collapse
Affiliation(s)
- Lenka Jurkovičová
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czechia
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Julie Páleník
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czechia
| | - Petr Kudlička
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czechia
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lenka Pezlar
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czechia
| | - Alexandra Ružičková
- Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czechia
| | - Vojtěch Juřík
- Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czechia
- Institute of Computer Aided Engineering and Computer Science, Faculty of Civil Engineering, Brno University of Technology, Brno, Czechia
| | - Radek Mareček
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czechia
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Robert Roman
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czechia
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
| | | | - Kristian Sandberg
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Milan Brázdil
- First Department of Neurology, St. Anne’s University Hospital and Medical Faculty of Masaryk University, Brno, Czechia
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|
3
|
Srinivasan K, Ribeiro TL, Kells P, Plenz D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. Sci Rep 2024; 14:19329. [PMID: 39164334 PMCID: PMC11335857 DOI: 10.1038/s41598-024-70014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2, reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2, even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
Collapse
Affiliation(s)
- Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Lepeu G, van Maren E, Slabeva K, Friedrichs-Maeder C, Fuchs M, Z'Graggen WJ, Pollo C, Schindler KA, Adamantidis A, Proix T, Baud MO. The critical dynamics of hippocampal seizures. Nat Commun 2024; 15:6945. [PMID: 39138153 PMCID: PMC11322644 DOI: 10.1038/s41467-024-50504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Epilepsy is defined by the abrupt emergence of harmful seizures, but the nature of these regime shifts remains enigmatic. From the perspective of dynamical systems theory, such critical transitions occur upon inconspicuous perturbations in highly interconnected systems and can be modeled as mathematical bifurcations between alternative regimes. The predictability of critical transitions represents a major challenge, but the theory predicts the appearance of subtle dynamical signatures on the verge of instability. Whether such dynamical signatures can be measured before impending seizures remains uncertain. Here, we verified that predictions on bifurcations applied to the onset of hippocampal seizures, providing concordant results from in silico modeling, optogenetics experiments in male mice and intracranial EEG recordings in human patients with epilepsy. Leveraging pharmacological control over neural excitability, we showed that the boundary between physiological excitability and seizures can be inferred from dynamical signatures passively recorded or actively probed in hippocampal circuits. Of importance for the design of future neurotechnologies, active probing surpassed passive recording to decode underlying levels of neural excitability, notably when assessed from a network of propagating neural responses. Our findings provide a promising approach for predicting and preventing seizures, based on a sound understanding of their dynamics.
Collapse
Affiliation(s)
- Gregory Lepeu
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ellen van Maren
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Kristina Slabeva
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Cecilia Friedrichs-Maeder
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Markus Fuchs
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Werner J Z'Graggen
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Claudio Pollo
- Department of Neurosurgery, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Kaspar A Schindler
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Timothée Proix
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Maxime O Baud
- Center for experimental neurology, Sleep-wake epilepsy center, NeuroTec, Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Kashyap A, Müller P, Miron G, Meisel C. Critical dynamics and interictal epileptiform discharge: a comparative analysis with respect to tracking seizure risk cycles. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1420217. [PMID: 39044940 PMCID: PMC11263032 DOI: 10.3389/fnetp.2024.1420217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
Epilepsy is characterized by recurrent, unprovoked seizures. Accurate prediction of seizure occurrence has long been a clinical goal since this would allow to optimize patient treatment, prevent injuries due to seizures, and alleviate the patient burden of unpredictability. Advances in implantable electroencephalographic (EEG) devices, allowing for long-term interictal EEG recordings, have facilitated major progress in this field. Recently, it has been discovered that interictal brain activity demonstrates circadian and multi-dien cycles that are strongly aligned, or phase locked, with seizure risk. Thus, cyclical brain activity patterns have been used to forecast seizures. However, in the effort to develop a clinically useful EEG based seizure forecasting system, challenges remain. Firstly, multiple EEG features demonstrate cyclical patterns, but it remains unclear which feature is best suited for predicting seizures. Secondly, the technology for long-term EEG recording is currently limited in both spatial and temporal sampling resolution. In this study, we compare five established EEG metrics:synchrony, spatial correlation, temporal correlation, signal variance which have been motivated from critical dynamics theory, and interictal epileptiform discharge (IED) which are a traditional marker of seizure propensity. We assess their effectiveness in detecting 24-h and seizure cycles as well as their robustness under spatial and temporal subsampling. Analyzing intracranial EEG data from 23 patients, we report that all examined features exhibit 24-h cycles. Spatial correlation, signal variance, and synchrony showed the highest phase locking with seizures, while IED rates were the lowest. Notably, spatial and temporal correlation were also found to be highly correlated to each other, as were signal variance and IED-suggesting some features may reflect similar aspects of cortical dynamics, whereas others provide complementary information. All features proved robust under subsampling, indicating that the dynamic properties of interictal activity evolve slowly and are not confined to specific brain regions. Our results may aid future translational research by assisting in design and testing of EEG based seizure forecasting systems.
Collapse
Affiliation(s)
- Amrit Kashyap
- Computational Neurology, Department of Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul Müller
- Computational Neurology, Department of Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Gadi Miron
- Computational Neurology, Department of Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christian Meisel
- Computational Neurology, Department of Neurology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| |
Collapse
|
6
|
Yang B, Liu H, Jiang T, Yu S. Fluctuation in cortical excitation/inhibition modulates capability of attention across time scales ranging from hours to seconds. Cereb Cortex 2024; 34:bhae309. [PMID: 39076112 DOI: 10.1093/cercor/bhae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
Sustained attention, as the basis of general cognitive ability, naturally varies across different time scales, spanning from hours, e.g. from wakefulness to drowsiness state, to seconds, e.g. trial-by-trail fluctuation in a task session. Whether there is a unified mechanism underneath such trans-scale variability remains unclear. Here we show that fluctuation of cortical excitation/inhibition (E/I) is a strong modulator to sustained attention in humans across time scales. First, we observed the ability to attend varied across different brain states (wakefulness, postprandial somnolence, sleep deprived), as well as within any single state with larger swings. Second, regardless of the time scale involved, we found highly attentive state was always linked to more balanced cortical E/I characterized by electroencephalography (EEG) features, while deviations from the balanced state led to temporal decline in attention, suggesting the fluctuation of cortical E/I as a common mechanism underneath trans-scale attentional variability. Furthermore, we found the variations of both sustained attention and cortical E/I indices exhibited fractal structure in the temporal domain, exhibiting features of self-similarity. Taken together, these results demonstrate that sustained attention naturally varies across different time scales in a more complex way than previously appreciated, with the cortical E/I as a shared neurophysiological modulator.
Collapse
Affiliation(s)
- Binghao Yang
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, No. 230, Yueyang Road, Shanghai 200031, China
| | - Hao Liu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, No. 230, Yueyang Road, Shanghai 200031, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Tianzi Jiang
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, No. 230, Yueyang Road, Shanghai 200031, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, No. 151, Xiaoshui West Road, Lingling District, Yongzhou 425000, Hunan Province, China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan District, Beijing 100049, China
- Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences, No. 230, Yueyang Road, Shanghai 200031, China
- Lead contact. Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, No. 95, Zhongguancun East Road, Haidian District, Beijing 100190, China
| |
Collapse
|
7
|
Wang SH, Arnulfo G, Nobili L, Myrov V, Ferrari P, Ciuciu P, Palva S, Palva JM. Neuronal synchrony and critical bistability: Mechanistic biomarkers for localizing the epileptogenic network. Epilepsia 2024; 65:2041-2053. [PMID: 38687176 DOI: 10.1111/epi.17996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Postsurgical seizure freedom in drug-resistant epilepsy (DRE) patients varies from 30% to 80%, implying that in many cases the current approaches fail to fully map the epileptogenic zone (EZ). We aimed to advance a novel approach to better characterize epileptogenicity and investigate whether the EZ encompasses a broader epileptogenic network (EpiNet) beyond the seizure zone (SZ) that exhibits seizure activity. METHODS We first used computational modeling to test putative complex systems-driven and systems neuroscience-driven mechanistic biomarkers for epileptogenicity. We then used these biomarkers to extract features from resting-state stereoelectroencephalograms recorded from DRE patients and trained supervised classifiers to localize the SZ against gold standard clinical localization. To further explore the prevalence of pathological features in an extended brain network outside of the clinically identified SZ, we also used unsupervised classification. RESULTS Supervised SZ classification trained on individual features achieved accuracies of .6-.7 area under the receiver operating characteristic curve (AUC). Combining all criticality and synchrony features further improved the AUC to .85. Unsupervised classification discovered an EpiNet-like cluster of brain regions, in which 51% of brain regions were outside of the SZ. Brain regions in the EpiNet-like cluster engaged in interareal hypersynchrony and locally exhibited high-amplitude bistability and excessive inhibition, which was strikingly similar to the high seizure risk regime revealed by our computational modeling. SIGNIFICANCE The finding that combining biomarkers improves SZ localization accuracy indicates that the novel mechanistic biomarkers for epileptogenicity employed here yield synergistic information. On the other hand, the discovery of SZ-like brain dynamics outside of the clinically defined SZ provides empirical evidence of an extended pathophysiological EpiNet.
Collapse
Affiliation(s)
- Sheng H Wang
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Le Commissariat à l'énergie atomique et aux énergies alternatives, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
- Models and Inference for Neuroimaging Data, Inria, Palaiseau, France
| | - Gabriele Arnulfo
- Department of Informatics, Bioengineering, Robotics, and System Engineering, University of Genoa, Genoa, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Member of the European Reference Network EpiCARE, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children's Sciences, University of Genoa, Genoa, Italy
| | - Vladislav Myrov
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Paul Ferrari
- Jack H. Miller Magnetoencephalography Center, Helen DeVos Childrens Hospital, Grand Rapids, Michigan, USA
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, USA
| | - Philippe Ciuciu
- Le Commissariat à l'énergie atomique et aux énergies alternatives, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
- Models and Inference for Neuroimaging Data, Inria, Palaiseau, France
| | - Satu Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Division of Psychology, Values, Ideologies and Social Contexts of Education, Faculty of Education and Psychology, University of Oulu, Oulu, Finland
| | - J Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Srinivasan K, Ribeiro TL, Kells P, Plenz D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582056. [PMID: 38464324 PMCID: PMC10925085 DOI: 10.1101/2024.02.26.582056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2 , reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2 , even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
Collapse
Affiliation(s)
- Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Tiago L. Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Harrington EG, Kissack P, Terry JR, Woldman W, Junges L. Treatment effects in epilepsy: a mathematical framework for understanding response over time. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1308501. [PMID: 38988793 PMCID: PMC11233745 DOI: 10.3389/fnetp.2024.1308501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024]
Abstract
Epilepsy is a neurological disorder characterized by recurrent seizures, affecting over 65 million people worldwide. Treatment typically commences with the use of anti-seizure medications, including both mono- and poly-therapy. Should these fail, more invasive therapies such as surgery, electrical stimulation and focal drug delivery are often considered in an attempt to render the person seizure free. Although a significant portion ultimately benefit from these treatment options, treatment responses often fluctuate over time. The physiological mechanisms underlying these temporal variations are poorly understood, making prognosis a significant challenge when treating epilepsy. Here we use a dynamic network model of seizure transition to understand how seizure propensity may vary over time as a consequence of changes in excitability. Through computer simulations, we explore the relationship between the impact of treatment on dynamic network properties and their vulnerability over time that permit a return to states of high seizure propensity. For small networks we show vulnerability can be fully characterised by the size of the first transitive component (FTC). For larger networks, we find measures of network efficiency, incoherence and heterogeneity (degree variance) correlate with robustness of networks to increasing excitability. These results provide a set of potential prognostic markers for therapeutic interventions in epilepsy. Such markers could be used to support the development of personalized treatment strategies, ultimately contributing to understanding of long-term seizure freedom.
Collapse
Affiliation(s)
- Elanor G. Harrington
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Peter Kissack
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Neuronostics Ltd, Engine Shed, Station Approach, Bristol, United Kingdom
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Miron G, Halimeh M, Jeppesen J, Loddenkemper T, Meisel C. Autonomic biosignals, seizure detection, and forecasting. Epilepsia 2024. [PMID: 38837428 DOI: 10.1111/epi.18034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Wearable devices have attracted significant attention in epilepsy research in recent years for their potential to enhance patient care through improved seizure monitoring and forecasting. This narrative review presents a detailed overview of the current clinical state of the art while addressing how devices that assess autonomic nervous system (ANS) function reflect seizures and central nervous system (CNS) state changes. This includes a description of the interactions between the CNS and the ANS, including physiological and epilepsy-related changes affecting their dynamics. We first discuss technical aspects of measuring autonomic biosignals and considerations for using ANS sensors in clinical practice. We then review recent seizure detection and seizure forecasting studies, highlighting their performance and capability for seizure detection and forecasting using devices measuring ANS biomarkers. Finally, we address the field's challenges and provide an outlook for future developments.
Collapse
Affiliation(s)
- Gadi Miron
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Mustafa Halimeh
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jesper Jeppesen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tobias Loddenkemper
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Christian Meisel
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| |
Collapse
|
11
|
Pellegrino G, Schuler AL, Cai Z, Marinazzo D, Tecchio F, Ricci L, Tombini M, Di Lazzaro V, Assenza G. Assessing cortical excitability with electroencephalography: A pilot study with EEG-iTBS. Brain Stimul 2024; 17:176-183. [PMID: 38286400 DOI: 10.1016/j.brs.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/26/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cortical excitability measures neural reactivity to stimuli, usually delivered via Transcranial Magnetic Stimulation (TMS). Excitation/inhibition balance (E/I) is the ongoing equilibrium between excitatory and inhibitory activity of neural circuits. According to some studies, E/I could be estimated in-vivo and non-invasively through the modeling of electroencephalography (EEG) signals and termed 'intrinsic excitability' measures. Several measures have been proposed (phase consistency in the gamma band, sample entropy, exponent of the power spectral density 1/f curve, E/I index extracted from detrend fluctuation analysis, and alpha power). Intermittent theta burst stimulation (iTBS) of the primary motor cortex (M1) is a non-invasive neuromodulation technique allowing controlled and focal enhancement of TMS cortical excitability and E/I of the stimulated hemisphere. OBJECTIVE Investigating to what extent E/I estimates scale with TMS excitability and how they relate to each other. METHODS M1 excitability (TMS) and several E/I estimates extracted from resting state EEG recordings were assessed before and after iTBS in a cohort of healthy subjects. RESULTS Enhancement of TMS M1 excitability, as measured through motor-evoked potentials (MEPs), and phase consistency of the cortex in high gamma band correlated with each other. Other measures of E/I showed some expected results, but no correlation with TMS excitability measures or strong consistency with each other. CONCLUSIONS EEG E/I estimates offer an intriguing opportunity to map cortical excitability non-invasively, with high spatio-temporal resolution and with a stimulus independent approach. While different EEG E/I estimates may reflect the activity of diverse excitatory-inhibitory circuits, spatial phase synchrony in the gamma band is the measure that best captures excitability changes in the primary motor cortex.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| | - Anna-Lisa Schuler
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Zhengchen Cai
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Franca Tecchio
- Laboratory of Electrophysiology for Translational NeuroScience (LET'S), Institute of Cognitive Sciences and Technologies (ISTC) - Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy
| | - Lorenzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Mario Tombini
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Vincenzo Di Lazzaro
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy
| | - Giovanni Assenza
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro Del Portillo, 200, 00128, Roma, Italy; UOC Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Via Alvaro Del Portillo, 21, 00128, Roma, Italy.
| |
Collapse
|
12
|
Liang J, Yang Z, Zhou C. Excitation-Inhibition Balance, Neural Criticality, and Activities in Neuronal Circuits. Neuroscientist 2024:10738584231221766. [PMID: 38291889 DOI: 10.1177/10738584231221766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neural activities in local circuits exhibit complex and multilevel dynamic features. Individual neurons spike irregularly, which is believed to originate from receiving balanced amounts of excitatory and inhibitory inputs, known as the excitation-inhibition balance. The spatial-temporal cascades of clustered neuronal spikes occur in variable sizes and durations, manifested as neural avalanches with scale-free features. These may be explained by the neural criticality hypothesis, which posits that neural systems operate around the transition between distinct dynamic states. Here, we summarize the experimental evidence for and the underlying theory of excitation-inhibition balance and neural criticality. Furthermore, we review recent studies of excitatory-inhibitory networks with synaptic kinetics as a simple solution to reconcile these two apparently distinct theories in a single circuit model. This provides a more unified understanding of multilevel neural activities in local circuits, from spontaneous to stimulus-response dynamics.
Collapse
Affiliation(s)
- Junhao Liang
- Eberhard Karls University of Tübingen and Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Zhuda Yang
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Beijing-Hong Kong-Singapore Joint Centre for Nonlinear and Complex Systems (Hong Kong), Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Life Science Imaging Centre, Hong Kong Baptist University, Kowloon Tong, Hong Kong
- Research Centre, Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
13
|
Vranic-Peters M, O'Brien P, Seneviratne U, Reynolds A, Lai A, Grayden DB, Cook MJ, Peterson ADH. Response to photic stimulation as a measure of cortical excitability in epilepsy patients. Front Neurosci 2024; 17:1308013. [PMID: 38249581 PMCID: PMC10796504 DOI: 10.3389/fnins.2023.1308013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Studying states and state transitions in the brain is challenging due to nonlinear, complex dynamics. In this research, we analyze the brain's response to non-invasive perturbations. Perturbation techniques offer a powerful method for studying complex dynamics, though their translation to human brain data is under-explored. This method involves applying small inputs, in this case via photic stimulation, to a system and measuring its response. Sensitivity to perturbations can forewarn a state transition. Therefore, biomarkers of the brain's perturbation response or "cortical excitability" could be used to indicate seizure transitions. However, perturbing the brain often involves invasive intracranial surgeries or expensive equipment such as transcranial magnetic stimulation (TMS) which is only accessible to a minority of patient groups, or animal model studies. Photic stimulation is a widely used diagnostic technique in epilepsy that can be used as a non-invasive perturbation paradigm to probe brain dynamics during routine electroencephalography (EEG) studies in humans. This involves changing the frequency of strobing light, sometimes triggering a photo-paroxysmal response (PPR), which is an electrographic event that can be studied as a state transition to a seizure state. We investigate alterations in the response to these perturbations in patients with genetic generalized epilepsy (GGE), with (n = 10) and without (n = 10) PPR, and patients with psychogenic non-epileptic seizures (PNES; n = 10), compared to resting controls (n = 10). Metrics of EEG time-series data were evaluated as biomarkers of the perturbation response including variance, autocorrelation, and phase-based synchrony measures. We observed considerable differences in all group biomarker distributions during stimulation compared to controls. In particular, variance and autocorrelation demonstrated greater changes in epochs close to PPR transitions compared to earlier stimulation epochs. Comparison of PPR and spontaneous seizure morphology found them indistinguishable, suggesting PPR is a valid proxy for seizure dynamics. Also, as expected, posterior channels demonstrated the greatest change in synchrony measures, possibly reflecting underlying PPR pathophysiologic mechanisms. We clearly demonstrate observable changes at a group level in cortical excitability in epilepsy patients as a response to perturbation in EEG data. Our work re-frames photic stimulation as a non-invasive perturbation paradigm capable of inducing measurable changes to brain dynamics.
Collapse
Affiliation(s)
- Michaela Vranic-Peters
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Patrick O'Brien
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| | - Udaya Seneviratne
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| | - Ashley Reynolds
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Alan Lai
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| | - David B. Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark J. Cook
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| | - Andre D. H. Peterson
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Liu Q, Wei C, Qu Y, Liang Z. Modelling and Controlling System Dynamics of the Brain: An Intersection of Machine Learning and Control Theory. ADVANCES IN NEUROBIOLOGY 2024; 41:63-87. [PMID: 39589710 DOI: 10.1007/978-3-031-69188-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The human brain, as a complex system, has long captivated multidisciplinary researchers aiming to decode its intricate structure and function. This intricate network has driven scientific pursuits to advance our understanding of cognition, behavior, and neurological disorders by delving into the complex mechanisms underlying brain function and dysfunction. Modelling brain dynamics using machine learning techniques deepens our comprehension of brain dynamics from a computational perspective. These computational models allow researchers to simulate and analyze neural interactions, facilitating the identification of dysfunctions in connectivity or activity patterns. Additionally, the trained dynamical system, serving as a surrogate model, optimizes neurostimulation strategies under the guidelines of control theory. In this chapter, we discuss the recent studies on modelling and controlling brain dynamics at the intersection of machine learning and control theory, providing a framework to understand and improve cognitive function, and treat neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China.
| | - Chen Wei
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| | - Youzhi Qu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| | - Zhichao Liang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, GD, P.R. China
| |
Collapse
|
15
|
Sathyanarayana A, El Atrache R, Jackson M, Cantley S, Reece L, Ufongene C, Loddenkemper T, Mandl KD, Bosl WJ. Measuring Real-Time Medication Effects From Electroencephalography. J Clin Neurophysiol 2024; 41:72-82. [PMID: 35583401 PMCID: PMC9669285 DOI: 10.1097/wnp.0000000000000946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Evaluating the effects of antiseizure medication (ASM) on patients with epilepsy remains a slow and challenging process. Quantifiable noninvasive markers that are measurable in real-time and provide objective and useful information could guide clinical decision-making. We examined whether the effect of ASM on patients with epilepsy can be quantitatively measured in real-time from EEGs. METHODS This retrospective analysis was conducted on 67 patients in the long-term monitoring unit at Boston Children's Hospital. Two 30-second EEG segments were selected from each patient premedication and postmedication weaning for analysis. Nonlinear measures including entropy and recurrence quantitative analysis values were computed for each segment and compared before and after medication weaning. RESULTS Our study found that ASM effects on the brain were measurable by nonlinear recurrence quantitative analysis on EEGs. Highly significant differences ( P < 1e-11) were found in several nonlinear measures within the seizure zone in response to antiseizure medication. Moreover, the size of the medication effect correlated with a patient's seizure frequency, seizure localization, number of medications, and reported seizure frequency reduction on medication. CONCLUSIONS Our findings show the promise of digital biomarkers to measure medication effects and epileptogenicity.
Collapse
Affiliation(s)
- Aarti Sathyanarayana
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, U.S.A.;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, U.S.A.;
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, U.S.A.;
| | - Rima El Atrache
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A.; and
| | - Michele Jackson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A.; and
| | - Sarah Cantley
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A.; and
| | - Latania Reece
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A.; and
| | - Claire Ufongene
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A.; and
| | - Tobias Loddenkemper
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, U.S.A.;
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, U.S.A.; and
| | - Kenneth D. Mandl
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, U.S.A.;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, U.S.A.;
| | - William J. Bosl
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, U.S.A.;
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, U.S.A.;
- Department of Health Professions, University of San Francisco, San Francisco, California, U.S.A
| |
Collapse
|
16
|
Baud MO, Proix T, Gregg NM, Brinkmann BH, Nurse ES, Cook MJ, Karoly PJ. Seizure forecasting: Bifurcations in the long and winding road. Epilepsia 2023; 64 Suppl 4:S78-S98. [PMID: 35604546 PMCID: PMC9681938 DOI: 10.1111/epi.17311] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
To date, the unpredictability of seizures remains a source of suffering for people with epilepsy, motivating decades of research into methods to forecast seizures. Originally, only few scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the task, soon turned into a long and winding road. Over the past decade, however, our narrow field has seen a major acceleration, with trials of chronic electroencephalographic devices and the subsequent discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of seizure timing is emerging, which in turn informs best forecasting strategies for upcoming clinical trials. Although the finish line might be in view, many challenges remain to make seizure forecasting a reality. This review covers the most recent scientific, technical, and medical developments, discusses methodology in detail, and sets a number of goals for future studies.
Collapse
Affiliation(s)
- Maxime O Baud
- Sleep-Wake-Epilepsy Center, Center for Experimental Neurology, NeuroTec, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
- Wyss Center for Bio- and Neuro-Engineering, Geneva, Switzerland
| | - Timothée Proix
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicholas M Gregg
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ewan S Nurse
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Cook
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Philippa J Karoly
- Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Schulze-Bonhage A, Bruno E, Brandt A, Shek A, Viana P, Heers M, Martinez-Lizana E, Altenmüller DM, Richardson MP, San Antonio-Arce V. Diagnostic yield and limitations of in-hospital documentation in patients with epilepsy. Epilepsia 2023; 64 Suppl 4:S4-S11. [PMID: 35583131 DOI: 10.1111/epi.17307] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the diagnostic yield of in-hospital video-electroencephalography (EEG) monitoring to document seizures in patients with epilepsy. METHODS Retrospective analysis of electronic seizure documentation at the University Hospital Freiburg (UKF) and at King's College London (KCL). Statistical assessment of the role of the duration of monitoring, and subanalyses on presurgical patient groups and patients undergoing reduction of antiseizure medication. RESULTS Of more than 4800 patients with epilepsy undergoing in-hospital recordings at the two institutions since 2005, seizures with documented for 43% (KCL) and 73% (UKF).. Duration of monitoring was highly significantly associated with seizure recordings (p < .0001), and presurgical patients as well as patients with drug reduction had a significantly higher diagnostic yield (p < .0001). Recordings with a duration of >5 days lead to additional new seizure documentation in only less than 10% of patients. SIGNIFICANCE There is a need for the development of new ambulatory monitoring strategies to document seizures for diagnostic and monitoring purposes for a relevant subgroup of patients with epilepsy in whom in-hospital monitoring fails to document seizures.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE
| | - Elisa Bruno
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Armin Brandt
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Anthony Shek
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pedro Viana
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marcel Heers
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE
| | - Eva Martinez-Lizana
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE
| | | | - Mark Philip Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Victoria San Antonio-Arce
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE
| |
Collapse
|
18
|
Fan JM, Kudo K, Verma P, Ranasinghe KG, Morise H, Findlay AM, Vossel K, Kirsch HE, Raj A, Krystal AD, Nagarajan SS. Cortical Synchrony and Information Flow during Transition from Wakefulness to Light Non-Rapid Eye Movement Sleep. J Neurosci 2023; 43:8157-8171. [PMID: 37788939 PMCID: PMC10697405 DOI: 10.1523/jneurosci.0197-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/07/2023] [Accepted: 08/06/2023] [Indexed: 10/05/2023] Open
Abstract
Sleep is a highly stereotyped phenomenon, requiring robust spatiotemporal coordination of neural activity. Understanding how the brain coordinates neural activity with sleep onset can provide insights into the physiological functions subserved by sleep and the pathologic phenomena associated with sleep onset. We quantified whole-brain network changes in synchrony and information flow during the transition from wakefulness to light non-rapid eye movement (NREM) sleep, using MEG imaging in a convenient sample of 14 healthy human participants (11 female; mean 63.4 years [SD 11.8 years]). We furthermore performed computational modeling to infer excitatory and inhibitory properties of local neural activity. The transition from wakefulness to light NREM was identified to be encoded in spatially and temporally specific patterns of long-range synchrony. Within the delta band, there was a global increase in connectivity from wakefulness to light NREM, which was highest in frontoparietal regions. Within the theta band, there was an increase in connectivity in fronto-parieto-occipital regions and a decrease in temporal regions from wakefulness to Stage 1 sleep. Patterns of information flow revealed that mesial frontal regions receive hierarchically organized inputs from broad cortical regions upon sleep onset, including direct inflow from occipital regions and indirect inflow via parieto-temporal regions within the delta frequency band. Finally, biophysical neural mass modeling demonstrated changes in the anterior-to-posterior distribution of cortical excitation-to-inhibition with increased excitation-to-inhibition model parameters in anterior regions in light NREM compared with wakefulness. Together, these findings uncover whole-brain corticocortical structure and the orchestration of local and long-range, frequency-specific cortical interactions in the sleep-wake transition.SIGNIFICANCE STATEMENT Our work uncovers spatiotemporal cortical structure of neural synchrony and information flow upon the transition from wakefulness to light non-rapid eye movement sleep. Mesial frontal regions were identified to receive hierarchically organized inputs from broad cortical regions, including both direct inputs from occipital regions and indirect inputs via the parieto-temporal regions within the delta frequency range. Biophysical neural mass modeling revealed a spatially heterogeneous, anterior-posterior distribution of cortical excitation-to-inhibition. Our findings shed light on the orchestration of local and long-range cortical neural structure that is fundamental to sleep onset, and support an emerging view of cortically driven regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Joline M Fan
- Department of Neurology, University of California-San Francisco, San Francisco, California 94143
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
- Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan 243-0460
| | - Parul Verma
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Kamalini G Ranasinghe
- Department of Neurology, University of California-San Francisco, San Francisco, California 94143
| | - Hirofumi Morise
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
- Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan 243-0460
| | - Anne M Findlay
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Keith Vossel
- Department of Neurology, University of California-San Francisco, San Francisco, California 94143
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Heidi E Kirsch
- Department of Neurology, University of California-San Francisco, San Francisco, California 94143
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Andrew D Krystal
- Department of Psychiatry, University of California-San Francisco, San Francisco, California 94143
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| |
Collapse
|
19
|
Knight A, Gschwind T, Galer P, Worrell GA, Litt B, Soltesz I, Beniczky S. Artificial intelligence in epilepsy phenotyping. Epilepsia 2023:10.1111/epi.17833. [PMID: 37983589 PMCID: PMC11102939 DOI: 10.1111/epi.17833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Artificial intelligence (AI) allows data analysis and integration at an unprecedented granularity and scale. Here we review the technological advances, challenges, and future perspectives of using AI for electro-clinical phenotyping of animal models and patients with epilepsy. In translational research, AI models accurately identify behavioral states in animal models of epilepsy, allowing identification of correlations between neural activity and interictal and ictal behavior. Clinical applications of AI-based automated and semi-automated analysis of audio and video recordings of people with epilepsy, allow significant data reduction and reliable detection and classification of major motor seizures. AI models can accurately identify electrographic biomarkers of epilepsy, such as spikes, high-frequency oscillations, and seizure patterns. Integrating AI analysis of electroencephalographic, clinical, and behavioral data will contribute to optimizing therapy for patients with epilepsy.
Collapse
Affiliation(s)
| | - Tilo Gschwind
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Peter Galer
- Center for Neuroengineering and Therapeutics; Department of Bioengineering; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | | | - Brian Litt
- Center for Neuroengineering and Therapeutics; Department of Bioengineering; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, USA
| | - Sándor Beniczky
- Danish Epilepsy Centre Filadelfia, Dianalund, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Schuler AL, Brkić D, Ferrazzi G, Arcara G, Marinazzo D, Pellegrino G. Auditory white noise exposure results in intrinsic cortical excitability changes. iScience 2023; 26:107387. [PMID: 37575186 PMCID: PMC10415920 DOI: 10.1016/j.isci.2023.107387] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Cortical excitability is commonly measured by applying magnetic stimulation in combination with measuring behavioral response. This measure has, however, some shortcomings including spatial limitation to the primary motor cortex and not accounting for intrinsic excitability fluctuations. Here, we use a measure for intrinsic excitability based on phase synchronization previously validated for epilepsy. We apply this measure in 30 healthy participants' magnetoencephalography (MEG) recordings during the exposure of auditory white noise, a stimulus that has been suggested to modify cortical excitability. Using cortical parcellation of the MEG source data, we could find a specific pattern of increased and decreased excitability while participants are exposed to white noise vs. silence. Specifically, excitability during white noise exposure decreases in the frontal lobe and increases in the temporal lobe. This study thus adds to the understanding of cortical excitability changes due to specific environmental stimuli as well as the spatial extent of these effects.
Collapse
Affiliation(s)
- Anna-Lisa Schuler
- IRCCS San Camillo Hospital, Venice, Italy
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | | | | | - Daniele Marinazzo
- Department of Data Analysis, Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
21
|
Fuscà M, Siebenhühner F, Wang SH, Myrov V, Arnulfo G, Nobili L, Palva JM, Palva S. Brain criticality predicts individual levels of inter-areal synchronization in human electrophysiological data. Nat Commun 2023; 14:4736. [PMID: 37550300 PMCID: PMC10406818 DOI: 10.1038/s41467-023-40056-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Neuronal oscillations and their synchronization between brain areas are fundamental for healthy brain function. Yet, synchronization levels exhibit large inter-individual variability that is associated with behavioral variability. We test whether individual synchronization levels are predicted by individual brain states along an extended regime of critical-like dynamics - the Griffiths phase (GP). We use computational modelling to assess how synchronization is dependent on brain criticality indexed by long-range temporal correlations (LRTCs). We analyze LRTCs and synchronization of oscillations from resting-state magnetoencephalography and stereo-electroencephalography data. Synchronization and LRTCs are both positively linearly and quadratically correlated among healthy subjects, while in epileptogenic areas they are negatively linearly correlated. These results show that variability in synchronization levels is explained by the individual position along the GP with healthy brain areas operating in its subcritical and epileptogenic areas in its supercritical side. We suggest that the GP is fundamental for brain function allowing individual variability while retaining functional advantages of criticality.
Collapse
Affiliation(s)
- Marco Fuscà
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Felix Siebenhühner
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki, Aalto University, and Helsinki University Hospital, Helsinki, Finland
| | - Sheng H Wang
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
- CEA, NeuroSpin, Gif-sur-Yvette, France
- MIND team, Inria, Université Paris-Saclay, Bures-sur-Yvette, France
| | - Vladislav Myrov
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Gabriele Arnulfo
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Dept. of Informatics, Bioengineering, Robotics and System engineering, University of Genoa, Genoa, Italy
| | - Lino Nobili
- Child Neuropsychiatry Unit, IRCCS, Istituto G. Gaslini, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- "Claudio Munari" Epilepsy Surgery Centre, Niguarda Hospital, Milan, Italy
| | - J Matias Palva
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Satu Palva
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Schroeder GM, Karoly PJ, Maturana M, Panagiotopoulou M, Taylor PN, Cook MJ, Wang Y. Chronic intracranial EEG recordings and interictal spike rate reveal multiscale temporal modulations in seizure states. Brain Commun 2023; 5:fcad205. [PMID: 37693811 PMCID: PMC10484289 DOI: 10.1093/braincomms/fcad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 09/12/2023] Open
Abstract
Many biological processes are modulated by rhythms on circadian and multidien timescales. In focal epilepsy, various seizure features, such as spread and duration, can change from one seizure to the next within the same patient. However, the specific timescales of this variability, as well as the specific seizure characteristics that change over time, are unclear. Here, in a cross-sectional observational study, we analysed within-patient seizure variability in 10 patients with chronic intracranial EEG recordings (185-767 days of recording time, 57-452 analysed seizures/patient). We characterized the seizure evolutions as sequences of a finite number of patient-specific functional seizure network states. We then compared seizure network state occurrence and duration to (1) time since implantation and (2) patient-specific circadian and multidien cycles in interictal spike rate. In most patients, the occurrence or duration of at least one seizure network state was associated with the time since implantation. Some patients had one or more seizure network states that were associated with phases of circadian and/or multidien spike rate cycles. A given seizure network state's occurrence and duration were usually not associated with the same timescale. Our results suggest that different time-varying factors modulate within-patient seizure evolutions over multiple timescales, with separate processes modulating a seizure network state's occurrence and duration. These findings imply that the development of time-adaptive treatments in epilepsy must account for several separate properties of epileptic seizures and similar principles likely apply to other neurological conditions.
Collapse
Affiliation(s)
- Gabrielle M Schroeder
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Philippa J Karoly
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matias Maturana
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
- Research Department, Seer Medical Pty Ltd., Melbourne, Victoria 3000, Australia
| | - Mariella Panagiotopoulou
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
| | - Peter N Taylor
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mark J Cook
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yujiang Wang
- CNNP Lab (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
23
|
Gregg NM, Pal Attia T, Nasseri M, Joseph B, Karoly P, Cui J, Stirling RE, Viana PF, Richner TJ, Nurse ES, Schulze-Bonhage A, Cook MJ, Worrell GA, Richardson MP, Freestone DR, Brinkmann BH. Seizure occurrence is linked to multiday cycles in diverse physiological signals. Epilepsia 2023; 64:1627-1639. [PMID: 37060170 PMCID: PMC10733995 DOI: 10.1111/epi.17607] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
OBJECTIVE The factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. METHODS In this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist-worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter-Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. RESULTS Ten subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SIGNIFICANCE Seizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time-varying approaches to epilepsy care.
Collapse
Affiliation(s)
- Nicholas M Gregg
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Tal Pal Attia
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Mona Nasseri
- School of Engineering, University of North Florida, Florida, Jacksonville, USA
| | - Boney Joseph
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Philippa Karoly
- Graeme Clark Institute for Biomedical Engineering, University of Melbourne, Victoria, Parkville, Australia
| | - Jie Cui
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Rachel E Stirling
- Seer Medical, Victoria, Melbourne, Australia
- Department of Biomedical Engineering, University of Melbourne, Victoria, Melbourne, Australia
| | - Pedro F Viana
- School of Neuroscience, King's College London, London, UK
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Thomas J Richner
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | - Ewan S Nurse
- Seer Medical, Victoria, Melbourne, Australia
- Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Victoria, Fitzroy, Australia
| | | | - Mark J Cook
- Department of Medicine, St. Vincent's Hospital Melbourne, University of Melbourne, Victoria, Fitzroy, Australia
| | - Gregory A Worrell
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| | | | | | - Benjamin H Brinkmann
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Minnesota, Rochester, USA
| |
Collapse
|
24
|
Helling RM, Perenboom MJL, Bauer PR, Carpay JA, Sander JW, Ferrari MD, Visser GH, Tolner EA. TMS-evoked EEG potentials demonstrate altered cortical excitability in migraine with aura. Brain Topogr 2023; 36:269-281. [PMID: 36781512 PMCID: PMC10014725 DOI: 10.1007/s10548-023-00943-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Migraine is associated with altered sensory processing, that may be evident as changes in cortical responsivity due to altered excitability, especially in migraine with aura. Cortical excitability can be directly assessed by combining transcranial magnetic stimulation with electroencephalography (TMS-EEG). We measured TMS evoked potential (TEP) amplitude and response consistency as these measures have been linked to cortical excitability but were not yet reported in migraine.We recorded 64-channel EEG during single-pulse TMS on the vertex interictally in 10 people with migraine with aura and 10 healthy controls matched for age, sex and resting motor threshold. On average 160 pulses around resting motor threshold were delivered through a circular coil in clockwise and counterclockwise direction. Trial-averaged TEP responses, frequency spectra and phase clustering (over the entire scalp as well as in frontal, central and occipital midline electrode clusters) were compared between groups, including comparison to sham-stimulation evoked responses.Migraine and control groups had a similar distribution of TEP waveforms over the scalp. In migraine with aura, TEP responses showed reduced amplitude around the frontal and occipital N100 peaks. For the migraine and control groups, responses over the scalp were affected by current direction for the primary motor cortex, somatosensory cortex and sensory association areas, but not for frontal, central or occipital midline clusters.This study provides evidence of altered TEP responses in-between attacks in migraine with aura. Decreased TEP responses around the N100 peak may be indicative of reduced cortical GABA-mediated inhibition and expand observations on enhanced cortical excitability from earlier migraine studies using more indirect measurements.
Collapse
Affiliation(s)
- Robert M Helling
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW, Heemstede, The Netherlands
| | - Matthijs J L Perenboom
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Prisca R Bauer
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, University of Freiburg, Hauptstraße 8, 79104, Freiburg, Germany
| | - Johannes A Carpay
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.,Department of Neurology, Tergooi Hospitals, Van Riebeeckweg 212, 1213 XZ, Hilversum, The Netherlands
| | - Josemir W Sander
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW, Heemstede, The Netherlands.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Gerhard H Visser
- Stichting Epilepsie Instellingen Nederland (SEIN), Achterweg 5, 2103 SW, Heemstede, The Netherlands
| | - Else A Tolner
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Department of Human Genetics, Leiden University Medical Centre, Postal Zone S4-P, PO Box 9600, Leiden, The Netherlands.
| |
Collapse
|
25
|
Reynolds A, Vranic-Peters M, Lai A, Grayden DB, Cook MJ, Peterson A. Prognostic interictal electroencephalographic biomarkers and models to assess antiseizure medication efficacy for clinical practice: A scoping review. Epilepsia 2023; 64:1125-1174. [PMID: 36790369 DOI: 10.1111/epi.17548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Antiseizure medication (ASM) is the primary treatment for epilepsy. In clinical practice, methods to assess ASM efficacy (predict seizure freedom or seizure reduction), during any phase of the drug treatment lifecycle, are limited. This scoping review identifies and appraises prognostic electroencephalographic (EEG) biomarkers and prognostic models that use EEG features, which are associated with seizure outcomes following ASM initiation, dose adjustment, or withdrawal. We also aim to summarize the population and context in which these biomarkers and models were identified and described, to understand how they could be used in clinical practice. Between January 2021 and October 2022, four databases, references, and citations were systematically searched for ASM studies investigating changes to interictal EEG or prognostic models using EEG features and seizure outcomes. Study bias was appraised using modified Quality in Prognosis Studies criteria. Results were synthesized into a qualitative review. Of 875 studies identified, 93 were included. Biomarkers identified were classed as qualitative (visually identified by wave morphology) or quantitative. Qualitative biomarkers include identifying hypsarrhythmia, centrotemporal spikes, interictal epileptiform discharges (IED), classifying the EEG as normal/abnormal/epileptiform, and photoparoxysmal response. Quantitative biomarkers were statistics applied to IED, high-frequency activity, frequency band power, current source density estimates, pairwise statistical interdependence between EEG channels, and measures of complexity. Prognostic models using EEG features were Cox proportional hazards models and machine learning models. There is promise that some quantitative EEG biomarkers could be used to assess ASM efficacy, but further research is required. There is insufficient evidence to conclude any specific biomarker can be used for a particular population or context to prognosticate ASM efficacy. We identified a potential battery of prognostic EEG biomarkers, which could be combined with prognostic models to assess ASM efficacy. However, many confounders need to be addressed for translation into clinical practice.
Collapse
Affiliation(s)
- Ashley Reynolds
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Michaela Vranic-Peters
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Alan Lai
- Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Grayden
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Mark J Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Andre Peterson
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, Victoria, Australia.,Department of Neurosciences, St. Vincent's Hospital, University of Melbourne, Melbourne, Victoria, Australia.,Graeme Clark Institute, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Fosque LJ, Alipour A, Zare M, Williams-García RV, Beggs JM, Ortiz G. Quasicriticality explains variability of human neural dynamics across life span. Front Comput Neurosci 2022; 16:1037550. [PMID: 36532868 PMCID: PMC9747757 DOI: 10.3389/fncom.2022.1037550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 08/26/2023] Open
Abstract
Aging impacts the brain's structural and functional organization and over time leads to various disorders, such as Alzheimer's disease and cognitive impairment. The process also impacts sensory function, bringing about a general slowing in various perceptual and cognitive functions. Here, we analyze the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) resting-state magnetoencephalography (MEG) dataset-the largest aging cohort available-in light of the quasicriticality framework, a novel organizing principle for brain functionality which relates information processing and scaling properties of brain activity to brain connectivity and stimulus. Examination of the data using this framework reveals interesting correlations with age and gender of test subjects. Using simulated data as verification, our results suggest a link between changes to brain connectivity due to aging and increased dynamical fluctuations of neuronal firing rates. Our findings suggest a platform to develop biomarkers of neurological health.
Collapse
Affiliation(s)
- Leandro J. Fosque
- Department of Physics, Indiana University, Bloomington, IN, United States
| | - Abolfazl Alipour
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | | | | | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, IN, United States
| | - Gerardo Ortiz
- Department of Physics, Indiana University, Bloomington, IN, United States
| |
Collapse
|
27
|
Roebber JK, Lewis PA, Crunelli V, Navarrete M, Hamandi K. Effects of Anti-Seizure Medication on Sleep Spindles and Slow Waves in Drug-Resistant Epilepsy. Brain Sci 2022; 12:1288. [PMID: 36291222 PMCID: PMC9599317 DOI: 10.3390/brainsci12101288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 09/23/2023] Open
Abstract
There is a close bidirectional relationship between sleep and epilepsy. Anti-seizure medications (ASM) act to reduce seizure frequency but can also impact sleep; this remains a relatively unexplored field given the importance of sleep on seizure occurrence, memory consolidation, and quality of life. We compared the effect of poly-ASM treatment on a night of sleep compared to an unmedicated night in patients with drug-resistant epilepsy, where ASMs were withdrawn and later restored as part of their pre-surgical evaluation. Within-subject analysis between medicated and unmedicated nights showed ASMs increased spindle (11-16 Hz) power and decreased slow wave (0.1-2 Hz) amplitude. Spindles became less strongly coupled to slow waves in the ASM night compared to no-ASM night, with effects to both the phase and strength of coupling and correlated with slow wave reduction. These effects were not seen in age-matched controls from the same unit where ASMs were not changed between two nights. Overall, we found that ASM polytherapy not only changed specific sleep waveforms, but also the fine interplay of spindle/slow wave coupling. Since these sleep oscillations impact both seizure occurrence and memory consolidation, our findings provide evidence towards a decoupling impact of ASMs on sleep that should be considered in future studies of sleep and memory disruption in people with epilepsy.
Collapse
Affiliation(s)
- Jennifer K. Roebber
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| | - Penelope A. Lewis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff CF10 3AX, UK
| | - Miguel Navarrete
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Rd., Cardiff CF24 4HQ, UK
- The Welsh Epilepsy Unit, Department of Neurology, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
28
|
Moosavi SA, Jirsa VK, Truccolo W. Critical dynamics in the spread of focal epileptic seizures: Network connectivity, neural excitability and phase transitions. PLoS One 2022; 17:e0272902. [PMID: 35998146 PMCID: PMC9397939 DOI: 10.1371/journal.pone.0272902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 07/29/2022] [Indexed: 11/24/2022] Open
Abstract
Focal epileptic seizures can remain localized or, alternatively, spread across brain areas, often resulting in impairment of cognitive function and loss of consciousness. Understanding the factors that promote spread is important for developing better therapeutic approaches. Here, we show that: (1) seizure spread undergoes “critical” phase transitions in models (epileptor-networks) that capture the neural dynamics of spontaneous seizures while incorporating patient-specific brain network connectivity, axonal delays and identified epileptogenic zones (EZs). We define a collective variable for the spreading dynamics as the spread size, i.e. the number of areas or nodes in the network to which a seizure has spread. Global connectivity strength and excitability in the surrounding non-epileptic areas work as phase-transition control parameters for this collective variable. (2) Phase diagrams are predicted by stability analysis of the network dynamics. (3) In addition, the components of the Jacobian’s leading eigenvector, which tend to reflect the connectivity strength and path lengths from the EZ to surrounding areas, predict the temporal order of network-node recruitment into seizure. (4) However, stochastic fluctuations in spread size in a near-criticality region make predictability more challenging. Overall, our findings support the view that within-patient seizure-spread variability can be characterized by phase-transition dynamics under transient variations in network connectivity strength and excitability across brain areas. Furthermore, they point to the potential use and limitations of model-based prediction of seizure spread in closed-loop interventions for seizure control.
Collapse
Affiliation(s)
- S. Amin Moosavi
- Department of Neuroscience, Brown University, Providence, RI, United States of America
| | - Viktor K. Jirsa
- Aix Marseille University, INSERM, INS, Institut de Neurosciences de Système, Marseille, France
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, RI, United States of America
- Carney Institute for Brain Science, Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
29
|
Schroeder GM, Chowdhury FA, Cook MJ, Diehl B, Duncan JS, Karoly PJ, Taylor PN, Wang Y. Multiple mechanisms shape the relationship between pathway and duration of focal seizures. Brain Commun 2022; 4:fcac173. [PMID: 35855481 PMCID: PMC9280328 DOI: 10.1093/braincomms/fcac173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/18/2022] [Accepted: 06/30/2022] [Indexed: 12/22/2022] Open
Abstract
A seizure's electrographic dynamics are characterized by its spatiotemporal evolution, also termed dynamical 'pathway', and the time it takes to complete that pathway, which results in the seizure's duration. Both seizure pathways and durations have been shown to vary within the same patient. However, it is unclear whether seizures following the same pathway will have the same duration or if these features can vary independently. We compared within-subject variability in these seizure features using (i) epilepsy monitoring unit intracranial EEG (iEEG) recordings of 31 patients (mean: 6.7 days, 16.5 seizures/subject), (ii) NeuroVista chronic iEEG recordings of 10 patients (mean: 521.2 days, 252.6 seizures/subject) and (iii) chronic iEEG recordings of three dogs with focal-onset seizures (mean: 324.4 days, 62.3 seizures/subject). While the strength of the relationship between seizure pathways and durations was highly subject-specific, in most subjects, changes in seizure pathways were only weakly to moderately associated with differences in seizure durations. The relationship between seizure pathways and durations was strengthened by seizures that were 'truncated' versions, both in pathway and duration, of other seizures. However, the relationship was weakened by seizures that had a common pathway, but different durations ('elasticity'), or had similar durations, but followed different pathways ('semblance'). Even in subjects with distinct populations of short and long seizures, seizure durations were not a reliable indicator of different seizure pathways. These findings suggest that seizure pathways and durations are modulated by multiple different mechanisms. Uncovering such mechanisms may reveal novel therapeutic targets for reducing seizure duration and severity.
Collapse
Affiliation(s)
- Gabrielle M Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Mark J Cook
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - John S Duncan
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Philippa J Karoly
- Graeme Clark Institute and St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, Australia
- Seer Medical Pty Ltd, Melbourne, VIC, Australia
| | - Peter N Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- UCL Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
30
|
Panagiotopoulou M, Papasavvas CA, Schroeder GM, Thomas RH, Taylor PN, Wang Y. Fluctuations in EEG band power at subject-specific timescales over minutes to days explain changes in seizure evolutions. Hum Brain Mapp 2022; 43:2460-2477. [PMID: 35119173 PMCID: PMC9057101 DOI: 10.1002/hbm.25796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/30/2021] [Accepted: 01/23/2022] [Indexed: 01/14/2023] Open
Abstract
Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and seizure characteristics themselves change over time. Specifically, we recently quantified the variable electrographic spatio-temporal seizure evolutions that exist within individual patients. This variability appears to follow subject-specific circadian, or longer, timescale modulations. It is therefore important to know whether continuously recorded interictaliEEG features can capture signatures of these modulations over different timescales. In this study, we analyse continuous intracranial electroencephalographic (iEEG) recordings from video-telemetry units and find fluctuations in iEEG band power over timescales ranging from minutes up to 12 days. As expected and in agreement with previous studies, we find that all subjects show a circadian fluctuation in their iEEG band power. We additionally detect other fluctuations of similar magnitude on subject-specific timescales. Importantly, we find that a combination of these fluctuations on different timescales can explain changes in seizure evolutions in most subjects above chance level. These results suggest that subject-specific fluctuations in iEEG band power over timescales of minutes to days may serve as markers of seizure modulating processes. We hope that future study can link these detected fluctuations to their biological driver(s). There is a critical need to better understand seizure modulating processes, as this will enable the development of novel treatment strategies that could minimise the seizure spread, duration or severity and therefore the clinical impact of seizures.
Collapse
Affiliation(s)
- Mariella Panagiotopoulou
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Christoforos A. Papasavvas
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Gabrielle M. Schroeder
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
| | - Rhys H. Thomas
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
| | - Peter N. Taylor
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
- UCL Queen Square Institute of Neurology, Queen SquareLondon
| | - Yujiang Wang
- CNNP Lab, Interdisciplinary Computing and Complex BioSystems GroupSchool of Computing, Newcastle UniversityNewcastle upon Tyne
- Faculty of Medical SciencesNewcastle UniversityNewcastle upon Tyne
- UCL Queen Square Institute of Neurology, Queen SquareLondon
| |
Collapse
|
31
|
Taylor PN, Papasavvas CA, Owen TW, Schroeder GM, Hutchings FE, Chowdhury FA, Diehl B, Duncan JS, McEvoy AW, Miserocchi A, de Tisi J, Vos SB, Walker MC, Wang Y. Normative brain mapping of interictal intracranial EEG to localize epileptogenic tissue. Brain 2022; 145:939-949. [PMID: 35075485 PMCID: PMC9050535 DOI: 10.1093/brain/awab380] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
The identification of abnormal electrographic activity is important in a wide range of neurological disorders, including epilepsy for localizing epileptogenic tissue. However, this identification may be challenging during non-seizure (interictal) periods, especially if abnormalities are subtle compared to the repertoire of possible healthy brain dynamics. Here, we investigate if such interictal abnormalities become more salient by quantitatively accounting for the range of healthy brain dynamics in a location-specific manner. To this end, we constructed a normative map of brain dynamics, in terms of relative band power, from interictal intracranial recordings from 234 participants (21 598 electrode contacts). We then compared interictal recordings from 62 patients with epilepsy to the normative map to identify abnormal regions. We proposed that if the most abnormal regions were spared by surgery, then patients would be more likely to experience continued seizures postoperatively. We first confirmed that the spatial variations of band power in the normative map across brain regions were consistent with healthy variations reported in the literature. Second, when accounting for the normative variations, regions that were spared by surgery were more abnormal than those resected only in patients with persistent postoperative seizures (t = -3.6, P = 0.0003), confirming our hypothesis. Third, we found that this effect discriminated patient outcomes (area under curve 0.75 P = 0.0003). Normative mapping is a well-established practice in neuroscientific research. Our study suggests that this approach is feasible to detect interictal abnormalities in intracranial EEG, and of potential clinical value to identify pathological tissue in epilepsy. Finally, we make our normative intracranial map publicly available to facilitate future investigations in epilepsy and beyond.
Collapse
Affiliation(s)
- Peter N Taylor
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Christoforos A Papasavvas
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
| | - Thomas W Owen
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
| | - Gabrielle M Schroeder
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
| | - Frances E Hutchings
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Beate Diehl
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - John S Duncan
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Andrew W McEvoy
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Sjoerd B Vos
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| | - Yujiang Wang
- CNNP Laboratory (www.cnnp-lab.com), Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle Helix, Newcastle University, Newcastle-upon-Tyne, NE4 5TG, UK
- UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, London WC1N 3BG, UK
| |
Collapse
|
32
|
Halimeh M, Yang Y, Sheehan T, Vieluf S, Jackson M, Loddenkemper T, Meisel C. Wearable device assessments of antiseizure medication effects on diurnal patterns of electrodermal activity, heart rate, and heart rate variability. Epilepsy Behav 2022; 129:108635. [PMID: 35278938 DOI: 10.1016/j.yebeh.2022.108635] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Accepted: 02/19/2022] [Indexed: 11/03/2022]
Abstract
Patient-generated health data provide a great opportunity for more detailed ambulatory monitoring and more personalized treatments in many diseases. In epilepsy, robust diagnostics applicable to the ambulatory setting are needed as diagnosis and treatment decisions in current clinical practice are primarily reliant on patient self-reports, which are often inaccurate. Recent work using wearable devices has focused on methods to detect and forecast epileptic seizures. Whether wearable device signals may also contain information about the effect of antiseizure medications (ASMs), which may ultimately help to better monitor their efficacy, has not been evaluated yet. Here we systematically investigated the effect of ASMs on different data modalities (electrodermal activity, EDA, heart rate, HR, and heart rate variability, HRV) simultaneously recorded by a wearable device in 48 patients with epilepsy over several days in the epilepsy long-term monitoring unit at a tertiary hospital. All signals exhibited characteristic diurnal variations. HRV, but not HR or EDA-based metrics, were reduced by ASMs. By assessing multiple signals related to the autonomic nervous system simultaneously, our results provide novel insights into the effects of ASMs on the sympathetic and parasympathetic interplay in the setting of epilepsy and indicate the potential of easy-to-wear wearable devices for monitoring ASM action. Future work using longer data may investigate these metrics on multidien cycles and their utility for detecting seizures, assessing seizure risk, or informing treatment interventions.
Collapse
Affiliation(s)
- Mustafa Halimeh
- Computational Neurology, Department of Neurology, Charité - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Germany
| | - Yonghua Yang
- Hospital of Xi'an Jiaotong University, Pediatric Department, Shaanxi, China
| | | | | | | | | | - Christian Meisel
- Computational Neurology, Department of Neurology, Charité - Universitätsmedizin Berlin, Germany; Berlin Institute of Health, Germany.
| |
Collapse
|
33
|
Gregg NM, Sladky V, Nejedly P, Mivalt F, Kim I, Balzekas I, Sturges BK, Crowe C, Patterson EE, Van Gompel JJ, Lundstrom BN, Leyde K, Denison TJ, Brinkmann BH, Kremen V, Worrell GA. Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy. Sci Rep 2021; 11:24250. [PMID: 34930926 PMCID: PMC8688461 DOI: 10.1038/s41598-021-03555-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic brain recordings suggest that seizure risk is not uniform, but rather varies systematically relative to daily (circadian) and multiday (multidien) cycles. Here, one human and seven dogs with naturally occurring epilepsy had continuous intracranial EEG (median 298 days) using novel implantable sensing and stimulation devices. Two pet dogs and the human subject received concurrent thalamic deep brain stimulation (DBS) over multiple months. All subjects had circadian and multiday cycles in the rate of interictal epileptiform spikes (IES). There was seizure phase locking to circadian and multiday IES cycles in five and seven out of eight subjects, respectively. Thalamic DBS modified circadian (all 3 subjects) and multiday (analysis limited to the human participant) IES cycles. DBS modified seizure clustering and circadian phase locking in the human subject. Multiscale cycles in brain excitability and seizure risk are features of human and canine epilepsy and are modifiable by thalamic DBS.
Collapse
Affiliation(s)
- Nicholas M Gregg
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Vladimir Sladky
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
- International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University in Prague, 272 01, Kladno, Czech Republic
| | - Petr Nejedly
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
- International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
| | - Filip Mivalt
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
- International Clinical Research Center, St. Anne's University Hospital, 656 91, Brno, Czech Republic
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Inyong Kim
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
| | - Irena Balzekas
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic School of Medicine and the Medical Scientist Training Program, Mayo Clinic, Rochester, MN, 55905, USA
| | - Beverly K Sturges
- Department of Veterinary Clinical Sciences, University of California, Davis, CA, 95616, USA
| | - Chelsea Crowe
- Department of Veterinary Clinical Sciences, University of California, Davis, CA, 95616, USA
| | - Edward E Patterson
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, 55108, USA
| | | | - Brian N Lundstrom
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kent Leyde
- Cadence Neuroscience, Seattle, WA, 98052, USA
| | - Timothy J Denison
- Institute for Biomedical Engineering, Oxford University, Oxford, OX3 7DQ, UK
| | - Benjamin H Brinkmann
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
| | - Vaclav Kremen
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA
- Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, 160 00, Prague, Czech Republic
| | - Gregory A Worrell
- Department of Neurology, Bioelectronics Neurophysiology and Engineering Laboratory, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
34
|
Müller J, Yang H, Eberlein M, Leonhardt G, Uckermann O, Kuhlmann L, Tetzlaff R. Coherent false seizure prediction in epilepsy, coincidence or providence? Clin Neurophysiol 2021; 133:157-164. [PMID: 34844880 DOI: 10.1016/j.clinph.2021.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Seizure forecasting using machine learning is possible, but the performance is far from ideal, as indicated by many false predictions and low specificity. Here, we examine false and missing alarms of two algorithms on long-term datasets to show that the limitations are less related to classifiers or features, but rather to intrinsic changes in the data. METHODS We evaluated two algorithms on three datasets by computing the correlation of false predictions and estimating the information transfer between both classification methods. RESULTS For 9 out of 12 individuals both methods showed a performance better than chance. For all individuals we observed a positive correlation in predictions. For individuals with strong correlation in false predictions we were able to boost the performance of one method by excluding test samples based on the results of the second method. CONCLUSIONS Substantially different algorithms exhibit a highly consistent performance and a strong coherency in false and missing alarms. Hence, changing the underlying hypothesis of a preictal state of fixed time length prior to each seizure to a proictal state is more helpful than further optimizing classifiers. SIGNIFICANCE The outcome is significant for the evaluation of seizure prediction algorithms on continuous data.
Collapse
Affiliation(s)
- Jens Müller
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany.
| | - Hongliu Yang
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| | - Matthias Eberlein
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| | - Georg Leonhardt
- TU Dresden, Neurosurgery of University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ortrud Uckermann
- TU Dresden, Neurosurgery of University Hospital Carl Gustav Carus, Fetscherstr. 74, 01307 Dresden, Germany
| | - Levin Kuhlmann
- Department of Medicine, St Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Ronald Tetzlaff
- TU Dresden, Faculty of Electrical and Computer Engineering, Institute of Circuits and Systems, 01062 Dresden, Germany
| |
Collapse
|
35
|
Schulze-Bonhage A. Seizure prediction: Time for new, multimodal and ultra-long-term approaches. Clin Neurophysiol 2021; 133:152-153. [PMID: 34802924 DOI: 10.1016/j.clinph.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, Faculty of Medicine, University of Freiburg, Germany; European Reference Network EpiCare, Europe; Bernstein Center Freiburg, University of Freiburg, Germany; NeuroModule Basic, University Medical Center, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
36
|
Manzouri F, Meisel C, Kunz L, Dümpelmann M, Stieglitz T, Schulze-Bonhage A. Low-frequency electrical stimulation reduces cortical excitability in the human brain. Neuroimage Clin 2021; 31:102778. [PMID: 34375883 PMCID: PMC8358685 DOI: 10.1016/j.nicl.2021.102778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/02/2021] [Accepted: 07/25/2021] [Indexed: 12/03/2022]
Abstract
Effective seizure control remains challenging for about 30% of epilepsy patients who are resistant to present-day pharmacotherapy. Novel approaches that not only reduce the severity and frequency of seizures, but also have limited side effects are therefore desirable. Accordingly, various neuromodulation approaches such as cortical electrical stimulation have been implemented to reduce seizure burden; however, the underlying mechanisms are not completely understood. Given that the initiation and spread of epileptic seizures critically depend on cortical excitability, understanding the neuromodulatory effects of cortical electrical stimulation on cortical excitability levels is paramount. Based on observations that synchronization in the electrocorticogram closely tracks brain excitability level, the effects of low-frequency (1 Hz) intracranial brain stimulation on the levels of cortical phase synchronization before, during, and after 1 Hz electrical stimulation were assessed in twelve patients. Analysis of phase synchronization levels across three broad frequency bands (1-45 Hz, 55-95 Hz, and 105-195 Hz) revealed that in patients with stimulation sites in the neocortex, phase synchronization levels were significantly reduced within the 55-95 Hz and 105-195 Hz bands during post-stimulation intervals compared to baseline; this effect persisted for at least 30 min post-stimulation. Similar effects were observed when phase synchronization levels were examined in the classic frequency bands, whereby a significant reduction was found during the post-stimulation intervals in the alpha, beta, and gamma bands. The anatomical extent of these effects was then assessed. Analysis of the results from six patients with intracranial electrodes in both hemispheres indicated that reductions in phase synchronization in the 1-45 Hz and 55-95 Hz frequency ranges were more prominent in the stimulated hemisphere. Overall, these findings demonstrate that low-frequency electrical stimulation reduces phase synchronization and hence cortical excitability in the human brain. Low-frequency stimulation of the epileptic focus may therefore contribute to the prevention of impending epileptic seizures.
Collapse
Affiliation(s)
- Farrokh Manzouri
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.
| | - Christian Meisel
- Department of Neurology, Charité- Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Center for Stroke Research Berlin, Berlin, Germany
| | - Lukas Kunz
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Thomas Stieglitz
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Balzekas I, Sladky V, Nejedly P, Brinkmann BH, Crepeau D, Mivalt F, Gregg NM, Pal Attia T, Marks VS, Wheeler L, Riccelli TE, Staab JP, Lundstrom BN, Miller KJ, Van Gompel J, Kremen V, Croarkin PE, Worrell GA. Invasive Electrophysiology for Circuit Discovery and Study of Comorbid Psychiatric Disorders in Patients With Epilepsy: Challenges, Opportunities, and Novel Technologies. Front Hum Neurosci 2021; 15:702605. [PMID: 34381344 PMCID: PMC8349989 DOI: 10.3389/fnhum.2021.702605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Intracranial electroencephalographic (iEEG) recordings from patients with epilepsy provide distinct opportunities and novel data for the study of co-occurring psychiatric disorders. Comorbid psychiatric disorders are very common in drug-resistant epilepsy and their added complexity warrants careful consideration. In this review, we first discuss psychiatric comorbidities and symptoms in patients with epilepsy. We describe how epilepsy can potentially impact patient presentation and how these factors can be addressed in the experimental designs of studies focused on the electrophysiologic correlates of mood. Second, we review emerging technologies to integrate long-term iEEG recording with dense behavioral tracking in naturalistic environments. Third, we explore questions on how best to address the intersection between epilepsy and psychiatric comorbidities. Advances in ambulatory iEEG and long-term behavioral monitoring technologies will be instrumental in studying the intersection of seizures, epilepsy, psychiatric comorbidities, and their underlying circuitry.
Collapse
Affiliation(s)
- Irena Balzekas
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
- Mayo Clinic Alix School of Medicine, Rochester, MN, United States
- Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Vladimir Sladky
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czechia
| | - Petr Nejedly
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czechia
| | - Benjamin H. Brinkmann
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Daniel Crepeau
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Filip Mivalt
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Czechia
| | - Nicholas M. Gregg
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Tal Pal Attia
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Victoria S. Marks
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Lydia Wheeler
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
- Mayo Clinic Alix School of Medicine, Rochester, MN, United States
| | - Tori E. Riccelli
- Mayo Clinic Alix School of Medicine, Rochester, MN, United States
| | - Jeffrey P. Staab
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, MN, United States
| | - Brian Nils Lundstrom
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Kai J. Miller
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Jamie Van Gompel
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Vaclav Kremen
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czechia
| | - Paul E. Croarkin
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Gregory A. Worrell
- Bioelectronics, Neurophysiology, and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
38
|
Karoly PJ, Rao VR, Gregg NM, Worrell GA, Bernard C, Cook MJ, Baud MO. Cycles in epilepsy. Nat Rev Neurol 2021; 17:267-284. [PMID: 33723459 DOI: 10.1038/s41582-021-00464-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
Epilepsy is among the most dynamic disorders in neurology. A canonical view holds that seizures, the characteristic sign of epilepsy, occur at random, but, for centuries, humans have looked for patterns of temporal organization in seizure occurrence. Observations that seizures are cyclical date back to antiquity, but recent technological advances have, for the first time, enabled cycles of seizure occurrence to be quantitatively characterized with direct brain recordings. Chronic recordings of brain activity in humans and in animals have yielded converging evidence for the existence of cycles of epileptic brain activity that operate over diverse timescales: daily (circadian), multi-day (multidien) and yearly (circannual). Here, we review this evidence, synthesizing data from historical observational studies, modern implanted devices, electronic seizure diaries and laboratory-based animal neurophysiology. We discuss advances in our understanding of the mechanistic underpinnings of these cycles and highlight the knowledge gaps that remain. The potential clinical applications of a knowledge of cycles in epilepsy, including seizure forecasting and chronotherapy, are discussed in the context of the emerging concept of seizure risk. In essence, this Review addresses the broad question of why seizures occur when they occur.
Collapse
Affiliation(s)
- Philippa J Karoly
- Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Vikram R Rao
- Department of Neurology, University of California, San Francisco, CA, USA.,Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Nicholas M Gregg
- Bioelectronics, Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Worrell
- Bioelectronics, Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Christophe Bernard
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
| | - Mark J Cook
- Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland. .,Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
39
|
Auno S, Lauronen L, Wilenius J, Peltola M, Vanhatalo S, Palva JM. Detrended fluctuation analysis in the presurgical evaluation of parietal lobe epilepsy patients. Clin Neurophysiol 2021; 132:1515-1525. [PMID: 34030053 DOI: 10.1016/j.clinph.2021.03.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine the usability of long-range temporal correlations (LRTCs) in non-invasive localization of the epileptogenic zone (EZ) in refractory parietal lobe epilepsy (RPLE) patients. METHODS We analyzed 10 RPLE patients who had presurgical MEG and underwent epilepsy surgery. We quantified LRTCs with detrended fluctuation analysis (DFA) at four frequency bands for 200 cortical regions estimated using individual source models. We correlated individually the DFA maps to the distance from the resection area and from cortical locations of interictal epileptiform discharges (IEDs). Additionally, three clinical experts inspected the DFA maps to visually assess the most likely EZ locations. RESULTS The DFA maps correlated with the distance to resection area in patients with type II focal cortical dysplasia (FCD) (p<0.05), but not in other etiologies. Similarly, the DFA maps correlated with the IED locations only in the FCD II patients. Visual analysis of the DFA maps showed high interobserver agreement and accuracy in FCD patients in assigning the affected hemisphere and lobe. CONCLUSIONS Aberrant LRTCs correlate with the resection areas and IED locations. SIGNIFICANCE This methodological pilot study demonstrates the feasibility of approximating cortical LRTCs from MEG that may aid in the EZ localization and provide new non-invasive insight into the presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Sami Auno
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Leena Lauronen
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Juha Wilenius
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; BioMag Laboratory, HUS Medical Imaging Center, Helsinki University Hospital(HUH), Helsinki, Finland
| | - Maria Peltola
- Epilepsia Helsinki, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology and BABA center, Children's Hospital, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital (HUH), Helsinki, Finland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - J Matias Palva
- Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, United Kingdom; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Hagemann A, Wilting J, Samimizad B, Mormann F, Priesemann V. Assessing criticality in pre-seizure single-neuron activity of human epileptic cortex. PLoS Comput Biol 2021; 17:e1008773. [PMID: 33684101 PMCID: PMC7971851 DOI: 10.1371/journal.pcbi.1008773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/18/2021] [Accepted: 02/04/2021] [Indexed: 11/18/2022] Open
Abstract
Epileptic seizures are characterized by abnormal and excessive neural activity, where cortical network dynamics seem to become unstable. However, most of the time, during seizure-free periods, cortex of epilepsy patients shows perfectly stable dynamics. This raises the question of how recurring instability can arise in the light of this stable default state. In this work, we examine two potential scenarios of seizure generation: (i) epileptic cortical areas might generally operate closer to instability, which would make epilepsy patients generally more susceptible to seizures, or (ii) epileptic cortical areas might drift systematically towards instability before seizure onset. We analyzed single-unit spike recordings from both the epileptogenic (focal) and the nonfocal cortical hemispheres of 20 epilepsy patients. We quantified the distance to instability in the framework of criticality, using a novel estimator, which enables an unbiased inference from a small set of recorded neurons. Surprisingly, we found no evidence for either scenario: Neither did focal areas generally operate closer to instability, nor were seizures preceded by a drift towards instability. In fact, our results from both pre-seizure and seizure-free intervals suggest that despite epilepsy, human cortex operates in the stable, slightly subcritical regime, just like cortex of other healthy mammalians.
Collapse
Affiliation(s)
- Annika Hagemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Jens Wilting
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Bita Samimizad
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
| | - Viola Priesemann
- Max-Planck-Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN) Göttingen, Germany
| |
Collapse
|
41
|
Heiney K, Huse Ramstad O, Fiskum V, Christiansen N, Sandvig A, Nichele S, Sandvig I. Criticality, Connectivity, and Neural Disorder: A Multifaceted Approach to Neural Computation. Front Comput Neurosci 2021; 15:611183. [PMID: 33643017 PMCID: PMC7902700 DOI: 10.3389/fncom.2021.611183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023] Open
Abstract
It has been hypothesized that the brain optimizes its capacity for computation by self-organizing to a critical point. The dynamical state of criticality is achieved by striking a balance such that activity can effectively spread through the network without overwhelming it and is commonly identified in neuronal networks by observing the behavior of cascades of network activity termed "neuronal avalanches." The dynamic activity that occurs in neuronal networks is closely intertwined with how the elements of the network are connected and how they influence each other's functional activity. In this review, we highlight how studying criticality with a broad perspective that integrates concepts from physics, experimental and theoretical neuroscience, and computer science can provide a greater understanding of the mechanisms that drive networks to criticality and how their disruption may manifest in different disorders. First, integrating graph theory into experimental studies on criticality, as is becoming more common in theoretical and modeling studies, would provide insight into the kinds of network structures that support criticality in networks of biological neurons. Furthermore, plasticity mechanisms play a crucial role in shaping these neural structures, both in terms of homeostatic maintenance and learning. Both network structures and plasticity have been studied fairly extensively in theoretical models, but much work remains to bridge the gap between theoretical and experimental findings. Finally, information theoretical approaches can tie in more concrete evidence of a network's computational capabilities. Approaching neural dynamics with all these facets in mind has the potential to provide a greater understanding of what goes wrong in neural disorders. Criticality analysis therefore holds potential to identify disruptions to healthy dynamics, granted that robust methods and approaches are considered.
Collapse
Affiliation(s)
- Kristine Heiney
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Computer Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ola Huse Ramstad
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nicholas Christiansen
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway
| | - Stefano Nichele
- Department of Computer Science, Oslo Metropolitan University, Oslo, Norway
- Department of Holistic Systems, Simula Metropolitan, Oslo, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
42
|
Maganti RK, Jones MV. Untangling a Web: Basic Mechanisms of the Complex Interactions Between Sleep, Circadian Rhythms, and Epilepsy. Epilepsy Curr 2021; 21:105-110. [PMID: 33541118 PMCID: PMC8010879 DOI: 10.1177/1535759721989674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Seizures have sleep–wake and circadian patterns in various epilepsies and, in turn, disrupt sleep and circadian rhythms. The resultant sleep deprivation (SD) is an exacerbating factor for seizures that sets up a vicious cycle that can potentially lead to disease progression and even to epilepsy-related mortality. A variety of cellular or network electrophysiological changes and changes in expression of clock-controlled genes or other transcription factors underlie sleep–wake and circadian distribution of seizures, as well as the disruptions seen in both. A broad understanding of these mechanisms may help in designing better treatments to prevent SD-induced seizure exacerbation, disrupt the vicious cycle of disease progression, and reduce epilepsy-related mortality.
Collapse
Affiliation(s)
- Rama K Maganti
- Department of Neurology, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mathew V Jones
- Department of Neuroscience, 5228University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
43
|
Stochastic synchronization of dynamics on the human connectome. Neuroimage 2021; 229:117738. [PMID: 33454400 DOI: 10.1016/j.neuroimage.2021.117738] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/30/2020] [Accepted: 01/09/2021] [Indexed: 11/20/2022] Open
Abstract
Synchronization is a collective mechanism by which oscillatory networks achieve their functions. Factors driving synchronization include the network's topological and dynamical properties. However, how these factors drive the emergence of synchronization in the presence of potentially disruptive external inputs like stochastic perturbations is not well understood, particularly for real-world systems such as the human brain. Here, we aim to systematically address this problem using a large-scale model of the human brain network (i.e., the human connectome). The results show that the model can produce complex synchronization patterns transitioning between incoherent and coherent states. When nodes in the network are coupled at some critical strength, a counterintuitive phenomenon emerges where the addition of noise increases the synchronization of global and local dynamics, with structural hub nodes benefiting the most. This stochastic synchronization effect is found to be driven by the intrinsic hierarchy of neural timescales of the brain and the heterogeneous complex topology of the connectome. Moreover, the effect coincides with clustering of node phases and node frequencies and strengthening of the functional connectivity of some of the connectome's subnetworks. Overall, the work provides broad theoretical insights into the emergence and mechanisms of stochastic synchronization, highlighting its putative contribution in achieving network integration underpinning brain function.
Collapse
|
44
|
Carvalho VR, Moraes MFD, Cash SS, Mendes EMAM. Active probing to highlight approaching transitions to ictal states in coupled neural mass models. PLoS Comput Biol 2021; 17:e1008377. [PMID: 33493165 PMCID: PMC7861539 DOI: 10.1371/journal.pcbi.1008377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/04/2021] [Accepted: 12/02/2020] [Indexed: 01/07/2023] Open
Abstract
The extraction of electrophysiological features that reliably forecast the occurrence of seizures is one of the most challenging goals in epilepsy research. Among possible approaches to tackle this problem is the use of active probing paradigms in which responses to stimuli are used to detect underlying system changes leading up to seizures. This work evaluates the theoretical and mechanistic underpinnings of this strategy using two coupled populations of the well-studied Wendling neural mass model. Different model settings are evaluated, shifting parameters (excitability, slow inhibition, or inter-population coupling gains) from normal towards ictal states while probing stimuli are applied every 2 seconds to the input of either one or both populations. The correlation between the extracted features and the ictogenic parameter shifting indicates if the impending transition to the ictal state may be identified in advance. Results show that not only can the response to the probing stimuli forecast seizures but this is true regardless of the altered ictogenic parameter. That is, similar feature changes are highlighted by probing stimuli responses in advance of the seizure including: increased response variance and lag-1 autocorrelation, decreased skewness, and increased mutual information between the outputs of both model subsets. These changes were mostly restricted to the stimulated population, showing a local effect of this perturbational approach. The transition latencies from normal activity to sustained discharges of spikes were not affected, suggesting that stimuli had no pro-ictal effects. However, stimuli were found to elicit interictal-like spikes just before the transition to the ictal state. Furthermore, the observed feature changes highlighted by probing the neuronal populations may reflect the phenomenon of critical slowing down, where increased recovery times from perturbations may signal the loss of a systems' resilience and are common hallmarks of an impending critical transition. These results provide more evidence that active probing approaches highlight information about underlying system changes involved in ictogenesis and may be able to play a role in assisting seizure forecasting methods which can be incorporated into early-warning systems that ultimately enable closing the loop for targeted seizure-controlling interventions.
Collapse
Affiliation(s)
- Vinícius Rezende Carvalho
- Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Márcio Flávio Dutra Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia e Pesquisa em Magneto-Ressonância, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eduardo Mazoni Andrade Marçal Mendes
- Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Centro de Tecnologia e Pesquisa em Magneto-Ressonância, Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
45
|
Chen Z, Grayden DB, Burkitt AN, Seneviratne U, D'Souza WJ, French C, Karoly PJ, Dell K, Leyde K, Cook MJ, Maturana MI. Spatiotemporal Patterns of High-Frequency Activity (80-170 Hz) in Long-Term Intracranial EEG. Neurology 2020; 96:e1070-e1081. [PMID: 33361261 DOI: 10.1212/wnl.0000000000011408] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/15/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the utility of high-frequency activity (HFA) and epileptiform spikes as biomarkers for epilepsy, we examined the variability in their rates and locations using long-term ambulatory intracranial EEG (iEEG) recordings. METHODS This study used continuous iEEG recordings obtained over an average of 1.4 years from 15 patients with drug-resistant focal epilepsy. HFA was defined as 80- to 170-Hz events with amplitudes clearly larger than the background, which was automatically detected with a custom algorithm. The automatically detected HFA was compared with visually annotated high-frequency oscillations (HFOs). The variations of HFA rates were compared with spikes and seizures on patient-specific and electrode-specific bases. RESULTS HFA included manually annotated HFOs and high-amplitude events occurring in the 80- to 170-Hz range without observable oscillatory behavior. HFA and spike rates had high amounts of intrapatient and interpatient variability. Rates of HFA and spikes had large variability after electrode implantation in most of the patients. Locations of HFA and spikes varied up to weeks in more than one-third of the patients. Both HFA and spike rates showed strong circadian rhythms in all patients, and some also showed multiday cycles. Furthermore, the circadian patterns of HFA and spike rates had patient-specific correlations with seizures, which tended to vary across electrodes. CONCLUSION Analysis of HFA and epileptiform spikes should consider postimplantation variability. HFA and epileptiform spikes, like seizures, show circadian rhythms. However, the circadian profiles can vary spatially within patients, and their correlations to seizures are patient-specific.
Collapse
Affiliation(s)
- Zhuying Chen
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - David B Grayden
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Anthony N Burkitt
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Udaya Seneviratne
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Wendyl J D'Souza
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Chris French
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Philippa J Karoly
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Katrina Dell
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Kent Leyde
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Mark J Cook
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| | - Matias I Maturana
- From the Department of Biomedical Engineering (Z.C., D.B.G., A.N.B., P.J.K, M.J.C.), and Department of Medicine (Z.C., D.B.G., U.S., W.J.D., K.D., M.J.C., M.I.M.), St Vincent's Hospital, Department of Medicine (C.F.), Royal Melbourne Hospital, and Graeme Clark Institute (P.J.K., M.J.C.), The University of Melbourne, VIC, Australia; Cadence Neuroscience (K.L.), Redmond, WA; and 6 Seer Medical (M.I.M.), Melbourne, VIC, Australia
| |
Collapse
|
46
|
Yan Q, Gaspard N, Zaveri HP, Blumenfeld H, Hirsch LJ, Spencer DD, Alkawadri R. The connectivity index: an effective metric for grading epileptogenicity. J Neurosurg 2020; 133:971-978. [PMID: 31561212 DOI: 10.3171/2019.4.jns195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the performance of a metric of functional connectivity to classify and grade the excitability of brain regions based on evoked potentials in response to single-pulse electrical stimulation (SPES). METHODS Patients who underwent 1-Hz frequency stimulation at prospectively selected contacts between 2003 and 2014 at the Yale Comprehensive Epilepsy Center were included. The stimulated contacts were classified as the seizure onset zone (SOZ), highly irritative zone (possibly epileptogenic irritative zone [IZp]), and control contacts not involved in the epileptic activity. Response contacts were classified as SOZ, active interictal irritative zone (IZ), quiet, or other. The normalized number of responses was defined as the number of contacts with any evoked responses divided by the total number of recorded contacts, and the normalized distance is the ratio of the average distance between the site of stimulation and sites of evoked responses to the average distances between the site of stimulation and all other recording contacts. A new metric that the authors labeled the connectivity index (CI) is defined as the product of the 2 values. RESULTS A total of 57 stimulation sessions in 22 patients were analyzed. The CI of the SOZ was higher than for control contacts (median CI of 0.74 vs 0.16, p = 0.0002). The evoked responses after stimulation of SOZ were seen at further distances compared to control (median normalized distance 0.96 vs 0.62, p = 0.0005). It was 1.8 times more likely that a response would be recorded at the SOZ than in nonepileptic contacts after stimulation of a control site. Habitual seizures were triggered in 27% of patients and 35% of SOZ contacts (median stimulation intensity 4 mA) but in none of the control or IZp contacts. Non-SOZ contacts in multifocal or poor surgical outcome cases had a higher CI than non-SOZ contacts in patients with localizable onsets (median CI of 0.5 vs 0.12, p = 0.04). There was a correlation between the stimulation current intensity and the normalized number of evoked responses (r = + 0.49, p = 0.01) but not with distance (r = + 0.1, p = 0.64). CONCLUSIONS The authors found enhanced connectivity when stimulating the SOZ compared to stimulating control contacts; responses were more distant as well. Habitual auras and seizures provoked by SPES were highly predictive of brain sites involved in seizure generation.
Collapse
Affiliation(s)
- Qi Yan
- Departments of1Neurology and
- 3The Human Brain Mapping Program, Yale University, New Haven, Connecticut
| | - Nicolas Gaspard
- Departments of1Neurology and
- 3The Human Brain Mapping Program, Yale University, New Haven, Connecticut
- 4Hôpital Erasme-ULB, Cliniques Universitaires de Bruxelles, Bruxelles, Belgium; and
| | | | - Hal Blumenfeld
- Departments of1Neurology and
- 2Neurosurgery, School of Medicine, and
| | | | | | - Rafeed Alkawadri
- Departments of1Neurology and
- 3The Human Brain Mapping Program, Yale University, New Haven, Connecticut
- 5Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
47
|
Stirling RE, Cook MJ, Grayden DB, Karoly PJ. Seizure forecasting and cyclic control of seizures. Epilepsia 2020; 62 Suppl 1:S2-S14. [PMID: 32712968 DOI: 10.1111/epi.16541] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/02/2023]
Abstract
Epilepsy is a unique neurologic condition characterized by recurrent seizures, where causes, underlying biomarkers, triggers, and patterns differ across individuals. The unpredictability of seizures can heighten fear and anxiety in people with epilepsy, making it difficult to take part in day-to-day activities. Epilepsy researchers have prioritized developing seizure prediction algorithms to combat episodic seizures for decades, but the utility and effectiveness of prediction algorithms has not been investigated thoroughly in clinical settings. In contrast, seizure forecasts, which theoretically provide the probability of a seizure at any time (as opposed to predicting the next seizure occurrence), may be more feasible. Many advances have been made over the past decade in the field of seizure forecasting, including improvements in algorithms as a result of machine learning and exploration of non-EEG-based measures of seizure susceptibility, such as physiological biomarkers, behavioral changes, environmental drivers, and cyclic seizure patterns. For example, recent work investigating periodicities in individual seizure patterns has determined that more than 90% of people have circadian rhythms in their seizures, and many also experience multiday, weekly, or longer cycles. Other potential indicators of seizure susceptibility include stress levels, heart rate, and sleep quality, all of which have the potential to be captured noninvasively over long time scales. There are many possible applications of a seizure-forecasting device, including improving quality of life for people with epilepsy, guiding treatment plans and medication titration, optimizing presurgical monitoring, and focusing scientific research. To realize this potential, it is vital to better understand the user requirements of a seizure-forecasting device, continue to advance forecasting algorithms, and design clear guidelines for prospective clinical trials of seizure forecasting.
Collapse
Affiliation(s)
- Rachel E Stirling
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vic., Australia
| | - Mark J Cook
- Graeme Clark Institute & St Vincent's Hospital, The University of Melbourne, Melbourne, Vic., Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vic., Australia
| | - Philippa J Karoly
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Vic., Australia.,Graeme Clark Institute & St Vincent's Hospital, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
48
|
Saggio ML, Crisp D, Scott JM, Karoly P, Kuhlmann L, Nakatani M, Murai T, Dümpelmann M, Schulze-Bonhage A, Ikeda A, Cook M, Gliske SV, Lin J, Bernard C, Jirsa V, Stacey WC. A taxonomy of seizure dynamotypes. eLife 2020; 9:55632. [PMID: 32691734 PMCID: PMC7375810 DOI: 10.7554/elife.55632] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/12/2020] [Indexed: 01/02/2023] Open
Abstract
Seizures are a disruption of normal brain activity present across a vast range of species and conditions. We introduce an organizing principle that leads to the first objective Taxonomy of Seizure Dynamics (TSD) based on bifurcation theory. The ‘dynamotype’ of a seizure is the dynamic composition that defines its observable characteristics, including how it starts, evolves and ends. Analyzing over 2000 focal-onset seizures from multiple centers, we find evidence of all 16 dynamotypes predicted in TSD. We demonstrate that patients’ dynamotypes evolve during their lifetime and display complex but systematic variations including hierarchy (certain types are more common), non-bijectivity (a patient may display multiple types) and pairing preference (multiple types may occur during one seizure). TSD provides a way to stratify patients in complement to present clinical classifications, a language to describe the most critical features of seizure dynamics, and a framework to guide future research focused on dynamical properties. Epileptic seizures have been recognized for centuries. But it was only in the 1930s that it was realized that seizures are the result of out-of-control electrical activity in the brain. By placing electrodes on the scalp, doctors can identify when and where in the brain a seizure begins. But they cannot tell much about how the seizure behaves, that is, how it starts, stops or spreads to other areas. This makes it difficult to control and prevent seizures. It also helps explain why almost a third of patients with epilepsy continue to have seizures despite being on medication. Saggio, Crisp et al. have now approached this problem from a new angle using methods adapted from physics and engineering. In these fields, “dynamics research” has been used with great success to predict and control the behavior of complex systems like electrical power grids. Saggio, Crisp et al. reasoned that applying the same approach to the brain would reveal the dynamics of seizures and that such information could then be used to categorize seizures into groups with similar properties. This would in effect create for seizures what the periodic table is for the elements. Applying the dynamics research method to seizure data from more than a hundred patients from across the world revealed 16 types of seizure dynamics. These “dynamotypes” had distinct characteristics. Some were more common than others, and some tended to occur together. Individual patients showed different dynamotypes over time. By constructing a way to classify seizures based on the relationships between the dynamotypes, Saggio, Crisp et al. provide a new tool for clinicians and researchers studying epilepsy. Previous clinical tools have focused on the physical symptoms of a seizure (referred to as the phenotype) or its potential genetic causes (genotype). The current approach complements these tools by adding the dynamotype: how seizures start, spread and stop in the brain. This approach has the potential to lead to new branches of research and better understanding and treatment of seizures.
Collapse
Affiliation(s)
- Maria Luisa Saggio
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France, Marseille, France
| | - Dakota Crisp
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, United States
| | - Jared M Scott
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, United States
| | - Philippa Karoly
- Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Levin Kuhlmann
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Faculty of Information Technology, Monash University, Clayton, Australia
| | - Mitsuyoshi Nakatani
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France, Marseille, France
| | - Tomohiko Murai
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Center for Basics in NeuroModulation (NeuroModul Basics), Epilepsy Center, Medical Center - University of Freiburg, Freiburg im Breisgau, Germany
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mark Cook
- Graeme Clark Institute, The University of Melbourne, Melbourne, Australia.,Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Stephen V Gliske
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Jack Lin
- Department of Neurology, University of Michigan, Ann Arbor, United States
| | - Christophe Bernard
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France, Marseille, France
| | - Viktor Jirsa
- Aix Marseille Univ, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France, Marseille, France
| | - William C Stacey
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, United States.,Department of Neurology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
49
|
Schroeder GM, Diehl B, Chowdhury FA, Duncan JS, de Tisi J, Trevelyan AJ, Forsyth R, Jackson A, Taylor PN, Wang Y. Seizure pathways change on circadian and slower timescales in individual patients with focal epilepsy. Proc Natl Acad Sci U S A 2020; 117:11048-11058. [PMID: 32366665 PMCID: PMC7245106 DOI: 10.1073/pnas.1922084117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Personalized medicine requires that treatments adapt to not only the patient but also changing factors within each individual. Although epilepsy is a dynamic disorder characterized by pathological fluctuations in brain state, surprisingly little is known about whether and how seizures vary in the same patient. We quantitatively compared within-patient seizure network evolutions using intracranial electroencephalographic (iEEG) recordings of over 500 seizures from 31 patients with focal epilepsy (mean 16.5 seizures per patient). In all patients, we found variability in seizure paths through the space of possible network dynamics. Seizures with similar pathways tended to occur closer together in time, and a simple model suggested that seizure pathways change on circadian and/or slower timescales in the majority of patients. These temporal relationships occurred independent of whether the patient underwent antiepileptic medication reduction. Our results suggest that various modulatory processes, operating at different timescales, shape within-patient seizure evolutions, leading to variable seizure pathways that may require tailored treatment approaches.
Collapse
Affiliation(s)
- Gabrielle M Schroeder
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Fahmida A Chowdhury
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - John S Duncan
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Jane de Tisi
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Andrew J Trevelyan
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Rob Forsyth
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Andrew Jackson
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Peter N Taylor
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Yujiang Wang
- Interdisciplinary Computing and Complex BioSystems Group, School of Computing Science, Newcastle University, Newcastle upon Tyne, NE4 5TG, United Kingdom;
- UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
50
|
Maturana MI, Meisel C, Dell K, Karoly PJ, D'Souza W, Grayden DB, Burkitt AN, Jiruska P, Kudlacek J, Hlinka J, Cook MJ, Kuhlmann L, Freestone DR. Critical slowing down as a biomarker for seizure susceptibility. Nat Commun 2020; 11:2172. [PMID: 32358560 PMCID: PMC7195436 DOI: 10.1038/s41467-020-15908-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 03/30/2020] [Indexed: 02/04/2023] Open
Abstract
The human brain has the capacity to rapidly change state, and in epilepsy these state changes can be catastrophic, resulting in loss of consciousness, injury and even death. Theoretical interpretations considering the brain as a dynamical system suggest that prior to a seizure, recorded brain signals may exhibit critical slowing down, a warning signal preceding many critical transitions in dynamical systems. Using long-term intracranial electroencephalography (iEEG) recordings from fourteen patients with focal epilepsy, we monitored key signatures of critical slowing down prior to seizures. The metrics used to detect critical slowing down fluctuated over temporally long scales (hours to days), longer than would be detectable in standard clinical evaluation settings. Seizure risk was associated with a combination of these signals together with epileptiform discharges. These results provide strong validation of theoretical models and demonstrate that critical slowing down is a reliable indicator that could be used in seizure forecasting algorithms. Critical slowing (associated with increased variance and autocorrelation) can precede critical state transitions. Here, the authors show critical slowing can be used as a marker in seizure forecasting algorithms.
Collapse
Affiliation(s)
- Matias I Maturana
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia. .,Seer Medical, Melbourne, Australia.
| | - Christian Meisel
- Department of Neurology, University Clinic Carl Gustav Carus, Dresden, Germany.,Boston Children's Hospital, Boston, MA, USA
| | - Katrina Dell
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Philippa J Karoly
- Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Wendyl D'Souza
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Anthony N Burkitt
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Premysl Jiruska
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kudlacek
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.,Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jaroslav Hlinka
- Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic.,National Institute of Mental Health, Klecany, Czech Republic
| | - Mark J Cook
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Levin Kuhlmann
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Faculty of Information Technology, Monash University, Clayton, Victoria, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | | |
Collapse
|