1
|
Eklöf K, von Brömssen C, Huser B, Åkerblom S, Augustaitis A, Veiteberg Braaten HF, de Wit HA, Dirnböck T, Elustondo D, Grandin U, Holubová A, Kleemola S, Krám P, Lundin L, Löfgren S, Markensten H, Moldan F, Pihl Karlsson G, Rönnback P, Valinia S, Vuorenmaa J. Trends in mercury, lead and cadmium concentrations in 27 European streams and rivers: 2000-2020. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124761. [PMID: 39154885 DOI: 10.1016/j.envpol.2024.124761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Temporal trends for concentrations of mercury (Hg), lead (Pb) and cadmium (Cd) were evaluated from year 2000-2020 in 20 (Hg), 23 (Pb) and 11 (Cd) watercourses in remote forest catchments in Europe. Decreasing trends were observed in 15% (Hg), 39% (Pb) and 45% (Cd) of the watercourses during the period of evaluation. Decreasing trends were mainly observed between 2000 and 2005 for Hg and between 2000 and 2015 for Pb and Cd. For the last five years of the studied time period (2015-2020), more watercourses showed significant increasing, rather than decreasing Hg, Pb and Cd trends. This was interpreted as a legacy effect of metals still retained in catchment soils. The overall negative trends during the earlier part of the study period were likely driven by declining deposition of metals over Europe, especially for Pb and Cd. Other changes related to metal transport and chemistry may have contributed to the observed trends as well, including recovery from acidification and the ongoing browning of surface waters at northern latitudes. Here we found that organic carbon could explain the seasonal variation in Hg and Pb, but was not related the interannual trends. This study highlights the need for long-term monitoring and robust statistical methods that can detect multidirectional, long-term change in water chemistry.
Collapse
Affiliation(s)
- Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden.
| | - Claudia von Brömssen
- Department of Energy and Technology, Applied Statistics and Mathematics, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Brian Huser
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Staffan Åkerblom
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Algirdas Augustaitis
- Faculty of Forest Sciences and Ecology, Agriculture Academy, Vytautas Magnus University, LT-53362, Kaunas dstr., Lithuania
| | | | - Heleen A de Wit
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Thomas Dirnböck
- Ecosystem Research and Environmental Information Management, Environment Agency Austria, Spittelauer Lände5, AT-1090, Vienna, Austria
| | - David Elustondo
- University of Navarra, BIOMA Institute for Biodiversity and the Environment, Irunlarrea 1, 31008, Pamplona, Spain
| | - Ulf Grandin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Adéla Holubová
- Air Quality Department, Czech Hydrometeorological Institute, Košetice Observatory, 394 24, Czech Republic
| | - Sirpa Kleemola
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| | - Pavel Krám
- Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Klárov 3, CZ-11821, Prague, Czech Republic
| | - Lars Lundin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Stefan Löfgren
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Hampus Markensten
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Filip Moldan
- IVL Swedish Environmental Research Institute, P.O. Box 53021, SE-40014, Gothenburg, Sweden
| | - Gunilla Pihl Karlsson
- IVL Swedish Environmental Research Institute, P.O. Box 53021, SE-40014, Gothenburg, Sweden
| | - Pernilla Rönnback
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-75007, Uppsala, Sweden
| | - Salar Valinia
- Ensucon AB, Sankt Eriksgatan 63B, 11234, Stockholm, Sweden
| | - Jussi Vuorenmaa
- Finnish Environment Institute, Latokartanonkaari 11, FI-00790, Helsinki, Finland
| |
Collapse
|
2
|
Bencardino M, D'Amore F, Angot H, Angiuli L, Bertrand Y, Cairns W, Diéguez MC, Dommergue A, Ebinghaus R, Esposito G, Komínková K, Labuschagne C, Mannarino V, Martin L, Martino M, Neves LM, Mashyanov N, Magand O, Nelson P, Norstrom C, Read K, Sholupov S, Skov H, Tassone A, Vítková G, Cinnirella S, Sprovieri F, Pirrone N. Patterns and trends of atmospheric mercury in the GMOS network: Insights based on a decade of measurements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125104. [PMID: 39477003 DOI: 10.1016/j.envpol.2024.125104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 11/10/2024]
Abstract
The Global Mercury Observation System (GMOS) network, initially a five-year project (2010-2015) funded by the European Commission, continued as a GEO Flagship program to support the Global Observation System for Mercury (GOS4M). GMOS was envisioned as a coordinated global observing system to monitor atmospheric mercury (Hg) on a global scale, to support and evaluate the effective implementation of the Minamata Convention on Mercury (MCM). Twenty-eight ground-based stations have participated in monitoring activities, following GMOS sampling protocols and related data quality control management. The GMOS network provides representative coverage of all latitudes, from the Northern Hemisphere to the Southern Hemisphere including the Arctic Circle, Antarctica, and the Tropical Zone. This work presents atmospheric Hg data, available as Total Gaseous Mercury (TGM) or Gaseous Elemental Mercury (GEM) concentrations, recorded within the GMOS network from 2011 to 2020. TGM/GEM concentrations were analysed in terms of their variability along latitudinal areas, considering their comparability, temporal trends and patterns. The main results confirmed a clear gradient of TGM/GEM concentrations between the northern (1.58 ± 0.31 ng/m3) and southern (0.97 ± 0.14 ng/m3) hemispheres. Decreasing trends in TGM/GEM levels were found to be strongly significant only for selected remote stations with at least 5 years of data coverage. Seasonality in atmospheric TGM/GEM concentrations was observed to increase with latitude and is greater at inland sites than at coastal sites.
Collapse
Affiliation(s)
| | - Francesco D'Amore
- CNR-Institute for High Performance Computing and Networking, Rende, Italy
| | - Hélène Angot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | | | - Yann Bertrand
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | - Warren Cairns
- CNR-Institute of Polar Sciences, Mestre, Italy; Ca' Foscari-University of Venice, Venice, Italy
| | | | - Aurélien Dommergue
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, Grenoble, France
| | - Ralf Ebinghaus
- Helmholtz-Zentrum Hereon, Institute of Coastal Environmental Chemistry, Germany
| | - Giulio Esposito
- CNR-Institute of Atmospheric Pollution Research, Montelibretti, Italy
| | - Kateřina Komínková
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | | | | | | | - Maria Martino
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| | | | | | - Olivier Magand
- Observatoire des Sciences de l'Univers de La Réunion, UR, CNRS, Meteo-France, IRD, Saint-Denis, La Réunion, France
| | | | - Claus Norstrom
- Department of Environmental Science, iClimate, Arctic Research Center, Aarhus University, Roskilde, Denmark
| | - Katie Read
- National Centre for Atmospheric Science, University of York, UK
| | | | - Henrik Skov
- Department of Environmental Science, iClimate, Arctic Research Center, Aarhus University, Roskilde, Denmark
| | | | - Gabriela Vítková
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | | | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Rende, Italy
| |
Collapse
|
3
|
Flanagan Pritz CM, Johnson BL, Willacker JJ, Kennedy CM, Daniele NR, Eagles-Smith CA. Forest cover influences fish mercury concentrations in national parks of the western U.S. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176936. [PMID: 39414044 DOI: 10.1016/j.scitotenv.2024.176936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/26/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
The global prevalence of mercury (Hg) contamination and its complex biogeochemical cycling has resulted in elevated Hg concentrations in biota in remote and pristine environments. However, there is uncertainty in the relative importance of Hg deposition and landscape factors that control Hg cycling and bioaccumulation. To address this, we measured total mercury (THg) concentrations in 1344 fish across 60 subalpine lakes from 12 national parks (NPs). These parks represent three distinct high-elevation regions across the western U.S.: Cascades and Olympic Peninsula, Sierra Nevada and Great Basin, and Rocky Mountains. Within these regions, three NPs (Mount Rainier, Yosemite, and Rocky Mountain) were intensively studied representatives of each region. This study aimed to (1) assess the magnitude of mercury contamination in a collection of remote, small catchment lakes; (2) quantify the variability of fish THg concentrations among and within parks; and (3) test the relative importance of Hg inputs in comparison to landscape characteristics on lake-specific fish THg concentrations. The spatial variability in fish THg concentrations was 2.6-fold higher than variation in deposition to watersheds, suggesting that factors other than Hg delivery are important determinants of Hg accumulation in these environments. Spatially, fish THg concentrations (ng/g ww ± standard error) were lower in the Rockies (46.2 ± 5.0) and Sierra (56.5 ± 5.8) compared to the Cascades (67.8 ± 6.1). Additionally, fish THg concentrations increased with increasing conifer forest cover (Intensive parks: P < 0.0001, R2 = 0.43; All parks: P = 0.0001, R2 = 0.23) but were not correlated with wet Hg deposition across the catchment. These findings suggest that forest composition is likely an important aspect of Hg delivery to lake food webs, and although the mechanisms are unclear, could be tied to some combination of forest influences on catchment organic carbon and increased surface area for dry Hg deposition.
Collapse
Affiliation(s)
- Colleen M Flanagan Pritz
- National Park Service, National Resource Stewardship and Science Directorate, Air Resources Division, PO Box 25287, Lakewood, CO 80225, USA.
| | - Branden L Johnson
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - James J Willacker
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| | - Christopher M Kennedy
- U.S. Fish & Wildlife Service, Fish and Aquatic Conservation, Colorado Fish and Wildlife Conservation Office, 1131 Fairway Club Circle, B2, Estes Park, CO 80517, USA
| | - Ninette R Daniele
- National Park Service, Yosemite National Park, Resources Management and Science Division, PO Box 700, El Portal, CA 95318, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR 97330, USA
| |
Collapse
|
4
|
Feinberg A, Selin NE, Braban CF, Chang KL, Custódio D, Jaffe DA, Kyllönen K, Landis MS, Leeson SR, Luke W, Molepo KM, Murovec M, Nerentorp Mastromonaco MG, Aspmo Pfaffhuber K, Rüdiger J, Sheu GR, St. Louis VL. Unexpected anthropogenic emission decreases explain recent atmospheric mercury concentration declines. Proc Natl Acad Sci U S A 2024; 121:e2401950121. [PMID: 39378086 PMCID: PMC11494326 DOI: 10.1073/pnas.2401950121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Anthropogenic activities emit ~2,000 Mg y-1 of the toxic pollutant mercury (Hg) into the atmosphere, leading to long-range transport and deposition to remote ecosystems. Global anthropogenic emission inventories report increases in Northern Hemispheric (NH) Hg emissions during the last three decades, in contradiction with the observed decline in atmospheric Hg concentrations at NH measurement stations. Many factors can obscure the link between anthropogenic emissions and atmospheric Hg concentrations, including trends in the reemissions of previously released anthropogenic ("legacy") Hg, atmospheric sink variability, and spatial heterogeneity of monitoring data. Here, we assess the observed trends in gaseous elemental mercury (Hg0) in the NH and apply biogeochemical box modeling and chemical transport modeling to understand the trend drivers. Using linear mixed effects modeling of observational data from 51 stations, we find negative Hg0 trends in most NH regions, with an overall trend for 2005 to 2020 of -0.011 ± 0.006 ng m-3 y-1 (±2 SD). In contrast to existing emission inventories, our modeling analysis suggests that annual NH anthropogenic emissions must have declined by at least 140 Mg between the years 2005 and 2020 to be consistent with observed trends. Faster declines in 95th percentile Hg0 values than median values in Europe, North America, and East Asian measurement stations corroborate that the likely cause is a decline in nearby anthropogenic emissions rather than background legacy reemissions. Our results are relevant for evaluating the effectiveness of the Minamata Convention on Mercury, demonstrating that existing emission inventories are incompatible with the observed Hg0 declines.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Noelle E. Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Christine F. Braban
- United Kingdom Centre for Ecology and Hydrology, Penicuik, MidlothianEH26 0QB, United Kingdom
| | - Kai-Lan Chang
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO80309
- National Oceanic and Atmospheric Administration Chemical Sciences Laboratory, Boulder, CO80305
| | | | - Daniel A. Jaffe
- School of Science, Technology, Engineering & Mathematics, Physical Sciences Division, University of Washington Bothell, Bothell, WA98011
- Department of Atmospheric Sciences, University of Washington Seattle, Seattle, WA98195
| | - Katriina Kyllönen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki00560, Finland
| | - Matthew S. Landis
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC27711
| | - Sarah R. Leeson
- United Kingdom Centre for Ecology and Hydrology, Penicuik, MidlothianEH26 0QB, United Kingdom
| | - Winston Luke
- National Oceanic and Atmospheric Administration/Air Resources Laboratory, College Park, MD20740
| | - Koketso M. Molepo
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Geesthacht21502, Germany
| | - Marijana Murovec
- Slovenian Environment Agency, Environment and Nature protection Office, Air Quality Division, Ljubljana1000, Slovenia
| | | | | | - Julian Rüdiger
- Air Monitoring Network, German Environment Agency, Langen63225, Germany
| | - Guey-Rong Sheu
- Department of Atmospheric Sciences, National Central University, Taoyuan320, Taiwan
| | - Vincent L. St. Louis
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2E9, Canada
| |
Collapse
|
5
|
Yamakawa A, Luke W, Kelley P, Ren X, Iaukea-Lum M. Unraveling atmospheric mercury dynamics at Mauna Loa through the isotopic analysis of total gaseous mercury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116993. [PMID: 39260217 DOI: 10.1016/j.ecoenv.2024.116993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/13/2024]
Abstract
Our investigation seeks to uncover the intricate nature of mercury dynamics in the free troposphere through analysis of the isotopic composition of total gaseous elemental mercury (TGM) at the high altitude Mauna Loa Observatory (MLO, 3397 m) in Hawaii, USA. By focusing on this unique site, we aim to provide essential insights into the behavior and cycling of mercury, contributing valuable data to a deeper understanding of its global distribution and environmental impacts. Forty-eight hours of TGM sampling from January to September 2022 revealed significant variations in δ202Hg (-1.86 % to -0.32 %; mean = -1.17 ± 0.65 %, 2 SD, n = 34) and small variations in Δ199Hg (-0.27 % to 0.04 %; mean = -0.13 ± 0.14 %, 2 SD, n = 34) and Δ200Hg (-0.20 % to 0.06 %; mean = -0.05 ± 0.13 %, 2 SD, n = 34). During the sampling period, GEM was negatively correlated with gaseous oxidized mercury (GOM). However, the GOM/GEM ratio was not -1, suggesting that GEM oxidation and subsequent scavenging occurred previously. The δ202Hg isotopic compositions of TGM at MLO were different from those of reported values of high-altitude mountains; the δ202Hg of TGM at MLO was lower than the isotopic ratios that were obtained from other mountain regions. The unique atmospheric conditions at Mauna Loa, with (upslope winds during the day and downslope winds at night, likely result in the) possibly mixing of GEMs from terrestrial (and possibly oceanic GEM emission) sources with and tropospheric sources, influencing and affect the isotopic composition. During the late summer to early fall (September 14-28), negative correlations were found between relative humidity and GOM and between particle number concentrations and Δ199Hg, indicating the gas-to-particle partitioning of the atmospheric mercury during this period. This study will improve our understanding on mercury dynamics of marine origin and high altitudes and shed light on its complex interactions with environmental factors.
Collapse
Affiliation(s)
- Akane Yamakawa
- National Institute for Environmental Studies, 16-2 Tsukuba, Ibaraki 305-8506, Japan.
| | - Winston Luke
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Paul Kelley
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Xinrong Ren
- NOAA/Air Resources Laboratory (ARL), Atmospheric Sciences Modeling Division (ASMD), 5830 University Research Ct., College Park, MD 20740, USA.
| | - Michealene Iaukea-Lum
- Mauna Loa Observatory, CIRES/NOAA Global Monitoring Division, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
6
|
Malasani CR, Swain B, Patel A, Pulipatti Y, Anchan NL, Sharma A, Vountas M, Liu P, Gunthe SS. Modeling of mercury deposition in India: evaluating emission inventories and anthropogenic impacts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024. [PMID: 39350741 DOI: 10.1039/d4em00324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Mercury (Hg), a ubiquitous atmospheric trace metal posing serious health risks, originates from natural and anthropogenic sources. India, the world's second-largest Hg emitter and a signatory to the Minamata Convention, is committed to reducing these emissions. However, critical gaps exist in our understanding of the spatial and temporal distribution of Hg across the vast Indian subcontinent due to limited observational data. This study addresses this gap by employing the GEOS-Chem model with various emission inventories (UNEP2010, WHET, EDGAR, STREETS, and UNEP2015) to simulate Hg variability across the Asian domain, with a specific focus on India from 2013 to 2017. Model performance was evaluated using ground-based GMOS observations and available literature data. Emission inventory performance varied across different observational stations. Hence, we employed ensemble results from all inventories. The maximum relative bias for Total Gaseous Mercury (TGM) and Gaseous Elemental Mercury (GEM; Hg0) concentrations is about ±20%, indicating simulations with sufficient accuracy. Total Hg wet deposition fluxes are highest over the Western Ghats and the Himalayan foothills due to higher rainfall. During the monsoon, the Hg wet deposition flux is about 65.4% of the annual wet deposition flux. Moreover, westerly winds cause higher wet deposition in summer over Northern and Eastern India. Total Hg dry deposition flux accounts for 72-74% of total deposition over India. Hg0 dry deposition fluxes are higher over Eastern India, which correlates strongly with the leaf area index. Excluding Indian anthropogenic emissions from the model simulations resulted in a substantial decrease (21.9% and 33.5%) in wet and total Hg deposition fluxes, highlighting the dominant role of human activities in Hg pollution in India.
Collapse
Affiliation(s)
- Chakradhar Reddy Malasani
- Enviromental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Basudev Swain
- Institute of Environmental Physics, Department of Physics, University of Bremen, Bremen, Germany.
| | - Ankit Patel
- Enviromental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Yaswanth Pulipatti
- Hydraulics and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madas, Chennai, India
| | - Nidhi L Anchan
- Enviromental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Amit Sharma
- Department of Civil and Infrastructure Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Marco Vountas
- Institute of Environmental Physics, Department of Physics, University of Bremen, Bremen, Germany.
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sachin S Gunthe
- Enviromental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
7
|
Wang C, Yang S, Li R, Yan J, Hu Y, Lai C, Li Z, Li P, Zhang L, Feng X. Atmospheric Mercury Concentrations and Isotopic Compositions Impacted by Typical Anthropogenic Mercury Emissions Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39252629 DOI: 10.1021/acs.est.4c07649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Coal-fired power plants (CFPPs) and cement plants (CPs) are important anthropogenic mercury (Hg) emission sources. Mercury speciation profiles in flue gas are different among these sources, leading to significant variations in local atmospheric Hg deposition. To quantify the impacts of Hg emissions from CFPPs and CPs on local-scale atmospheric Hg deposition, this study determined concentrations and isotopes of ambient gaseous elemental mercury (GEM), particulate-bound mercury (PBM), and precipitation total Hg (THg) at multiple locations with different distances away from a CFPP and a CP. Higher concentrations of GEM and precipitation THg in the CFPP area in summer were caused by higher Hg emission from the CFPP, resulting from higher electricity demand. Higher concentrations of GEM, PBM, and precipitation THg in the CP area in winter compared to those in summer were related to the higher output of cement. Atmospheric Hg concentration peaked near the CFPP and CP and decreased with distance from the plants. Elevated GEM concentration in the CFPP area was due to flue gas Hg0 emissions, and high PBM and precipitation Hg concentrations in the CP area were attributed to divalent Hg emissions. It was estimated that Hg emissions from the CFPP contributed 58.3 ± 20.9 and 52.3 ± 25.9% to local GEM and PBM, respectively, and those from the CP contributed 47.0 ± 16.7 and 60.0 ± 25.9% to local GEM and PBM, respectively. This study demonstrates that speciated Hg from anthropogenic emissions posed distinct impacts on the local atmospheric Hg cycle, indicating that Hg speciation profiles from these sources should be considered for evaluating the effectiveness of emission reduction policies. This study also highlights the Hg isotope as a useful tool for monitoring environmental Hg emissions.
Collapse
Affiliation(s)
- Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yanxin Hu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chuyan Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonggen Li
- College of Resources and Environment, Zunyi Normal University, Zunyi 563006, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Rosati G, Solidoro C, Laurent C, Alcázar LA, Umgiesser G, Canu D. Mercury cycling in contaminated coastal environments: modeling the benthic-pelagic coupling and microbial resistance in the Venice Lagoon. WATER RESEARCH 2024; 261:121965. [PMID: 38964216 DOI: 10.1016/j.watres.2024.121965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities have been releasing mercury for centuries, and despite global efforts to control emissions, concentrations in environmental media remain high. Coastal sediments can be a long-term repository for mercury, but also a secondary source, and competing processes in marine ecosystems can lead to the conversion of mercury into the toxic and bioaccumulative species methylmercury, which threatens ecosystem and human health. We investigate the fate and transport of three mercury species in a coastal lagoon affected by historical pollution using a novel high-resolution finite element model that integrates mercury biogeochemistry, sediment dynamics and hydrodynamics. The model resolves mercury dynamics in the seawater and the seabed taking into account partitioning, transport driven by water and sediment, and photochemical and microbial transformations. We simulated three years (early 2000s, 2019, and 2020) to assess the spatio-temporal distribution of mercury species concentrations and performed a sensitivity analysis to account for uncertainties. The modeled mercury species concentrations show high temporal and spatial variability, with water concentrations in some areas of the lagoon exceeding those of the open Mediterranean Sea by two orders of magnitude, consistent with available observations from the early 2000s. The results support conclusions about the importance of different processes in shaping the environmental gradients of mercury species. Due to the past accumulation of mercury in the lagoon sediments, inorganic mercury in the water is closely related to the resuspension of contaminated sediments, which is significantly reduced by the presence of benthic vegetation. The gradients of methylmercury depend on the combination of several factors, of which sediment resuspension and mercury methylation are the most relevant. The results add insights into mercury dynamics at coastal sites characterized by a combination of past pollution (i.e. sediment enrichment) and erosive processes, and suggest possible nature-based mitigation strategies such as the preservation of the integrity of benthic vegetation and morphology.
Collapse
Affiliation(s)
- Ginevra Rosati
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy.
| | - Cosimo Solidoro
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy; International Centre for Theoretical Physic, ICTP, Trieste, 34010, Italy
| | - Célia Laurent
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy
| | | | | | - Donata Canu
- National Institute of Oceanography and Applied Geophysics - OGS, Trieste, 34010, Italy
| |
Collapse
|
9
|
Feng X, Fu X, Zhang H, Wang X, Jia L, Zhang L, Lin CJ, Huang JH, Liu K, Wang S. Combating air pollution significantly reduced air mercury concentrations in China. Natl Sci Rev 2024; 11:nwae264. [PMID: 39220549 PMCID: PMC11362986 DOI: 10.1093/nsr/nwae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 09/04/2024] Open
Abstract
In the past decade, China has motivated proactive emission control measures that have successfully reduced emissions of many air pollutants. For atmospheric mercury, which is a globally transported neurotoxin, much less is known about the long-term changes in its concentrations and anthropogenic emissions in China. In this study, over a decade of continuous observations at four Chinese sites show that gaseous elemental mercury (GEM) concentrations continuously increased until the early 2010s, followed by significant declines at rates of 1.8%-6.1% yr-1 until 2022. The GEM decline from 2013 to 2022 (by 38.6% ± 12.7%) coincided with the decreasing concentrations of criteria air pollutants in China and were larger than those observed elsewhere in the northern hemisphere (5.7%-14.2%). The co-benefits of emission control measures contributed to the reduced anthropogenic Hg emissions and led to the GEM decline in China. We estimated that anthropogenic GEM emissions in China were reduced by 38%-50% (116-151 tons) from 2013 to 2022 using the machine-learning and relationship models.
Collapse
Affiliation(s)
- Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kaiyun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
11
|
Landis JD, Obrist D, Zhou J, Renshaw CE, McDowell WH, Nytch CJ, Palucis MC, Del Vecchio J, Montano Lopez F, Taylor VF. Quantifying soil accumulation of atmospheric mercury using fallout radionuclide chronometry. Nat Commun 2024; 15:5430. [PMID: 38926366 PMCID: PMC11208417 DOI: 10.1038/s41467-024-49789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Soils are a principal global reservoir of mercury (Hg), a neurotoxic pollutant that is accumulating through anthropogenic emissions to the atmosphere and subsequent deposition to terrestrial ecosystems. The fate of Hg in global soils remains uncertain, however, particularly to what degree Hg is re-emitted back to the atmosphere as gaseous elemental mercury (GEM). Here we use fallout radionuclide (FRN) chronometry to directly measure Hg accumulation rates in soils. By comparing these rates with measured atmospheric fluxes in a mass balance approach, we show that representative Arctic, boreal, temperate, and tropical soils are quantitatively efficient at retaining anthropogenic Hg. Potential for significant GEM re-emission appears limited to a minority of coniferous soils, calling into question global models that assume strong re-emission of legacy Hg from soils. FRN chronometry poses a powerful tool to reconstruct terrestrial Hg accumulation across larger spatial scales than previously possible, while offering insights into the susceptibility of Hg mobilization from different soil environments.
Collapse
Affiliation(s)
- Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| | - Daniel Obrist
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts, Lowell, MA, 01854, USA
- Division of Agriculture and Natural Resources, University of California, Davis, CA, 95616, USA
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Carl E Renshaw
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Christopher J Nytch
- Department of Environmental Sciences, University of Puerto Rico - Rio Piedras, San Juan, PR, 00925, USA
| | - Marisa C Palucis
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | | | | | - Vivien F Taylor
- Department of Earth Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
12
|
Pilote M, Houle D, Gagnon C, Couture S, Dastoor A, Ryjkov A. Key factors influencing Hg levels and trends in unperturbed oligotrophic temperate and boreal lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124232. [PMID: 38823549 DOI: 10.1016/j.envpol.2024.124232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Mercury (Hg) is a toxic metal that presents a major risk to ecosystems, biota, human health, and remains a priority concern. In temperate and boreal lakes Hg and methylmercury (MMHg) are expected to vary as a function of atmospheric Hg deposition, lake water chemistry, catchment characteristics and climate variables. The aim of this study was to quantify Hg and MMHg in unperturbed oligotrophic lakes and to identify the factors controlling their distribution. We first hypothesized that lake Hg (and MMHg to lesser extent) spatial variations are linked to atmospheric deposition, catchment characteristics, and terrestrial exportation of dissolved organic carbon (DOC). We secondly examined if lake Hg concentrations have followed the decrease in atmospheric Hg emission observed between the mid-1990s to the end-2010s. We found that overall, atmospheric Hg has little impact on lake Hg and MMHg concentrations, which are both primarily influenced by DOC input originating from the forest catchment. The relationship between DOC and Hg differed between the spring and the fall, with a Hg-to-DOC ratio twice as high in spring. This seems related to snowmelt input of Hg (with a relatively reduced input of DOC) or the internal lake build-up of Hg during the ice-covered period. Of the 10 lakes intensively visited over a 20-year period, only 3 showed significant lake Hg decreases despite significant negative trends in atmospheric Hg concentrations, suggesting a lag between atmospheric and surface water temporal trends. Overall, terrestrial catchments retain around 80% of atmospheric Hg implying that large Hg pools have been built up in soils in the last decades. As such, the reduction of atmospheric Hg alone will not necessarily result in Hg decreases in lakes, since the Hg concentrations may be modulated by DOC export trends and catchment characteristics. This stresses the need to improve our understanding of the processes governing Hg transfers from catchments into lakes.
Collapse
Affiliation(s)
- M Pilote
- Environment and Climate Change Canada, Water Science and Technology, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, Qc, H2Y 2E7, Canada.
| | - D Houle
- Environment and Climate Change Canada, Water Science and Technology, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, Qc, H2Y 2E7, Canada
| | - C Gagnon
- Environment and Climate Change Canada, Water Science and Technology, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, Qc, H2Y 2E7, Canada
| | - S Couture
- Environment and Climate Change Canada, Water Science and Technology, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, Qc, H2Y 2E7, Canada
| | - A Dastoor
- Environment and Climate Change Canada, Atmospheric Science and Technology, Air Quality Research Division, 2121 route Transcanadienne, Dorval, Qc, H9P 1J3, Canada
| | - A Ryjkov
- Environment and Climate Change Canada, Atmospheric Science and Technology, Air Quality Research Division, 2121 route Transcanadienne, Dorval, Qc, H9P 1J3, Canada
| |
Collapse
|
13
|
Yuan T, Huang S, Zhang P, Song Z, Ge J, Miao X, Wang Y, Pang Q, Peng D, Wu P, Shao J, Zhang P, Wang Y, Guo H, Guo W, Zhang Y. Potential decoupling of CO 2 and Hg uptake process by global vegetation in the 21st century. Nat Commun 2024; 15:4490. [PMID: 38802424 PMCID: PMC11130250 DOI: 10.1038/s41467-024-48849-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Mercury (Hg), a potent neurotoxin posing risks to human health, is cycled through vegetation uptake, which is susceptible to climate change impacts. However, the extent and pattern of these impacts are largely unknown, obstructing predictions of Hg's fate in terrestrial ecosystems. Here, we evaluate the effects of climate change on vegetation elemental Hg [Hg(0)] uptake using a state-of-the-art global terrestrial Hg model (CLM5-Hg) that incorporates plant physiology. In a business-as-usual scenario, the terrestrial Hg(0) sink is predicted to decrease by 1870 Mg yr-1 in 2100, that is ~60% lower than the present-day condition. We find a potential decoupling between the trends of CO2 assimilation and Hg(0) uptake process by vegetation in the 21st century, caused by the decreased stomatal conductance with increasing CO2. This implies a substantial influx of Hg into aquatic ecosystems, posing an elevated threat that warrants consideration during the evaluation of the effectiveness of the Minamata Convention.
Collapse
Affiliation(s)
- Tengfei Yuan
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shaojian Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Peng Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhengcheng Song
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu, China
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, Nanjing, Jiangsu, China
| | - Jun Ge
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, Nanjing, Jiangsu, China
| | - Xin Miao
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yujuan Wang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qiaotong Pang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Dong Peng
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Junjiong Shao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yabo Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Weidong Guo
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu, China.
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, Jiangsu, China.
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, Nanjing University, Nanjing, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Frantzen S, Duinker A, Julshamn K, Nøttestad L, Maage A. Levels of mercury, arsenic, cadmium and lead in Northeast Atlantic mackerel (Scomber scombrus) from northern European waters. MARINE POLLUTION BULLETIN 2024; 200:116060. [PMID: 38306743 DOI: 10.1016/j.marpolbul.2024.116060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Fillets from a total of 1245 Northeast Atlantic mackerel (Scomber scombrus) sampled in different fishing areas of the Northeast Atlantic during 2007-2016 were analysed for mercury, cadmium, arsenic and lead using ICPMS. Mercury levels varied from <0.01 to 0.36 mg/kg wet weight (ww) with a total mean of 0.046 mg/kg ww and were significantly higher in Skagerrak than in the North Sea, the Norwegian Sea and west of Scotland. Cadmium concentrations varied from <0.002 to 0.16 mg/kg ww with a mean value of 0.015 mg/kg ww. Only 0.24 % and 0.16 % of the sampled fish exceeded the EU's maximum levels for cadmium and mercury, respectively. Arsenic levels varied between 0.43 and 6.9 mg/kg ww with a mean value of 2.2 mg/kg ww and showed seasonal variation following variations in fat content. Lead concentrations were low and below the analytical limit of quantification (LOQ) in 97 % of the samples.
Collapse
Affiliation(s)
- Sylvia Frantzen
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway.
| | - Arne Duinker
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway.
| | - Kåre Julshamn
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway.
| | - Leif Nøttestad
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway.
| | - Amund Maage
- Institute of Marine Research, P.O. Box 1870, Nordnes, N-5817 Bergen, Norway.
| |
Collapse
|
15
|
Feinberg A, Jiskra M, Borrelli P, Biswakarma J, Selin NE. Deforestation as an Anthropogenic Driver of Mercury Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38328901 DOI: 10.1021/acs.est.3c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Deforestation reduces the capacity of the terrestrial biosphere to take up toxic pollutant mercury (Hg) and enhances the release of secondary Hg from soils. The consequences of deforestation for Hg cycling are not currently considered by anthropogenic emission inventories or specifically addressed under the global Minamata Convention on Mercury. Using global Hg modeling constrained by field observations, we estimate that net Hg fluxes to the atmosphere due to deforestation are 217 Mg year-1 (95% confidence interval (CI): 134-1650 Mg year-1) for 2015, approximately 10% of global primary anthropogenic emissions. If deforestation of the Amazon rainforest continues at business-as-usual rates, net Hg emissions from the region will increase by 153 Mg year-1 by 2050 (CI: 97-418 Mg year-1), enhancing the transport and subsequent deposition of Hg to aquatic ecosystems. Substantial Hg emissions reductions are found for two potential cases of land use policies: conservation of the Amazon rainforest (92 Mg year-1, 95% CI: 59-234 Mg year-1) and global reforestation (98 Mg year-1, 95% CI: 64-449 Mg year-1). We conclude that deforestation-related emissions should be incorporated as an anthropogenic source in Hg inventories and that land use policy could be leveraged to address global Hg pollution.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel 4056, Switzerland
| | | | - Jagannath Biswakarma
- Environmental Geosciences, University of Basel, Basel 4056, Switzerland
- Department of Water Resources and Drinking Water, Eawag, Dübendorf 8600, Switzerland
| | - Noelle E Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Pan Y, Han W, Shi H, Liu X, Xu S, Li J, Peng H, Zhao X, Gu T, Huang C, Peng K, Wang S, Zeng M. Incorporating environmental capacity considerations to prioritize control factors for the management of heavy metals in soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119820. [PMID: 38113783 DOI: 10.1016/j.jenvman.2023.119820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Heavy metals (HMs) pollution threatens food security and human health. While previous studies have evaluated source-oriented health risk assessments, a comprehensive integration of environmental capacity risk assessments with pollution source analysis to prioritize control factors for soil contamination is still lacking. Herein, we collected 837 surface soil samples from agricultural land in the Nansha District of China in 2019. We developed an improved integrated assessment model to analyze the pollution sources, health risks, and environmental capacities of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The model graded pollution source impact on environmental capacity risk to prioritize control measures for soil HMs. All HMs except Pb exceeded background values and were sourced primarily from natural, transportation, and industrial activities (31.26%). Approximately 98.92% (children), 97.87% (adult females), and 97.41% (adult males) of carcinogenic values exceeded the acceptable threshold of 1E-6. HM pollution was classified as medium capacity (3.41 kg/hm2) with mild risk (PI = 0.52). Mixed sources of natural backgrounds, transportation, and industrial sources were identified as priority sources, and As a priority element. These findings will help prioritize control factors for soil HMs and direct resources to the most critical pollutants and sources of contamination, particularly when resources are limited.
Collapse
Affiliation(s)
- Yujie Pan
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Wenjing Han
- Geological Survey Research Institute, China University of Geosciences, Wuhan, 430074, China
| | - Huanhuan Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Xiaorui Liu
- China Electric Power Research Institute, Beijing, 100192, China
| | - Shasha Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Hongxia Peng
- School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China.
| | - Xinwen Zhao
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Tao Gu
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Chansgheng Huang
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China
| | - Ke Peng
- Survey Affairs Center for Natural Resources and Planning of Yongzhou City, Yongzhou, 425000, China
| | - Simiao Wang
- College of Information Science and Engineering, Northeastern University, Shenyang, 314001, China
| | - Min Zeng
- Wuhan Center of Geological Survey of China Geological Survey, Wuhan, 430205, China.
| |
Collapse
|
17
|
Huang S, Wang F, Yuan T, Song Z, Wu P, Zhang Y. Modeling the Mercury Cycle in the Sea Ice Environment: A Buffer between the Polar Atmosphere and Ocean. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14589-14601. [PMID: 37585923 DOI: 10.1021/acs.est.3c05080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Sea ice (including overlying snow) is a dynamic interface between the atmosphere and the ocean, influencing the mercury (Hg) cycling in polar oceans. However, a large-scale and process-based model for the Hg cycle in the sea ice environment is lacking, hampering our understanding of regional Hg budget and critical processes. Here, we develop a comprehensive model for the Hg cycle at the ocean-sea ice-atmosphere interface with constraints from observational polar cryospheric data. We find that seasonal patterns of average total Hg (THg) in snow are governed by snow thermodynamics and deposition, peaking in springtime (Arctic: 5.9 ng/L; Antarctic: 5.3 ng/L) and minimizing during ice formation (Arctic: 1.0 ng/L, Antarctic: 0.5 ng/L). Arctic and Antarctic sea ice exhibited THg concentration peaks in summer (0.25 ng/L) and spring (0.28 ng/L), respectively, governed by different snow Hg transmission pathways. Antarctic snow-ice formation facilitates Hg transfer to sea ice during spring, while in the Arctic, snow Hg is primarily moved through snowmelt. Overall, first-year sea ice acts as a buffer, receiving atmospheric Hg during ice growth and releasing it to the ocean in summer, influencing polar atmospheric and seawater Hg concentrations. Our model can assess climate change effects on polar Hg cycles and evaluate the Minamata Convention's effectiveness for Arctic populations.
Collapse
Affiliation(s)
- Shaojian Huang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| | - Tengfei Yuan
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Zhengcheng Song
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Peipei Wu
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, Jiangsu, China
| |
Collapse
|
18
|
Médieu A, Lorrain A, Point D. Are tunas relevant bioindicators of mercury concentrations in the global ocean? ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:994-1009. [PMID: 37328690 DOI: 10.1007/s10646-023-02679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Humans are exposed to toxic methylmercury mainly by consuming marine fish. The Minamata Convention aims at reducing anthropogenic mercury releases to protect human and ecosystem health, employing monitoring programs to meet its objectives. Tunas are suspected to be sentinels of mercury exposure in the ocean, though not evidenced yet. Here, we conducted a literature review of mercury concentrations in tropical tunas (bigeye, yellowfin, and skipjack) and albacore, the four most exploited tunas worldwide. Strong spatial patterns of tuna mercury concentrations were shown, mainly explained by fish size, and methylmercury bioavailability in marine food web, suggesting that tunas reflect spatial trends of mercury exposure in their ecosystem. The few mercury long-term trends in tunas were contrasted and sometimes disconnected to estimated regional changes in atmospheric emissions and deposition, highlighting potential confounding effects of legacy mercury, and complex reactions governing the fate of mercury in the ocean. Inter-species differences of tuna mercury concentrations associated with their distinct ecology suggest that tropical tunas and albacore could be used complementarily to assess the vertical and horizontal variability of methylmercury in the ocean. Overall, this review elevates tunas as relevant bioindicators for the Minamata Convention, and calls for large-scale and continuous mercury measurements within the international community. We provide guidelines for tuna sample collection, preparation, analyses and data standardization with recommended transdisciplinary approaches to explore tuna mercury content in parallel with observation abiotic data, and biogeochemical model outputs. Such global and transdisciplinary biomonitoring is essential to explore the complex mechanisms of the marine methylmercury cycle.
Collapse
Affiliation(s)
- Anaïs Médieu
- IRD, Univ Brest, CNRS, Ifremer, UMR 6539, LEMAR, Plouzané, France.
| | - Anne Lorrain
- IRD, Univ Brest, CNRS, Ifremer, UMR 6539, LEMAR, Plouzané, France
| | - David Point
- Observatoire Midi-Pyrénées, GET, UMR CNRS 5563/IRD 234, Université Paul Sabatier Toulouse 3, Toulouse, France
| |
Collapse
|
19
|
Liu M, Mason RP, Vlahos P, Whitney MM, Zhang Q, Warren JK, Wang X, Baumann Z. Riverine Discharge Fuels the Production of Methylmercury in a Large Temperate Estuary. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13056-13066. [PMID: 37603456 DOI: 10.1021/acs.est.3c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Estuaries are an important food source for the world's growing population, yet human health is at risk from elevated exposure to methylmercury (MeHg) via the consumption of estuarine fish. Moreover, the sources and cycling of MeHg in temperate estuarine ecosystems are poorly understood. Here, we investigated the seasonal and tidal patterns of mercury (Hg) forms in Long Island Sound (LIS), in a location where North Atlantic Ocean waters mix with the Connecticut River. We found that seasonal variations in Hg and MeHg in LIS followed the extent of riverine Hg delivery, while tides further exacerbated the remobilization of earlier deposited riverine Hg. The net production of MeHg near the river plume was significant compared to that in other locations and enhanced during high tide, possibly resulting from the enhanced microbial activity and organic carbon remineralization in the river plume. Statistical models, driven by our novel data, further support the hypothesis that the river-delivered organic matter and inorganic Hg drive net MeHg production in the estuarine water column. Our study sheds light on the significance of water column biogeochemical processes in temperate tidal estuaries in regulating MeHg levels and inspires new questions in our quest to understand MeHg sources and dynamics in coastal oceans.
Collapse
Affiliation(s)
- Maodian Liu
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
- School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Robert P Mason
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Michael M Whitney
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Qianru Zhang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joseph K Warren
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| | - Xuejun Wang
- Ministry of Education Laboratory of Earth Surface Process, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Zofia Baumann
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| |
Collapse
|
20
|
Lepak JM, Johnson BM, Hooten MB, Wolff BA, Hansen AG. Predicting sport fish mercury contamination in heavily managed reservoirs: Implications for human and ecological health. PLoS One 2023; 18:e0285890. [PMID: 37607193 PMCID: PMC10443864 DOI: 10.1371/journal.pone.0285890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/04/2023] [Indexed: 08/24/2023] Open
Abstract
Mercury (Hg) is a concerning contaminant due to its widespread distribution and tendency to accumulate to harmful concentrations in biota. We used a machine learning approach called random forest (RF) to test for different predictors of Hg concentrations in three species of Colorado reservoir sport fish. The RF approach indicated that the best predictors of 864 mm northern pike (Esox lucius) Hg concentrations were covariates related to salmonid stocking in each study system, while system-specific metrics related to productivity and forage base were the best predictors of Hg concentrations of 381 mm smallmouth bass (Micropterus dolomieu), and walleye (Sander vitreus). Protecting human and ecological health from Hg contamination requires an understanding of fish Hg concentrations and variability across the landscape and through time. The RF approach could be applied to identify potential areas/systems of concern, and predict whether sport fish Hg concentrations may change as a result of a variety of factors to help prioritize, focus, and streamline monitoring efforts to effectively and efficiently inform human and ecological health.
Collapse
Affiliation(s)
- Jesse M. Lepak
- Colorado Parks and Wildlife, Fort Collins, CO, United States of America
| | - Brett M. Johnson
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Mevin B. Hooten
- Department of Statistics and Data Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Brian A. Wolff
- Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, CO, United States of America
| | - Adam G. Hansen
- Colorado Parks and Wildlife, Fort Collins, CO, United States of America
| |
Collapse
|
21
|
Sullivan CJ, Vokoun JC, Perkins CR. Spatiotemporal changes in largemouth bass mercury concentrations from Connecticut waterbodies, 1995-2021. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:780. [PMID: 37256366 DOI: 10.1007/s10661-023-11405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023]
Abstract
We evaluated spatiotemporal changes in the mean and variation in largemouth bass (Micropterus salmoides) mercury concentrations over three discrete time periods (1995, 2005-2006, and 2019-2021) across 56 Connecticut waterbodies. We detected largemouth bass raw mercury concentrations that exceeded the US Environmental Protection Agency (USEPA) Fish Tissue Residue Criterion (≥ 0.30 µg g-1 ww) in 75.1%, 63.3%, and 47.7% of all fish sampled during 1995, 2005-2006, and 2019-2021, respectively. Total length (TL)-adjusted largemouth bass mercury concentrations declined across all ecoregions in Connecticut between subsequent sampling periods but increased between 2005-2006 and 2019-2021 in the Northwest Hills/Uplands ecoregion. The coefficient of variation (CV) of largemouth bass TL-adjusted mercury concentrations increased through time, increasing from 25.78% during 1995 to 36.47% during 2019-2021. The probability of a largemouth bass having a raw mercury concentration > 0.30 µg g-1 ww increased with total length (TL), but the TL with a 50% probability varied across ecoregions and periods. The variation in largemouth bass mercury concentrations highlights the roles that changes to individual behaviors, food web structure, lake properties, and legacy mercury may play in shaping broad patterns and trends in mercury consumption risks.
Collapse
Affiliation(s)
- Christopher J Sullivan
- Department of Natural Resources and the Environment, Wildlife and Fisheries Conservation Center, University of Connecticut, 1376 Storrs Road, Storrs, CT, 06269-4087, USA.
| | - Jason C Vokoun
- Department of Natural Resources and the Environment, Wildlife and Fisheries Conservation Center, University of Connecticut, 1376 Storrs Road, Storrs, CT, 06269-4087, USA
| | - Christopher R Perkins
- Center for Environmental Sciences and Engineering, University of Connecticut, 1376 Storrs Road, Storrs, CT, 06269-4087, USA
| |
Collapse
|
22
|
Fisher JA, Schneider L, Fostier AH, Guerrero S, Guimarães JRD, Labuschagne C, Leaner JJ, Martin LG, Mason RP, Somerset V, Walters C. A synthesis of mercury research in the Southern Hemisphere, part 2: Anthropogenic perturbations. AMBIO 2023; 52:918-937. [PMID: 36952094 PMCID: PMC10073395 DOI: 10.1007/s13280-023-01840-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Environmental mercury (Hg) contamination is a global concern requiring action at national scales. Scientific understanding and regulatory policies are underpinned by global extrapolation of Northern Hemisphere Hg data, despite historical, political, and socioeconomic differences between the hemispheres that impact Hg sources and sinks. In this paper, we explore the primary anthropogenic perturbations to Hg emission and mobilization processes that differ between hemispheres and synthesize current understanding of the implications for Hg cycling. In the Southern Hemisphere (SH), lower historical production of Hg and other metals implies lower present-day legacy emissions, but the extent of the difference remains uncertain. More use of fire and higher deforestation rates drive re-mobilization of terrestrial Hg, while also removing vegetation that would otherwise provide a sink for atmospheric Hg. Prevalent Hg use in artisanal and small-scale gold mining is a dominant source of Hg inputs to the environment in tropical regions. Meanwhile, coal-fired power stations continue to be a significant Hg emission source and industrial production of non-ferrous metals is a large and growing contributor. Major uncertainties remain, hindering scientific understanding and effective policy formulation, and we argue for an urgent need to prioritize research activities in under-sampled regions of the SH.
Collapse
Affiliation(s)
- Jenny A. Fisher
- Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 Australia
| | - Larissa Schneider
- College of Asia and the Pacific, Australian National University, Coombs Bld 9 Fellows Rd, Acton, Canberra, ACT 2601 Australia
| | - Anne-Hélène Fostier
- Instituto de Química/Unicamp, Rua Josué de Castro, s/n – Cidade Universitária, Campinas, SP 13083-970 Brazil
| | - Saul Guerrero
- College of Asia and the Pacific, Australian National University, Coombs Bld 9 Fellows Rd, Acton, Canberra, ACT 2601 Australia
| | - Jean Remy Davée Guimarães
- Lab. de Traçadores, Instituto de Biofísica, Centro de Ciências da Saúde, Bloco G, Av. Carlos Chagas Filho 373, Ilha do Fundão, Rio de Janeiro, CEP 21941-902 Brazil
| | - Casper Labuschagne
- South African Weather Service c/o CSIR Environmentek, 11 Jan Cilliers Street, Stellenbosch, 7599 South Africa
| | - Joy J. Leaner
- Department of Environmental Affairs and Development Planning, Western Cape Government, Property Building, 1 Dorp Street, Cape Town, 8001 Western Cape South Africa
| | - Lynwill G. Martin
- South African Weather Service c/o CSIR Environmentek, 11 Jan Cilliers Street, Stellenbosch, 7599 South Africa
- Atmospheric Chemistry Research Group, Chemical Resource Beneficiation, North-West University, Potchefstroom, 2520 South Africa
| | - Robert P. Mason
- Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340 USA
| | - Vernon Somerset
- Department of Chemistry, CPUT, CPUT Bellville Campus, Bellville, 7535 Western Cape South Africa
| | - Chavon Walters
- Council for Scientific and Industrial Research, 11 Jan Cilliers Street, Stellenbosch, 7599 South Africa
| |
Collapse
|
23
|
Sonke JE, Angot H, Zhang Y, Poulain A, Björn E, Schartup A. Global change effects on biogeochemical mercury cycling. AMBIO 2023; 52:853-876. [PMID: 36988895 PMCID: PMC10073400 DOI: 10.1007/s13280-023-01855-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Past and present anthropogenic mercury (Hg) release to ecosystems causes neurotoxicity and cardiovascular disease in humans with an estimated economic cost of $117 billion USD annually. Humans are primarily exposed to Hg via the consumption of contaminated freshwater and marine fish. The UNEP Minamata Convention on Hg aims to curb Hg release to the environment and is accompanied by global Hg monitoring efforts to track its success. The biogeochemical Hg cycle is a complex cascade of release, dispersal, transformation and bio-uptake processes that link Hg sources to Hg exposure. Global change interacts with the Hg cycle by impacting the physical, biogeochemical and ecological factors that control these processes. In this review we examine how global change such as biome shifts, deforestation, permafrost thaw or ocean stratification will alter Hg cycling and exposure. Based on past declines in Hg release and environmental levels, we expect that future policy impacts should be distinguishable from global change effects at the regional and global scales.
Collapse
Affiliation(s)
- Jeroen E. Sonke
- Géosciences Environnement Toulouse, CNRS/IRD, Université Paul Sabatier Toulouse 3, 14 ave Edouard Belin, 31400 Toulouse, France
| | - Hélène Angot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 1025 rue de la piscine, 38000 Grenoble, France
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, 163 Xianlin Road, Nanjing, 210023 Jiangsu China
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Erik Björn
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden
| | - Amina Schartup
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| |
Collapse
|
24
|
Xing Z, Chang R, Song Z, Zhang Y, Muntean M, Feng K, Liu Y, Ma Z, Wang J, Zhang J, Wang H. International trade shapes global mercury-related health impacts. PNAS NEXUS 2023; 2:pgad128. [PMID: 37228509 PMCID: PMC10205471 DOI: 10.1093/pnasnexus/pgad128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023]
Abstract
Mercury (Hg) is a strong neurotoxin with substantial dangers to human health. Hg undergoes active global cycles, and the emission sources there of can also be geographically relocated through economic trade. Through investigation of a longer chain of the global biogeochemical Hg cycle from economic production to human health, international cooperation on Hg control strategies in Minamata Convention can be facilitated. In the present study, four global models are combined to investigate the effect of international trade on the relocation of Hg emissions, pollution, exposure, and related human health impacts across the world. The results show that 47% of global Hg emissions are related to commodities consumed outside of the countries where the emissions are produced, which has largely influenced the environmental Hg levels and human exposure thereto across the world. Consequently, international trade is found to enable the whole world to avoid 5.7 × 105 points for intelligence quotient (IQ) decline and 1,197 deaths from fatal heart attacks, saving a total of $12.5 billion (2020 USD) in economic loss. Regionally, international trade exacerbates Hg challenges in less developed countries, while resulting in an alleviation in developed countries. The change in economic loss therefore varies from the United States (-$4.0 billion) and Japan (-$2.4 billion) to China (+$2.7 billion). The present results reveal that international trade is a critical factor but might be largely overlooked in global Hg pollution mitigation.
Collapse
Affiliation(s)
| | | | - Zhengcheng Song
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yanxu Zhang
- To whom correspondence should be addressed: ;
| | - Marilena Muntean
- Directorate for Energy, Transport and Climate, Air and Climate Unit, European Commission, Joint Research Centre (JRC), Ispra, VA I-21027, Italy
| | - Kuishuang Feng
- Department of Geographical Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yifan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jigan Wang
- School of Business, Hohai University, Nanjing 211100, China
| | - Jie Zhang
- School of Business, Hohai University, Nanjing 211100, China
| | - Haikun Wang
- To whom correspondence should be addressed: ;
| |
Collapse
|
25
|
Chen CY, Evers DC. Global mercury impact synthesis: Processes in the Southern Hemisphere. AMBIO 2023; 52:827-832. [PMID: 36917434 PMCID: PMC10073386 DOI: 10.1007/s13280-023-01842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Celia Y. Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH USA
| | - David C. Evers
- Department of Biological Sciences, Dartmouth College, Hanover, NH USA
- Biodiversity Research Institute, Portland, ME USA
| |
Collapse
|
26
|
Liu N, Cai X, Jia L, Wang X, Yuan W, Lin CJ, Wang D, Feng X. Quantifying Mercury Distribution and Source Contribution in Surface Soil of Qinghai-Tibetan Plateau Using Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5903-5912. [PMID: 36976750 DOI: 10.1021/acs.est.2c09610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Long-range transport and atmospheric deposition of gaseous mercury (Hg0) result in significant accumulation of Hg in the Qinghai-Tibetan Plateau (QTP). However, there are significant knowledge gaps in understanding the spatial distribution and source contribution of Hg in the surface soil of the QTP and factors influencing Hg accumulation. In this study, we comprehensively investigated Hg concentrations and isotopic signatures in the QTP to address these knowledge gaps. Results show that the average Hg concentration in the surface soil ranks as follows: forest (53.9 ± 36.9 ng g-1) > meadow (30.7 ± 14.3 ng g-1) > steppe (24.5 ± 16.1 ng g-1) > shrub (21.0 ± 11.6 ng g-1). Hg isotopic mass mixing and structural equation models demonstrate that vegetation-mediated atmospheric Hg0 deposition dominates the Hg source in the surface soil, with an average contribution of 62 ± 12% in forests, followed by 51 ± 10% in shrub, 50 ± 13% in steppe, and 45 ± 11% in meadow. Additionally, geogenic sources contribute 28-37% of surface soil Hg accumulation, and atmospheric Hg2+ inputs contribute 10-18% among the four types of biomes. The Hg pool in 0-10 cm surface soil over the QTP is estimated as 8200 ± 3292 Mg. Global warming, permafrost degradation, and anthropogenic influences have likely perturbed Hg accumulation in the soil of QTP.
Collapse
Affiliation(s)
- Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinyuan Cai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
27
|
Stegner MA, Hadly EA, Barnosky AD, La Selle S, Sherrod B, Anderson RS, Redondo SA, Viteri MC, Weaver KL, Cundy AB, Gaca P, Rose NL, Yang H, Roberts SL, Hajdas I, Black BA, Spanbauer TL. The Searsville Lake Site (California, USA) as a candidate Global boundary Stratotype Section and Point for the Anthropocene series. THE ANTHROPOCENE REVIEW 2023; 10:116-145. [PMID: 37213212 PMCID: PMC10193828 DOI: 10.1177/20530196221144098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cores from Searsville Lake within Stanford University's Jasper Ridge Biological Preserve, California, USA, are examined to identify a potential GSSP for the Anthropocene: core JRBP2018-VC01B (944.5 cm-long) and tightly correlated JRBP2018-VC01A (852.5 cm-long). Spanning from 1900 CE ± 3 years to 2018 CE, a secure chronology resolved to the sub-annual level allows detailed exploration of the Holocene-Anthropocene transition. We identify the primary GSSP marker as first appearance of 239,240Pu (372-374 cm) in JRBP2018-VC01B and designate the GSSP depth as the distinct boundary between wet and dry season at 366 cm (6 cm above the first sample containing 239,240Pu) and corresponding to October-December 1948 CE. This is consistent with a lag of 1-2 years between ejection of 239,240Pu into the atmosphere and deposition. Auxiliary markers include: first appearance of 137Cs in 1958; late 20th-century decreases in δ15N; late 20th-century elevation in SCPs, Hg, Pb, and other heavy metals; and changes in abundance and presence of ostracod, algae, rotifer and protozoan microfossils. Fossil pollen document anthropogenic landscape changes related to logging and agriculture. As part of a major university, the Searsville site has long been used for research and education, serves users locally to internationally, and is protected yet accessible for future studies and communication about the Anthropocene. Plain Word Summary The Global boundary Stratotype Section and Point (GSSP) for the proposed Anthropocene Series/Epoch is suggested to lie in sediments accumulated over the last ~120 years in Searsville Lake, Woodside, California, USA. The site fulfills all of the ideal criteria for defining and placing a GSSP. In addition, the Searsville site is particularly appropriate to mark the onset of the Anthropocene, because it was anthropogenic activities-the damming of a watershed-that created a geologic record that now preserves the very signals that can be used to recognize the Anthropocene worldwide.
Collapse
|
28
|
Rudershausen PJ, Cross FA, Runde BJ, Evans DW, Cope WG, Buckel JA. Total mercury, methylmercury, and selenium concentrations in blue marlin Makaira nigricans from a long-term dataset in the western north Atlantic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159947. [PMID: 36336054 DOI: 10.1016/j.scitotenv.2022.159947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Mercury in seafood is a neurotoxicant that threatens human health. Dynamic rates of mercury emission, re-emission, and atmospheric deposition warrant studies into mercury concentrations in fish because many are consumed by humans and can serve as sentinels of mercury levels in the environment. We modeled trends in total mercury content in an apex marine fish predator, Atlantic blue marlin Makaira nigricans, whose muscle tissues were opportunistically sampled from North Carolina (USA) sportfishing tournaments over a discontinuous time period: between 1975 and 77 and 1998-2021 (n = 148). The model-estimated influence of marlin weight on total mercury concentration was constant across years (shared slope) allowing for comparisons of weight-corrected mercury concentrations among years. Weight-corrected total mercury concentrations revealed an inter-decadal decline of approximately 45 % between the 1970s and late 1990s and then variable but relatively stable concentrations through 2021. The mean (SD) wet weight concentration of total mercury was 9.47 (4.11) from 1975 to 77 and 4.17 (2.61) from 2020 to 2021. Methylmercury and selenium were measured on a subset of fish to address questions related to human health and consumption. Methylmercury levels (mean = 0.72 μg/g) were much lower than total mercury (mean = 4.69 μg/g) indicating that total mercury is not a good proxy for methylmercury in Atlantic blue marlin. Selenium, examined as a Se:Hg molar ratio and as a selenium health benefit value (HBVSe), showed high protective value against mercury toxicity. Long-term trends in the concentration of mercury in blue marlin should continue to be monitored to determine whether policies to mitigate anthropogenic contributions to global mercury are achieving their intended goals and to provide information to inform safe human consumption.
Collapse
Affiliation(s)
- P J Rudershausen
- North Carolina State University, Department of Applied Ecology, Center for Marine Sciences and Technology, 303 College Circle, Morehead City, NC 28557, USA.
| | - F A Cross
- NOAA, Southeast Fisheries Science Center, 101 Pivers Island Road, Beaufort, NC 28516, USA
| | - B J Runde
- North Carolina State University, Department of Applied Ecology, Center for Marine Sciences and Technology, 303 College Circle, Morehead City, NC 28557, USA
| | - D W Evans
- NOAA, Southeast Fisheries Science Center, 101 Pivers Island Road, Beaufort, NC 28516, USA
| | - W G Cope
- North Carolina State University, Department of Applied Ecology, Box 7617, Raleigh, NC 27695, USA
| | - J A Buckel
- North Carolina State University, Department of Applied Ecology, Center for Marine Sciences and Technology, 303 College Circle, Morehead City, NC 28557, USA
| |
Collapse
|
29
|
Kalinchuk VV. Gaseous elemental mercury and its evasion fluxes in the marine boundary layer of the marginal seas of the northwestern Pacific: Results from two cruises in September-December 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159711. [PMID: 36302426 DOI: 10.1016/j.scitotenv.2022.159711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
There are many questions regarding the behavior of mercury in the sea-atmosphere system of the northwestern Pacific. Continuous underway measurements of atmospheric gaseous elemental mercury (GEM) and measurements of sea-air GEM evasion fluxes were carried out in the marginal seas of northwestern Pacific from the South China Sea to the Sea of Okhotsk in fall-winter 2019. The median GEM concentration (1.1 ng/m3) was lower than both the background value and the averages previously observed in these areas. A latitudinal gradient of atmospheric GEM and GEM evasion fluxes with maximum values at southern latitudes was found. The following areas have been identified as potential source areas: the Kurill area of the Pacific Ocean Northeast China, Korean Peninsula, and the territory from the southwest coast of the Yellow Sea to the south of Indochina. Seasonal variations were observed in the Sea of Japan and East China Sea with higher GEM concentrations in winter than in fall. Our data and analysis of published data showed significant relationships between GEM evasion fluxes, latitude and sea surface temperature (SST). It seems that on a global scale, along with the GEM gradient between water and atmosphere, SST is the most significant parameter for sea-air GEM evasion fluxes.
Collapse
Affiliation(s)
- Viktor V Kalinchuk
- V.I.Il'ichev Pacific Oceanological Institute of Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
30
|
Yuan CS, Chiang KC, Yen PH, Ceng JH, Lee CE, Du IC, Soong KY, Jeng MS. Long-range transport of atmospheric speciated mercury from the eastern waters of Taiwan Island to northern South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120899. [PMID: 36565910 DOI: 10.1016/j.envpol.2022.120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
This study explored the temporospatial distribution, gas-particle partition, and pollution sources of atmospheric speciated mercury (ASM) from the eastern offshore waters of the Taiwan Island (TI) to the northern South China Sea (SCS). Both gaseous and particulate mercury were simultaneously sampled at three remote sites in four seasons. The average concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate bound mercury (PBM) were 2.05 ± 0.45 ng/m3, 19.17 ± 5.39 pg/m3, and 0.11 ± 0.06 ng/m3, respectively. The concentrations of GEM and PBM in the cold seasons were higher than those in the warm seasons, but those of GOM had an opposite trend. In terms of gas-solid partition, ASM was apportioned as 91.3-97.3% of GEM and 2.7-8.7% of GOM and PBM. The average concentrations of GEM, GOM, and PBM at the Green Island (GI) were 2.21 ± 0.47 ng/m3, 22.31 ± 5.35 pg/m3, and 0.12 ± 0.06 ng/m3; those at the Kenting Peninsula (KT) were 2.11 ± 0.43 ng/m3, 20.57 ± 4.38 pg/m3, and 0.11 ± 0.06 ng/m3; and those at the Dongsha Islands (DS) were 1.84 ± 0.40 ng/m3, 15.19 ± 3.58 pg/m3, and 0.08 ± 0.05 ng/m3, respectively. Overall, the spatial distribution of ASM concentrations showed the order as: GI > KT > DS. Air masses blown mainly from the West Pacific Ocean (WPO) and SCS in summer showed the lowest ASM concentrations. Oppositely, high ASM concentrations were commonly observed in spring and winter when polluted air masses were blown by Asian Northeastern Monsoons (ANMs). The transport routes of polluted air masses were originated mainly from North China, Central China, Northeast China, Korea and Japan, and mostly passed through the urban and industrial regions in the northeastern Asian countries.
Collapse
Affiliation(s)
- Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, Taiwan, ROC.
| | - Kuan-Chen Chiang
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - Po-Hsuan Yen
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - Jun-Hao Ceng
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - Cheng-En Lee
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - I-Chieh Du
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - Ker-Yea Soong
- Institute of Marine Biology, National Sun Yat-sen University, Taiwan, ROC
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei City, Taiwan, ROC; Green Island Marine Research Station, Biodiversity Research Center, Academia. Sinica, Green Island, Taitung County, Taiwan, ROC
| |
Collapse
|
31
|
Bai X, Tian H, Zhu C, Luo L, Hao Y, Liu S, Guo Z, Lv Y, Chen D, Chu B, Wang S, Hao J. Present Knowledge and Future Perspectives of Atmospheric Emission Inventories of Toxic Trace Elements: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1551-1567. [PMID: 36661479 DOI: 10.1021/acs.est.2c07147] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Toxic trace elements (TEs) can pose serious risks to ecosystems and human health. However, a comprehensive understanding of atmospheric emission inventories for several concerning TEs has not yet been developed. In this study, we systematically reviewed the status and progress of existing research in developing atmospheric emission inventories of TEs focusing on global, regional, and sectoral scales. Multiple studies have strengthened our understanding of the global emission of TEs, despite attention being mainly focused on Hg and source classification in different studies showing large discrepancies. In contrast to those of developed countries and regions, the officially published emission inventory is still lacking in developing countries, despite the fact that studies on evaluating the emissions of TEs on a national scale or one specific source category have been numerous in recent years. Additionally, emissions of TEs emitted from waste incineration and traffic-related sources have produced growing concern with worldwide rapid urbanization. Although several studies attempt to estimate the emissions of TEs based on PM emissions and its source-specific chemical profiles, the emission factor approach is still the universal method. We call for more extensive and in-depth studies to establish a precise localization national emission inventory of TEs based on adequate field measurements and comprehensive investigation to reduce uncertainty.
Collapse
Affiliation(s)
- Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Chuanyong Zhu
- College of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lining Luo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Zhihui Guo
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yunqian Lv
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
- Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Dongxue Chen
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100875, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100875, China
| |
Collapse
|
32
|
Sahoo PK, Dall'Agnol R, Simões Rolo de Deus SDC, Salomão GN, Felix Guimarães JT, Angelica RS, Ramos SJ, Furtado da Costa M, Oswaldo de Siqueira J. Mercury in multimedia system of Itacaiúnas Basin, Brazilian Amazon: An integrated approach to understand its distribution, origin, and ecological risk. ENVIRONMENTAL RESEARCH 2023:115107. [PMID: 36702190 DOI: 10.1016/j.envres.2022.115107] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 06/18/2023]
Abstract
This study presents the first integrated study on total Hg (THg) level in surface soil (SS), bottom soil (BS), stream sediments (SD), lake sediments (LS), stream water (SW), and lake water (LW) of Itacaiúnas River Watershed (IRW), Brazil, to investigate the source and distribution of Hg in different environmental media considering contrasts of geological domains and sub-basins, and its potential ecological and human risk. Hg content in most of the soils and sediments were above the upper crustal average values (56 μg/kg), however, when compared to the legal limits set by the Resolution CONAMA (Conselho Nacional de Meio Ambiente: soil 500 μg/kg; sediment 486 μg/kg), only 1 soil sample from Parauapebas sub-basin and 4 sediment samples from Violão Lake exceeded the limit. None of the SW and LW samples (<0.2 μg/L) are markedly contaminated by Hg. The SS and BS show similar contents and spatial distribution of Hg with higher contents being registered mostly in the Itacaiúnas and Parauapebas sub-basins, which are closely correlated with SD. This suggests that Hg levels are largely of geogenic origin and anthropogenic effect is highly limited. Principal Component Analysis (PCA) results show that Hg is strongly associated with total organic carbon (TOC), loss on ignition (LOI), and SO3, indicating organic matter as the main factor controlling the distribution of Hg and this is the major cause of accentuated Hg enrichment in lake sediments. The ecological risk index revealed a low pollution risk for most of the solid samples, except 11% LS and <1.5% SS and SD samples, which registered moderate risk. Health risk assessment indicated no adverse non-carcinogenic health effect on either adults and children in terms of Hg contamination. This information will be useful for Hg risk assessment in the Carajás region and future environmental research in this direction in the Amazonia.
Collapse
Affiliation(s)
- Prafulla Kumar Sahoo
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil; Department of Environmental Science and Technology, Central University of Punjab, V.P.O Ghudda, Bathinda, 151401, Punjab, India.
| | - Roberto Dall'Agnol
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil; Programa de Pós-graduação em Geologia e Geoquímica, Instituto de Geociências (IG), Universidade Federal do Pará (UFPA), Rua Augusto Corrêa, 1, Belém, 66075-110, PA, Brazil
| | | | | | | | - Rômulo Simões Angelica
- Programa de Pós-graduação em Geologia e Geoquímica, Instituto de Geociências (IG), Universidade Federal do Pará (UFPA), Rua Augusto Corrêa, 1, Belém, 66075-110, PA, Brazil
| | - Silvio Junio Ramos
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil
| | - Marlene Furtado da Costa
- VALE S/A, Gerência de Meio Ambiente Corredor Norte, Gerência de Meio Ambiente Ferrovia e Porto, Av. Dos Portugueses, 1001, Praia do Boqueirão, São Luis, 65085-580, MA, Brazil
| | - Jose Oswaldo de Siqueira
- Instituto Tecnológico Vale (ITV), Rua Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil; Universidade Federal de Lavras - UFLA, Campus Universitario, CEP 37200-900, Lavras, MG, Brazil
| |
Collapse
|
33
|
Jędruch A, Falkowska L, Saniewska D, Grajewska A, Bełdowska M, Meissner W, Kalisińska E, Duzinkiewicz K, Pacyna JM. Mercury in the Polish part of the Baltic Sea: A response to decreased atmospheric deposition and changing environment. MARINE POLLUTION BULLETIN 2023; 186:114426. [PMID: 36473245 DOI: 10.1016/j.marpolbul.2022.114426] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Our review of the literature showed that since the beginning of the socio-economic transformation in Poland in the 1990s, the downward trend in Hg emissions and its deposition in the southern Baltic Sea was followed by a simultaneous decrease in Hg levels in water and marine plants and animals. Hg concentrations in the biota lowered to values that pose no or low risk to wildlife and seafood consumers. However, in the first decade of the current century, a divergence between these two trends became apparent and Hg concentrations in fish, herring and cod, began to rise. Therefore, increasing emission-independent anthropogenic pressures, which affect Hg uptake and trophodynamics, remobilization of land-based and marine legacy Hg deposits, as well as the structure of the food web, can undermine the chances of reducing both the Hg pool in the marine environment and human Hg exposure from fish.
Collapse
Affiliation(s)
- Agnieszka Jędruch
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland; Polish Academy of Sciences, Institute of Oceanology, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Lucyna Falkowska
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Dominika Saniewska
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agnieszka Grajewska
- Institute of Meteorology and Water Management - National Research Institute, Jerzego Waszyngtona 42, 81-342 Gdynia, Poland
| | - Magdalena Bełdowska
- University of Gdańsk, Faculty of Oceanography and Geography, Institute of Oceanography, Marszałka Józefa Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Włodzimierz Meissner
- University of Gdańsk, Faculty of Biology, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Elżbieta Kalisińska
- Pomeranian Medical University, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Kazimierz Duzinkiewicz
- Gdańsk University of Technology, Faculty of Electrical and Control Engineering, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Józef M Pacyna
- AGH University of Science and Technology, Faculty of Energy and Fuels, Adama Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
34
|
Li Z, Chi J, Shao B, Wu Z, He W, Liu Y, Sun P, Lin H, Wang X, Zhao Y, Chen L, Tong Y. Inhibition of methylmercury uptake by freshwater phytoplankton in presence of algae-derived organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120111. [PMID: 36075338 DOI: 10.1016/j.envpol.2022.120111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
As the first step of methylmercury (MeHg) entry into the aquatic food webs, MeHg uptake by phytoplankton is crucial in determining the final human MeHg exposure risks. MeHg availability to plankton is regulated by dissolved organic matter (DOM) in the water, while the extent of the impacts can vary largely based on the sources of DOM. Here, we investigated impacts of DOM sources on MeHg bioconcentration by three freshwater phytoplankton species (i.e. S. quadricauda, Chlorella sp., Microcystis elabens) in the laboratory system. We found that algae-derived DOM would prohibited the cellular MeHg bioconcentration by a percent up to 77-93%, while the soil-derived DOM didn't show similar inhibition effects. DOM characterization by the excitation‒emission matrices, Fourier transform infrared spectrum, ultra‒high performance liquid chromatography‒tandem quadrupole time of flight mass spectrometry shown that the molecular size of S-containing compound, rather than thiol concentration, has played a crucial role in regulating the MeHg uptake by phytoplankton. Climate change and increasing nutrient loadings from human activities may affect plankton growth in the freshwater, ultimately changing the DOM compositions. Impacts of these changes on cellular MeHg uptakes by phytoplankton should be emphasized when exploring the aquatic Hg cycling and evaluating their risks to human beings and wild life.
Collapse
Affiliation(s)
- Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Huiming Lin
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Long Chen
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
35
|
Feinberg A, Dlamini T, Jiskra M, Shah V, Selin NE. Evaluating atmospheric mercury (Hg) uptake by vegetation in a chemistry-transport model. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1303-1318. [PMID: 35485923 PMCID: PMC9491292 DOI: 10.1039/d2em00032f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000-4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (∼0.03 cm s-1), yet it underestimates measurements from a flux tower study (0.04 cm s-1vs. 0.07 cm s-1) and Amazon litterfall (0.05 cm s-1vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 to +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere-atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution.
Collapse
Affiliation(s)
- Aryeh Feinberg
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Thandolwethu Dlamini
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland
| | - Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Noelle E Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
MacFarlane S, Fisher JA, Horowitz HM, Shah V. Two decades of changing anthropogenic mercury emissions in Australia: inventory development, trends, and atmospheric implications. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1474-1493. [PMID: 35603632 DOI: 10.1039/d2em00019a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mercury is a toxic environmental pollutant emitted into the atmosphere by both natural and anthropogenic sources. In Australia, previous estimates of anthropogenic mercury emissions differ by up to a factor of three, with existing inventories either outdated or inaccurate and several lacking Australia-specific input data. Here, we develop a twenty-year inventory of Australian anthropogenic mercury emissions spanning 2000-2019 with annual resolution. Our inventory uses Australia-specific data where possible and incorporates processes not included in other Australian inventories, such as delayed release effects from waste emissions. We show that Australian anthropogenic mercury emissions have decreased by more than a factor of two over the past twenty years, with the largest decrease from the gold production sector followed by brown coal-fired power plants and commercial product waste. Only the aluminium sector has shown a notable increase in mercury emissions. Using a global 3-D chemical transport model (GEOS-Chem), we show that the reduction in emissions has led to a small decrease in mercury deposition to the Australian continent, with annual oxidised mercury deposition ∼3-4% lower with present day emissions than with emissions from the year 2000. We also find that Australian emissions are not accurately represented in recent global emissions inventories and that differences between inventories have a larger impact than emissions trends on simulated mercury deposition. Overall, this work suggests a significant benefit to Australia from the Minamata Convention, with further reductions to Australian mercury deposition expected from decreases in both Australian and global anthropogenic emissions.
Collapse
Affiliation(s)
- Stephen MacFarlane
- Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
| | - Jenny A Fisher
- Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia.
| | - Hannah M Horowitz
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Viral Shah
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
37
|
Mercury isotope evidence for Arctic summertime re-emission of mercury from the cryosphere. Nat Commun 2022; 13:4956. [PMID: 36002442 PMCID: PMC9402541 DOI: 10.1038/s41467-022-32440-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
During Arctic springtime, halogen radicals oxidize atmospheric elemental mercury (Hg0), which deposits to the cryosphere. This is followed by a summertime atmospheric Hg0 peak that is thought to result mostly from terrestrial Hg inputs to the Arctic Ocean, followed by photoreduction and emission to air. The large terrestrial Hg contribution to the Arctic Ocean and global atmosphere has raised concern over the potential release of permafrost Hg, via rivers and coastal erosion, with Arctic warming. Here we investigate Hg isotope variability of Arctic atmospheric, marine, and terrestrial Hg. We observe highly characteristic Hg isotope signatures during the summertime peak that reflect re-emission of Hg deposited to the cryosphere during spring. Air mass back trajectories support a cryospheric Hg emission source but no major terrestrial source. This implies that terrestrial Hg inputs to the Arctic Ocean remain in the marine ecosystem, without substantial loss to the global atmosphere, but with possible effects on food webs. Arctic warming thaws permafrost, leading to enhanced soil mercury transport to the Arctic Ocean. Mercury isotope signatures in arctic rivers, ocean and atmosphere suggest that permafrost mercury is buried in marine sediment and not emitted to the global atmosphere
Collapse
|
38
|
Chen Y, Gao Y, Wu S, Zhang L, Wang Q, Yao X, Gao H. Wet deposition of atmospheric selenium and sensitivity to emission and precipitation patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155402. [PMID: 35490823 DOI: 10.1016/j.scitotenv.2022.155402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/16/2022] [Indexed: 06/14/2023]
Abstract
Wet deposition has been well recognized to be affected by species concentration and precipitation; nevertheless, the regimes in the controlling factor of concentration or precipitation have not yet been clarified. Using a trace element, selenium (Se), with dual effects on human health as a testbed, we first reproduce the spatial distribution of atmospheric Se concentrations and wet deposition fluxes through GEOS-Chem on a global scale, and examine the spatial patterns and relative importance of anthropogenic emissions vs. natural emissions over various regions around the world. We find that over most Northern Hemisphere continental regions, anthropogenic emissions are the dominant source for atmospheric Se concentration and deposition, while it is dominated by natural sources in the other areas. Nested grid simulations covering China and the continental United States are further conducted. The factors (i.e., Se concentration and precipitation) controlling the wet deposition flux of atmospheric Se are analyzed in detail, through the construction of wet deposition-concentration-precipitation (WETD-C-P) diagram for two regions (mainland China and the continental United States) based on the monthly results. The two regions show distinctive features, reflecting the different spatial patterns of Se emissions and precipitation. Both Se emissions and precipitation are higher in the eastern United States than that in the western United States. In contrast, the emissions and precipitation in northern and southern China show dipole features with stronger emissions over the northern side and higher precipitation on the southern side. We further investigate the impacts of future emission changes in China on atmospheric Se deposition and its sensitivity to emissions and precipitation, revealing a modulation of regime shifts, i.e., from the precipitation dominant regime to the concurrent governance of both precipitation and emissions. The proposed WETD-C-P relationship is useful in elucidating the regime and factors governing the spatial and temporal variations in wet deposition.
Collapse
Affiliation(s)
- Yutao Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Yang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China.
| | - Shiliang Wu
- Atmospheric Sciences Program, Michigan Technological University, Houghton, MI 49931, USA.
| | - Lei Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Qiaoqiao Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, China
| | - Xiaohong Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| |
Collapse
|
39
|
Song Z, Sun R, Zhang Y. Modeling mercury isotopic fractionation in the atmosphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119588. [PMID: 35688392 DOI: 10.1016/j.envpol.2022.119588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) stable isotope analysis has become a powerful tool to identify Hg sources and to understand its biogeochemical processes. However, it is challenging to link the observed Hg isotope fractionation to its global cycling. Here, we integrate source Hg isotope signatures and process-based Hg isotope fractionation into a three-dimensional isotope model based on the GEOS-Chem model platform. Our simulated isotope compositions of total gaseous Hg (TGM) are broadly comparable with available observations across global regions. The isotope compositions of global TGM, potentially distinguishable over different regions, are caused by the atmospheric mixture of anthropogenic, natural, and re-emitted Hg sources, superimposed with competing processes, notably gaseous Hg(0) dry deposition and Hg redox transformations. We find that Hg(0) dry deposition has a great impact on the isotope compositions of global TGM and drives the seasonal variation of δ202Hg in forest-covered regions. The atmospheric photo-reduction of Hg(Ⅱ) dominates over Hg(0) oxidation in driving the global Δ199Hg (and Δ201Hg) distribution patterns in TGM. We suggest that the magnitude of isotope fractionation associated with atmospheric aqueous-phase Hg(Ⅱ) reduction is likely close to aquatic Hg(Ⅱ) reduction. Our model provides a vital tool for coupling the global atmospheric Hg cycle and its isotope fractionation at various scales and advances our understanding of atmospheric Hg transfer and transformation mechanisms.
Collapse
Affiliation(s)
- Zhengcheng Song
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, 300072, Tianjin, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
40
|
Nyholt K, Jardine TD, Villamarín F, Jacobi CM, Hawes JE, Campos-Silva JV, Srayko S, Magnusson WE. High rates of mercury biomagnification in fish from Amazonian floodplain-lake food webs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155161. [PMID: 35421468 DOI: 10.1016/j.scitotenv.2022.155161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Despite a global phase out of some point sources, mercury (Hg) remains elevated in aquatic food webs, posing health risks for fish-eating consumers. Many tropical regions have fast growing organisms, potentially short food chains, and few industrial point sources, suggesting low Hg baselines and low rates of trophic magnification with limited risk to people. Nevertheless, insufficient work on food-web Hg has been undertaken in the tropics and fish consumption is high in some regions. We studied Hg concentrations in fishes from floodplain lakes of the Juruá River, Amazonas, Brazil with three objectives: 1) determine rates of Hg trophic magnification, 2) assess whether Hg concentrations are high enough to impact humans eating fish, and 3) determine whether there are seasonal differences in fish Hg concentrations. A total of 377 fish-muscle samples were collected from 12 floodplain lakes during the low-water (September 2018) and falling-water (June 2019) seasons and analysed for total Hg and stable nitrogen (N) isotopes. The average trophic magnification factor (increase per trophic level) was 10.1 in the low-water season and 5.4 in the falling-water season, both well above the global average for freshwaters. This high rate of trophic magnification, coupled with higher-than-expected Hg concentrations in herbivorous species, led to high concentrations (up to 17.6 ng/g dry weight) in predatory pirarucu and piranha. Nearly 70% of all samples had Hg concentrations above the recommended human-consumption guidelines. Average concentrations were 42% higher in the low-water season than the falling-water season, but differences varied by species. Since Hg concentrations are higher than expected and fish consumption in this region is high, future research should focus on Hg exposure for human populations here and in other tropical-rainforest regions, even in the absence of local point sources of Hg.
Collapse
Affiliation(s)
- Kelsey Nyholt
- Toxicology Centre and School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Timothy D Jardine
- Toxicology Centre and School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada.
| | - Francisco Villamarín
- Grupo de Biogeografía y Ecología Espacial (BioGeoE(2)), Universidad Regional Amazónica Ikiam, km7 vía Muyuna, Tena, Ecuador
| | - Cristina M Jacobi
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, Amazonas 69067-375, Brazil; Institute of Biosciences, São Paulo State University (UNESP), Avenida 24 A 1515, Rio Claro, São Paulo 13506-900, Brazil
| | - Joseph E Hawes
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway; Applied Ecology Research Group, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK; Instituto Juruá, Manaus, Amazonas 69083-300, Brazil
| | - João V Campos-Silva
- Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences, Universitetstunet 3, 1433 Ås, Norway; Instituto Juruá, Manaus, Amazonas 69083-300, Brazil
| | - Stephen Srayko
- Toxicology Centre and School of Environment and Sustainability, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - William E Magnusson
- Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo, 2936, Petrópolis, Manaus, Amazonas 69067-375, Brazil
| |
Collapse
|
41
|
Pang Q, Gu J, Wang H, Zhang Y. Global Health Impact of Atmospheric Mercury Emissions from Artisanal and Small-Scale Gold Mining. iScience 2022; 25:104881. [PMID: 36039300 PMCID: PMC9418800 DOI: 10.1016/j.isci.2022.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Artisanal and small-scale gold mining (ASGM) is the leading source of mercury (Hg), a global neurotoxin. Past research has focused on the health impacts on miners and nearby residents; here, we estimate the risk for global general populations by employing a comprehensive atmosphere-land-ocean-ecosystem and exposure-risk-valuation model framework. Our results suggest that ASGM sources contribute 12%, 10%, and 0.63% to the atmospheric Hg deposition, plankton methylmercury concentrations, and soil total Hg concentrations at present day, respectively, and cause 5.8×105 points of intelligence quotient decrements and 1,430 deaths for global general populations per year. The monetized global health impact of ASGM ($154 billion) is 1.5 times its local impact and accounts for half of the total revenue of ASGM ($319 billion). A major spatial decoupling between the health impact and economic gains is also revealed, suggesting that intervention measures such as awareness-raising, capacity-building, and technology transfer funded by the Global North are cost-effective. Contributions of ASGM to MeHg concentrations in different organisms are calculated The global health impact of atmospheric Hg from ASGM is first revealed The health impacts and economic gains of ASGM are compared Intervention measures for ASGM are proved to be cost-effective
Collapse
|
42
|
Nováková T, Navrátil T, Schütze M, Rohovec J, Matoušková Š, Hošek M, Matys Grygar T. Reconstructing atmospheric Hg levels near the oldest chemical factory in central Europe using a tree ring archive. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119215. [PMID: 35358634 DOI: 10.1016/j.envpol.2022.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/07/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The Chemical Factory in Marktredwitz (CFM) is known as the oldest chemical factory in Germany (1778-1985), and from the beginning of the 20th century focused primarily on the production of mercury (Hg) compounds. Due to extensive pollution, together with employee health issues, the CFM was shut in 1985 by a government order and remediation works proceeded from 1986 to 1993. In this study, tree ring archives of European Larch (Larix decidua Mill.) were used to reconstruct changes of air Hg levels near the CFM. Mercury concentrations in larch boles decreased from 80.6 μg kg-1 at a distance of 0.34 km-3.4 μg kg-1 at a distance of 16 km. The temporal trend of atmospheric Hg emissions from the CFM reconstructed from the tree ring archives showed two main peaks. The first was in the 1920s, with a maximum tree ring Hg concentration 249.1 ± 43.9 μg kg-1 coinciding with when the factory had a worldwide monopoly on the production of Hg-based seed dressing fungicide. The second peak in the 1970s, with a maximum tree ring Hg concentration of 116.4 ± 6.3 μg kg-1, was associated with a peak in the general usage and production of Hg chemicals and goods. We used the tree ring record to reconstruct past atmospheric Hg levels using a simple model of Hg distribution between the larch tree rings and atmosphere. The precision of the tree ring model was checked against the results of air Hg measurements during the CFM remediation 30 years ago. According to the tree ring archives, the highest air Hg concentrations in the 1920s in Marktredwitz were over 70 ng m-3. Current air Hg levels of 1.18 ng m-3, assessed in the city of Marktredwitz, indicate the lowest air Hg in the past 150 years, underscoring the effective remediation of the CFM premises 30 years ago.
Collapse
Affiliation(s)
- Tereza Nováková
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic
| | - Tomáš Navrátil
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic.
| | - Martin Schütze
- Institut für Geoökologie, AG Umweltgeochemie, Technische Universität Braunschweig, Langer Kamp 19C, 38106, Braunschweig, Germany
| | - Jan Rohovec
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic
| | - Šárka Matoušková
- Institute of Geology of the Czech Academy of Sciences, Rozvojová 269, 165 00, Prague 6, Czech Republic
| | - Michal Hošek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 01, Řež, Czech Republic; Faculty of Environment, J.E. Purkyně University in Ústí nad Labem, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Tomáš Matys Grygar
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 01, Řež, Czech Republic
| |
Collapse
|
43
|
Liang M, Liu E, Wang X, Zhang Q, Xu J, Ji M, Zhang E. Historical trends in atmospheric metal(loid) contamination in North China over the past half-millennium reconstructed from subalpine lake sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119195. [PMID: 35339617 DOI: 10.1016/j.envpol.2022.119195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/20/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Trace metal (loid) contamination in the atmosphere is widely monitored, but there is a gap in understanding its long-term patterns, especially in North China, which is currently a global contamination hotspot mainly caused by heavy industry emissions and coal combustion. Herein, historical trends of atmospheric As, Cd, Cr, Cu, Hg, Ni, Pb and Zn contamination in North China over the past ∼500 years are comparatively studied with sediment cores from two subalpine lakes (Gonghai and Muhai). Arsenic, Pb, Cd and Hg were main pollutants according to Pb isotopes and enrichment factors. Mercury contamination has increased continuously since the late 1800s and increasing As, Pb and Cd contamination started in the 1950s in Gonghai. In contrast, the contamination in Muhai lagged two decades for As, Cd and Pb and a half-century for Hg behind that in Gonghai, although the trends were similar. This contamination lag was attributed to the low sensitivity of Muhai sediment to early weak atmospheric metal contamination under 2.1-fold higher detrital sedimentation. As, Pb and Cd contamination has intensified since the 1980s, and the metals showed similar sedimentary fluxes in the cores. However, sedimentary fluxes of Hg contamination were 3.4-fold higher in Gonghai than in Muhai due to combination with organic matter. No obvious Cr, Cu and Ni contamination in the cores was mainly because of the low atmospheric deposition from anthropogenic sources relative to detrital input, although some of their atmospheric emissions were higher than those of As, Cd and Hg. Atmospheric As, Pb and Cd contamination was mainly from domestic sources of coal combustion and nonferrous smelting. Mercury contamination was mainly from global and Asian sources in the first half of the 20th century, and domestic emissions gradually dominated Hg contamination after the mid-1900s.
Collapse
Affiliation(s)
- Mengyao Liang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China; College of Marine Geosciences, Ocean University of China, Qingdao, 266100, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China.
| | - Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China
| | - Qinghui Zhang
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China
| | - Jinling Xu
- College of Geography and Environment, Shandong Normal University, Ji'nan, 250358, PR China
| | - Ming Ji
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, 653100, PR China
| | - Enlou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|
44
|
Nipen M, Jørgensen SJ, Bohlin-Nizzetto P, Borgå K, Breivik K, Mmochi AJ, Mwakalapa EB, Quant MI, Schlabach M, Vogt RD, Wania F. Mercury in air and soil on an urban-rural transect in East Africa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:921-931. [PMID: 35583028 DOI: 10.1039/d2em00040g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There are large knowledge gaps concerning concentrations, sources, emissions, and spatial trends of mercury (Hg) in the atmosphere in developing regions of the Southern Hemisphere, particularly in urban areas. Filling these gaps is a prerequisite for assessing the effectiveness of international regulation and for enabling a better understanding of the global transport of Hg in the environment. Here we use a passive sampling technique to study the spatial distribution of gaseous elemental Hg (Hg(0), GEM) and assess emission sources in and around Dar es Salaam, Tanzania's largest city. Included in the study were the city's main municipal waste dumpsite and an e-waste processing facility as potential sources of GEM. To complement the GEM data and for a better overview of the Hg contamination status of Dar es Salaam, soil samples were collected from the same locations where passive air samplers were deployed and analysed for total Hg. Overall, GEM concentrations ranged between <0.86 and 5.34 ng m-3, indicating significant local sources within the urban area. The municipal waste dumpsite and e-waste site had GEM concentrations elevated above the background, at 2.41 and 1.77 ng m-3, respectively. Hg concentrations in soil in the region (range 0.0067 to 0.098 mg kg-1) were low compared to those of other urban areas and were not correlated with atmospheric GEM concentrations. This study demonstrates that GEM is a significant environmental issue in the urban region of Dar es Salaam. Further studies from urban areas in the Global South are needed to better identify sources of GEM.
Collapse
Affiliation(s)
- Maja Nipen
- Centre for Biogeochemistry in the Anthropocene, Department of Chemistry, University of Oslo, P.O. Box 1033, 0315 Oslo, Norway.
- NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| | - Susanne Jøntvedt Jørgensen
- Centre for Biogeochemistry in the Anthropocene, Department of Chemistry, University of Oslo, P.O. Box 1033, 0315 Oslo, Norway.
| | | | - Katrine Borgå
- Aquatic Biology and Toxicology and Centre for Biogeochemistry in the Anthropocene, Department of Biosciences, University of Oslo, P.O. Box 1066, 0316 Oslo, Norway
| | - Knut Breivik
- Centre for Biogeochemistry in the Anthropocene, Department of Chemistry, University of Oslo, P.O. Box 1033, 0315 Oslo, Norway.
- NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| | - Aviti John Mmochi
- Institute for Marine Sciences, University of Dar Es Salaam, Zanzibar, Tanzania
| | | | - M Isabel Quant
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265, Military Trail, ON MIC 1A4 Toronto, Canada
| | - Martin Schlabach
- NILU-Norwegian Institute for Air Research, P.O. Box 100, 2027 Kjeller, Norway
| | | | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265, Military Trail, ON MIC 1A4 Toronto, Canada
| |
Collapse
|
45
|
Lippold A, Boltunov A, Aars J, Andersen M, Blanchet MA, Dietz R, Eulaers I, Morshina TN, Sevastyanov VS, Welker JM, Routti H. Spatial variation in mercury concentrations in polar bear (Ursus maritimus) hair from the Norwegian and Russian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153572. [PMID: 35121036 DOI: 10.1016/j.scitotenv.2022.153572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
We examined spatial variation in total mercury (THg) concentrations in 100 hair samples collected between 2008 and 2016 from 87 polar bears (Ursus maritimus) from the Norwegian (Svalbard Archipelago, western Barents Sea) and Russian Arctic (Kara Sea, Laptev Sea, and Chukchi Sea). We used latitude and longitude of home range centroid for the Norwegian bears and capture position for the Russian bears to account for the locality. We additionally examined hair stable isotope values of carbon (δ13C) and nitrogen (δ15N) to investigate feeding habits and their possible effect on THg concentrations. Median THg levels in polar bears from the Norwegian Arctic (1.99 μg g-1 dry weight) and the three Russian Arctic regions (1.33-1.75 μg g-1 dry weight) constituted about 25-50% of levels typically reported for the Greenlandic or North American populations. Total Hg concentrations in the Norwegian bears increased with intake of marine and higher trophic prey, while δ13C and δ15N did not explain variation in THg concentrations in the Russian bears. Total Hg levels were higher in northwest compared to southeast Svalbard. δ13C and δ15N values did not show any spatial pattern in the Norwegian Arctic. Total Hg concentrations adjusted for feeding ecology showed similar spatial trends as the measured concentrations. In contrast, within the Russian Arctic, THg levels were rather uniformly distributed, whereas δ13C values increased towards the east and south. The results indicate that Hg exposure in Norwegian and Russian polar bears is at the lower end of the pan-Arctic spectrum, and its spatial variation in the Norwegian and Russian Arctic is not driven by the feeding ecology of polar bears.
Collapse
Affiliation(s)
- Anna Lippold
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | - Andrei Boltunov
- Marine Mammal Research and Expedition Centre, 36 Nahimovskiy pr., Moscow 117997, Russia
| | - Jon Aars
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway
| | | | - Marie-Anne Blanchet
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway; UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Rune Dietz
- Aarhus University, Institute of Ecoscience, Arctic Research Centre, Roskilde 4000, Denmark
| | - Igor Eulaers
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway; Aarhus University, Institute of Ecoscience, Arctic Research Centre, Roskilde 4000, Denmark
| | - Tamara N Morshina
- Research and Production Association "Typhoon", 249038 Obninsk, Kaluga Region, Russia
| | | | - Jeffrey M Welker
- University of Alaska Anchorage, Anchorage 99508, United States; University of Oulu, Oulu 90014, Finland; University of the Arctic, Rovaniemi 96460, Finland
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, Tromsø 9296, Norway.
| |
Collapse
|
46
|
Multidecadal declines in particulate mercury and sediment export from Russian rivers in the pan-Arctic basin. Proc Natl Acad Sci U S A 2022; 119:e2119857119. [PMID: 35344436 PMCID: PMC9168841 DOI: 10.1073/pnas.2119857119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Russian rivers are the predominant source of riverine mercury to the Arctic Ocean, where methylmercury biomagnifies to high levels in food webs. Pollution controls are thought to have decreased late–20th-century mercury loading to Arctic watersheds, but there are no published long-term observations on mercury in Russian rivers. Here, we present a unique hydrochemistry dataset to determine trends in Russian river particulate mercury concentrations and fluxes in recent decades. Using hydrologic and mercury deposition modeling together with multivariate time series analysis, we determine that 70 to 90% declines in particulate mercury fluxes were driven by pollution reductions and sedimentation in reservoirs. Results suggest that Russian rivers likely dominated over all other sources of mercury to the Arctic Ocean until recently. High levels of methylmercury accumulation in marine biota are a concern throughout the Arctic, where coastal ocean ecosystems received large riverine inputs of mercury (Hg) (40 Mg⋅y−1) and sediment (20 Tg⋅y−1) during the last decade, primarily from major Russian rivers. Hg concentrations in fish harvested from these rivers have declined since the late 20th century, but no temporal data on riverine Hg, which is often strongly associated with suspended sediments, were previously available. Here, we investigate temporal trends in Russian river particulate Hg (PHg) and total suspended solids (TSS) to better understand recent changes in the Arctic Hg cycle and its potential future trajectories. We used 1,300 measurements of Hg in TSS together with discharge observations made by Russian hydrochemistry and hydrology monitoring programs to examine changes in PHg and TSS concentrations and fluxes in eight major Russian rivers between ca. 1975 and 2010. Due to decreases in both PHg concentrations (micrograms per gram) and TSS loads, annual PHg export declined from 47 to 7 Mg⋅y−1 overall and up to 92% for individual rivers. Modeling of atmospheric Hg deposition together with published inventories on reservoir establishment and industrial Hg release point to decreased pollution and sedimentation within reservoirs as predominant drivers of declining PHg export. We estimate that Russian rivers were the primary source of Hg to the Arctic Ocean in the mid to late 20th century.
Collapse
|
47
|
Li Y, Chen L, Liang S, Zhou H, Liu YR, Zhong H, Yang Z. Looping Mercury Cycle in Global Environmental-Economic System Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2861-2879. [PMID: 35129955 DOI: 10.1021/acs.est.1c03936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Minamata Convention on Mercury calls for Hg control actions to protect the environment and human beings from the adverse impacts of Hg pollution. It aims at the entire life cycle of Hg. Existing studies on the Hg cycle in the global environmental-economic system have characterized the emission-to-impact pathway of Hg pollution. That is, Hg emissions/releases from the economic system can have adverse impacts on human health and ecosystems. However, current modeling of the Hg cycle is not fully looped. It ignores the feedback of Hg-related environmental impacts (including human health impacts and ecosystem impacts) to the economic system. This would impede the development of more comprehensive Hg control actions. By synthesizing recent information on Hg cycle modeling, this critical review found that Hg-related environmental impacts would have feedbacks to the economic system via the labor force and biodiversity loss. However, the interactions between Hg-related activities in the environmental and economic systems are not completely clear. The cascading effects of Hg-related environmental impacts to the economic system throughout global supply chains have not been revealed. Here, we emphasize the knowledge gaps and propose possible approaches for looping the Hg cycle in global environmental-economic system modeling. This progress is crucial for formulating more dynamic and flexible Hg control measures. It provides new perspectives for the implementation of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Yumeng Li
- School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Long Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, P. R. China
| | - Sai Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Haifeng Zhou
- School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Yu-Rong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhifeng Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
48
|
Assessment of Mercury Concentrations and Fluxes Deposited from the Atmosphere on the Territory of the Yamal-Nenets Autonomous Area. ATMOSPHERE 2021. [DOI: 10.3390/atmos13010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The problem of mercury input and its further distribution in the Arctic environment is actively debated, especially in recent times, due to the observed processes of permafrost thawing causing the enhanced release of mercury into the Arctic atmosphere and further distribution in the terrestrial and aquatic ecosystem. The atmospheric mercury deposition occurs via dry deposition and wet scavenging by precipitation events. Here we present a study of Hg in wet precipitation on the remote territory of the Russian Arctic; the data were obtained at the monitoring stations Nadym and Salekhard in 2016–2018. Mercury pollution of the Salekhard atmosphere in cold time is mainly determined by regional and local sources, while in Nadym, long-range transport of mercury and local fuel combustion are the main sources of pollutants in the cold season, while internal regional sources have a greater impact on the warm season. Total mercury concentrations in wet precipitation in Nadym varied from <0.5 to 63.3 ng/L. The highest Hg concentrations in the springtime were most likely attributed to atmospheric mercury depletion events (AMDE). The contributions of wet atmospheric precipitation during the AMDE period to the annual Hg deposition were 16.7% and 9.8% in 2016/2017 and 2017/2018, respectively. The average annual volume-weighted Hg concentration (VWC) in the atmospheric precipitation in Nadym is notably higher than the values reported for the remote regions in the Arctic and comparable with the values obtained for the other urbanized regions of the world. Annual Hg fluxes in Nadym are nevertheless close to the average annual fluxes for remote territories of the Arctic zone and significantly lower than the annual fluxes reported for unpolluted sites of continental-scale monitoring networks of the different parts of the world (USA, Europe, and China). The increase of Hg deposition flux with wet precipitation in Nadym in 2018 might be caused by regional emissions of gas and oil combustion, wildfires, and Hg re-emission from soils due to the rising air temperature. The 37 cm increase of the seasonally thawed layer (STL) in 2018 compared to the 10-year average reflects that the climatic changes in the Nadym region might increase Hg(0) evasion, considering a great pool of Hg is contained in permafrost.
Collapse
|
49
|
Angot H, Rutkowski E, Sargent M, Wofsy SC, Hutyra LR, Howard D, Obrist D, Selin NE. Atmospheric mercury sources in a coastal-urban environment: a case study in Boston, Massachusetts, USA. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1914-1929. [PMID: 34739015 DOI: 10.1039/d1em00253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is an environmental toxicant dangerous to human health and the environment. Its anthropogenic emissions are regulated by global, regional, and local policies. Here, we investigate Hg sources in the coastal city of Boston, the third largest metropolitan area in the Northeastern United States. With a median of 1.37 ng m-3, atmospheric Hg concentrations measured from August 2017 to April 2019 were at the low end of the range reported in the Northern Hemisphere and in the range reported at North American rural sites. Despite relatively low ambient Hg concentrations, we estimate anthropogenic emissions to be 3-7 times higher than in current emission inventories using a measurement-model framework, suggesting an underestimation of small point and/or nonpoint emissions. We also test the hypothesis that a legacy Hg source from the ocean contributes to atmospheric Hg concentrations in the study area; legacy emissions (recycling of previously deposited Hg) account for ∼60% of Hg emitted annually worldwide (and much of this recycling takes place through the oceans). We find that elevated concentrations observed during easterly oceanic winds can be fully explained by low wind speeds and recirculating air allowing for accumulation of land-based emissions. This study suggests that the influence of nonpoint land-based emissions may be comparable in size to point sources in some regions and highlights the benefits of further top-down studies in other areas.
Collapse
Affiliation(s)
- Hélène Angot
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne (EPFL) Valais, Wallis, Sion, Switzerland
| | - Emma Rutkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maryann Sargent
- School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
| | - Steven C Wofsy
- School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
| | - Lucy R Hutyra
- Department of Earth and Environment, Boston University, Boston, MA, USA
| | - Dean Howard
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts-Lowell, MA, USA
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel Obrist
- Department of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts-Lowell, MA, USA
| | - Noelle E Selin
- Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
50
|
Roberts SL, Kirk JL, Muir DCG, Wiklund JA, Evans MS, Gleason A, Tam A, Drevnick PE, Dastoor A, Ryjkov A, Yang F, Wang X, Lawson G, Pilote M, Keating J, Barst BD, Ahad JME, Cooke CA. Quantification of Spatial and Temporal Trends in Atmospheric Mercury Deposition across Canada over the Past 30 Years. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15766-15775. [PMID: 34792335 DOI: 10.1021/acs.est.1c04034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a pollutant of concern across Canada and transboundary anthropogenic Hg sources presently account for over 95% of national anthropogenic Hg deposition. This study applies novel statistical analyses of 82 high-resolution dated lake sediment cores collected from 19 regions across Canada, including nearby point sources and in remote regions and spanning a full west-east geographical range of ∼4900 km (south of 60°N and between 132 and 64°W) to quantify the recent (1990-2018) spatial and temporal trends in anthropogenic atmospheric Hg deposition. Temporal trend analysis shows significant synchronous decreasing trends in post-1990 anthropogenic Hg fluxes in western Canada in contrast to increasing trends in the east, with spatial patterns largely driven by longitude and proximity to known point source(s). Recent sediment-derived Hg fluxes agreed well with the available wet deposition monitoring. Sediment-derived atmospheric Hg deposition rates also compared well to the modeled values derived from the Hg model, when lake sites located nearby (<100 km) point sources were omitted due to difficulties in comparison between the sediment-derived and modeled values at deposition "hot spots". This highlights the applicability of multi-core approaches to quantify spatio-temporal changes in Hg deposition over broad geographic ranges and assess the effectiveness of regional and global Hg emission reductions to address global Hg pollution concerns.
Collapse
Affiliation(s)
- Sarah L Roberts
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Johan A Wiklund
- Biology Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Marlene S Evans
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Amber Gleason
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Allison Tam
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Paul E Drevnick
- Alberta Environment and Parks, 3535 Research Road NW, Calgary, Alberta T2L 2K8, Canada
- National Institute of Scientific Research, Centre Eau Terre Environment, 490 rue de la Couronne, Québec, Québec G1K 9A9, Canada
| | - Ashu Dastoor
- Air Quality Research Division, Environment and Climate Change Canada, Québec H9P 1J3, Canada
| | - Andrei Ryjkov
- Air Quality Research Division, Environment and Climate Change Canada, Québec H9P 1J3, Canada
| | - Fan Yang
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Xiaowa Wang
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Greg Lawson
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7R 4A6, Canada
| | - Martin Pilote
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, Québec H2Y 2E7, Canada
| | - Jonathan Keating
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Benjamin D Barst
- National Institute of Scientific Research, Centre Eau Terre Environment, 490 rue de la Couronne, Québec, Québec G1K 9A9, Canada
- Water and Environment Research Center, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Jason M E Ahad
- Geological Survey of Canada─Québec Division, Québec G1K 9A9, Canada
| | - Colin A Cooke
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
- Alberta Environment and Parks, 9888 Jasper Ave, Edmonton, Alberta T5J 5C6, Canada
| |
Collapse
|