1
|
Peng K, Wammes JD, Nguyen A, Iordan CR, Norman KA, Turk-Browne NB. Inducing representational change in the hippocampus through real-time neurofeedback. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230091. [PMID: 39428880 PMCID: PMC11491844 DOI: 10.1098/rstb.2023.0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/10/2024] [Accepted: 07/08/2024] [Indexed: 10/22/2024] Open
Abstract
When you perceive or remember something, other related things come to mind, affecting how these competing items are subsequently perceived and remembered. Such behavioural consequences are believed to result from changes in the overlap of neural representations of these items, especially in the hippocampus. According to multiple theories, hippocampal overlap should increase (integration) when there is high coactivation between cortical representations. However, prior studies used indirect proxies for coactivation by manipulating stimulus similarity or task demands. Here, we induce coactivation in visual cortex more directly using closed-loop neurofeedback from real-time functional magnetic resonance imaging (fMRI). While viewing one object, participants were rewarded for activating the representation of another object as strongly as possible. Across multiple real-time fMRI sessions, participants succeeded in using this neurofeedback to increase coactivation. Compared with a baseline of untrained objects, this protocol led to memory integration in behaviour and the brain: the trained objects became harder for participants to discriminate behaviourally in a categorical perception task and harder to discriminate neurally from patterns of fMRI activity in their hippocampus as a result of losing unique features. These findings demonstrate that neurofeedback can be used to alter and combine memories.This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Kailong Peng
- Department of Psychology, Yale University, New Haven, CT06510, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Jeffrey D. Wammes
- Department of Psychology, Queen’s University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | - Alex Nguyen
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Coraline Rinn Iordan
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Kenneth A. Norman
- Department of Psychology, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nicholas B. Turk-Browne
- Department of Psychology, Yale University, New Haven, CT06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Rait LI, Hutchinson JB. Recall as a Window into Hippocampally Defined Events. J Cogn Neurosci 2024; 36:2386-2400. [PMID: 38820552 DOI: 10.1162/jocn_a_02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
We experience the present as a continuous stream of information, but often experience the past in parcels of unique events or episodes. Decades of research have helped to articulate how we perform this event segmentation in the moment, as well as how events and their boundaries influence what we later remember. More recently, neuroscientific research has suggested that the hippocampus plays a role at critical moments during event formation alongside its established role in enabling subsequent recall. Here, we review and explore the relationship between event processing and recall with the perspective that it can be uniquely characterized by the contributions of the hippocampus and its interactions with the rest of the brain. Specifically, we highlight a growing number of empirical studies suggesting that the hippocampus is important for processing events that have just ended, bridging the gap between the prior and current event, and influencing the contents and trajectories of recalled information. We also catalogue and summarize the multifaceted sets of findings concerning how recall is influenced by event structure. Lastly, we discuss several exciting directions for future research and how our understanding of events might be enriched by characterizing them in terms of the operations of different regions of the brain.
Collapse
|
3
|
Tarder-Stoll H, Baldassano C, Aly M. The brain hierarchically represents the past and future during multistep anticipation. Nat Commun 2024; 15:9094. [PMID: 39438448 PMCID: PMC11496687 DOI: 10.1038/s41467-024-53293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
Memory for temporal structure enables both planning of future events and retrospection of past events. We investigated how the brain flexibly represents extended temporal sequences into the past and future during anticipation. Participants learned sequences of environments in immersive virtual reality. Pairs of sequences had the same environments in a different order, enabling context-specific learning. During fMRI, participants anticipated upcoming environments multiple steps into the future in a given sequence. Temporal structure was represented in the hippocampus and across higher-order visual regions (1) bidirectionally, with graded representations into the past and future and (2) hierarchically, with further events into the past and future represented in successively more anterior brain regions. In hippocampus, these bidirectional representations were context-specific, and suppression of far-away environments predicted response time costs in anticipation. Together, this work sheds light on how we flexibly represent sequential structure to enable planning over multiple timescales.
Collapse
Affiliation(s)
- Hannah Tarder-Stoll
- Department of Psychology, Columbia University, New York, USA.
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada.
| | | | - Mariam Aly
- Department of Psychology, Columbia University, New York, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Campbell KL, Davis EE. Hyper-Binding: Older Adults Form Too Many Associations, Not Too Few. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2024; 33:292-299. [PMID: 39493580 PMCID: PMC11530341 DOI: 10.1177/09637214241263020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Associative memory declines with age, and this decline is thought to stem from a decreased ability to form new associations or bind information together. However, a growing body of work suggests that (a) the binding process itself remains relatively intact with age when tested implicitly and (b) older adults form excessive associations (or "hyper-bind") because of a decreased ability to control attention. In this article, we review evidence for the hyper-binding hypothesis. This work shows that older adults form more nontarget associations than younger adults, which leads to increased interference at retrieval and forgetting, an effect that may extend to others with poor attentional control, such as children and people with attention-deficit disorder. We discuss why hyper-binding is apparent only under implicit test conditions and how it affects memory for everyday events. Although hyper-binding likely contributes to forgetting, it may also confer certain advantages when seemingly irrelevant associations later become relevant.
Collapse
|
5
|
Davis EE, Tehrani EK, Campbell KL. Some young adults hyper-bind too: Attentional control relates to individual differences in hyper-binding. Psychon Bull Rev 2024; 31:1809-1820. [PMID: 38302792 DOI: 10.3758/s13423-024-02464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Hyper-binding - the erroneous encoding of target and distractor information into associative pairs in memory - has been described as a unique age effect caused by declines in attentional control. Previous work has found that, on average, young adults do not hyper-bind. However, if hyper-binding is caused by reduced attentional control, then young adults with poor attention regulation should also show evidence of hyper-binding. We tested this question with an individual differences approach, using a battery of attentional control tasks and relating this to individual differences in hyper-binding. Participants (N = 121) completed an implicit associative memory test measuring memory for both target-distractor (i.e., hyper-binding) and target-target pairs, followed by a series of tasks measuring attentional control. Our results show that on average, young adults do not hyper-bind, but as predicted, those with poor attentional control show a larger hyper-binding effect than those with good attentional control. Exploratory analyses also suggest that individual differences in attentional control relate to susceptibility to interference at retrieval. These results support the hypothesis that hyper-binding in older adults is due to age-related declines in attentional control, and demonstrate that hyper-binding may be an issue for any individual with poor attentional control, regardless of age.
Collapse
Affiliation(s)
- Emily E Davis
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Edyta K Tehrani
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| | - Karen L Campbell
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada
| |
Collapse
|
6
|
Thieu MK, Wilkins LJ, Aly M. Episodic-semantic linkage for $1000: New semantic knowledge is more strongly coupled with episodic memory in trivia experts. Psychon Bull Rev 2024; 31:1867-1879. [PMID: 38347367 PMCID: PMC11317545 DOI: 10.3758/s13423-024-02469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 06/11/2024]
Abstract
Some people exhibit impressive memory for a wide array of semantic knowledge. What makes these trivia experts better able to learn and retain novel facts? We hypothesized that new semantic knowledge may be more strongly linked to its episodic context in trivia experts. We designed a novel online task in which 132 participants varying in trivia expertise encoded "exhibits" of naturalistic facts with related photos in one of two "museums." Afterward, participants were tested on cued recall of facts and recognition of the associated photo and museum. Greater trivia expertise predicted higher cued recall for novel facts. Critically, trivia experts but not non-experts showed superior fact recall when they remembered both features (photo and museum) of the encoding context. These findings illustrate enhanced links between episodic memory and new semantic learning in trivia experts, and show the value of studying trivia experts as a special population that can shed light on the mechanisms of memory.
Collapse
Affiliation(s)
- Monica K Thieu
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Department of Psychology, Columbia University, New York, NY, USA.
| | - Lauren J Wilkins
- Department of Psychology, Columbia University, New York, NY, USA
- Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, NY, USA
| |
Collapse
|
7
|
Smith DE, Long NM. Top-Down Task Goals Induce the Retrieval State. J Neurosci 2024; 44:e0452242024. [PMID: 38926086 PMCID: PMC11293448 DOI: 10.1523/jneurosci.0452-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Engaging the retrieval state (Tulving, 1983) impacts processing and behavior (Long and Kuhl, 2019, 2021; Smith et al., 2022), but the extent to which top-down factors-explicit instructions and goals-versus bottom-up factors-stimulus properties such as repetition and similarity-jointly or independently induce the retrieval state is unclear. Identifying the impact of bottom-up and top-down factors on retrieval state engagement is critical for understanding how control of task-relevant versus task-irrelevant brain states influence cognition. We conducted between-subjects recognition memory tasks on male and female human participants in which we varied test phase goals. We recorded scalp electroencephalography and used an independently validated mnemonic state classifier (Long, 2023) to measure retrieval state engagement as a function of top-down task goals (recognize old vs detect new items) and bottom-up stimulus repetition (hits vs correct rejections (CRs)). We find that whereas the retrieval state is engaged for hits regardless of top-down goals, the retrieval state is only engaged during CRs when the top-down goal is to recognize old items. Furthermore, retrieval state engagement is greater for low compared to high confidence hits when the task goal is to recognize old items. Together, these results suggest that top-down demands to recognize old items induce the retrieval state independent from bottom-up factors, potentially reflecting the recruitment of internal attention to enable access of a stored representation.
Collapse
Affiliation(s)
- Devyn E Smith
- Department of Psychology, University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
8
|
Vijayarajah S, Schlichting ML. Developmental refinements to neural attentional state during semantic memory retrieval through adolescence. Cortex 2024; 176:77-93. [PMID: 38761418 DOI: 10.1016/j.cortex.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/25/2024] [Accepted: 04/16/2024] [Indexed: 05/20/2024]
Abstract
Despite the fact that attention undergoes protracted development, little is known about how it may support memory refinements in childhood and adolescence. Here, we asked whether people differentially focus their attention on semantic or perceptual information over development during memory retrieval. First, we trained a multivoxel classifier to characterize whole-brain neural patterns reflecting semantic versus perceptual attention in a cued attention task. We then used this classifier to quantify how attention varied in a separate dataset in which children, adolescents, and adults retrieved autobiographical, semantic, and episodic memories. All age groups demonstrated a semantic attentional bias during memory retrieval, with significant age differences in this bias during the semantic task. Trials began with a preparatory picture cue followed by a retrieval question, which allowed us to ask whether attentional biases varied by trial period. Adults showed a semantic bias earlier during the picture cues, whereas adolescents showed this bias during the question. Adults and adolescents also engaged different brain regions-superior parietal cortex and ventral visual regions, respectively-during preparatory picture cues. Our results demonstrate that retrieval-related attention undergoes refinement beyond childhood. These findings suggest that alongside expanding semantic knowledge, attention-related changes may support the maturation of factual knowledge retrieval.
Collapse
|
9
|
Kim H. Material-common and material-specific neural activity during encoding of words and scenes: A neuroimaging meta-analysis. Brain Res 2024; 1829:148794. [PMID: 38301950 DOI: 10.1016/j.brainres.2024.148794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
This study examined the extent to which neural activity during memory encoding demonstrates material-commonness or material-specificity. A meta-analysis of functional magnetic resonance imaging studies was conducted to compare the brain regions associated with subsequent memory effects for word and scene stimuli. The main results were as follows. First, significant subsequent memory effects for both words and scenes were primarily observed within the dorsal attention network. This finding aligns with the perspective that temporal fluctuations in attention modulate the intensity of encoding activity, influencing the success and failure of encoding. Second, multiple prefrontal cortex regions, particularly the left inferior frontal cortex, exhibited stronger subsequent memory effects for words compared to scenes. Conversely, multiple visual processing regions revealed an opposite pattern, with heightened subsequent memory effects for scenes relative to words. These findings suggest that words are more strongly encoded through semantic processing, whereas scenes are primarily encoded through visuo-perceptual processing. In conclusion, these results clarify the material specificity and commonness of encoding-related neural activity, emphasizing the significant role of attention and the distinctions between verbal and pictorial information.
Collapse
Affiliation(s)
- Hongkeun Kim
- Department of Rehabilitation Psychology, Daegu University, 201 Daegudae-ro, Gyeongsan-si, Gyeongsangbuk-do, 38453, Republic of Korea.
| |
Collapse
|
10
|
Asim M, Wang H, Chen X. Shedding light on cholecystokinin's role in hippocampal neuroplasticity and memory formation. Neurosci Biobehav Rev 2024; 159:105615. [PMID: 38437975 DOI: 10.1016/j.neubiorev.2024.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The hippocampus is a crucial brain region involved in the process of forming and consolidating memories. Memories are consolidated in the brain through synaptic plasticity, and a key mechanism underlying this process is called long-term potentiation (LTP). Recent research has shown that cholecystokinin (CCK) plays a role in facilitating the formation of LTP, as well as learning and memory consolidation. However, the specific mechanisms by which CCK is involved in hippocampal neuroplasticity and memory formation are complicated or poorly understood. This literature review aims to explore the role of LTP in memory formation, particularly in relation to hippocampal memory, and to discuss the implications of CCK and its receptors in the formation of hippocampal memories. Additionally, we will examine the circuitry of CCK in the hippocampus and propose potential CCK-dependent mechanisms of synaptic plasticity that contribute to memory formation.
Collapse
Affiliation(s)
- Muhammad Asim
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong.
| | - Huajie Wang
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon Tong, Hong Kong; Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong
| |
Collapse
|
11
|
Raynal E, Schipper K, Brandner C, Ruggeri P, Barral J. Electrocortical correlates of attention differentiate individual capacity in associative learning. NPJ SCIENCE OF LEARNING 2024; 9:20. [PMID: 38499525 PMCID: PMC10948854 DOI: 10.1038/s41539-024-00236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Associative learning abilities vary considerably among individuals, with attentional processes suggested to play a role in these variations. However, the relationship between attentional processes and individual differences in associative learning remains unclear, and whether these variations reflect in event-related potentials (ERPs) is unknown. This study aimed to investigate the relationship between attentional processes and associative learning by recording electrocortical activity of 38 young adults (18-32 years) during an associative learning task. Learning performance was assessed using the signal detection index d'. EEG topographic analyses and source localizations were applied to examine the neural correlates of attention and associative learning. Results revealed that better learning scores are associated with (1) topographic differences during early (126-148 ms) processing of the stimulus, coinciding with a P1 ERP component, which corresponded to a participation of the precuneus (BA 7), (2) topographic differences at 573-638 ms, overlapping with an increase of global field power at 530-600 ms, coinciding with a P3b ERP component and localized within the superior frontal gyrus (BA11) and (3) an increase of global field power at 322-507 ms, underlay by a stronger participation of the middle occipital gyrus (BA 19). These insights into the neural mechanisms underlying individual differences in associative learning suggest that better learners engage attentional processes more efficiently than weaker learners, making more resources available and displaying increased functional activity in areas involved in early attentional processes (BA7) and decision-making processes (BA11) during an associative learning task. This highlights the crucial role of attentional mechanisms in individual learning variability.
Collapse
Affiliation(s)
- Elsa Raynal
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland.
| | - Kate Schipper
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Catherine Brandner
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Paolo Ruggeri
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Barral
- Brain Electrophysiology Attention Movement Laboratory, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Smith DE, Long NM. Top-down task goals induce the retrieval state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583353. [PMID: 38496465 PMCID: PMC10942341 DOI: 10.1101/2024.03.04.583353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Engaging the retrieval state (Tulving, 1983) impacts processing and behavior (Long & Kuhl, 2019, 2021; Smith, Moore, & Long, 2022), but the extent to which top-down factors - explicit instructions and goals - vs. bottom-up factors - stimulus properties such as repetition and similarity - jointly or independently induce the retrieval state is unclear. Identifying the impact of bottom-up and top-down factors on retrieval state engagement is critical for understanding how control of task-relevant vs. task-irrelevant brain states influence cognition. We conducted between-subjects recognition memory tasks on male and female human participants in which we varied test phase goals. We recorded scalp electroencephalography and used an independently validated mnemonic state classifier (Long, 2023) to measure retrieval state engagement as a function of top-down task goals (recognize old vs. detect new items) and bottom-up stimulus repetition (hits vs. correct rejections). We find that whereas the retrieval state is engaged for hits regardless of top-down goals, the retrieval state is only engaged during correct rejections when the top-down goal is to recognize old items. Furthermore, retrieval state engagement is greater for low compared to high confidence hits when the task goal is to recognize old items. Together, these results suggest that top-down demands to recognize old items induce the retrieval state independent from bottom-up factors, potentially reflecting the recruitment of internal attention to enable access of a stored representation. Significance Statement Both top-down goals and automatic bottom-up influences may lead us into a retrieval brain state - a whole-brain pattern of activity that supports our ability to remember the past. Here we tested the extent to which top-down vs. bottom-up factors independently influence the retrieval state by manipulating participants' goals and stimulus repetition during a memory test. We find that in response to the top-down goal to recognize old items, the retrieval state is engaged for both old and new probes, suggesting that top-down and bottom-up factors independently engage the retrieval state. Our interpretation is that top-down demands recruit internal attention in service of the attempt to access a stored representation.
Collapse
|
13
|
Peng K, Wammes JD, Nguyen A, Cătălin Iordan M, Norman KA, Turk-Browne NB. INDUCING REPRESENTATIONAL CHANGE IN THE HIPPOCAMPUS THROUGH REAL-TIME NEUROFEEDBACK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569487. [PMID: 38106228 PMCID: PMC10723264 DOI: 10.1101/2023.12.01.569487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
When you perceive or remember one thing, other related things come to mind. This competition has consequences for how these items are later perceived, attended, or remembered. Such behavioral consequences result from changes in how much the neural representations of the items overlap, especially in the hippocampus. These changes can reflect increased (integration) or decreased (differentiation) overlap; previous studies have posited that the amount of coactivation between competing representations in cortex determines which will occur: high coactivation leads to hippocampal integration, medium coactivation leads to differentiation, and low coactivation is inert. However, those studies used indirect proxies for coactivation, by manipulating stimulus similarity or task demands. Here we induce coactivation of competing memories in visual cortex more directly using closed-loop neurofeedback from real-time fMRI. While viewing one object, participants were rewarded for implicitly activating the representation of another object as strongly as possible. Across multiple real-time fMRI training sessions, they succeeded in using the neurofeedback to induce coactivation. Compared with untrained objects, this coactivation led to behavioral and neural integration: The trained objects became harder for participants to discriminate in a categorical perception task and harder to decode from patterns of fMRI activity in the hippocampus.
Collapse
Affiliation(s)
- Kailong Peng
- Department of Psychology, Interdepartmental Neuroscience Program, Yale University
| | - Jeffrey D Wammes
- Department of Psychology, Centre for Neuroscience Studies, Queen's University
| | - Alex Nguyen
- Department of Psychology, Princeton Neuroscience Institute, Princeton University
| | - Marius Cătălin Iordan
- Department of Brain and Cognitive Sciences, Department of Neuroscience, University of Rochester
| | - Kenneth A Norman
- Department of Psychology, Princeton Neuroscience Institute, Princeton University
| | | |
Collapse
|
14
|
Vijayarajah S, Schlichting ML. Anterior Hippocampal Engagement during Memory Formation Predicts Subsequent False Recognition of Similar Experiences. J Cogn Neurosci 2023; 35:1716-1740. [PMID: 37677052 DOI: 10.1162/jocn_a_02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
People better remember experiences when they orient to meaning over surface-level perceptual features. Such an orientation-related memory boost has been associated with engagement of both hippocampus (HPC) and neocortex during encoding. However, less is known about the neural mechanisms by which a cognitive orientation toward meaning might also promote memory errors, with one open question being whether the HPC-a region traditionally implicated in precise memory formation-also contributes to behavioral imprecision. We used fMRI to characterize encoding-phase signatures as people oriented toward the meaning (story) versus perceptual style (artist) of storybook-style illustrations and then linked them to subsequent true and false memories. We found that story and artist orientation tasks were each associated with both unique univariate profiles and consistent neural states defined using multivoxel patterns. Linking these neural signatures to behavior, we found that greater medial pFC activation and alignment of neural patterns to the story (but not artist) state was related to subsequent memory success on a trial-by-trial basis. Moreover, among successfully remembered experiences, greater anterior HPC engagement at encoding was associated with a higher likelihood of related false recognitions, consistent with the encoding of broad traces in this region. Interestingly, these effects did not reliably vary by cued orientation. These results suggest that, irrespective of the cued encoding orientation, neocortical and hippocampal mechanisms associated with orienting to meaning (story) over perceptual (artist) features may support memory, with the formation of generalizable memories being a specialty of anterior HPC.
Collapse
|
15
|
Sherman BE, Harris BB, Turk-Browne NB, Sinha R, Goldfarb EV. Hippocampal Mechanisms Support Cortisol-Induced Memory Enhancements. J Neurosci 2023; 43:7198-7212. [PMID: 37813570 PMCID: PMC10601369 DOI: 10.1523/jneurosci.0916-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023] Open
Abstract
Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution fMRI, and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure (in both sexes). Behaviorally, hydrocortisone promoted the encoding of subjectively arousing, positive associative memories. Neurally, hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional associations. Cortisol also modified the relationship between hippocampal representations and associative memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional associative memory enhancements under cortisol.SIGNIFICANCE STATEMENT Our daily lives are filled with stressful events, which powerfully shape the way we form episodic memories. For example, stress and stress-related hormones can enhance our memory for emotional events. However, the mechanisms underlying these memory benefits are unclear. In the current study, we combined functional neuroimaging, behavioral tests of memory, and double-blind, placebo-controlled hydrocortisone administration to uncover the effects of the stress-related hormone cortisol on the function of the human hippocampus, a brain region important for episodic memory. We identified novel ways in which cortisol can enhance hippocampal function to promote emotional memories, highlighting the adaptive role of cortisol in shaping memory formation.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, University of Pennsylvania, Philadelphia 19104
| | - Bailey B Harris
- Department of Psychology, UCLA, Los Angeles, California 90095
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
| | - Rajita Sinha
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
| | - Elizabeth V Goldfarb
- Department of Psychology, Yale University, New Haven, Connecticut 06520
- Wu Tsai Institute, Yale University, New Haven, Connecticut 06510
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- National Center for PTSD, VA Connecticut Healthcare System, West Haven, Connecticut 06477
| |
Collapse
|
16
|
Poskanzer C, Aly M. Switching between External and Internal Attention in Hippocampal Networks. J Neurosci 2023; 43:6538-6552. [PMID: 37607818 PMCID: PMC10513067 DOI: 10.1523/jneurosci.0029-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Everyday experience requires processing external signals from the world around us and internal information retrieved from memory. To do both, the brain must fluctuate between states that are optimized for external versus internal attention. Here, we focus on the hippocampus as a region that may serve at the interface between these forms of attention and ask how it switches between prioritizing sensory signals from the external world versus internal signals related to memories and thoughts. Pharmacological, computational, and animal studies have identified input from the cholinergic basal forebrain as important for biasing the hippocampus toward processing external information, whereas complementary research suggests the dorsal attention network (DAN) may aid in allocating attentional resources toward accessing internal information. We therefore tested the hypothesis that the basal forebrain and DAN drive the hippocampus toward external and internal attention, respectively. We used data from 29 human participants (17 female) who completed two attention tasks during fMRI. One task (memory-guided) required proportionally more internal attention, and proportionally less external attention, than the other (explicitly instructed). We discovered that background functional connectivity between the basal forebrain and hippocampus was stronger during the explicitly instructed versus memory-guided task. In contrast, DAN-hippocampus background connectivity was stronger during the memory-guided versus explicitly instructed task. Finally, the strength of DAN-hippocampus background connectivity was correlated with performance on the memory-guided but not explicitly instructed task. Together, these results provide evidence that the basal forebrain and DAN may modulate the hippocampus to switch between external and internal attention.SIGNIFICANCE STATEMENT How does the brain balance the need to pay attention to internal thoughts and external sensations? We focused on the human hippocampus, a region that may serve at the interface between internal and external attention, and asked how its functional connectivity varies based on attentional states. The hippocampus was more strongly coupled with the cholinergic basal forebrain when attentional states were guided by the external world rather than retrieved memories. This pattern flipped for functional connectivity between the hippocampus and dorsal attention network, which was higher for attention tasks that were guided by memory rather than external cues. Together, these findings show that distinct networks in the brain may modulate the hippocampus to switch between external and internal attention.
Collapse
Affiliation(s)
- Craig Poskanzer
- Department of Psychology, Columbia University, New York, New York 10027
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, New York 10027
| |
Collapse
|
17
|
Ai H, Cui Y, Chen N. A "Bandwidth" in cortical representations of multiple faces. Cereb Cortex 2023; 33:10028-10035. [PMID: 37522262 DOI: 10.1093/cercor/bhad262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The human ability to process multiple items simultaneously can be constrained by the extent to which those items are represented by distinct neural populations. In the current study, we used fMRI to investigate the cortical representation of multiple faces. We found that the addition of a second face to occupy both visual hemifields led to an increased response, whereas a further addition of faces within the same visual hemifield resulted in a decreased response. This pattern was widely observed in the occipital visual cortex, the intraparietal sulcus, and extended to the posterior inferotemporal cortex. A parallel trend was found in a behavioral change-detection task, revealing a perceptual "bandwidth" of multiface processing. The sensitivity to face clutter gradually decreased along the ventral pathway, supporting the notion of a buildup of clutter-tolerance representation. These cortical response patterns to face clutters suggest that adding signals with nonoverlapping cortical representation enhanced perception, while adding signals that competed for representation resources impaired perception.
Collapse
Affiliation(s)
- Hailin Ai
- Department of Psychology, School of Social Sciences, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Yuwei Cui
- Department of Psychology, School of Social Sciences, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| | - Nihong Chen
- Department of Psychology, School of Social Sciences, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
- THU-IDG/McGovern Institute for Brain Research, Tsinghua University, Haidian District, Beijing, 100084, P. R. China
| |
Collapse
|
18
|
Huang H, Li R, Zhang J. A review of visual sustained attention: neural mechanisms and computational models. PeerJ 2023; 11:e15351. [PMID: 37334118 PMCID: PMC10274610 DOI: 10.7717/peerj.15351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/13/2023] [Indexed: 06/20/2023] Open
Abstract
Sustained attention is one of the basic abilities of humans to maintain concentration on relevant information while ignoring irrelevant information over extended periods. The purpose of the review is to provide insight into how to integrate neural mechanisms of sustained attention with computational models to facilitate research and application. Although many studies have assessed attention, the evaluation of humans' sustained attention is not sufficiently comprehensive. Hence, this study provides a current review on both neural mechanisms and computational models of visual sustained attention. We first review models, measurements, and neural mechanisms of sustained attention and propose plausible neural pathways for visual sustained attention. Next, we analyze and compare the different computational models of sustained attention that the previous reviews have not systematically summarized. We then provide computational models for automatically detecting vigilance states and evaluation of sustained attention. Finally, we outline possible future trends in the research field of sustained attention.
Collapse
Affiliation(s)
- Huimin Huang
- National Engineering Research Center for E-learning, Central China Normal University, Wuhan, Hubei, China
| | - Rui Li
- National Engineering Research Center for E-learning, Central China Normal University, Wuhan, Hubei, China
| | - Junsong Zhang
- Brain Cognition and Intelligent Computing Lab, Department of Artificial Intelligence, School of Informatics, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
19
|
Berghoff NM, Wilmshurst JM, Page TA, Wessels M, Schlegel B, Malcolm‐Smith S. Determining the neurocognitive profile of children with tuberous sclerosis complex within the Western Cape region of South Africa. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:427-446. [PMID: 36788658 PMCID: PMC10952874 DOI: 10.1111/jir.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a multisystem genetic disorder associated with a wide spectrum of cognitive impairments that can often result in impaired academic, social and adaptive functioning. However, studies investigating TSC have found it difficult to determine whether TSC is associated with a distinct cognitive phenotype and more specifically which aspects of functioning are impaired. Furthermore, children with TSC living in low-income and middle-income countries, like South Africa, experience additional burdens due to low socio-economic status, high mortality rates and poor access to health care and education. Hence, the clinical population of South Africa may vary considerably from those populations from high-income countries discussed in the literature. METHODS A comprehensive neuropsychological battery composed of internationally recognised measures examining attention, working memory, language comprehension, learning and memory, areas of executive function and general intellectual functioning was administered to 17 children clinically diagnosed with TSC. RESULTS The exploration of descriptive data indicated generalised cognitive difficulties in most cognitive domains, aside from memory. With only two participants performing in the average to above-average ranges, the rest of the sample showed poor verbal comprehension, perceptual reasoning, working memory, processing speed, disinhibition, and problems with spatial planning, problem solving, frustration tolerance, set shifting and maintaining a set of rules. Furthermore, correlational findings indicated several associations between socio-demographic and cognitive variables. CONCLUSIONS Importantly, this is the first study to comprehensively examine multiple domains of neurocognitive functioning in a low-resource setting sample of children with TSC. Current study findings showed that children with TSC have generalised impairments across several cognitive domains, rather than domain-specific impairments. Therefore, although examining individual aspects of cognition, such as those found in previous literature, is important, this approach is limiting. With a comprehensive assessment, including understanding the associations between domains, appropriate and directed support can be provided to ensure all aspects of development are addressed and considered.
Collapse
Affiliation(s)
- N. M. Berghoff
- Psychology DepartmentUniversity of Cape TownCape TownSouth Africa
| | - J. M. Wilmshurst
- Department of Paediatric NeurologyUniversity of Cape Town and Red Cross War Memorial Children's HospitalCape TownSouth Africa
| | - T. A. Page
- Psychology DepartmentUniversity of Cape TownCape TownSouth Africa
| | - M. Wessels
- Department of Paediatric NeurologyUniversity of Cape Town and Red Cross War Memorial Children's HospitalCape TownSouth Africa
| | | | - S. Malcolm‐Smith
- Psychology DepartmentUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
20
|
Halpern DJ, Tubridy S, Davachi L, Gureckis TM. Identifying causal subsequent memory effects. Proc Natl Acad Sci U S A 2023; 120:e2120288120. [PMID: 36952384 PMCID: PMC10068819 DOI: 10.1073/pnas.2120288120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/12/2022] [Indexed: 03/24/2023] Open
Abstract
Over 40 y of accumulated research has detailed associations between neuroimaging signals measured during a memory encoding task and later memory performance, across a variety of brain regions, measurement tools, statistical approaches, and behavioral tasks. But the interpretation of these subsequent memory effects (SMEs) remains unclear: if the identified signals reflect cognitive and neural mechanisms of memory encoding, then the underlying neural activity must be causally related to future memory. However, almost all previous SME analyses do not control for potential confounders of this causal interpretation, such as serial position and item effects. We collect a large fMRI dataset and use an experimental design and analysis approach that allows us to statistically adjust for nearly all known exogenous confounding variables. We find that, using standard approaches without adjustment, we replicate several univariate and multivariate subsequent memory effects and are able to predict memory performance across people. However, we are unable to identify any signal that reliably predicts subsequent memory after adjusting for confounding variables, bringing into doubt the causal status of these effects. We apply the same approach to subjects' judgments of learning collected following an encoding period and show that these behavioral measures of mnemonic status do predict memory after adjustments, suggesting that it is possible to measure signals near the time of encoding that reflect causal mechanisms but that existing neuroimaging measures, at least in our data, may not have the precision and specificity to do so.
Collapse
Affiliation(s)
- David J. Halpern
- Department of Psychology, New York University, New York, NY10003
| | - Shannon Tubridy
- Department of Psychology, New York University, New York, NY10003
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY10027
| | - Todd M. Gureckis
- Department of Psychology, New York University, New York, NY10003
| |
Collapse
|
21
|
Amer T, Davachi L. Extra-hippocampal contributions to pattern separation. eLife 2023; 12:e82250. [PMID: 36972123 PMCID: PMC10042541 DOI: 10.7554/elife.82250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pattern separation, or the process by which highly similar stimuli or experiences in memory are represented by non-overlapping neural ensembles, has typically been ascribed to processes supported by the hippocampus. Converging evidence from a wide range of studies, however, suggests that pattern separation is a multistage process supported by a network of brain regions. Based on this evidence, considered together with related findings from the interference resolution literature, we propose the 'cortico-hippocampal pattern separation' (CHiPS) framework, which asserts that brain regions involved in cognitive control play a significant role in pattern separation. Particularly, these regions may contribute to pattern separation by (1) resolving interference in sensory regions that project to the hippocampus, thus regulating its cortical input, or (2) directly modulating hippocampal processes in accordance with task demands. Considering recent interest in how hippocampal operations are modulated by goal states likely represented and regulated by extra-hippocampal regions, we argue that pattern separation is similarly supported by neocortical-hippocampal interactions.
Collapse
Affiliation(s)
- Tarek Amer
- Department of Psychology, University of VictoriaVictoriaCanada
| | - Lila Davachi
- Department of Psychology, Columbia UniversityNew YorkUnited States
- Nathan Kline Research InstituteOrangeburgUnited States
| |
Collapse
|
22
|
Jayakumar M, Balusu C, Aly M. Attentional fluctuations and the temporal organization of memory. Cognition 2023; 235:105408. [PMID: 36893523 DOI: 10.1016/j.cognition.2023.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 03/10/2023]
Abstract
Event boundaries and temporal context shape the organization of episodic memories. We hypothesized that attentional fluctuations during encoding serve as "events" that affect temporal context representations and recall organization. Individuals encoded trial-unique objects during a modified sustained attention task. Memory was tested with free recall. Response time variability during the encoding tasks was used to characterize "in the zone" and "out of the zone" attentional states. We predicted that: 1) "in the zone", vs. "out of the zone", attentional states should be more conducive to maintaining temporal context representations that can cue temporally organized recall; and 2) temporally distant "in the zone" states may enable more recall "leaps" across intervening items. We replicated several important findings in the sustained attention and memory fields, including more online errors during "out of the zone" vs. "in the zone" attentional states and recall that was temporally structured. Yet, across four studies, we found no evidence for either of our main hypotheses. Recall was robustly temporally organized, and there was no difference in recall organization for items encoded "in the zone" vs. "out of the zone". We conclude that temporal context serves as a strong scaffold for episodic memory, one that can support organized recall even for items encoded during relatively poor attentional states. We also highlight the numerous challenges in striking a balance between sustained attention tasks (long blocks of a repetitive task) and memory recall tasks (short lists of unique items) and describe strategies for researchers interested in uniting these two fields.
Collapse
Affiliation(s)
- Manasi Jayakumar
- Department of Psychology, Columbia University, New York, NY 10027, United States of America.
| | - Chinmayi Balusu
- Department of Psychology, Columbia University, New York, NY 10027, United States of America
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, NY 10027, United States of America
| |
Collapse
|
23
|
Sherman BE, Harris BB, Turk-Browne NB, Sinha R, Goldfarb EV. Hippocampal mechanisms support cortisol-induced memory enhancements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527745. [PMID: 36798309 PMCID: PMC9934703 DOI: 10.1101/2023.02.08.527745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Stress can powerfully influence episodic memory, often enhancing memory encoding for emotionally salient information. These stress-induced memory enhancements stand at odds with demonstrations that stress and the stress-related hormone cortisol can negatively affect the hippocampus, a brain region important for episodic memory encoding. To resolve this apparent conflict and determine whether and how the hippocampus supports memory encoding under cortisol, we combined behavioral assays of associative memory, high-resolution functional magnetic resonance imaging (fMRI), and pharmacological manipulation of cortisol in a within-participant, double-blinded procedure. Hydrocortisone led to enhanced functional connectivity between hippocampal subregions, which predicted subsequent memory enhancements for emotional information. Cortisol also modified the relationship between hippocampal representations and memory: whereas hippocampal signatures of distinctiveness predicted memory under placebo, relative integration predicted memory under cortisol. Together, these data provide novel evidence that the human hippocampus contains the necessary machinery to support emotional memory enhancements under stress.
Collapse
Affiliation(s)
| | | | | | | | - Elizabeth V Goldfarb
- Department of Psychology, Yale University
- Wu Tsai Institute, Yale University
- Department of Psychiatry, Yale University
| |
Collapse
|
24
|
Multisensory synchrony of contextual boundaries affects temporal order memory, but not encoding or recognition. PSYCHOLOGICAL RESEARCH 2023; 87:583-597. [PMID: 35482089 PMCID: PMC9047581 DOI: 10.1007/s00426-022-01682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/03/2022] [Indexed: 11/24/2022]
Abstract
We memorize our daily life experiences, which are often multisensory in nature, by segmenting them into distinct event models, in accordance with perceived contextual or situational changes. However, very little is known about how multisensory boundaries affect segmentation, as most studies have focused on unisensory (visual or audio) segmentation. In three experiments, we investigated the effect of multisensory boundaries on segmentation in memory and perception. In Experiment 1, participants encoded lists of pictures while audio and visual contexts changed synchronously or asynchronously. After each list, we tested recognition and temporal associative memory for pictures that were encoded in the same audio-visual context or that crossed a synchronous or an asynchronous multisensory change. We found no effect of multisensory synchrony for recognition memory: synchronous and asynchronous changes similarly impaired recognition for pictures encoded at those changes, compared to pictures encoded further away from those changes. Multisensory synchrony did affect temporal associative memory, which was worse for pictures encoded at synchronous than at asynchronous changes. Follow up experiments showed that this effect was not due to the higher dimensionality of multisensory over unisensory contexts (Experiment 2), nor that it was due to the temporal unpredictability of contextual changes inherent to Experiment 1 (Experiment 3). We argue that participants formed situational expectations through multisensory synchronicity, such that synchronous multisensory changes deviated more strongly from those expectations than asynchronous changes. We discuss our findings in light of supportive and conflicting findings of uni- and multi-sensory segmentation.
Collapse
|
25
|
Dimsdale-Zucker HR, Montchal ME, Reagh ZM, Wang SF, Libby LA, Ranganath C. Representations of Complex Contexts: A Role for Hippocampus. J Cogn Neurosci 2023; 35:90-110. [PMID: 36166300 PMCID: PMC9832373 DOI: 10.1162/jocn_a_01919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hippocampus plays a critical role in supporting episodic memory, in large part by binding together experiences and items with surrounding contextual information. At present, however, little is known about the roles of different hippocampal subfields in supporting this item-context binding. To address this question, we constructed a task in which items were affiliated with differing types of context-cognitive associations that vary at the local, item level and membership in temporally organized lists that linked items together at a global level. Participants made item recognition judgments while undergoing high-resolution fMRI. We performed voxel pattern similarity analyses to answer the question of how human hippocampal subfields represent retrieved information about cognitive states and the time at which a past event took place. As participants recollected previously presented items, activity patterns in the CA23DG subregion carried information about prior cognitive states associated with these items. We found no evidence to suggest reinstatement of information about temporal context at the level of list membership, but exploratory analyses revealed representations of temporal context at a coarse level in conjunction with representations of cognitive contexts. Results are consistent with characterizations of CA23DG as a critical site for binding together items and contexts in the service of memory retrieval.
Collapse
|
26
|
A proposed attention-based model for spatial memory formation and retrieval. Cogn Process 2022; 24:199-212. [PMID: 36576704 DOI: 10.1007/s10339-022-01121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Animals use sensory information and memory to build internal representations of space. It has been shown that such representations extend beyond the geometry of an environment and also encode rich sensory experiences usually referred to as context. In mammals, contextual inputs from sensory cortices appear to be converging on the hippocampus as a key area for spatial representations and memory. How metric and external sensory inputs (e.g., visual context) are combined into a coherent and stable place representation is not fully understood. Here, I review the evidence of attentional effects along the ventral visual pathway and in the medial temporal lobe and propose an attention-based model for the integration of visual context in spatial representations. I further suggest that attention-based retrieval of spatial memories supports a feedback mechanism that allows consolidation of old memories and new sensory experiences related to the same place, thereby contributing to the stability of spatial representations. The resulting model has the potential to generate new hypotheses to explain complex responses of spatial cells such as place cells in the hippocampus.
Collapse
|
27
|
Gao Z, Zheng L, Gouws A, Krieger-Redwood K, Wang X, Varga D, Smallwood J, Jefferies E. Context free and context-dependent conceptual representation in the brain. Cereb Cortex 2022; 33:152-166. [PMID: 35196710 PMCID: PMC9758583 DOI: 10.1093/cercor/bhac058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
How concepts are coded in the brain is a core issue in cognitive neuroscience. Studies have focused on how individual concepts are processed, but the way in which conceptual representation changes to suit the context is unclear. We parametrically manipulated the association strength between words, presented in pairs one word at a time using a slow event-related fMRI design. We combined representational similarity analysis and computational linguistics to probe the neurocomputational content of these trials. Individual word meaning was maintained in supramarginal gyrus (associated with verbal short-term memory) when items were judged to be unrelated, but not when a linking context was retrieved. Context-dependent meaning was instead represented in left lateral prefrontal gyrus (associated with controlled retrieval), angular gyrus, and ventral temporal lobe (regions associated with integrative aspects of memory). Analyses of informational connectivity, examining the similarity of activation patterns across trials between sites, showed that control network regions had more similar multivariate responses across trials when association strength was weak, reflecting a common controlled retrieval state when the task required more unusual associations. These findings indicate that semantic control and representational sites amplify contextually relevant meanings in trials judged to be related.
Collapse
Affiliation(s)
- Zhiyao Gao
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| | - Li Zheng
- Department of Psychology, University of Arizona, Tucson, AZ 85719, United States
| | - André Gouws
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| | - Katya Krieger-Redwood
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| | - Xiuyi Wang
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| | - Dominika Varga
- School of Psychology, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Jonathan Smallwood
- Department of Psychology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Elizabeth Jefferies
- Department of Psychology, University of York, Heslington, NY YO10 5DD, United Kingdom
| |
Collapse
|
28
|
Schildroth S, Kordas K, Bauer JA, Wright RO, Claus Henn B. Environmental Metal Exposure, Neurodevelopment, and the Role of Iron Status: a Review. Curr Environ Health Rep 2022; 9:758-787. [PMID: 35997893 DOI: 10.1007/s40572-022-00378-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Exposure to environmental metals, like lead (Pb), manganese (Mn), and methylmercury (Me-Hg), has consistently been implicated in neurodevelopmental dysfunction. Recent research has focused on identifying modifying factors of metal neurotoxicity in childhood, such as age, sex, and co-exposures. Iron (Fe) status is critical for normal cognitive development during childhood, and current mechanistic, animal, and human evidence suggests that Fe status may be a modifier or mediator of associations between environmental metals and neurodevelopment. The goals of this review are to describe the current state of the epidemiologic literature on the role of Fe status (i.e., hemoglobin, ferritin, blood Fe concentrations) and Fe supplementation in the relationship between metals and children's neurodevelopment, and to identify research gaps. RECENT FINDINGS We identified 30 studies in PubMed and EMBASE that assessed Fe status as a modifier, mediator, or co-exposure of associations of Pb, Me-Hg, Mn, copper (Cu), zinc (Zn), arsenic (As), or metal mixtures measured in early life (prenatal period through 8 years of age) with cognition in children. In experimental studies, co-supplementation of Fe and Zn was associated with better memory and cognition than supplementation with either metal alone. Several observational studies reported interactions between Fe status and Pb, Mn, Zn, or As in relation to developmental indices, memory, attention, and behavior, whereby adverse associations of metals with cognition were worse among Fe-deficient children compared to Fe-sufficient children. Only two studies quantified joint associations of complex metal mixtures that included Fe with neurodevelopment, though findings from these studies were not consistent. Findings support memory and attention as two possible cognitive domains that may be both vulnerable to Fe deficiency and a target of metals toxicity. Major gaps in the literature remain, including evaluating Fe status as a modifier or mediator of metal mixtures and cognition. Given that Fe deficiency is the most common nutritional deficiency worldwide, characterizing Fe status in studies of metals toxicity is important for informing public health interventions.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St., Boston, MA, 02118, USA.
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Julia Anglen Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St., Boston, MA, 02118, USA
| |
Collapse
|
29
|
Poh JH, Vu MAT, Stanek JK, Hsiung A, Egner T, Adcock RA. Hippocampal convergence during anticipatory midbrain activation promotes subsequent memory formation. Nat Commun 2022; 13:6729. [PMID: 36344524 PMCID: PMC9640528 DOI: 10.1038/s41467-022-34459-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
The hippocampus has been a focus of memory research since H.M's surgery abolished his ability to form new memories, yet its mechanistic role in memory remains debated. Here, we identify a candidate memory mechanism: an anticipatory hippocampal "convergence state", observed while awaiting valuable information, and which predicts subsequent learning. During fMRI, participants viewed trivia questions eliciting high or low curiosity, followed seconds later by its answer. We reasoned that encoding success requires a confluence of conditions, so that hippocampal states more conducive to memory formation should converge in state space. To operationalize convergence of neural states, we quantified the typicality of multivoxel patterns in the medial temporal lobes during anticipation and encoding of trivia answers. We found that the typicality of anticipatory hippocampal patterns increased during high curiosity. Crucially, anticipatory hippocampal pattern typicality increased with dopaminergic midbrain activation and uniquely accounted for the association between midbrain activation and subsequent recall. We propose that hippocampal convergence states may complete a cascade from motivation and midbrain activation to memory enhancement, and may be a general predictor of memory formation.
Collapse
Affiliation(s)
- Jia-Hou Poh
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
| | - Mai-Anh T Vu
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Jessica K Stanek
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Abigail Hsiung
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Tobias Egner
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - R Alison Adcock
- Center for Cognitive Neuroscience, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA.
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
30
|
Kapsetaki ME, Zeki S. Human faces and face-like stimuli are more memorable. Psych J 2022; 11:715-719. [PMID: 35666065 PMCID: PMC9796299 DOI: 10.1002/pchj.564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/15/2022] [Indexed: 01/01/2023]
Abstract
We have previously suggested a distinction in the brain processes governing biological and artifactual stimuli. One of the best examples of the biological category consists of human faces, the perception of which appears to be determined by inherited mechanisms or ones rapidly acquired after birth. In extending this work, we inquire here whether there is a higher memorability for images of human faces and whether memorability declines with increasing departure from human faces; if so, the implication would add to the growing evidence of differences in the processing of biological versus artifactual stimuli. To do so, we used images and memorability scores from a large data set of 58,741 images to compare the relative memorability of the following image categories: real human faces versus buildings, and extending this to a comparison of real human faces with five image categories that differ in their grade of resemblance to a real human face. Our findings show that, in general, when we compare the biological category of faces to the artifactual category of buildings, the former is more memorable. Furthermore, there is a gradient in which the more an image resembles a real human face the more memorable it is. Thus, the previously identified differences in biological and artifactual images extend to the field of memory.
Collapse
Affiliation(s)
- Marianna E. Kapsetaki
- Laboratory of Neurobiology, Department of Cell & Developmental BiologyUniversity College LondonLondonUK
| | - Semir Zeki
- Laboratory of Neurobiology, Department of Cell & Developmental BiologyUniversity College LondonLondonUK
| |
Collapse
|
31
|
Nemeth G. The route to recall a dream: theoretical considerations and methodological implications. PSYCHOLOGICAL RESEARCH 2022; 87:964-987. [PMID: 35960337 DOI: 10.1007/s00426-022-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
The goal of this paper is to shed new light on the relation between dream recall and dream experiences by providing a thorough analysis of the process that leads to dream reports. Three crucial steps of this process will be distinguished: dream production (the generation of a conscious experience during sleep), dream encoding (storing a trace of this experience in memory) and dream retrieval (accessing the memory trace upon awakening). The first part of the paper will assess how major theories think about the relationship between dream reports and these distinct steps. The second part will systematise how trait and state factors affecting dream recall-given different theoretical assumptions-might interact with dream production, encoding and retrieval. Understanding how the distinct steps of dream recall can be modulated by different factors is crucial for getting a better grip on how to acquire information about these steps empirically and for drawing methodological conclusions with regard to the tools dream research relies on to collect subjective data about dream experiences. The third part of the paper will analyse how laboratory reports, logs and retrospective scales interact with the different factors that affect the distinct steps leading to dream reports and will argue that prospective methods provide more direct access to data regarding dream production and encoding than retrospective methods, which-due to their inability to provide systematic control over the factors affecting the retrieval stage-screen-off the variability in the production and the encoding of dreams.
Collapse
Affiliation(s)
- Georgina Nemeth
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark, Universitetsbyen 3 Building 1710, 8000, Aarhus C, Denmark.
| |
Collapse
|
32
|
Clarke A, Crivelli-Decker J, Ranganath C. Contextual Expectations Shape Cortical Reinstatement of Sensory Representations. J Neurosci 2022; 42:5956-5965. [PMID: 35750489 PMCID: PMC9337600 DOI: 10.1523/jneurosci.2045-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/29/2023] Open
Abstract
When making a turn at a familiar intersection, we know what items and landmarks will come into view. These perceptual expectations, or predictions, come from our knowledge of the context; however, it is unclear how memory and perceptual systems interact to support the prediction and reactivation of sensory details in cortex. To address this, human participants learned the spatial layout of animals positioned in a cross maze. During fMRI, participants of both sexes navigated between animals to reach a target, and in the process saw a predictable sequence of five animal images. Critically, to isolate activity patterns related to item predictions, rather than bottom-up inputs, one-fourth of trials ended early, with a blank screen presented instead. Using multivariate pattern similarity analysis, we reveal that activity patterns in early visual cortex, posterior medial regions, and the posterior hippocampus showed greater similarity when seeing the same item compared with different items. Further, item effects in posterior hippocampus were specific to the sequence context. Critically, activity patterns associated with seeing an item in visual cortex and posterior medial cortex, were also related to activity patterns when an item was expected, but omitted, suggesting sequence predictions were reinstated in these regions. Finally, multivariate connectivity showed that patterns in the posterior hippocampus at one position in the sequence were related to patterns in early visual cortex and posterior medial cortex at a later position. Together, our results support the idea that hippocampal representations facilitate sensory processing by modulating visual cortical activity in anticipation of expected items.SIGNIFICANCE STATEMENT Our visual world is a series of connected events, where we can predict what we might see next based on our recent past. Understanding the neural circuitry and mechanisms of the perceptual and memory systems that support these expectations is fundamental to revealing how we perceive and act in our world. Using brain imaging, we studied what happens when we expect to see specific visual items, and how such expectations relate to top-down memory signals. We find both visual and memory systems reflect item predictions, and moreover, we show that hippocampal activity supports predictions of future expected items. This demonstrates that the hippocampus acts to predict upcoming items, and reinstates such predictions in cortex.
Collapse
Affiliation(s)
- Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom
| | - Jordan Crivelli-Decker
- Center for Neuroscience, University of California, Davis, California 95618
- Department of Psychology, University of California, Davis, California 95616
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, California 95618
- Department of Psychology, University of California, Davis, California 95616
| |
Collapse
|
33
|
Weichart ER, Evans DG, Galdo M, Bahg G, Turner BM. Distributed Neural Systems Support Flexible Attention Updating during Category Learning. J Cogn Neurosci 2022; 34:1761-1779. [PMID: 35704551 DOI: 10.1162/jocn_a_01882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
To accurately categorize items, humans learn to selectively attend to stimulus dimensions that are most relevant to the task. Models of category learning describe the interconnected cognitive processes that contribute to attentional tuning as labeled stimuli are progressively observed. The Adaptive Attention Representation Model (AARM), for example, provides an account whereby categorization decisions are based on the perceptual similarity of a new stimulus to stored exemplars, and dimension-wise attention is updated on every trial in the direction of a feedback-based error gradient. As such, attention modulation as described by AARM requires interactions among orienting, visual perception, memory retrieval, prediction error, and goal maintenance to facilitate learning across trials. The current study explored the neural bases of attention mechanisms using quantitative predictions from AARM to analyze behavioral and fMRI data collected while participants learned novel categories. Generalized linear model analyses revealed patterns of BOLD activation in the parietal cortex (orienting), visual cortex (perception), medial temporal lobe (memory retrieval), basal ganglia (prediction error), and pFC (goal maintenance) that covaried with the magnitude of model-predicted attentional tuning. Results are consistent with AARM's specification of attention modulation as a dynamic property of distributed cognitive systems.
Collapse
|
34
|
Aitken F, Kok P. Hippocampal representations switch from errors to predictions during acquisition of predictive associations. Nat Commun 2022; 13:3294. [PMID: 35676285 PMCID: PMC9178037 DOI: 10.1038/s41467-022-31040-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe constantly exploit the statistical regularities in our environment to help guide our perception. The hippocampus has been suggested to play a pivotal role in both learning environmental statistics, as well as exploiting them to generate perceptual predictions. However, it is unclear how the hippocampus balances encoding new predictive associations with the retrieval of existing ones. Here, we present the results of two high resolution human fMRI studies (N = 24 for both experiments) directly investigating this. Participants were exposed to auditory cues that predicted the identity of an upcoming visual shape (with 75% validity). Using multivoxel decoding analysis, we find that the hippocampus initially preferentially represents unexpected shapes (i.e., those that violate the cue regularities), but later switches to representing the cue-predicted shape regardless of which was actually presented. These findings demonstrate that the hippocampus is involved both acquiring and exploiting predictive associations, and is dominated by either errors or predictions depending on whether learning is ongoing or complete.
Collapse
|
35
|
Chiou SC. Attention modulates incidental memory encoding of human movements. Cogn Process 2022; 23:155-168. [PMID: 35226209 PMCID: PMC9072465 DOI: 10.1007/s10339-022-01078-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
Attention has been shown to enhance the processing of task-relevant information while suppressing the processing of task-irrelevant information. However, it is less clear whether this attentional modulation exists when there is an intrinsic dependence between task-relevant and task-irrelevant information, such as the dependence of temporal processing on spatial information. In this study, we used complex whole-body movement sequences to investigate the extent to which the task-irrelevant spatial information (trajectory) is processed when only the temporal information (rhythm) is in focus. Moreover, we examined, if the task-irrelevant spatial information is "co-selected" with the target temporal information as predicted by the intrinsic spatiotemporal dependence, whether task-driven attention that is actively directed to spatial information provides extra benefits. Through a two-phase experiment (an incidental encoding phase followed by a surprise memory test phase), we found that the task-irrelevant spatial information was not only perceived but also encoded in memory, providing further evidence in support of a relatively automatic co-selection of spatial information in temporal processing. Nevertheless, we also found that movements whose trajectories were intentionally attended to during the encoding phase were recognized better in the test phase than those that were not, indicating a further modulation from attention on incidental memory encoding and information processing.
Collapse
Affiliation(s)
- Shiau-Chuen Chiou
- Neurocognition and Action Research Group, Center for Cognitive Interaction Technology (CITEC), Bielefeld University, Inspiration 1, 33619, Bielefeld, Germany.
- Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
36
|
Sheng J, Zhang L, Liu C, Liu J, Feng J, Zhou Y, Hu H, Xue G. Higher-dimensional neural representations predict better episodic memory. SCIENCE ADVANCES 2022; 8:eabm3829. [PMID: 35442734 PMCID: PMC9020666 DOI: 10.1126/sciadv.abm3829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Episodic memory enables humans to encode and later vividly retrieve information about our rich experiences, yet the neural representations that support this mental capacity are poorly understood. Using a large fMRI dataset (n = 468) of face-name associative memory tasks and principal component analysis to examine neural representational dimensionality (RD), we found that the human brain maintained a high-dimensional representation of faces through hierarchical representation within and beyond the face-selective regions. Critically, greater RD was associated with better subsequent memory performance both within and across participants, and this association was specific to episodic memory but not general cognitive abilities. Furthermore, the frontoparietal activities could suppress the shared low-dimensional fluctuations and reduce the correlations of local neural responses, resulting in greater RD. RD was not associated with the degree of item-specific pattern similarity, and it made complementary contributions to episodic memory. These results provide a mechanistic understanding of the role of RD in supporting accurate episodic memory.
Collapse
|
37
|
Examining the relationship between working memory consolidation and long-term consolidation. Psychon Bull Rev 2022; 29:1625-1648. [PMID: 35357669 DOI: 10.3758/s13423-022-02084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
An emerging area of research is focused on the relationship between working memory and long-term memory and the likely overlap between these processes. Of particular interest is how some information first maintained in working memory is retained for longer periods and eventually preserved in long-term memory. The process of stabilizing transient memory representations for lasting retention is referred to as consolidation in both the working memory and long-term memory literature, although these have historically been viewed as independent constructs. The present review aims to investigate the relationship between working memory consolidation and long-term memory consolidation, which both have rich, but distinct, histories. This review provides an overview of the proposed models and neural mechanisms of both types of consolidation, as well as clinical findings related to consolidation and potential approaches for the manipulation of consolidation. Finally, two hypotheses are proposed to explain the relationship between working memory consolidation and long-term memory consolidation.
Collapse
|
38
|
Medial prefrontal and occipito-temporal activity at encoding determines enhanced recognition of threatening faces after 1.5 years. Brain Struct Funct 2022; 227:1655-1672. [PMID: 35174416 DOI: 10.1007/s00429-022-02462-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
Abstract
Studies demonstrated that faces with threatening emotional expressions are better remembered than non-threatening faces. However, whether this memory advantage persists over years and which neural systems underlie such an effect remains unknown. Here, we employed an individual difference approach to examine whether the neural activity during incidental encoding was associated with differential recognition of faces with emotional expressions (angry, fearful, happy, sad and neutral) after a retention interval of > 1.5 years (N = 89). Behaviorally, we found a better recognition for threatening (angry, fearful) versus non-threatening (happy and neutral) faces after a delay of > 1.5 years, which was driven by forgetting of non-threatening faces compared with immediate recognition after encoding. Multivariate principal component analysis (PCA) on the behavioral responses further confirmed the discriminative recognition performance between threatening and non-threatening faces. A voxel-wise whole-brain analysis on the concomitantly acquired functional magnetic resonance imaging (fMRI) data during incidental encoding revealed that neural activity in bilateral inferior occipital gyrus (IOG) and ventromedial prefrontal/orbitofrontal cortex (vmPFC/OFC) was associated with the individual differences in the discriminative emotional face recognition performance measured by an innovative behavioral pattern similarity analysis (BPSA). The left fusiform face area (FFA) was additionally determined using a regionally focused analysis. Overall, the present study provides evidence that threatening facial expressions lead to persistent face recognition over periods of > 1.5 years, and that differential encoding-related activity in the medial prefrontal cortex and occipito-temporal cortex may underlie this effect.
Collapse
|
39
|
Wammes J, Norman KA, Turk-Browne N. Increasing stimulus similarity drives nonmonotonic representational change in hippocampus. eLife 2022; 11:e68344. [PMID: 34989336 PMCID: PMC8735866 DOI: 10.7554/elife.68344] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Studies of hippocampal learning have obtained seemingly contradictory results, with manipulations that increase coactivation of memories sometimes leading to differentiation of these memories, but sometimes not. These results could potentially be reconciled using the nonmonotonic plasticity hypothesis, which posits that representational change (memories moving apart or together) is a U-shaped function of the coactivation of these memories during learning. Testing this hypothesis requires manipulating coactivation over a wide enough range to reveal the full U-shape. To accomplish this, we used a novel neural network image synthesis procedure to create pairs of stimuli that varied parametrically in their similarity in high-level visual regions that provide input to the hippocampus. Sequences of these pairs were shown to human participants during high-resolution fMRI. As predicted, learning changed the representations of paired images in the dentate gyrus as a U-shaped function of image similarity, with neural differentiation occurring only for moderately similar images.
Collapse
Affiliation(s)
- Jeffrey Wammes
- Department of Psychology, Yale UniversityNew HavenUnited States
- Department of Psychology, Queen’s UniversityKingstonCanada
| | - Kenneth A Norman
- Department of Psychology, Princeton UniversityPrincetonUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | | |
Collapse
|
40
|
da Silva Castanheira K, Lalla A, Ocampo K, Otto AR, Sheldon S. Reward at encoding but not retrieval modulates memory for detailed events. Cognition 2021; 219:104957. [PMID: 34839897 DOI: 10.1016/j.cognition.2021.104957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022]
Abstract
Much of the evidence suggesting that rewards improve memory performance has focused on how explicit rewards facilitate encoding of simplistic stimuli. To expand beyond this focus, the current study tested how explicit rewards presented at encoding as well as retrieval facilitate memory for information contained within complex events. In a single experimental session, participants (N = 88) encoded videos depicting naturalistic events (e.g., getting dressed) and then completed a recognition test probing their memory for different detail types (i.e., event, perceptual, or contextual) from the video stimuli. We manipulated the explicit reward associated with each video, such that accurate memory responses for half the videos were associated with high monetary incentives and half were associated with low monetary incentives. This reward manipulation was presented at either encoding or retrieval during a recognition memory test. The reward manipulation only affected memory when presented at encoding and this effect did not depend on the type of detail probed. Drift Diffusion Modelling further revealed that presenting reward information at encoding engendered greater encoding fidelity-indexed by an increase in drift rate-but did not change response caution at the time of retrieval-indexed by response threshold. Together, our results suggest that presenting reward information when encoding but not retrieving complex events has a general facilitatory effect, likely via attentional processing, on the ability to later remember precise details from the event.
Collapse
Affiliation(s)
| | - Azara Lalla
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Katrina Ocampo
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - A Ross Otto
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
41
|
Zheng L, Gao Z, McAvan AS, Isham EA, Ekstrom AD. Partially overlapping spatial environments trigger reinstatement in hippocampus and schema representations in prefrontal cortex. Nat Commun 2021; 12:6231. [PMID: 34711830 PMCID: PMC8553856 DOI: 10.1038/s41467-021-26560-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
When we remember a city that we have visited, we retrieve places related to finding our goal but also non-target locations within this environment. Yet, understanding how the human brain implements the neural computations underlying holistic retrieval remains unsolved, particularly for shared aspects of environments. Here, human participants learned and retrieved details from three partially overlapping environments while undergoing high-resolution functional magnetic resonance imaging (fMRI). Our findings show reinstatement of stores even when they are not related to a specific trial probe, providing evidence for holistic environmental retrieval. For stores shared between cities, we find evidence for pattern separation (representational orthogonalization) in hippocampal subfield CA2/3/DG and repulsion in CA1 (differentiation beyond orthogonalization). Additionally, our findings demonstrate that medial prefrontal cortex (mPFC) stores representations of the common spatial structure, termed schema, across environments. Together, our findings suggest how unique and common elements of multiple spatial environments are accessed computationally and neurally.
Collapse
Affiliation(s)
- Li Zheng
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Zhiyao Gao
- grid.5685.e0000 0004 1936 9668Department of Psychology, University of York, Heslington, York YO10 5DD UK
| | - Andrew S. McAvan
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Eve A. Isham
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| | - Arne D. Ekstrom
- grid.134563.60000 0001 2168 186XDepartment of Psychology, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XEvelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85721 USA
| |
Collapse
|
42
|
Bejjani C, Egner T. Evaluating the learning of stimulus-control associations through incidental memory of reinforcement events. J Exp Psychol Learn Mem Cogn 2021; 47:1599-1621. [PMID: 34498904 PMCID: PMC8758512 DOI: 10.1037/xlm0001058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cognitive control describes the ability to use internal goals to strategically guide how we process and respond to our environment. Changes in the environment lead to adaptation in control strategies. This type of control learning can be observed in performance adjustments in response to varying proportions of easy to hard trials over blocks of trials on classic control tasks. Known as the list-wide proportion congruent (LWPC) effect, increased difficulty is met with enhanced attentional control. Recent research has shown that motivational manipulations may enhance the LWPC effect, but the underlying mechanisms are not yet understood. We manipulated Stroop proportion congruency over blocks of trials and, after each trial, provided participants with either performance-contingent feedback ("correct/incorrect") or noncontingent feedback ("response logged") above trial-unique, task-irrelevant images (reinforcement events). The LWPC task was followed by a surprise recognition memory task, which allowed us to test whether attention to feedback (incidental memory for the images) varies as a function of proportion congruency, time, performance contingency, and individual differences. We replicated a robust LWPC effect in a large sample (N = 402) but observed no differences in behavior between feedback groups. Importantly, the memory data revealed better encoding of feedback images from context-defining trials (e.g., congruent trials in a mostly congruent block), especially early in a new context and in congruent conditions. Individual differences in reward and punishment sensitivity were not strongly associated with control-learning effects. These results suggest that statistical learning of contextual demand may have a larger impact on control learning than individual differences in motivation. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Christina Bejjani
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708
| | - Tobias Egner
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708
- Center for Cognitive Neuroscience, Duke University, Durham, NC 27708
| |
Collapse
|
43
|
Kim TH, Choi E, Kim H, Kim SY, Kim Y, Kim BN, Park S, Jung KI, Park B, Park MH. The Association Between Hippocampal Volume and Level of Attention in Children and Adolescents. Front Syst Neurosci 2021; 15:671735. [PMID: 34512278 PMCID: PMC8427798 DOI: 10.3389/fnsys.2021.671735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
The hippocampus, which engages in the process of consolidating long-term memories and learning, shows active development during childhood and adolescence. The hippocampus also functionally influences attention. Based on the influence of hippocampal function on attention, it was expected that the volume of the hippocampus would be associated with the difference in attention during childhood and adolescence, in which the brain develops actively. Thus, this study examined the association between hippocampal volume and attention metrics measured by the continuous performance test (CPT) in 115 children and adolescents (mean age = 12.43 ± 3.0, 63 male and 52 female). In association studies with both auditory and visual attention, we found that the bilateral hippocampal volumes showed negative relationships with auditory omission errors. A smaller volume of the left hippocampus also led to a longer auditory response time. However, visual attention did not show any significant relationship with the hippocampal volume. These findings were consistent even after adjusting for the effects of the related covariates (e.g., age, insomnia, and depression). Taken together, this study suggested that the increase in hippocampal volume during childhood and adolescence was associated significantly with better auditory attention.
Collapse
Affiliation(s)
- Tae-Hyeong Kim
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Eunhye Choi
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hayeon Kim
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Shin-Young Kim
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeeun Kim
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bung-Nyun Kim
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Subin Park
- Department of Research Planning, National Center for Mental Health, Seoul, South Korea
| | - Kyu-In Jung
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon-si, South Korea.,Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon-si, South Korea
| | - Min-Hyeon Park
- Department of Psychiatry, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
44
|
deBettencourt MT, Williams SD, Vogel EK, Awh E. Sustained Attention and Spatial Attention Distinctly Influence Long-term Memory Encoding. J Cogn Neurosci 2021; 33:2132-2148. [PMID: 34496022 DOI: 10.1162/jocn_a_01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Our attention is critically important for what we remember. Prior measures of the relationship between attention and memory, however, have largely treated "attention" as a monolith. Here, across three experiments, we provide evidence for two dissociable aspects of attention that influence encoding into long-term memory. Using spatial cues together with a sensitive continuous report procedure, we find that long-term memory response error is affected by both trial-by-trial fluctuations of sustained attention and prioritization via covert spatial attention. Furthermore, using multivariate analyses of EEG, we track both sustained attention and spatial attention before stimulus onset. Intriguingly, even during moments of low sustained attention, there is no decline in the representation of the spatially attended location, showing that these two aspects of attention have robust but independent effects on long-term memory encoding. Finally, sustained and spatial attention predicted distinct variance in long-term memory performance across individuals. That is, the relationship between attention and long-term memory suggests a composite model, wherein distinct attentional subcomponents influence encoding into long-term memory. These results point toward a taxonomy of the distinct attentional processes that constrain our memories.
Collapse
|
45
|
Abstract
In addition to the role that our visual system plays in determining what we are seeing right now, visual computations contribute in important ways to predicting what we will see next. While the role of memory in creating future predictions is often overlooked, efficient predictive computation requires the use of information about the past to estimate future events. In this article, we introduce a framework for understanding the relationship between memory and visual prediction and review the two classes of mechanisms that the visual system relies on to create future predictions. We also discuss the principles that define the mapping from predictive computations to predictive mechanisms and how downstream brain areas interpret the predictive signals computed by the visual system. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nicole C Rust
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Stephanie E Palmer
- Department of Organismal Biology and Anatomy, University of Chicago, Illinois 60637;
| |
Collapse
|
46
|
Panichello MF, Turk-Browne NB. Behavioral and Neural Fusion of Expectation with Sensation. J Cogn Neurosci 2021; 33:814-825. [PMID: 33544058 DOI: 10.1162/jocn_a_01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humans perceive expected stimuli faster and more accurately. However, the mechanism behind the integration of expectations with sensory information during perception remains unclear. We investigated the hypothesis that such integration depends on "fusion"-the weighted averaging of different cues informative about stimulus identity. We first trained participants to map a range of tones onto faces spanning a male-female continuum via associative learning. These two features served as expectation and sensory cues to sex, respectively. We then tested specific predictions about the consequences of fusion by manipulating the congruence of these cues in psychophysical and fMRI experiments. Behavioral judgments and patterns of neural activity in auditory association regions revealed fusion of sensory and expectation cues, providing evidence for a precise computational account of how expectations influence perception.
Collapse
|
47
|
Nelson AJD. The anterior thalamic nuclei and cognition: A role beyond space? Neurosci Biobehav Rev 2021; 126:1-11. [PMID: 33737105 PMCID: PMC8363507 DOI: 10.1016/j.neubiorev.2021.02.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Anterior thalamic nuclei important for specific classes of temporal discriminations. Anterior thalamic nuclei required for hippocampal-dependent contextual processes. Critical role for anterior thalamic nuclei in selective attention. Significance of anterior thalamic – anterior cingulate interactions.
The anterior thalamic nuclei are a vital node within hippocampal-diencephalic-cingulate circuits that support spatial learning and memory. Reflecting this interconnectivity, the overwhelming focus of research into the cognitive functions of the anterior thalamic nuclei has been spatial processing. However, there is increasing evidence that the functions of the anterior thalamic nuclei extend beyond the spatial realm. This work has highlighted how these nuclei are required for certain classes of temporal discrimination as well as their importance for processing other contextual information; revealing parallels with the non-spatial functions of the hippocampal formation. Yet further work has shown how the anterior thalamic nuclei may be important for other forms of non-spatial learning, including a critical role for these nuclei in attentional mechanisms. This evidence signals the need to reconsider the functions of the anterior thalamic within the framework of their wider connections with sites including the anterior cingulate cortex that subserve non-spatial functions.
Collapse
Affiliation(s)
- Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
48
|
Schomaker J, Wittmann BC. Effects of active exploration on novelty-related declarative memory enhancement. Neurobiol Learn Mem 2021; 179:107403. [PMID: 33592311 DOI: 10.1016/j.nlm.2021.107403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/24/2020] [Accepted: 02/04/2021] [Indexed: 11/17/2022]
Abstract
Exploration of novel environments has reliably been shown to enhance learning in rodents. More recently, these effects have been replicated in humans using virtual reality: Memory is enhanced after exploration of novel compared to familiar virtual environments. However, exploration of a novel versus familiar environment differs in another aspect. Navigating familiar territory can rely more on habits, while navigating new territory requires active decision-making. This difference in choices could contribute to the positive effects of novelty exploration on memory. In this study, we aimed to investigate this possibility. Participants familiarized with a virtual environment (day 1) and were exposed to this environment again (day 2 or 3) and to a novel environment (day 2 or 3). Participants either actively explored the environments or were passively exposed to the exploration behavior of another participant in virtual reality. After exposure to the environment, participants performed a word-learning task and filled out questionnaires regarding virtual presence and the novelty seeking personality trait. Mixed models suggested that memory performance was higher after participants actively explored versus were passively exposed to a novel environment, while these effects were reversed for a familiar environment. Bayesian statistics provided further weak evidence that memory performance was influenced by the interaction between novelty and exposure type. Taken together, our findings suggest that active exploration may contribute to novelty-induced memory benefits, but future studies need to confirm this finding.
Collapse
Affiliation(s)
- J Schomaker
- Department of Psychology, Health and Medical Neuropsychology, Leiden University, the Netherlands.
| | - B C Wittmann
- Department of Psychology, Biological Psychology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
49
|
Abstract
There has been considerable controversy in recent years as to whether information held in working memory (WM) is rapidly forgotten or automatically transferred to long-term memory (LTM). Although visual WM capacity is very limited, we appear able to store a virtually infinite amount of information in visual LTM. Still, LTM retrieval often fails. Some view visual WM as a mental sketchpad that is wiped clean when new information enters, but not a consistent precursor of LTM. Others view the WM and LTM systems as inherently linked. Distinguishing between these possibilities has been difficult, as attempts to directly manipulate the active holding of information in visual WM has typically introduced various confounds. Here, we capitalized on the WM system's capacity limitation to control the likelihood that visual information was actively held in WM. Our young-adult participants (N = 103) performed a WM task with unique everyday items, presented in groups of two, four, six, or eight items. Presentation time was adjusted according to the number of items. Subsequently, we tested participants' LTM for items from the WM task. LTM was better for items presented originally within smaller WM set sizes, indicating that WM limitations contribute to subsequent LTM failures, and that holding items in WM enhances LTM encoding. Our results suggest that a limit in WM capacity contributes to an LTM encoding bottleneck for trial-unique familiar objects, with a relatively large effect size.
Collapse
|
50
|
Integration and differentiation of hippocampal memory traces. Neurosci Biobehav Rev 2020; 118:196-208. [DOI: 10.1016/j.neubiorev.2020.07.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 11/23/2022]
|