1
|
Xiong H, Shen Z. Tissue-resident memory T cells in immunotherapy and immune-related adverse events by immune checkpoint inhibitor. Int J Cancer 2024; 155:193-202. [PMID: 38554117 DOI: 10.1002/ijc.34940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tissue-resident memory T cells (TRM) are a specialized subset of T cells that reside in tissues and provide long-term protective immunity against pathogens that enter the body through that specific tissue. TRM cells have specific phenotype and reside preferentially in barrier tissues. Recent studies have revealed that TRM cells are the main target of immune checkpoint inhibitor immunotherapy since their role in cancer immunosurveillance. Furthermore, TRM cells also play a crucial part in pathogenesis of immune-related adverse events (irAEs). Here, we provide a concise review of biological characteristics of TRM cells, and the major advances and recent findings regarding their involvement in immune checkpoint inhibitor immunotherapy and the corresponding irAEs.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Yared N, Papadopoulou M, Barennes P, Pham HP, Quiniou V, Netzer S, Kaminski H, Burguet L, Demeste A, Colas P, Mora-Charrot L, Rousseau B, Izotte J, Zouine A, Gauthereau X, Vermijlen D, Déchanet-Merville J, Capone M. Long-lived central memory γδ T cells confer protection against murine cytomegalovirus reinfection. PLoS Pathog 2024; 20:e1010785. [PMID: 38976755 PMCID: PMC11257398 DOI: 10.1371/journal.ppat.1010785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 07/18/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
The involvement of γδ TCR-bearing lymphocytes in immunological memory has gained increasing interest due to their functional duality between adaptive and innate immunity. γδ T effector memory (TEM) and central memory (TCM) subsets have been identified, but their respective roles in memory responses are poorly understood. In the present study, we used subsequent mouse cytomegalovirus (MCMV) infections of αβ T cell deficient mice in order to analyze the memory potential of γδ T cells. As for CMV-specific αβ T cells, MCMV induced the accumulation of cytolytic, KLRG1+CX3CR1+ γδ TEM that principally localized in infected organ vasculature. Typifying T cell memory, γδ T cell expansion in organs and blood was higher after secondary viral challenge than after primary infection. Viral control upon MCMV reinfection was prevented when masking γδ T-cell receptor, and was associated with a preferential amplification of private and unfocused TCR δ chain repertoire composed of a combination of clonotypes expanded post-primary infection and, more unexpectedly, of novel expanded clonotypes. Finally, long-term-primed γδ TCM cells, but not γδ TEM cells, protected T cell-deficient hosts against MCMV-induced death upon adoptive transfer, probably through their ability to survive and to generate TEM in the recipient host. This better survival potential of TCM cells was confirmed by a detailed scRNASeq analysis of the two γδ T cell memory subsets which also revealed their similarity to classically adaptive αβ CD8 T cells. Overall, our study uncovered memory properties of long-lived TCM γδ T cells that confer protection in a chronic infection, highlighting the interest of this T cell subset in vaccination approaches.
Collapse
Affiliation(s)
- Nathalie Yared
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Maria Papadopoulou
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | - Sonia Netzer
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Hanna Kaminski
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Laure Burguet
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Amandine Demeste
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Pacôme Colas
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Lea Mora-Charrot
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Benoit Rousseau
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, Service Commun des Animaleries, Bordeaux, France
| | - Atika Zouine
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, FACSility, TBM Core, Bordeaux, France
| | - Xavier Gauthereau
- Bordeaux University, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, OneCell, RT-PCR and Single Cell Libraries, TBM Core, Bordeaux, France
| | - David Vermijlen
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Université Libre de Bruxelles Center for Research in Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO department, Walloon ExceLlence Research Institute, Wavre, Belgium
| | - Julie Déchanet-Merville
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| | - Myriam Capone
- Bordeaux University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, ImmunoConcEpt, UMR 5164, ERL 1303, ImmunoConcEpt, Bordeaux, France
| |
Collapse
|
3
|
Nanda N, Alphonse MP. From Host Defense to Metabolic Signatures: Unveiling the Role of γδ T Cells in Bacterial Infections. Biomolecules 2024; 14:225. [PMID: 38397462 PMCID: PMC10886488 DOI: 10.3390/biom14020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The growth of antibiotic-resistant bacterial infections necessitates focusing on host-derived immunotherapies. γδ T cells are an unconventional T cell subset, making up a relatively small portion of healthy circulating lymphocytes but a substantially increased proportion in mucosal and epithelial tissues. γδ T cells are activated and expanded in response to bacterial infection, having the capability to produce proinflammatory cytokines to recruit neutrophils and clear infection. They also play a significant role in dampening immune response to control inflammation and protecting the host against secondary challenge, making them promising targets when developing immunotherapy. Importantly, γδ T cells have differential metabolic states influencing their cytokine profile and subsequent inflammatory capacity. Though these differential metabolic states have not been well studied or reviewed in the context of bacterial infection, they are critical in understanding the mechanistic underpinnings of the host's innate immune response. Therefore, this review will focus on the context-specific host defense conferred by γδ T cells during infection with Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | - Martin P. Alphonse
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
4
|
Pan N, Xiu L, Xu Y, Bao X, Liang Y, Zhang H, Liu B, Feng Y, Guo H, Wu J, Li H, Ma C, Sheng S, Wang T, Wang X. Mammary γδ T cells promote IL-17A-mediated immunity against Staphylococcus aureus-induced mastitis in a microbiota-dependent manner. iScience 2023; 26:108453. [PMID: 38034361 PMCID: PMC10687336 DOI: 10.1016/j.isci.2023.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
Mastitis, a common disease for female during lactation period that could cause a health risk for human or huge economic losses for animals, is mainly caused by S. aureus invasion. Here, we found that neutrophil recruitment via IL-17A-mediated signaling was required for host defense against S. aureus-induced mastitis in a mouse model. The rapid accumulation and activation of Vγ4+ γδ T cells in the early stage of infection triggered the IL-17A-mediated immune response. Interestingly, the accumulation and influence of γδT17 cells in host defense against S. aureus-induced mastitis in a commensal microbiota-dependent manner. Overall, this study, focusing on γδT17 cells, clarified innate immune response mechanisms against S. aureus-induced mastitis, and provided a specific response to target for future immunotherapies. Meanwhile, a link between commensal microbiota community and host defense to S. aureus mammary gland infection may unveil potential therapeutic strategies to combat these intractable infections.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Lei Xiu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Yuanyu Feng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Huibo Guo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Jing Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Cheng Ma
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| | - Ting Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
- Hohhot Inspection and Testing Center, Hohhot 010070, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010000, China
| |
Collapse
|
5
|
Yang T, Barros-Martins J, Wang Z, Wencker M, Zhang J, Smout J, Gambhir P, Janssen A, Schimrock A, Georgiev H, León-Lara X, Weiss S, Huehn J, Prinz I, Krueger A, Foerster R, Walzer T, Ravens S. RORγt + c-Maf + Vγ4 + γδ T cells are generated in the adult thymus but do not reach the periphery. Cell Rep 2023; 42:113230. [PMID: 37815917 DOI: 10.1016/j.celrep.2023.113230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
T cell receptor (TCR) Vγ4-expressing γδ T cells comprise interferon γ (IFNγ)- and interleukin-17 (IL-17)-producing effector subsets, with a preference for IL-17 effector fate decisions during early ontogeny. The existence of adult-thymus-derived IL-17+ T cells (γδ17) remains controversial. Here, we use a mouse model in which T cells are generated exclusively in the adult thymus and employ single-cell chromatin state analysis to study their development. We identify adult-thymus-derived Vγ4 T cells that have all the molecular programs to become IL-17 producers. However, they have reduced IL-17 production capabilities and rarely reach the periphery. Moreover, this study provides high-resolution profiles of Vγ4 T cells in the adult thymus and lymph nodes and identifies Zeb1 as a potential γδ17 cell regulator. Together, this study provides valuable insights into the developmental traits of Vγ4 T cells during adulthood and supports the idea of age-specific signals required for thymic export and/or peripheral maturation of γδ17 cells.
Collapse
Affiliation(s)
- Tao Yang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Ziqing Wang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Wencker
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Jiang Zhang
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Justine Smout
- Experimental Immunology, Helmholtz Centre for Infection Research, 39124 Braunschweig, Germany
| | - Prerna Gambhir
- Molecular Immunology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Ximena León-Lara
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 39124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Hamburg-Eppendorf, 20246 Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Krueger
- Molecular Immunology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Reinhold Foerster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
6
|
Zhou S, Lin H, Kong L, Ma J, Long Z, Qin H, Huang Z, Lin Y, Liu L, Li Z. Effects of Mulberry Leaf Extract on the Liver Function of Juvenile Spotted Sea Bass ( Lateolabrax maculatus). AQUACULTURE NUTRITION 2023; 2023:2892463. [PMID: 37908498 PMCID: PMC10615578 DOI: 10.1155/2023/2892463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/10/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
In order to explore the effect of mulberry leaf extract (ELM) on the liver function of spotted sea bass, 360 fish with healthy constitution (average body weight 9.00 ± 0.02 g) were selected and randomly divided into six groups with three repetitions, and six groups of fish were randomly placed into 18 test tanks (200 L) with 20 fish per tank for the 52-day feeding test. Every day, the fish were fed the experimental feed with different concentrations (0, 3, 6, 9, 12, 15 g/kg) to the level of apparent satiation, with a crude protein content of 48.0% and a crude fat content of 8.6%. And the water temperature was maintained at 25-28°C with a salinity of 0.5%-1‰. After feeding, five fish were randomly selected to collect their livers and serum for detection of indicators. The results showed that, compared with the control group, ELM significantly increased the activities of lipase (LPS) and trypsin (TRS) in the liver, and reached the highest level when the amount of ELM added was 6 g/kg (P < 0.05). ELM significantly increased the activities of lactate dehydrogenase (LDH) and glutamic-oxaloacetic transaminase (GOT) involved in the metabolic process in liver tissue, and GOT activity reached the highest when ELM was added at 9 g/kg, and LDH activity reached the highest when ELM was added at 15 g/kg (P < 0.05). ELM had no significant effect on liver antioxidant enzymes (P > 0.05), but the content of malondialdehyde was significantly reduced (P < 0.05). Compared with the control group, ELM significantly increased the activities of AKP and ACP in the liver, and the AKP activity reached the highest when the ELM addition amount was 3 g/kg, and the ACP activity reached the highest when the ELM addition amount was 9 g/kg (P < 0.05). Through comparative transcriptomic analysis, it was indicated that ELM enhanced the hepatic lipids and carbohydrates metabolism ability, as manifested in the upregulation of expression of phosphatidate phosphatase, glucuronosyltransferase, inositol oxygenase, carbonic anhydrase, and cytochrome c oxidase subunit 2. ELM can also increase the expression of signal transducer and activator of transcription 1, ATP-dependent RNA helicase and C-X-C motif chemokine 9 involved in the immune process. The above results show that the ELM can enhance the digestion, metabolism, and immunity of the liver by increasing the activity of digestive enzymes, metabolic enzymes, and the expression of metabolism and immune regulation genes. This study provides a theoretical basis for the application of ELM in the cultivation of spotted sea bass by exploring the effect of ELM on the liver function of spotted sea bass.
Collapse
Affiliation(s)
- Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Jimei University, Xiamen, China
| |
Collapse
|
7
|
Quintana JF, Sinton MC, Chandrasegaran P, Lestari AN, Heslop R, Cheaib B, Ogunsola J, Ngoyi DM, Kuispond Swar NR, Cooper A, Mabbott NA, Coffelt SB, MacLeod A. γδ T cells control murine skin inflammation and subcutaneous adipose wasting during chronic Trypanosoma brucei infection. Nat Commun 2023; 14:5279. [PMID: 37644007 PMCID: PMC10465518 DOI: 10.1038/s41467-023-40962-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
African trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics. We detect expansion of dermal IL-17A-producing Vγ6+ cells during infection, which occurs in the subcutaneous adipose tissue. In silico cell-cell communication analysis suggests that subcutaneous interstitial preadipocytes trigger T cell activation via Cd40 and Tnfsf18 signalling, amongst others. In vivo, we observe that female mice deficient for IL-17A-producing Vγ6+ cells show extensive inflammation and limit subcutaneous adipose tissue wasting, independently of parasite burden. Based on these observations, we propose that subcutaneous adipocytes and Vγ6+ cells act in concert to limit skin inflammation and adipose tissue wasting. These studies provide new insights into the role of γδ T cell and subcutaneous adipocytes as homeostatic regulators of skin immunity during chronic infection.
Collapse
Affiliation(s)
- Juan F Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation. University of Manchester, Manchester, UK.
| | - Matthew C Sinton
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Praveena Chandrasegaran
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Agatha Nabilla Lestari
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rhiannon Heslop
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bachar Cheaib
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Translational Lung Research Center Heidelberg (TLRC), Center for Infectious Diseases, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - John Ogunsola
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Dieudonne Mumba Ngoyi
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Nono-Raymond Kuispond Swar
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Anneli Cooper
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Seth B Coffelt
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, Veterinary Medicine (SBOHVM), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Wang Y, Hu Y, Liu Y, Shi C, Yu L, Lu N, Zhang C. Liver-resident CD44 hiCD27 - γδT Cells Help to Protect Against Listeria monocytogenes Infection. Cell Mol Gastroenterol Hepatol 2023; 16:923-941. [PMID: 37611663 PMCID: PMC10616555 DOI: 10.1016/j.jcmgh.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND & AIMS Gamma delta (γδ) T cells are heterogeneous and functionally committed to producing interferon (IFN)-γ and interleukin (IL)-17. γδT cells are defined as tissue-resident lymphocytes in barrier tissues. Among them, IL-17-producing γδT cells are relatively abundant in the liver. However, a systematic and comprehensive understanding of the residency characteristics and function of hepatic IL-17A+ γδT cells is lacking. METHODS We undertook a single-cell analysis of γδT17 cells derived from murine livers. A parabiosis model was used to assess tissue residency. Fluorescence-activated cell sorting and adoptive transfer experiments were used to investigate the response and protective role of liver-resident CD44hiCD27- γδT cells in Listeria monocytogenes infection. Transwell assay was used to assess the role of macrophages in the chemotaxis of liver-resident CD44hiCD27- γδT cells. RESULTS We identified hepatic IL-17A-producing γδT cells as CD44hiCD27- γδT cells. They had tissue-resident characteristics and resided principally within the liver. Vγ6+ T cells also exhibited liver-resident features. Liver-resident CD44hiCD27- γδT cells had significantly increased proliferation capacity, and their proportion rapidly increased after infection. Some CD44hiCD27- γδT cells could produce IL-17A and IFN-γ simultaneously in response to Lm infection. Adoptive transfer of hepatic CD44hiCD27- γδT cells into Lm-infected TCRδ-/- mice led to markedly lower bacterial numbers in the liver. Hepatic macrophages promoted the migration and accumulation of liver-resident CD44hiCD27- γδT cells into infection sites. CONCLUSIONS Liver-resident CD44hiCD27- γδT cells protect against Lm infection. Hepatic macrophages coordinate with liver-resident CD44hiCD27- γδT cells and contribute to the clearance of Lm at the early stage of infection corporately.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuxia Liu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chongdeng Shi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linyan Yu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
9
|
Luo W, Bian X, Liu X, Zhang W, Xie Q, Feng L. A new method for the treatment of myocardial ischemia-reperfusion injury based on γδT cell-mediated immune response. Front Cardiovasc Med 2023; 10:1219316. [PMID: 37600023 PMCID: PMC10435296 DOI: 10.3389/fcvm.2023.1219316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Acute myocardial ischemia is a disease with high morbidity and mortality, and re-perfusion is currently the best intervention. However, re-perfusion may lead to further myocardial injury and increase the area of myocardial infarction. The mechanism of myocardial ischemia-re-perfusion injury is complex, but with more in-depth study, it has been proved that the immune system plays an important role in the process of MIRI. Among them, the γδT cell population has received increasing attention as the main early source of IL-17A in many immune response models. Because γδT cells have the characteristics of linking innate immunity and adaptive immunity,they can rapidly produce IL-17A and produce subsequent immune killing of cardiomyocytes. It can be seen that γδT cells play an important role in MIRI. Therefore, here we review the research progress of immune response in myocardial ischemia-re-perfusion injury, the key characteristics of γδT cells and the role of rapidly produced IL-17 in myocardial ischemia-re-perfusion injury, and propose relevant treatment strategies and prospects for myocardial repair, in order to provide new ideas and methods for clinical treatment of myocardial ischemia-re-perfusion injury.
Collapse
Affiliation(s)
- Wei Luo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohong Bian
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaona Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenchao Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xie
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
10
|
Li GQ, Xia J, Zeng W, Luo W, Liu L, Zeng X, Cao D. The intestinal γδ T cells: functions in the gut and in the distant organs. Front Immunol 2023; 14:1206299. [PMID: 37398661 PMCID: PMC10311558 DOI: 10.3389/fimmu.2023.1206299] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Located in the frontline against the largest population of microbiota, the intestinal mucosa of mammals has evolved to become an effective immune system. γδ T cells, a unique T cell subpopulation, are rare in circulation blood and lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium. Via rapid production of cytokines and growth factors, intestinal γδ T cells are key contributors to epithelial homeostasis and immune surveillance of infection. Intriguingly, recent studies have revealed that the intestinal γδ T cells may play novel exciting functions ranging from epithelial plasticity and remodeling in response to carbohydrate diets to the recovery of ischemic stroke. In this review article, we update regulatory molecules newly defined in lymphopoiesis of the intestinal γδ T cells and their novel functions locally in the intestinal mucosa, such as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain injury repair, psychosocial stress responses, and fracture repair. The challenges and potential revenues in intestinal γδ T cell studies are discussed.
Collapse
Affiliation(s)
- Guo-Qing Li
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiliang Xia
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weihong Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research on Gastrointestinal Tumors, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Deliang Cao
- Department of Gastroenterology, Clinical Research Center, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Province Key Laboratory of Cancer Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
11
|
Kidney-resident innate-like memory γδ T cells control chronic Staphylococcus aureus infection of mice. Proc Natl Acad Sci U S A 2023; 120:e2210490120. [PMID: 36574651 PMCID: PMC9910431 DOI: 10.1073/pnas.2210490120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
γδ T cells are involved in the control of Staphylococcus aureus infection, but their importance in protection compared to other T cells is unclear. We used a mouse model of systemic S. aureus infection associated with high bacterial load and persistence in the kidney. Infection caused fulminant accumulation of γδ T cells in the kidney. Renal γδ T cells acquired tissue residency and were maintained in high numbers during chronic infection. At day 7, up to 50% of renal γδ T cells produced IL-17A in situ and a large fraction of renal γδ T cells remained IL-17A+ during chronic infection. Controlled depletion revealed that γδ T cells restricted renal S. aureus replication in the acute infection and provided protection during chronic renal infection and upon reinfection. Our results demonstrate that kidney-resident γδ T cells are nonredundant in limiting local S. aureus growth during chronic infection and provide enhanced protection against reinfection.
Collapse
|
12
|
Abstract
IL-17 cytokine family members have diverse biological functions, promoting protective immunity against many pathogens but also driving inflammatory pathology during infection and autoimmunity. IL-17A and IL-17F are produced by CD4+ and CD8+ T cells, γδ T cells, and various innate immune cell populations in response to IL-1β and IL-23, and they mediate protective immunity against fungi and bacteria by promoting neutrophil recruitment, antimicrobial peptide production and enhanced barrier function. IL-17-driven inflammation is normally controlled by regulatory T cells and the anti-inflammatory cytokines IL-10, TGFβ and IL-35. However, if dysregulated, IL-17 responses can promote immunopathology in the context of infection or autoimmunity. Moreover, IL-17 has been implicated in the pathogenesis of many other disorders with an inflammatory basis, including cardiovascular and neurological diseases. Consequently, the IL-17 pathway is now a key drug target in many autoimmune and chronic inflammatory disorders; therapeutic monoclonal antibodies targeting IL-17A, both IL-17A and IL-17F, the IL-17 receptor, or IL-23 are highly effective in some of these diseases. However, new approaches are needed to specifically regulate IL-17-mediated immunopathology in chronic inflammation and autoimmunity without compromising protective immunity to infection.
Collapse
Affiliation(s)
- Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Wu X, Gu B, Yang H. The role of γδ T cells in the interaction between commensal and pathogenic bacteria in the intestinal mucosa. Int Rev Immunol 2022; 42:379-392. [PMID: 35583374 DOI: 10.1080/08830185.2022.2076846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
The intestinal mucosa is an important structure involved in resistance to pathogen infection. It is mainly composed of four barriers, which have different but interrelated functions. Pathogenic bacteria can damage these intestinal mucosal barriers. Here, we mainly review the mechanisms of pathogen damage to biological barriers. Most γδ T cells are located on the surface of the intestinal mucosa, with the ability to migrate and engage in crosstalk with microorganisms. Commensal bacteria are involved in the activation and migration of γδ T cells to monitor the invasion of pathogens. Pathogen invasion alters the migration pattern of γδ T cells. γδ T cells accelerate pathogen clearance and limit opportunistic invasion of commensal bacteria. By discussing these interactions among γδ T cells, commensal bacteria and pathogenic bacteria, we suggest that γδ T cells may link the interactions between commensal bacteria and pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
Khairallah C, Chu TH, Qiu Z, Imperato JN, Yang D, Sheridan BS. The accumulation of Vγ4 T cells with aging is associated with an increased adaptive Vγ4 T cell response after foodborne Listeria monocytogenes infection of mice. Immun Ageing 2022; 19:19. [PMID: 35501808 PMCID: PMC9063344 DOI: 10.1186/s12979-022-00275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND It is generally accepted that aging has detrimental effects on conventional T cell responses to systemic infections. However, most pathogens naturally invade the body through mucosal barriers. Although mucosal sites are highly enriched in unconventional immune sentinels like γδ T cells, little is currently known about the impact of aging on unconventional mucosal T cell responses. We previously established that foodborne infection with a mouse-adapted internalin A mutant Listeria monocytogenes (Lm) generates an adaptive intestinal memory CD44hi CD27neg Vγ4 T cells capable of co-producing IL-17A and IFNγ. Therefore, we used this model to evaluate the impact of aging on adaptive Vγ4 T cell responses elicited by foodborne infection. RESULTS Foodborne Lm infection of female Balb/c and C57BL/6 mice led to an increased adaptive CD44hi CD27neg Vγ4 T cell response associated with aging. Moreover, Lm-elicited CD44hi CD27neg Vγ4 T cells maintained diverse functional subsets despite some alterations favoring IL-17A production as mice aged. In contrast to the documented susceptibility of aged mice to intravenous Lm infection, mice contained bacteria after foodborne Lm infection suggesting that elevated bacterial burden was not a major factor driving the increased adaptive CD44hi CD27neg Vγ4 T cell response associated with mouse age. However, CD44hi CD27neg Vγ4 T cells accumulated in naïve mice as they aged suggesting that an increased precursor frequency contributes to the robust Lm-elicited mucosal response observed. Body mass did not appear to have a strong positive association with CD44hi CD27neg Vγ4 T cells within age groups. Although an increased adaptive CD44hi CD27neg Vγ4 T cell response may contribute to foodborne Lm resistance of C57BL/6 mice aged 19 or more months, neither anti-TCRδ or anti-IL-17A treatment impacted Lm colonization after primary infection. These results suggest that γδTCR signaling and IL-17A are dispensable for protection after primary foodborne Lm infection consistent with the role of conventional T cells during the early innate immune response to Lm. CONCLUSIONS Lm-elicited adaptive Vγ4 T cells appear resistant to immunosenescence and memory Vγ4 T cells could be utilized to provide protective immune functions during enteric infection of aged hosts. As such, oral immunization might offer an efficient therapeutic approach to generate unconventional memory T cells in the elderly.
Collapse
Affiliation(s)
- Camille Khairallah
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Timothy H. Chu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Zhijuan Qiu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Jessica N. Imperato
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Daniella Yang
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Brian S. Sheridan
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| |
Collapse
|
15
|
Rampoldi F, Prinz I. Three Layers of Intestinal γδ T Cells Talk Different Languages With the Microbiota. Front Immunol 2022; 13:849954. [PMID: 35422795 PMCID: PMC9004464 DOI: 10.3389/fimmu.2022.849954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mucosal surfaces of our body are the main contact site where the immune system encounters non-self molecules from food-derived antigens, pathogens, and symbiotic bacteria. γδ T cells are one of the most abundant populations in the gut. Firstly, they include intestinal intraepithelial lymphocytes, which screen and maintain the intestinal barrier integrity in close contact with the epithelium. A second layer of intestinal γδ T cells is found among lamina propria lymphocytes (LPL)s. These γδ LPLs are able to produce IL-17 and likely have functional overlap with local Th17 cells and innate lymphoid cells. In addition, a third population of γδ T cells resides within the Peyer´s patches, where it is probably involved in antigen presentation and supports the mucosal humoral immunity. Current obstacles in understanding γδ T cells in the gut include the lack of information on cognate ligands of the γδ TCR and an incomplete understanding of their physiological role. In this review, we summarize and discuss what is known about different subpopulations of γδ T cells in the murine and human gut and we discuss their interactions with the gut microbiota in the context of homeostasis and pathogenic infections.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Huang Z, Qian J, Jin Q, Liu F, Zhang G, Gu H, Fu L, Wang Y, Zhang X, Yu Y, Sun J. Expression and Analyses of CXCL9/10/11 and CXCR3 in Ulcerative Cutaneous Tuberculosis. J Interferon Cytokine Res 2022; 42:180-190. [PMID: 35438529 DOI: 10.1089/jir.2021.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We explored the biological functions, signaling pathways, potential inflammation, and immune biomarkers involved in ulcerative cutaneous tuberculosis (UCT). Mycobacterium tuberculosis-infected tissues from UCT patients and patients with noncutaneous tuberculous ulcers (NCTUs) were studied using transcriptomic analysis. Functional enrichment determined using the Gene Ontology database and enrichment of signaling pathways was ascertained using the Kyoto Encyclopedia of Genes and Genomes database. Protein-protein interaction (PPI) networks were analyzed to determine the hub genes. A total of 4,396 differentially expressed genes (DEGs) were identified. DEGs were enriched in CXCR3 chemokine receptor binding, chemokine activity, and cytokine-cytokine receptor interaction and other aspects. Analyses of PPI networks identified 15 hub genes. Expression of chemokine (C-X-C motif) ligand 9 (CXCL9)/10/11 messenger RNA (mRNA) and C-X-C motif chemokine receptor 3 (CXCR3) mRNA in the lesions of patients with UCT increased compared with that in NCTU cases. Expression of CXCL9 mRNA and CXCL10 mRNA in plasma also increased, which was consistent with other test results. We discovered a novel plasma CXC chemokine signature that could be used to differentiate UCT from NCTU. Our study (1) provides a reference for UCT diagnosis and selection of diagnostic markers and (2) lays the foundation for further elucidation of UCT pathogenesis.
Collapse
Affiliation(s)
- Zihui Huang
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - Jiayan Qian
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - Quanyong Jin
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - Fang Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Jiangsu, China
| | - Guoying Zhang
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - Hongwei Gu
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - Liangjie Fu
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - Yuling Wang
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - XiaoYang Zhang
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - Yang Yu
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| | - Jiayue Sun
- Nanjing Municipal Hospital of Traditional Chinese and Western Medicine Affiliated to Nanjing University of Traditional Chinese Medicine, Jiangsu, China
| |
Collapse
|
17
|
Wilharm A, Binz C, Sandrock I, Rampoldi F, Lienenklaus S, Blank E, Winkel A, Demera A, Hovav AH, Stiesch M, Prinz I. Interleukin-17 is disease promoting in early stages and protective in late stages of experimental periodontitis. PLoS One 2022; 17:e0265486. [PMID: 35298525 PMCID: PMC8929577 DOI: 10.1371/journal.pone.0265486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Periodontitis is one of the most common infectious diseases in humans. It is characterized by a chronic inflammation of the tooth-supporting tissue that results in bone loss. However, the role and source of the pro-inflammatory cytokine interleukin-17 (IL-17) and of the cells producing it locally in the gingiva is still controversial. Th17 αβ T cells, CD4+ exFoxP3+ αβ T cells, or IL-17-producing γδ T cells (γδ17 cells) seem to be decisive cellular players in periodontal inflammation. To address these issues in an experimental model for periodontitis, we employed genetic mouse models deficient for either γδ T cells or IL-17 cytokines and assessed the bone loss during experimental periodontal inflammation by stereomicroscopic, histological, and μCT-analysis. Furthermore, we performed flow-cytometric analyses and qPCR-analyses of the gingival tissue. We found no γδ T cell- or IL-17-dependent change in bone loss after four weeks of periodontitis. Apart from that, our data are complementary with earlier studies, which suggested IL-17-dependent aggravation of bone loss in early periodontitis, but a rather bone-protective role for IL-17 in late stages of experimental periodontitis with respect to the osteoclastogenicity defined by the RANKL/OPG ratio.
Collapse
Affiliation(s)
- Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christoph Binz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Eva Blank
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Avi-Hai Hovav
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Wang Y, Guan Y, Hu Y, Li Y, Lu N, Zhang C. Murine CXCR3+CXCR6+γδT Cells Reside in the Liver and Provide Protection Against HBV Infection. Front Immunol 2022; 12:757379. [PMID: 35126348 PMCID: PMC8814360 DOI: 10.3389/fimmu.2021.757379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Gamma delta (γδ) T cells play a key role in the innate immune response and serve as the first line of defense against infection and tumors. These cells are defined as tissue-resident lymphocytes in skin, lung, and intestinal mucosa. They are also relatively abundant in the liver; however, little is known about the residency of hepatic γδT cells. By comparing the phenotype of murine γδT cells in liver, spleen, thymus, and small intestine, a CXCR3+CXCR6+ γδT-cell subset with tissue-resident characteristics was found in liver tissue from embryos through adults. Liver sinusoidal endothelial cells mediated retention of CXCR3+CXCR6+ γδT cells through the interactions between CXCR3 and CXCR6 and their chemokines. During acute HBV infection, CXCR3+CXCR6+ γδT cells produced high levels of IFN-γ and adoptive transfer of CXCR3+CXCR6+ γδT cells into acute HBV-infected TCRδ−/− mice leading to lower HBsAg and HBeAg expression. It is suggested that liver resident CXCR3+CXCR6+ γδT cells play a protective role during acute HBV infection. Strategies aimed at expanding and activating liver resident CXCR3+CXCR6+ γδT cells both in vivo or in vitro have great prospects for use in immunotherapy that specifically targets acute HBV infection.
Collapse
MESH Headings
- Adoptive Transfer/methods
- Animals
- Chemokines/metabolism
- Hepatitis B/metabolism
- Hepatitis B virus/pathogenicity
- Hepatocytes/metabolism
- Hepatocytes/virology
- Intestine, Small/metabolism
- Intestine, Small/virology
- Liver/metabolism
- Liver/virology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, CXCR3/metabolism
- Receptors, CXCR6/metabolism
- Spleen/metabolism
- Spleen/virology
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Thymus Gland/metabolism
- Thymus Gland/virology
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Guan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jining No. 1 People’s Hospital, Jining, China
| | - Yuan Hu
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| | - Cai Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Cai Zhang, ; Nan Lu,
| |
Collapse
|
19
|
The use of foodborne infection to evaluate bacterial pathogenesis and host response. Methods Cell Biol 2022; 168:299-314. [PMID: 35366988 PMCID: PMC10064862 DOI: 10.1016/bs.mcb.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Foodborne bacterial infections are a major cause of gastrointestinal illness. Murine models have been widely used to interrogate bacterial pathogenesis and host response to better understand the pathogens that cause gastrointestinal disease. Humans are usually exposed to these pathogens through consumption of contaminated food products. However, most murine models of foodborne infection rely on oral gavage to deliver pathogens directly into the stomach. While expedient, the gavage procedure may lead to microabrasions in the esophagus that allow direct access of the pathogen to the blood, which can alter bacterial pathogenesis and the host response under study. In this chapter, the alternative approach of foodborne infection through the consumption of inoculated food is described using the human pathogen Listeria monocytogenes (Lm). A detailed protocol of this methodology is provided with details of assessing bacterial burden and the host immune response. Translation of these methods to other foodborne pathogens will allow a more accurate assessment of bacterial pathogenesis and host immunity in more physiologic murine models.
Collapse
|
20
|
Khairallah C, Bettke JA, Gorbatsevych O, Qiu Z, Zhang Y, Cho K, Kim KS, Chu TH, Imperato JN, Hatano S, Romanov G, Yoshikai Y, Puddington L, Surh CD, Bliska JB, van der Velden AWM, Sheridan BS. A blend of broadly-reactive and pathogen-selected Vγ4 Vδ1 T cell receptors confer broad bacterial reactivity of resident memory γδ T cells. Mucosal Immunol 2022; 15:176-187. [PMID: 34462572 PMCID: PMC8738109 DOI: 10.1038/s41385-021-00447-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 02/04/2023]
Abstract
Although murine γδ T cells are largely considered innate immune cells, they have recently been reported to form long-lived memory populations. Much remains unknown about the biology and specificity of memory γδ T cells. Here, we interrogated intestinal memory Vγ4 Vδ1 T cells generated after foodborne Listeria monocytogenes (Lm) infection to uncover an unanticipated complexity in the specificity of these cells. Deep TCR sequencing revealed that a subset of non-canonical Vδ1 clones are selected by Lm infection, consistent with antigen-specific clonal expansion. Ex vivo stimulations and in vivo heterologous challenge infections with diverse pathogenic bacteria revealed that Lm-elicited memory Vγ4 Vδ1 T cells are broadly reactive. The Vγ4 Vδ1 T cell recall response to Lm, Salmonella enterica serovar Typhimurium (STm) and Citrobacter rodentium was largely mediated by the γδTCR as internalizing the γδTCR prevented T cell expansion. Both broadly-reactive canonical and pathogen-selected non-canonical Vδ1 clones contributed to memory responses to Lm and STm. Interestingly, some non-canonical γδ T cell clones selected by Lm infection also responded after STm infection, suggesting some level of cross-reactivity. These findings underscore the promiscuous nature of memory γδ T cells and suggest that pathogen-elicited memory γδ T cells are potential targets for broad-spectrum anti-infective vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/immunology
- Bacterial Infections/immunology
- Bacterial Vaccines/immunology
- Cells, Cultured
- Citrobacter rodentium/physiology
- Cross Reactions
- High-Throughput Nucleotide Sequencing
- Immunity, Heterologous
- Listeria monocytogenes/physiology
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Salmonella typhi/physiology
- T-Cell Antigen Receptor Specificity
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Julie A Bettke
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Oleksandr Gorbatsevych
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yue Zhang
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Kyungjin Cho
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Division of integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kwang Soon Kim
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Division of integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Timothy H Chu
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jessica N Imperato
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Shinya Hatano
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Galina Romanov
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Yasunobo Yoshikai
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Lynn Puddington
- Department of Immunology, University of Connecticut Health, Farmington, CT, USA
| | - Charles D Surh
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang, Republic of Korea
- Division of integrative Biosciences & Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Adrianus W M van der Velden
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Brian S Sheridan
- Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
21
|
Vaccine protection by Cryptococcus neoformans Δsgl1 is mediated by γδ T cells via TLR2 signaling. Mucosal Immunol 2022; 15:1416-1430. [PMID: 36229573 PMCID: PMC9705245 DOI: 10.1038/s41385-022-00570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 02/04/2023]
Abstract
We previously reported that administration of Cryptococcus neoformans Δsgl1 mutant vaccine, accumulating sterylglucosides (SGs) and having normal capsule (GXM), protects mice from a subsequent infection even during CD4+ T cells deficiency, a condition commonly associated with cryptococcosis. Here, we studied the immune mechanism that confers host protection during CD4+T deficiency. Mice receiving Δsgl1 vaccine produce IFNγ and IL-17A during CD4+ T (or CD8+ T) deficiency, and protection was lost when either cytokine was neutralized. IFNγ and/or IL-17A are produced by γδ T cells, and mice lacking these cells are no longer protected. Interestingly, ex vivo γδ T cells are highly stimulated in producing IFNγ and/or IL-17A by Δsgl1 vaccine, but this production was significantly decreased when cells were incubated with C. neoformans Δcap59/Δsgl1 mutant, accumulating SGs but lacking GXM. GXM modulates toll-like receptors (TLRs), including TLR2. Importantly, neither Δsgl1 nor Δcap59/Δsgl1 stimulate IFNγ or IL-17A production by ex vivo γδ T cells from TLR2-/- mice. Finally, TLR2-/- animals do not produce IL-17A in response to Δsgl1 vaccine and were no longer protected from WT challenge. Our results suggest that SGs may act as adjuvants for GXM to stimulate γδ T cells in producing IFNγ and IL-17A via TLR2, a mechanism that is still preserved upon CD4+ T deficiency.
Collapse
|
22
|
Damani-Yokota P, Zhang F, Gillespie A, Park H, Burnside A, Telfer JC, Baldwin CL. Transcriptional programming and gene regulation in WC1 + γδ T cell subpopulations. Mol Immunol 2021; 142:50-62. [PMID: 34959072 DOI: 10.1016/j.molimm.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
γδ T cells represent a high proportion of lymphocytes in the blood of ruminants with the majority expressing lineage-specific glycoproteins from the WC1 family. WC1 receptors are coded for by a multigenic array whose genes have variegated but stable expression among cells in the γδ T cell population. WC1 molecules function as hybrid pattern recognition receptors as well as co-receptors for the TCR and are required for responses by the cells. Because of the variegated gene expression, WC1+ γδ T cells can be divided into two main populations known as WC1.1+ and WC1.2+ based on monoclonal antibody reactivity with the expressed WC1 molecules. These subpopulations differ in their ability to respond to specific pathogens. Here, we showed these populations are established in the thymus and that WC1.1+ and WC1.2+ subpopulations have transcriptional programming that is consistent with stratification towards Tγδ1 or Tγδ17. WC1.1+ cells exhibited the Tγδ1 phenotype with greater transcription of Tbx21 and production of more IFNγ while the WC1.2+ subpopulation tended towards Tγδ17 programming producing higher levels of IL-17 and had greater transcription of Rorc. However, when activated both WC1+ subpopulations' cells transcribed Tbx21 and secreted IFNγ and IL-17 reflecting the complexity of these subpopulations defined by WC1 gene expression. The gene networks involved in development of these two subpopulations including expression of their archetypal genes wc1-3 (WC1.1+) and wc1-4 (WC1.2+) were unknown but we report that SOX-13, a γδ T cell fate-determining transcription factor, has differential occupancy on these WC1 gene loci and suggest a model for development of these subpopulations.
Collapse
Affiliation(s)
- Payal Damani-Yokota
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Haeree Park
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Amy Burnside
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States
| | - Janice C Telfer
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| | - Cynthia L Baldwin
- Program in Molecular & Cellular Biology, University of Massachusetts, Amherst, MA 01003, United States; Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
23
|
Chu TH, Khairallah C, Shieh J, Cho R, Qiu Z, Zhang Y, Eskiocak O, Thanassi DG, Kaplan MH, Beyaz S, Yang VW, Bliska JB, Sheridan BS. γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans. PLoS Pathog 2021; 17:e1010103. [PMID: 34871329 PMCID: PMC8648121 DOI: 10.1371/journal.ppat.1010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/09/2021] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity. Unconventional γδ T cells are a dynamic immune population important for mucosal protection of the intestine against invading pathogens. We determined that the foodborne pathogen Y. pseudotuberculosis preferentially targets an adaptive subset of these cells to subvert immune function. We found that direct injection of Yersinia outer proteins (Yop) into adaptive γδ T cells inhibited their anti-pathogen functions. We screened all Yop effectors and identified YopJ as the sole effector to inhibit adaptive γδ T cell production of IFNγ. We determined that adaptive γδ T cell subversion occurred by limiting activation of the transcription factor STAT4. When we infected mice with Y. pseudotuberculosis expressing an inactive YopJ, this enhanced the adaptive γδ T cell response and led to greater cytokine production from this subset of cells to aid mouse recovery. This mechanism of immune evasion appears conserved in humans as direct injection of Y. pseudotuberculosis YopJ into human γδ T cells inhibited cytokine production. This suggested to us that Y. pseudotuberculosis actively inhibits the adaptive γδ T cell response through YopJ as a mechanism to evade immune surveillance at the site of pathogen invasion.
Collapse
Affiliation(s)
- Timothy H. Chu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Camille Khairallah
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Jason Shieh
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Rhea Cho
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zhijuan Qiu
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Yue Zhang
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Onur Eskiocak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David G. Thanassi
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Vincent W. Yang
- Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Dartmouth, New Hampshire, United States of America
| | - Brian S. Sheridan
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tomas J, Koo Y, Popoff D, Arce-Gorvel V, Hanniffy S, Gorvel JP, Mionnet C. PTX Instructs the Development of Lung-Resident Memory T Cells in Bordetella pertussis Infected Mice. Toxins (Basel) 2021; 13:toxins13090632. [PMID: 34564636 PMCID: PMC8470914 DOI: 10.3390/toxins13090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Whooping cough is a severe, highly contagious disease of the human respiratory tract, caused by Bordetellapertussis. The pathogenicity requires several virulence factors, including pertussis toxin (PTX), a key component of current available vaccines. Current vaccines do not induce mucosal immunity. Tissue-resident memory T cells (Trm) are among the first lines of defense against invading pathogens and are involved in long-term protection. However, the factors involved in Trm establishment remain unknown. Comparing two B.pertussis strains expressing PTX (WT) or not (ΔPTX), we show that the toxin is required to generate both lung CD4+ and CD8+ Trm. Co-administering purified PTX with ΔPTX is sufficient to generate these Trm subsets. Importantly, adoptive transfer of lung CD4+ or CD8+ Trm conferred protection against B. pertussis in naïve mice. Taken together, our data demonstrate for the first time a critical role for PTX in the induction of mucosal long-term protection against B. pertussis.
Collapse
Affiliation(s)
- Julie Tomas
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Yoon Koo
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
- Laboratoire Adhesion & Inflammation, UMR INSERM 1067, UMR CNRS 7333, Aix-Marseille Université Case 937, CEDEX 09, 13288 Marseille, France
| | - Dimitri Popoff
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Sean Hanniffy
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
| | - Cyrille Mionnet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Centre National de la Recherche Scientifique (CNRS), UMR7280, Parc Scientifique et Technologique de Luminy, Case 906, 13288 Marseille, France; (J.T.); (Y.K.); (D.P.); (V.A.-G.); (S.H.); (J.-P.G.)
- Correspondence:
| |
Collapse
|
25
|
Agerholm R, Bekiaris V. Evolved to protect, designed to destroy: IL-17-producing γδ T cells in infection, inflammation, and cancer. Eur J Immunol 2021; 51:2164-2177. [PMID: 34224140 DOI: 10.1002/eji.202049119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/02/2021] [Indexed: 11/09/2022]
Abstract
T cells of the gamma delta (γδ) lineage are evolutionary conserved from jawless to cartilaginous and bony fish to mammals and represent the "swiss army knife" of the immune system capable of antigen-dependent or independent responses, memory, antigen presentation, regulation of other lymphocytes, tissue homeostasis, and mucosal barrier maintenance, to list a few. Over the last 10 years, γδ T cells that produce the cytokine IL-17 (γδT17) have taken a leading position in our understanding of how our immune system battles infection, inflicts tissue damage during inflammation, and gets rewired by the tumor microenvironment. A lot of what we know about γδT17 cells stems from mouse models, however, increasing evidence implicates these cells in numerous human diseases. Herein, we aim to give an overview of the most common mouse models that have been used to study the role of γδT17 cells in infection, inflammation, and cancer, while at the same time we will evaluate evidence for their importance in humans. We hope and believe that in the next 10 years, means to take advantage of the protective and destructive properties of γδ T and in particular γδT17 cells will be part of our standard immunotherapy toolkit.
Collapse
Affiliation(s)
- Rasmus Agerholm
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
26
|
Niec RE, Rudensky AY, Fuchs E. Inflammatory adaptation in barrier tissues. Cell 2021; 184:3361-3375. [PMID: 34171319 DOI: 10.1016/j.cell.2021.05.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/27/2021] [Accepted: 05/19/2021] [Indexed: 02/08/2023]
Abstract
Surface epithelia provide a critical barrier to the outside world. Upon a barrier breach, resident epithelial and immune cells coordinate efforts to control infections and heal tissue damage. Inflammation can etch lasting marks within tissues, altering features such as scope and quality of future responses. By remembering inflammatory experiences, tissues are better equipped to quickly and robustly respond to barrier breaches. Alarmingly, in disease states, memory may fuel the inflammatory fire. Here, we review the cellular communication networks in barrier tissues and the integration between tissue-resident and recruited immune cells and tissue stem cells underlying tissue adaptation to environmental stress.
Collapse
Affiliation(s)
- Rachel E Niec
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA; Department of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Alexander Y Rudensky
- Howard Hughes Medical Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
27
|
Latino I, Gonzalez SF. Spatio-temporal profile of innate inflammatory cells and mediators during influenza virus infection. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Paap EM, Müller TM, Sommer K, Neurath MF, Zundler S. Total Recall: Intestinal T RM Cells in Health and Disease. Front Immunol 2021; 11:623072. [PMID: 33542725 PMCID: PMC7851044 DOI: 10.3389/fimmu.2020.623072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
Tissue-resident memory T cells (TRM cells) have crucial functions in host defense in mucosal tissues. They provide local adaptive immune surveillance and allow the fast initiation of targeted adaptive immune responses in case of antigen re-exposure. Recently, an aberrant activation in the case of immunologically mediated diseases has been increasingly acknowledged. As the organ with the largest interface to the environment, the gastrointestinal tract faces billions of antigens every day. Tightly balanced processes are necessary to ensure tolerance towards non-hazardous antigens, but to set up a powerful immune response against potentially dangerous ones. In this complex nexus of immune cells and their mediators, TRM cells play a central role and have been shown to promote both physiological and pathological events. In this review, we will summarize the current knowledge on the homeostatic functions of TRM cells and delineate their implication in infection control in the gut. Moreover, we will outline their commitment in immune dysregulation in gastrointestinal chronic inflammatory conditions and shed light on TRM cells as current and potential future therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Sebastian Zundler
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Yamana T, Okamoto T, Ishizuka M, Hanzawa S, Ejima M, Shibata S, Miyazaki Y. IL-17A-Secreting Memory γδ T Cells Play a Pivotal Role in Sensitization and Development of Hypersensitivity Pneumonitis. THE JOURNAL OF IMMUNOLOGY 2021; 206:355-365. [PMID: 33310873 DOI: 10.4049/jimmunol.2000198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023]
Abstract
Hypersensitivity pneumonitis (HP) typically presents with interstitial inflammation and granulomas induced by an aberrant immune response to inhaled Ags in sensitized individuals. Although IL-17A is involved in the development of HP, the cellular sources of IL-17A and the mechanisms by which IL-17A contributes to granuloma formation remain unclear. Recent studies report that γδ T cells produce IL-17A and exhibit memory properties in various diseases. Therefore, we focused on IL-17A-secreting memory γδ T cells in the sensitization phase and aimed to elucidate the mechanisms by which IL-17A contributes to granuloma formation in HP. We induced a mouse model of HP using pigeon dropping extract (PDE) in wild-type and IL-17A knockout (IL-17A-/-) mice. IL-17A-/- mice exhibited reduced granulomatous areas, attenuated aggregation of CD11b+ alveolar macrophages, and reduced levels of CCL2, CCL4, and CCL5 in the bronchoalveolar lavage fluid. Among IL-17A+ cells, more γδ T cells than CD4+ cells were detected after intranasal PDE administration. Interestingly, the expansion of IL-17A-secreting Vγ4+ or Vγ1-Vγ4- cells of convalescent mice was enhanced in response to the sensitizing Ag. Additionally, coculture of macrophages with PDE and Vγ4+ cells purified from PDE-exposed convalescent mice produced significantly more IL-17A than coculture with Vγ4+ cells from naive mice. Our findings demonstrate that in the sensitization phase of HP, IL-17A-secreting memory γδ T cells play a pivotal role. Furthermore, we characterized the IL-17A/CCL2, CCL4, CCL5/CD11b+ alveolar macrophage axis, which underlies granuloma formation in HP. These findings may lead to new clinical examinations or therapeutic targets for HP.
Collapse
Affiliation(s)
- Takashi Yamana
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tsukasa Okamoto
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masahiro Ishizuka
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Satoshi Hanzawa
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaru Ejima
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sho Shibata
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| |
Collapse
|
30
|
Ural BB, Yeung ST, Damani-Yokota P, Devlin JC, de Vries M, Vera-Licona P, Samji T, Sawai CM, Jang G, Perez OA, Pham Q, Maher L, Loke P, Dittmann M, Reizis B, Khanna KM. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci Immunol 2020; 5:5/45/eaax8756. [PMID: 32220976 DOI: 10.1126/sciimmunol.aax8756] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/28/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Tissue-resident macrophages are a diverse population of cells that perform specialized functions including sustaining tissue homeostasis and tissue surveillance. Here, we report an interstitial subset of CD169+ lung-resident macrophages that are transcriptionally and developmentally distinct from alveolar macrophages (AMs). They are primarily localized around the airways and are found in close proximity to the sympathetic nerves in the bronchovascular bundle. These nerve- and airway-associated macrophages (NAMs) are tissue resident, yolk sac derived, self-renewing, and do not require CCR2+ monocytes for development or maintenance. Unlike AMs, the development of NAMs requires CSF1 but not GM-CSF. Bulk population and single-cell transcriptome analysis indicated that NAMs are distinct from other lung-resident macrophage subsets and highly express immunoregulatory genes under steady-state and inflammatory conditions. NAMs proliferated robustly after influenza infection and activation with the TLR3 ligand poly(I:C), and in their absence, the inflammatory response was augmented, resulting in excessive production of inflammatory cytokines and innate immune cell infiltration. Overall, our study provides insights into a distinct subset of airway-associated pulmonary macrophages that function to maintain immune and tissue homeostasis.
Collapse
Affiliation(s)
- Basak B Ural
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Joseph C Devlin
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Maren de Vries
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Paola Vera-Licona
- Center for Quantitative Medicine, Uconn Health, Farmington, CT 06030, USA.,Department of Cell Biology, Department of Cell Biology, UConn Health, Farmington, CT 06030, USA.,Department of Pediatrics, UConn Health, Farmington, CT 06030, USA.,Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Tasleem Samji
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | | | - Geunhyo Jang
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Oriana A Perez
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Quynh Pham
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Leigh Maher
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - P'ng Loke
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Boris Reizis
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA.,Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA. .,Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
31
|
Fischer MA, Golovchenko NB, Edelblum KL. γδ T cell migration: Separating trafficking from surveillance behaviors at barrier surfaces. Immunol Rev 2020; 298:165-180. [PMID: 32845516 PMCID: PMC7968450 DOI: 10.1111/imr.12915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
γδ T cells are found in highest numbers at barrier surfaces throughout the body, including the skin, intestine, lung, gingiva, and uterus. Under homeostatic conditions, γδ T cells provide immune surveillance of the epidermis, intestinal, and oral mucosa, whereas the presence of pathogenic microorganisms in the dermis or lungs elicits a robust γδ17 response to clear the infection. Although T cell migration is most frequently defined in the context of trafficking, analysis of specific migratory behaviors of lymphocytes within the tissue microenvironment can provide valuable insight into their function. Intravital imaging and computational analyses have been used to define "search" behavior associated with conventional αβ T cells; however, based on the known role of γδ T cells as immune sentinels at barrier surfaces and their TCR-independent functions, we put forth the need to classify distinct migratory patterns that reflect the surveillance capacity of these unconventional lymphocytes. This review will focus on how γδ T cells traffic to various barrier surfaces and how recent investigation into their migratory behavior has provided unique insight into the contribution of γδ T cells to barrier immunity.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
32
|
Abstract
γδ T cells are a unique T cell subpopulation that are rare in secondary lymphoid organs but enriched in many peripheral tissues, such as the skin, intestines and lungs. By rapidly producing large amounts of cytokines, γδ T cells make key contributions to immune responses in these tissues. In addition to their immune surveillance activities, recent reports have unravelled exciting new roles for γδ T cells in steady-state tissue physiology, with functions ranging from the regulation of thermogenesis in adipose tissue to the control of neuronal synaptic plasticity in the central nervous system. Here, we review the roles of γδ T cells in tissue homeostasis and in surveillance of infection, aiming to illustrate their major impact on tissue integrity, tissue repair and immune protection.
Collapse
|
33
|
Comeau K, Paradis P, Schiffrin EL. Human and murine memory γδ T cells: Evidence for acquired immune memory in bacterial and viral infections and autoimmunity. Cell Immunol 2020; 357:104217. [PMID: 32979762 PMCID: PMC9533841 DOI: 10.1016/j.cellimm.2020.104217] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
Abstract
γδ T cells are unconventional lymphocytes that could play a role in bridging the innate and adaptive immune system. Upon initial exposure to an antigen, some activated T cells become memory T cells that could be reactivated upon secondary immune challenge. Recently, subsets of γδ T cells with a restricted antigen repertoire and long-term persistence have been observed after clearance of viral and bacterial infections. These γδ T cells possess the hallmark ability of memory T cells to respond more strongly and proliferate to a higher extent upon secondary infection. Murine and primate models of Listeria monocytogenes and cytomegalovirus infection display these memory hallmarks and demonstrate γδ T cell memory responses. In addition, human and non-human primate infections with Mycobacterium tuberculosis, as well as non-human primate infection with monkeypox and studies on patients suffering from autoimmune disease (rheumatoid arthritis and multiple sclerosis) reveal memory-like responses corresponding with disease. Murine models of psoriatic disease (imiquimod) and parasite infections (malaria) exhibited shifts to memory phenotypes with repeated immune challenge. These studies provide strong support for the formation of immune memory in γδ T cells, and memory γδ T cells may have a widespread role in protective immunity and autoimmunity.
Collapse
Affiliation(s)
- Kevin Comeau
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada
| | - Pierre Paradis
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada
| | - Ernesto L Schiffrin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada; Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, 3755 Côte-Ste-Catherine Rd., Montreal, Quebec H3T 1E2, Canada.
| |
Collapse
|
34
|
Cooper AJR, Lalor SJ, McLoughlin RM. Activation of Human Vδ2 + γδ T Cells by Staphylococcus aureus Promotes Enhanced Anti-Staphylococcal Adaptive Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1039-1049. [PMID: 32651220 PMCID: PMC7416323 DOI: 10.4049/jimmunol.2000143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Murine studies have shown the potential for γδ T cells to mediate immunity to Staphylococcus aureus in multiple tissue settings by the secretion of diverse cytokines. However, the role played by γδ T cells in human immune responses to S. aureus is almost entirely unknown. In this study, we establish the capacity of human Vδ2+ γδ T cells for rapid activation in response to S. aureus In coculture with S. aureus-infected monocyte-derived dendritic cells (DCs), Vδ2+ cells derived from peripheral blood rapidly upregulate CD69 and secrete high levels of IFN-γ. DCs mediate this response through direct contact and IL-12 secretion. In turn, IFN-γ released by Vδ2+ cells upregulates IL-12 secretion by DCs in a positive feedback loop. Furthermore, coculture with γδ T cells results in heightened expression of the costimulatory molecule CD86 and the lymph node homing molecule CCR7 on S. aureus-infected DCs. In cocultures of CD4+ T cells with S. aureus-infected DCs, the addition of γδ T cells results in heightened CD4+ T cell activation. Our findings identify γδ T cells as potential key players in the early host response to S. aureus during bloodstream infection, promoting enhanced responses by both innate and adaptive immune cell populations, and support their consideration in the development of host-directed anti-S. aureus treatments.
Collapse
Affiliation(s)
- Andrew J R Cooper
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Stephen J Lalor
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| | - Rachel M McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin 2, Ireland
| |
Collapse
|
35
|
Thelen F, Witherden DA. Get in Touch With Dendritic Epithelial T Cells! Front Immunol 2020; 11:1656. [PMID: 32849572 PMCID: PMC7403176 DOI: 10.3389/fimmu.2020.01656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Innate and adaptive immune systems continuously interchange information and orchestrate their immune responses to protect the host. γδT cells play crucial roles, as they incorporate both innate and adaptive immune characteristics. Dendritic epidermal T cells (DETC) are specialized γδT cells, which are uniquely positioned to rapidly respond to skin wounds and infections. Their elongated dendrite morphology allows them to be in continuous contact with multiple neighboring keratinocytes and Langerhans cells. Cellular interactions are fundamental to the formation, activation and maintenance of immune cell functions during steady state and pathology. Recent technological advances, especially in the field of cellular imaging, have contributed greatly to the characterization of complex cellular interactions in a spatiotemporally resolved manner. In this review, we will highlight the often-underappreciated function of DETC and other γδT cells during steady state and an ongoing immune response. More specifically, we discuss how DETC-precursors are shaped in the fetal thymus during embryogenesis as well as how direct cell-cell interactions of DETC with neighboring epidermal cells shape skin homeostasis and effector functions. Furthermore, we will discuss seminal work and recent discoveries made in the γδT cell field, which have highlighted the importance of γδT cells in the skin, both in humans and mice.
Collapse
Affiliation(s)
- Flavian Thelen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Deborah A Witherden
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
36
|
O’Brien RL, Born WK. Two functionally distinct subsets of IL‐17 producing γδ T cells. Immunol Rev 2020; 298:10-24. [DOI: 10.1111/imr.12905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Rebecca L. O’Brien
- Department of Biomedical Research National Jewish Health Denver CO USA
- Department of Immunology and Microbiology University of Colorado Denver School of Medicine Aurora CO USA
| | - Willi K. Born
- Department of Biomedical Research National Jewish Health Denver CO USA
- Department of Immunology and Microbiology University of Colorado Denver School of Medicine Aurora CO USA
| |
Collapse
|
37
|
Abstract
Innate lymphocyte populations are emerging as key effectors in tissue homeostasis, microbial defense, and inflammatory skin disease. The cells are evolutionarily ancient and carry conserved principles of function, which can be achieved through shared or unique specific mechanisms. Recent technological and treatment advances have provided insight into heterogeneity within and between individuals and species. Similar pathways can extend through to adaptive lymphocytes, which softens the margins with innate lymphocyte populations and allows investigation of nonredundant pathways of immunity and inflammation that might be amenable to therapeutic intervention. Here, we review advances in understanding of innate lymphocyte biology with a focus on skin disease and the roles of commensal and pathogen responses and tissue homeostasis.
Collapse
Affiliation(s)
- Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Koshika Yadava
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Headington, Oxford, OX3 9DS, United Kingdom
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals, Headington, Oxford OX3 7LE, United Kingdom;
| |
Collapse
|
38
|
Wang Z, Zhou Q, Zeng H, Zhang H, Liu Z, Huang Q, Xiong Y, Wang J, Chang Y, Bai Q, Xia Y, Wang Y, Zhu Y, Xu L, Dai B, Liu L, Guo J, Xu J. Tumor-infiltrating IL-17A + cells determine favorable prognosis and adjuvant chemotherapeutic response in muscle-invasive bladder cancer. Oncoimmunology 2020; 9:1747332. [PMID: 32313725 PMCID: PMC7153847 DOI: 10.1080/2162402x.2020.1747332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/04/2022] Open
Abstract
The role of IL-17A+ cells remains controversial among various cancer types. This study aimed to investigate the effects of IL-17A+ cells on tumor immune contexture and clinical outcome in muscle-invasive bladder cancer (MIBC). In this study, we enrolled 141 patients from Zhongshan Hospital, 118 patients from Shanghai Cancer Center and 403 patients from TCGA cohort. In vitro studies were conducted in 32 freshly resected tumors. Survival analysis was conducted using Kaplan–Meier and Cox regression analysis. The results suggested that patients with high levels of IL-17A+ cells had prolonged overall survival and recurrence-free survival (HR = 0.268, P < .001; and HR = 0.433, P < .001). Moreover, these patients tended to be at lower risk of death and recurrence after adjuvant chemotherapy (P = .012 and P = .004). An increased number of IL-17A+ cells correlated with the infiltration of several anti-tumor immune cells into tumors. In addition, IL-17A+ cells had an influence on the recruitment, proliferation, and activation of CD8+ cells, and were positively associated with the expression of several anti-tumor effector cytokines. In conclusion, tumor-infiltrating IL17A+ cells were correlated with an elevated anti-tumor immunity in MIBC. Besides, high infiltration of IL17A+ cells can predict benefit from ACT for MIBC patients.
Collapse
Affiliation(s)
- Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongyu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiuren Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Sung PS, Chang WC, Hsieh SL. CLEC5A: A Promiscuous Pattern Recognition Receptor to Microbes and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1204:57-73. [PMID: 32152943 PMCID: PMC7121389 DOI: 10.1007/978-981-15-1580-4_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CLEC5A is a spleen tyrosine kinase (Syk)-coupled C-type lectin that is highly expressed by monocytes, macrophages, neutrophils, and dendritic cells and interacts with virions directly, via terminal fucose and mannose moieties of viral glycans. CLEC5A also binds to N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) disaccharides of bacterial cell walls. Compared to other C-type lectins (DC-SIGN and DC-SIGNR) and TLRs, CLEC5A binds its ligands with relatively low affinities. However, CLEC5A forms a multivalent hetero-complex with DC-SIGN and other C-type lectins upon engagement with ligands, and thereby mediates microbe-induced inflammatory responses via activation of Syk. For example, in vivo studies in mouse models have demonstrated that CLEC5A is responsible for flaviviruses-induced hemorrhagic shock and neuroinflammation, and a CLEC5A polymorphism in humans is associated with disease severity following infection with dengue virus. In addition, CLEC5A is co-activated with TLR2 by Listeria and Staphylococcus. Furthermore, CLEC5A-postive myeloid cells are responsible for Concanavilin A-induced aseptic inflammatory reactions. Thus, CLEC5A is a promiscuous pattern recognition receptor in myeloid cells and is a potential therapeutic target for attenuation of both septic and aseptic inflammatory reactions.
Collapse
Affiliation(s)
- Pei-Shan Sung
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Chiao Chang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan. .,School of Medicine, Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
40
|
Wang Y, Zhang C. The Roles of Liver-Resident Lymphocytes in Liver Diseases. Front Immunol 2019; 10:1582. [PMID: 31379818 PMCID: PMC6648801 DOI: 10.3389/fimmu.2019.01582] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue-resident lymphocytes usually reside in barrier sites and are involved in innate and adaptive immunity. In recent years, many studies have shown that multiple types of lymphocytes are resident in the liver, including memory CD8+ T (TRM) cells; "unconventional" T cells, such as invariant natural killer T (iNKT) cells, mucosal associated invariant T (MAIT) cells, and γδT cells; innate lymphoid cells (ILCs) such as natural killer (NK) cells and other ILCs. Although diverse types of tissue-resident lymphocytes share similar phenotypes, functional properties, and transcriptional regulation, the unique microenvironment of the liver can reshape their phenotypic and functional characteristics. Liver-resident lymphocytes serve as sentinels and perform immunosurveillance in response to infection and non-infectious insults, and are involved in the maintenance of liver homeostasis. Under the pathological conditions, distinct liver-resident lymphocytes exert protective or pathological effects in the process of various liver diseases. In this review, we highlight the unique properties of liver-resident lymphocytes, and discuss their functional characteristics in different liver diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
41
|
Tan L, Sandrock I, Odak I, Aizenbud Y, Wilharm A, Barros-Martins J, Tabib Y, Borchers A, Amado T, Gangoda L, Herold MJ, Schmidt-Supprian M, Kisielow J, Silva-Santos B, Koenecke C, Hovav AH, Krebs C, Prinz I, Ravens S. Single-Cell Transcriptomics Identifies the Adaptation of Scart1+ Vγ6+ T Cells to Skin Residency as Activated Effector Cells. Cell Rep 2019; 27:3657-3671.e4. [DOI: 10.1016/j.celrep.2019.05.064] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/22/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023] Open
|
42
|
Ugur M, Mueller SN. T cell and dendritic cell interactions in lymphoid organs: More than just being in the right place at the right time. Immunol Rev 2019; 289:115-128. [DOI: 10.1111/imr.12753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 01/31/2019] [Accepted: 02/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Milas Ugur
- Department of Microbiology and Immunology The University of Melbourne, The Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology The University of Melbourne, The Peter Doherty Institute for Infection and Immunity Melbourne Victoria Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
43
|
Petrović J, Silva JR, Bannerman CA, Segal JP, Marshall AS, Haird CM, Gilron I, Ghasemlou N. γδ T Cells Modulate Myeloid Cell Recruitment but Not Pain During Peripheral Inflammation. Front Immunol 2019; 10:473. [PMID: 30936874 PMCID: PMC6431614 DOI: 10.3389/fimmu.2019.00473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Circulating immune cells, which are recruited to the site of injury/disease, secrete various inflammatory mediators that are critical to nociception and pain. The role of tissue-resident immune cells, however, remains poorly characterized. One of the first cells to be activated in peripheral tissues following injury are γδT cells, which serve important roles in infection, disease, and wound healing. Using a mouse line lacking these cells, we sought to identify their contribution to inflammatory pain. Three distinct models of peripheral inflammatory pain were used: intraplantar injection of formalin (spontaneous inflammatory pain), incisional wound (acute inflammatory pain), and intraplantar injection of complete Freund's adjuvant (chronic inflammatory pain). Our results show that absence of γδT cells does not alter baseline sensitivity, nor does it result in changes to mechanical or thermal hypersensitivity after tissue injury. Myeloid cell recruitment did show differential changes between models of acute and chronic inflammatory pain. These results were consistent in both male and female mice, suggesting that there are no sex differences in these outcomes. This comprehensive characterization suggests that γδT cells do not contribute to basal sensitivity or the development and maintenance of inflammatory pain.
Collapse
Affiliation(s)
- Jelena Petrović
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Jaqueline Raymondi Silva
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, ON, Canada
| | - Courtney A. Bannerman
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Julia P. Segal
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Abigail S. Marshall
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Cortney M. Haird
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Ian Gilron
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Nader Ghasemlou
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, ON, Canada
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| |
Collapse
|
44
|
O’Brien EC, McLoughlin RM. Considering the ‘Alternatives’ for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends Mol Med 2019; 25:171-184. [DOI: 10.1016/j.molmed.2018.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
|
45
|
Abstract
PURPOSE OF REVIEW Following solid organ transplantation (SOT), populations of donor lymphocytes are frequently found in the recipient circulation. Their impact on host alloimmunity has long been debated but remains unclear, and it has been suggested that transferred donor lymphocytes may either promote tolerance to the graft or hasten its rejection. We discuss possible mechanisms by which the interaction of donor passenger lymphocytes with recipient immune cells may either augment the host alloimmune response or inhibit it. RECENT FINDINGS Recent work has highlighted that donor T lymphocytes are the most numerous of the donor leukocyte populations within a SOT and that these may be transferred to the recipient after transplantation. Surprisingly, graft-versus-host recognition of major histocompatibility complex class II on host B cells by transferred donor CD4 T cells can result in marked augmentation of host humoral alloimmunity and lead to early graft failure. Killing of donor CD4 T cells by host natural killer cells is critical in preventing this augmentation. SUMMARY The ability of passenger donor CD4 T cells to effect long-term augmentation of the host humoral alloimmune response raises the possibility that ex-vivo treatment or modification of the donor organ prior to implantation may improve long-term transplant outcomes.
Collapse
|
46
|
Sun H, Sun C, Xiao W, Sun R. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell Mol Immunol 2019; 16:205-215. [PMID: 30635650 DOI: 10.1038/s41423-018-0192-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022] Open
Abstract
Efficient immune responses against invading pathogens often involve coordination between cells from both the innate and adaptive immune systems. For multiple decades, it has been believed that CD8+ memory T cells and natural killer (NK) cells constantly and uniformly recirculate. Only recently was the existence of noncirculating memory T and NK cells that remain resident in the peripheral tissues, termed tissue-resident memory T (TRM) cells and tissue-resident NK (trNK) cells, observed in various organs owing to improved techniques. TRM cells populate a wide range of peripheral organs, including the skin, sensory ganglia, gut, lungs, brain, salivary glands, female reproductive tract, and others. Recent findings have demonstrated the existence of TRM in the secondary lymphoid organs (SLOs) as well, leading to revision of the classic theory that they exist only in peripheral organs. trNK cells have been identified in the uterus, skin, kidney, adipose tissue, and salivary glands. These tissue-resident lymphocytes do not recirculate in the blood or lymphatic system and often adopt a unique phenotype that is distinct from those of circulating immune cells. In this review, we will discuss the recent findings on the tissue residency of both innate and adaptive lymphocytes, with a particular focus on CD8+ memory T cells, and describe some advances regarding unconventional T cells (invariant NKT cells, mucosal-associated invariant T cells (MAIT), and γδ T cells) and the emerging family of trNK cells. Specifically, we will focus on the phenotypes and functions of these subsets and discuss their implications in anti-viral and anti-tumor immunity.
Collapse
Affiliation(s)
- Haoyu Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China. .,Institute of Immunology, University of Science and Technology of China, Hefei, China.
| | - Cheng Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
47
|
Steinbach K, Vincenti I, Merkler D. Resident-Memory T Cells in Tissue-Restricted Immune Responses: For Better or Worse? Front Immunol 2018; 9:2827. [PMID: 30555489 PMCID: PMC6284001 DOI: 10.3389/fimmu.2018.02827] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident-memory CD8+ T cells (TRM) have been described as a non-circulating memory T cell subset that persists at sites of previous infection. While TRM in all non-lymphoid organs probably share a core signature differentiation pathway, certain aspects of their maintenance and effector functions may vary. It is well-established that TRM provide long-lived protective immunity through immediate effector function and accelerated recruitment of circulating immune cells. Besides immune defense against pathogens, other immunological roles of TRM are less well-studied. Likewise, evidence of a putative detrimental role of TRM for inflammatory diseases is only beginning to emerge. In this review, we discuss the protective and harmful role of TRM in organ-specific immunity and immunopathology as well as prospective implications for immunomodulatory therapy.
Collapse
Affiliation(s)
- Karin Steinbach
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Ilena Vincenti
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
48
|
Khairallah C, Chu TH, Sheridan BS. Tissue Adaptations of Memory and Tissue-Resident Gamma Delta T Cells. Front Immunol 2018; 9:2636. [PMID: 30538697 PMCID: PMC6277633 DOI: 10.3389/fimmu.2018.02636] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/26/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial and mucosal barriers are critical interfaces physically separating the body from the outside environment and are the tissues most exposed to microorganisms and potential inflammatory agents. The integrity of these tissues requires fine tuning of the local immune system to enable the efficient elimination of invasive pathogens while simultaneously preserving a beneficial relationship with commensal organisms and preventing autoimmunity. Although they only represent a small fraction of circulating and lymphoid T cells, γδ T cells form a substantial population at barrier sites and even outnumber conventional αβ T cells in some tissues. After their egress from the thymus, several γδ T cell subsets naturally establish residency in predetermined mucosal and epithelial locations, as exemplified by the restricted location of murine Vγ5+ and Vγ3Vδ1+ T cell subsets to the intestinal epithelium and epidermis, respectively. Because of their preferential location in barrier sites, γδ T cells are often directly or indirectly influenced by the microbiota or the pathogens that invade these sites. More recently, a growing body of studies have shown that γδ T cells form long-lived memory populations upon local inflammation or bacterial infection, some of which permanently populate the affected tissues after pathogen clearance or resolution of inflammation. Natural and induced resident γδ T cells have been implicated in many beneficial processes such as tissue homeostasis and pathogen control, but their presence may also exacerbate local inflammation under certain circumstances. Further understanding of the biology and role of these unconventional resident T cells in homeostasis and disease may shed light on potentially novel vaccines and therapies.
Collapse
Affiliation(s)
- Camille Khairallah
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Timothy H Chu
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| | - Brian S Sheridan
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
49
|
Tissue-Resident Lymphocytes in Solid Organ Transplantation: Innocent Passengers or the Key to Organ Transplant Survival? Transplantation 2018; 102:378-386. [PMID: 29135830 DOI: 10.1097/tp.0000000000002001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Short-term outcomes of solid organ transplantation have improved dramatically over the past several decades; however, long-term survival has remained static over the same period, and chronic rejection remains a major cause of graft failure. The importance of donor, or "passenger," lymphocytes to the induction of tolerance to allografts was recognized in the 1990s, but their precise contribution to graft acceptance or rejection has not been elucidated. Recently, specialized populations of tissue-resident lymphocytes in nonlymphoid organs have been described. These lymphocytes include tissue-resident memory T cells, regulatory T cells, γδ T cells, invariant natural killer T cells, and innate lymphoid cells. These cells reside in commonly transplanted solid organs, including the liver, kidneys, heart, and lung; however, their contribution to graft acceptance or rejection has not been examined in detail. Similarly, it is unclear whether tissue-resident cells derived from the pool of recipient-derived lymphocytes play a specific role in transplantation biology. This review summarizes the evidence for the roles of tissue-resident lymphocytes in transplant immunology, focussing on their features, functions, and relevance for solid organ transplantation, with specific reference to liver, kidney, heart, and lung transplantation.
Collapse
|
50
|
Sandrock I, Reinhardt A, Ravens S, Binz C, Wilharm A, Martins J, Oberdörfer L, Tan L, Lienenklaus S, Zhang B, Naumann R, Zhuang Y, Krueger A, Förster R, Prinz I. Genetic models reveal origin, persistence and non-redundant functions of IL-17-producing γδ T cells. J Exp Med 2018; 215:3006-3018. [PMID: 30455268 PMCID: PMC6279411 DOI: 10.1084/jem.20181439] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
The authors present a genetic mouse model for conditional depletion of γδ T cells, confirming the fetal origin and persistence of Tγδ17 cells. They show differential phenotypes after acute depletion versus constitutive γδ T cell deficiency in imiquimod-induced psoriasis. γδ T cells are highly conserved in jawed vertebrates, suggesting an essential role in the immune system. However, γδ T cell–deficient Tcrd−/− mice display surprisingly mild phenotypes. We hypothesized that the lack of γδ T cells in constitutive Tcrd−/− mice is functionally compensated by other lymphocytes taking over genuine γδ T cell functions. To test this, we generated a knock-in model for diphtheria toxin–mediated conditional γδ T cell depletion. In contrast to IFN-γ–producing γδ T cells, IL-17–producing γδ T cells (Tγδ17 cells) recovered inefficiently after depletion, and their niches were filled by expanding Th17 cells and ILC3s. Complementary genetic fate mapping further demonstrated that Tγδ17 cells are long-lived and persisting lymphocytes. Investigating the function of γδ T cells, conditional depletion but not constitutive deficiency protected from imiquimod-induced psoriasis. Together, we clarify that fetal thymus-derived Tγδ17 cells are nonredundant local effector cells in IL-17–driven skin pathology.
Collapse
Affiliation(s)
- Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Annika Reinhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christoph Binz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Joana Martins
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Linda Oberdörfer
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stefan Lienenklaus
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Ronald Naumann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Andreas Krueger
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|