1
|
Duo H, Chhabra R, Muthusamy V, Dutta S, Katral A, Sarma GR, Chand G, Mishra SJ, Zunjare RU, Hossain F. Allelic Diversity and Development of Breeder-Friendly Marker Specific to floury2 Gene Regulating the Accumulation of α-Zeins and Essential Amino Acids in Maize Kernel. Biochem Genet 2024:10.1007/s10528-024-10935-x. [PMID: 39369369 DOI: 10.1007/s10528-024-10935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Maize zeins lack essential amino acids, such as methionine, lysine, and tryptophan. The floury2 (fl2) mutation reduces zein synthesis and increases methionine and lysine content in kernels. In this study, fl2 gene (1612 bp) was sequenced in eight wild-type and two mutant inbreds and detected 218 SNPs and 18 InDels. Transversion of C to T at 343 bp position caused the substitution of alanine by valine in the fl2 mutant. A PCR-based marker (FL-SNP-CT) was developed, which distinguished the favorable mutant fl2 allele (T) from the wild-type (C) Fl2 allele. Gene-based diversity analysis using seven gene-based InDel markers grouped 48 inbred lines into three major clusters, with an average genetic dissimilarity coefficient of 0.534. The average major allele frequency, gene diversity, heterozygosity, and polymorphism information content of the InDel markers were 0.701, 0.392, 0.039, and 0.318, respectively. Haplotype analysis revealed 29 haplotypes of fl2 gene among these 48 inbreds. Amino acid substitution (Ala-Val) at the signal peptide cleavage site produced unprocessed 24-kDa mutant protein instead of 22-kDa zein found in normal genotype. Eight paralogues of fl2 detected in the study showed variation in exon lengths (616-1170 bp) and translation lengths (135-267 amino acids). Orthologue analysis among 15 accessions of Sorghum bicolor and two accessions of Saccharum spontaneum revealed a single exon in fl2 gene, ranging from 267 to 810 bp. The study elucidated the molecular basis of fl2 mutation and reported a breeder-friendly marker for molecular breeding programs. This is the first study to characterize fl2 gene in a set of subtropically adapted inbreds.
Collapse
Affiliation(s)
- Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Suman Dutta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Gulab Chand
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Subhra J Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
2
|
Kong Q, Jiang Y, Sun M, Wang Y, Zhang L, Zeng X, Wang Z, Wang Z, Liu Y, Gan Y, Liu H, Gao X, Yang X, Song X, Liu H, Shi J. Biparental graph strategy to represent and analyze hybrid plant genomes. PLANT PHYSIOLOGY 2024; 196:1284-1297. [PMID: 38991561 PMCID: PMC11444280 DOI: 10.1093/plphys/kiae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of 2 hybrids, an intraspecific hybrid between 2 maize (Zea mays ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Z. mays ssp. parviglumis), utilizing a combination of PacBio High Fidelity sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a biparental genome graph, the haplotypic assemblies can facilitate downstream short-read-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.
Collapse
Affiliation(s)
- Qianqian Kong
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Jiang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mingfei Sun
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Lin Zhang
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Xing Zeng
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Zhiheng Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuting Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuanxian Gan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Han Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiang Gao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuerong Yang
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Hongjun Liu
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Shi
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Chen W, Zhang X, Lu C, Chang H, Chachar Z, Fan L, An Y, Li X, Qi Y. Genome-wide association study of carotenoids in maize kernel. THE PLANT GENOME 2024:e20495. [PMID: 39129567 DOI: 10.1002/tpg2.20495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
In this study, the contents of four carotenoids in 244 maize inbred lines were detected and about three million single nucleotide polymorphisms (SNPs) for genome-wide association study to preliminarily analyze the genetic mechanism of maize kernel carotenoids. We identified 826 quantitative trait loci (QTLs) were significantly associated with carotenoids contents, and two key candidate genes Zm00001d029526 (CYP18) and Zm00001d023336 (wrky91) were obtained. In addition, we found a germplasm IL78 with higher carotenoids. The results of this study can provide a theoretical basis for screening genes that guide kernel carotenoids selection breeding.
Collapse
Affiliation(s)
- Weiwei Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiangbo Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
| | - Chuanli Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lina Fan
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
| | - Xuhui Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yongwen Qi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
4
|
Chen W, Li X, Zhang X, Chachar Z, Lu C, Qi Y, Chang H, Wang Q. Genome-wide association study of trace elements in maize kernels. BMC PLANT BIOLOGY 2024; 24:724. [PMID: 39080529 PMCID: PMC11287846 DOI: 10.1186/s12870-024-05419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024]
Abstract
Maize (Zea mays L.), a staple food and significant economic crop, is enriched with riboflavin, micronutrients and other compounds that are beneficial for human health. As emphasis on the nutritional quality of crops increases maize research has expanded to focus on both yield and quality. This study exploreed the genetic factors influencing micronutrient levels in maize kernels through a comprehensive genome-wide association study (GWAS). We utilized a diverse panel of 244 inbred maize lines and approximately 3 million single nucleotide polymorphisms (SNPs) to investigate the accumulation of essential and trace elements including cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), selenium (Se) and zinc (Zn). Our analysis identified 842 quantitative trait loci (QTLs), with 12 QTLs shared across multiple elements and pinpointed 524 potential genes within a 100 kb radius of these QTLs. Notably ZmHMA3 has emerged as a key candidate gene previously reported to influence the Cd accumulation. We highlighted ten pivotal genes associated with trace element transport including those encoding heavy metal ATPases, MYB transcription factors, ABC transporters and other crucial proteins involved in metal handling. Additionally, haplotype analysis revealed that eight inbred linesaccumulated relatively high levels of beneficial elements while harmful elements were minimized. These findings elucidate the genetic mechanisms underlying trace element accumulation in maize kernels and provide a foundation for the breeding of nutritionally enhanced maize varieties.
Collapse
Affiliation(s)
- Weiwei Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Xuhui Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Xiangbo Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Zaid Chachar
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Chuanli Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China
| | - Yongwen Qi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510325, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China.
| | - Qinnan Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, Guangdong, 510316, China.
| |
Collapse
|
5
|
Hurst JP, Sato S, Ferris T, Yobi A, Zhou Y, Angelovici R, Clemente TE, Holding DR. Editing the 19 kDa alpha-zein gene family generates non-opaque2-based quality protein maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:946-959. [PMID: 37988568 PMCID: PMC10955486 DOI: 10.1111/pbi.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/23/2023]
Abstract
Maize grain is deficient in lysine. While the opaque2 mutation increases grain lysine, o2 is a transcription factor that regulates a wide network of genes beyond zeins, which leads to pleiotropic and often negative effects. Additionally, the drastic reduction in 19 kDa and 22 kDa alpha-zeins causes a floury kernel, unsuitable for agricultural use. Quality protein maize (QPM) overcame the undesirable kernel texture through the introgression of modifying alleles. However, QPM still lacks a functional o2 transcription factor, which has a penalty on non-lysine amino acids due to the o2 mutation. CRISPR/cas9 gives researchers the ability to directly target genes of interest. In this paper, gene editing was used to specifically target the 19 kDa alpha zein gene family. This allows for proteome rebalancing to occur without an o2 mutation and without a total alpha-zein knockout. The results showed that editing some, but not all, of the 19 kDa zeins resulted in up to 30% more lysine. An edited line displayed an increase of 30% over the wild type. While not quite the 55% lysine increase displayed by QPM, the line had little collateral impact on other amino acid levels compared to QPM. Additionally, the edited line containing a partially reduced 19 kDa showed an advantage in kernel texture that had a complete 19 kDa knockout. These results serve as proof of concept that editing the 19 kDa alpha-zein family alone can enhance lysine while retaining vitreous endosperm and a functional O2 transcription factor.
Collapse
Affiliation(s)
- J. Preston Hurst
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| | - Shirley Sato
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Tyler Ferris
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| | - Abou Yobi
- University of Missouri‐ColumbiaColumbiaMissouriUSA
| | - You Zhou
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | | | - Tom E. Clemente
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - David R. Holding
- Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Center for Plant Science InnovationLincolnNebraskaUSA
| |
Collapse
|
6
|
Yuan P, Huang PC, Martin TK, Chappell TM, Kolomiets MV. Duplicated Copy Number Variant of the Maize 9-Lipoxygenase ZmLOX5 Improves 9,10-KODA-Mediated Resistance to Fall Armyworms. Genes (Basel) 2024; 15:401. [PMID: 38674336 PMCID: PMC11049851 DOI: 10.3390/genes15040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Extensive genome structure variations, such as copy number variations (CNVs) and presence/absence variations, are the basis for the remarkable genetic diversity of maize; however, the effect of CNVs on maize herbivory defense remains largely underexplored. Here, we report that the naturally occurring duplication of the maize 9-lipoxygenase gene ZmLOX5 leads to increased resistance of maize to herbivory by fall armyworms (FAWs). Previously, we showed that ZmLOX5-derived oxylipins are required for defense against chewing insect herbivores and identified several inbred lines, including Yu796, that contained duplicated CNVs of ZmLOX5, referred to as Yu796-2×LOX5. To test whether introgression of the Yu796-2×LOX5 locus into a herbivore-susceptible B73 background that contains a single ZmLOX5 gene is a feasible approach to increase resistance, we generated a series of near-isogenic lines that contained either two, one, or zero copies of the Yu796-2×LOX5 locus in the B73 background via six backcrosses (BC6). Droplet digital PCR (ddPCR) confirmed the successful introgression of the Yu796-2×LOX5 locus in B73. The resulting B73-2×LOX5 inbred line displayed increased resistance against FAW, associated with increased expression of ZmLOX5, increased wound-induced production of its primary oxylipin product, the α-ketol, 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid (9,10-KODA), and the downstream defense hormones regulated by this molecule, 12-oxo-phytodienoic acid (12-OPDA) and abscisic acid (ABA). Surprisingly, wound-induced JA-Ile production was not increased in B73-2×LOX5, resulting from the increased JA catabolism. Furthermore, B73-2×LOX5 displayed reduced water loss in response to drought stress, likely due to increased ABA and 12-OPDA content. Taken together, this study revealed that the duplicated CNV of ZmLOX5 quantitively contributes to maize antiherbivore defense and presents proof-of-concept evidence that the introgression of naturally occurring duplicated CNVs of a defensive gene into productive but susceptible crop varieties is a feasible breeding approach for enhancing plant resistance to herbivory and tolerance to abiotic stress.
Collapse
Affiliation(s)
| | | | | | | | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77840-2132, USA; (P.Y.); (P.-C.H.); (T.K.M.); (T.M.C.)
| |
Collapse
|
7
|
Chen W, Cui F, Zhu H, Zhang X, Lu S, Lu C, Chang H, Fan L, Lin H, Fang J, An Y, Li X, Qi Y. Genome-wide association study of kernel colour traits and mining of elite alleles from the major loci in maize. BMC PLANT BIOLOGY 2024; 24:25. [PMID: 38166633 PMCID: PMC10763400 DOI: 10.1186/s12870-023-04662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Maize kernel colour is an important index for evaluating maize quality and value and mainly entails two natural pigments, carotenoids and anthocyanins. To analyse the genetic mechanism of maize kernel colour and mine single nucleotide polymorphisms (SNPs) related to kernel colour traits, an association panel including 244 superior maize inbred lines was used to measure and analyse the six traits related to kernel colour in two environments and was then combined with the about 3 million SNPs covering the whole maize genome in this study. Two models (Q + K, PCA + K) were used for genome-wide association analysis (GWAS) of kernel colour traits. RESULTS We identified 1029QTLs, and two SNPs contained in those QTLs were located in coding regions of Y1 and R1 respectively, two known genes that regulate kernel colour. Fourteen QTLs which contain 19 SNPs were within 200 kb interval of the genes involved in the regulation of kernel colour. 13 high-confidence SNPs repeatedly detected for specific traits, and AA genotypes of rs1_40605594 and rs5_2392770 were the most popular alleles appeared in inbred lines with higher levels. By searching the confident interval of the 13 high-confidence SNPs, a total of 95 candidate genes were identified. CONCLUSIONS The genetic loci and candidate genes of maize kernel colour provided in this study will be useful for uncovering the genetic mechanism of maize kernel colour, gene cloning in the future. Furthermore, the identified elite alleles can be used to molecular marker-assisted selection of kernel colour traits.
Collapse
Affiliation(s)
- Weiwei Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Fangqing Cui
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Hang Zhu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiangbo Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Siqi Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Chuanli Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Hailong Chang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Lina Fan
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Huanzhang Lin
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Junteng Fang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
| | - Xuhui Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
| | - Yongwen Qi
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510325, Guangdong, China.
| |
Collapse
|
8
|
Zhu H, Lai R, Chen W, Lu C, Chachar Z, Lu S, Lin H, Fan L, Hu Y, An Y, Li X, Zhang X, Qi Y. Genetic dissection of maize (Zea maysL.) trace element traits using genome-wide association studies. BMC PLANT BIOLOGY 2023; 23:631. [PMID: 38062375 PMCID: PMC10704835 DOI: 10.1186/s12870-023-04643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
Maize (Zea mays L.) is an important food and feed crop worldwide and serves as a a vital source of biological trace elements, which are important breeding targets. In this study, 170 maize materials were used to detect QTNs related to the content of Mn, Fe and Mo in maize grains through two GWAS models, namely MLM_Q + K and MLM_PCA + K. The results identified 87 (Mn), 205 (Fe), and 310 (Mo) QTNs using both methods in the three environments. Considering comprehensive factors such as co-location across multiple environments, strict significance threshold, and phenotypic value in multiple environments, 8 QTNs related to Mn, 10 QTNs related to Fe, and 26 QTNs related to Mo were used to identify 44 superior alleles. Consequently, three cross combinations with higher Mn element, two combinations with higher Fe element, six combinations with higher Mo element, and two combinations with multiple element (Mn/Fe/Mo) were predicted to yield offspring with higher numbers of superior alleles, thereby increasing the likelihood of enriching the corresponding elements. Additionally, the candidate genes identified 100 kb downstream and upstream the QTNs featured function and pathways related to maize elemental transport and accumulation. These results are expected to facilitate the screening and development of high-quality maize varieties enriched with trace elements, establish an important theoretical foundation for molecular marker assisted breeding and contribute to a better understanding of the regulatory network governing trace elements in maize.
Collapse
Affiliation(s)
- Hang Zhu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Ruiqiang Lai
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
| | - Weiwei Chen
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China
| | - Chuanli Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China
| | - Zaid Chachar
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Siqi Lu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Huanzhang Lin
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Lina Fan
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Yuanqiang Hu
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China
| | - Xuhui Li
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China.
| | - Xiangbo Zhang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China.
| | - Yongwen Qi
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China.
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, Guangzhou, 510316, Guangdong, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, Guangdong, China.
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
- Heyuan Provincial Academy of Sciences Research Institute, Guangdong Academy of Sciences, GDAS, Heyuan, 517001, Guangdong, China.
| |
Collapse
|
9
|
Devi V, Bhushan B, Gupta M, Sethi M, Kaur C, Singh A, Singh V, Kumar R, Rakshit S, Chaudhary DP. Genetic and molecular understanding for the development of methionine-rich maize: a holistic approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1249230. [PMID: 37794928 PMCID: PMC10546030 DOI: 10.3389/fpls.2023.1249230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Maize (Zea mays) is the most important coarse cereal utilized as a major energy source for animal feed and humans. However, maize grains are deficient in methionine, an essential amino acid required for proper growth and development. Synthetic methionine has been used in animal feed, which is costlier and leads to adverse health effects on end-users. Bio-fortification of maize for methionine is, therefore, the most sustainable and environmental friendly approach. The zein proteins are responsible for methionine deposition in the form of δ-zein, which are major seed storage proteins of maize kernel. The present review summarizes various aspects of methionine including its importance and requirement for different subjects, its role in animal growth and performance, regulation of methionine content in maize and its utilization in human food. This review gives insight into improvement strategies including the selection of natural high-methionine mutants, molecular modulation of maize seed storage proteins and target key enzymes for sulphur metabolism and its flux towards the methionine synthesis, expression of synthetic genes, modifying gene codon and promoters employing genetic engineering approaches to enhance its expression. The compiled information on methionine and essential amino acids linked Quantitative Trait Loci in maize and orthologs cereals will give insight into the hotspot-linked genomic regions across the diverse range of maize germplasm through meta-QTL studies. The detailed information about candidate genes will provide the opportunity to target specific regions for gene editing to enhance methionine content in maize. Overall, this review will be helpful for researchers to design appropriate strategies to develop high-methionine maize.
Collapse
Affiliation(s)
- Veena Devi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Bharat Bhushan
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mamta Gupta
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mehak Sethi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Charanjeet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Alla Singh
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Vishal Singh
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Ramesh Kumar
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Sujay Rakshit
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dharam P. Chaudhary
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| |
Collapse
|
10
|
Baloyi JT, Taylor J, Taylor JRN. Bioplastic film making properties of quality protein maize (QPM) zein. Cereal Chem 2023. [DOI: 10.1002/cche.10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Julia T. Baloyi
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| | - Janet Taylor
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| | - John R. N. Taylor
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| |
Collapse
|
11
|
Chao Z, Chen Y, Ji C, Wang Y, Huang X, Zhang C, Yang J, Song T, Wu J, Guo L, Liu C, Han M, Wu Y, Yan J, Chao D. A genome-wide association study identifies a transporter for zinc uploading to maize kernels. EMBO Rep 2023; 24:e55542. [PMID: 36394374 PMCID: PMC9827554 DOI: 10.15252/embr.202255542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
The Zn content in cereal seeds is an important trait for crop production as well as for human health. However, little is known about how Zn is loaded to plant seeds. Here, through a genome-wide association study (GWAS), we identify the Zn-NA (nicotianamine) transporter gene ZmYSL2 that is responsible for loading Zn to maize kernels. High promoter sequence variation in ZmYSL2 most likely drives the natural variation in Zn concentrations in maize kernels. ZmYSL2 is specifically localized on the plasma membrane facing the maternal tissue of the basal endosperm transfer cell layer (BETL) and functions in loading Zn-NA into the BETL. Overexpression of ZmYSL2 increases the Zn concentration in the kernels by 31.6%, which achieves the goal of Zn biofortification of maize. These findings resolve the mystery underlying the loading of Zn into plant seeds, providing an efficient strategy for breeding or engineering maize varieties with enriched Zn nutrition.
Collapse
Affiliation(s)
- Zhen‐Fei Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuan‐Yuan Chen
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ya‐Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chu‐Ying Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Life Science, Henan UniversityKaifengChina
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jia‐Chen Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Liang‐Xing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chu‐Bin Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mei‐Ling Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yong‐Rui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Dai‐Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
12
|
Ning L, Wang Y, Shi X, Zhou L, Ge M, Liang S, Wu Y, Zhang T, Zhao H. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm. THE PLANT CELL 2023; 35:409-434. [PMID: 36222567 PMCID: PMC9806651 DOI: 10.1093/plcell/koac302] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fluctuations in nitrogen (N) availability influence protein and starch levels in maize (Zea mays) seeds, yet the underlying mechanism is not well understood. Here, we report that N limitation impacted the expression of many key genes in N and carbon (C) metabolism in the developing endosperm of maize. Notably, the promoter regions of those genes were enriched for P-box sequences, the binding motif of the transcription factor prolamin-box binding factor 1 (PBF1). Loss of PBF1 altered accumulation of starch and proteins in endosperm. Under different N conditions, PBF1 protein levels remained stable but PBF1 bound different sets of target genes, especially genes related to the biosynthesis and accumulation of N and C storage products. Upon N-starvation, the absence of PBF1 from the promoters of some zein genes coincided with their reduced expression, suggesting that PBF1 promotes zein accumulation in the endosperm. In addition, PBF1 repressed the expression of sugary1 (Su1) and starch branching enzyme 2b (Sbe2b) under normal N supply, suggesting that, under N-deficiency, PBF1 redirects the flow of C skeletons for zein toward the formation of C compounds. Overall, our study demonstrates that PBF1 modulates C and N metabolism during endosperm development in an N-dependent manner.
Collapse
Affiliation(s)
| | | | - Xi Shi
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Ling Zhou
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Min Ge
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Shuaiqiang Liang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yibo Wu
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Tifu Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | | |
Collapse
|
13
|
The Evaluation of γ-Zein Reduction Using Mass Spectrometry—The Influence of Proteolysis Type in Relation to Starch Degradability in Silages. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The starch availability and nutritional value of corn (Zea mays L.) are affected by zein proteins. The aim of the study was to see whether the proposed reduction of γ-zeins during the fermentation of silages is a result of either the enzymatic proteolytic activity or of the acidic environment, and how this reduction affects starch availability and degradability in high-moisture corn. A mass spectrometry (MS) technique was used to quantify the 16- and 27-kDa γ-zeins. Briefly, two-dimensional gel electrophoresis (2-DE) was used for γ-zein separation, followed by densitometry for protein quantification and matrix-assisted laser desorption ionization time-of-flight MS (MALDI-TOF/TOF) for protein identification. The results show that the reduction in γ-zeins induced by the ensiling led to a more pronounced starch availability and in vitro degradation, and this reduction was dependent on the type of proteolysis. More specifically, the results indicate that the reduction of γ-zeins in the ensiled corn was primarily driven by the enzymatic proteolysis. Furthermore, we demonstrated that 2-DE followed by densitometric quantification and the mass spectrometry analysis for protein identification can be used as a state-of-the-art method for γ-zein evaluation both in fresh and fermented/ensiled corn samples.
Collapse
|
14
|
Hurst P, Schnable JC, Holding DR. Tandem duplicate expression patterns are conserved between maize haplotypes of the α-zein gene family. PLANT DIRECT 2021; 5:e346. [PMID: 34541444 PMCID: PMC8438537 DOI: 10.1002/pld3.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/12/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Tandem duplication gives rise to copy number variation and subsequent functional novelty among genes as well as diversity between individuals in a species. Functional novelty can result from either divergence in coding sequence or divergence in patterns of gene transcriptional regulation. Here, we investigate conservation and divergence of both gene sequence and gene regulation between the copies of the α-zein gene family in maize inbreds B73 and W22. We used RNA-seq data generated from developing, self-pollinated kernels at three developmental stages timed to coincide with early and peak zein expression. The reference genome annotations for B73 and W22 were modified to ensure accurate inclusion of their respective α-zein gene models to accurately assess copy-specific expression. Expression analysis indicated that although the total expression of α-zeins is higher in W22, the pattern of expression in both lines is conserved. Additional analysis of publicly available RNA-seq data from a diverse population of maize inbreds also demonstrates variation in absolute expression, but conservation of expression patterns across a wide range of maize genotypes and α-zein haplotypes.
Collapse
Affiliation(s)
- Preston Hurst
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - James C. Schnable
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - David R. Holding
- Department of Agronomy and Horticulture, Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| |
Collapse
|
15
|
Bunіo LV, Tsvilynyuk OM. Influence of crude oil pollution on the content and electrophoretic spectrum of proteins in Carex hirta plants at the initial stages of vegetative development. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The role of proteins in the general adaptive response of Carex hirta plants to soil pollution by crude oil has been studied. It was established that a possible element of the process of adaptation of C. hirta plants to combined stress – conditions of soil polluted by crude oil – may be the synthesis of stress proteins – high molecular weight of more than 60 kD and low molecular weight, not exceeding 22–45 kD. The synthesis of all 5 HSP families was detected in the leaves and rhizomes, and only sHSP (starting from Mr 32 kD), Hsp 60 and Hsp 100 proteins were synthesized in the roots under the influence of crude oil pollution. The development of C. hirta adaptation syndrome under the influence of crude oil pollution of the soil was promoted by enhanced synthesis of proteins with Mr 85, 77, 64, 60 and 27 kD in the leaves, 118 and 41 kD in the rhizomes and proteins with Mr 105, 53, 50 and 43 kD in the roots of the plants. The decrease in the amount of proteins with Mr 91, 45, 28 kD in the leaves, proteins with Mr 85, 76 and 23 kD in rhizomes and proteins with Mr 64 and 39 in the roots of C. hirta plants under conditions of crude oil polluted soil could be a consequence of inhibition of synthesis or degradation of protein molecules providing the required level of low molecular weight protective compounds in cells. The root system and rhizomes of C. hirta plants undergo a greater crude oil load, which leads to increased protein synthesis in these organs and decreased in the leaves, correspondingly. However, a decrease in protein content in the leaves may indicate their outflow in the roots and rhizomes. Сrude oil contaminated soil as a polycomponent stressor accelerated the aging of leaves of C. hirta plants, which could be caused by increased synthesis of ABA. ABA in its turn induced the synthesis of leaf-specific protein with Mr 27 kD. These proteins bind significant amounts of water with their hydrate shells maintaining the high water holding capacity of the cytoplasm under drought conditions. ABA inhibits the mRNA synthesis and their corresponding proteins, which are characteristic under normal conditions, and induces the expression of genes and, consequently, the synthesis of specific proteins including 27 kD protein. By stimulating the expression of individual genes and the synthesis of new polypeptides, ABA promotes the formation of protective reactions and increases the resistance of plants to crude oil pollution.
Collapse
|
16
|
Yi F, Gu W, Li J, Chen J, Hu L, Cui Y, Zhao H, Guo Y, Lai J, Song W. Miniature Seed6, encoding an endoplasmic reticulum signal peptidase, is critical in seed development. PLANT PHYSIOLOGY 2021; 185:985-1001. [PMID: 33793873 PMCID: PMC8133640 DOI: 10.1093/plphys/kiaa060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/15/2020] [Indexed: 05/15/2023]
Abstract
Endoplasmic reticulum (ER) type I signal peptidases (ER SPases I) are vital proteases that cleave signal peptides from secreted proteins. However, the specific function of ER SPase I in plants has not been genetically characterized, and the substrate is largely unknown. Here, we report the identification of a maize (Zea mays) miniature seed6 (mn6) mutant. The loss-of-function mn6 mutant exhibited severely reduced endosperm size. Map-based cloning and molecular characterization indicated that Mn6 is an S26-family ER SPase I, with Gly102 (box E) in Mn6 critical for protein function during processing. Mass spectrometric and immunoprecipitation analyses revealed that Mn6 is predominantly involved in processing carbohydrate synthesis-related proteins, including the cell wall invertase miniature seed1 (Mn1), which is specifically expressed in the basal endosperm transfer layer. RNA and protein expression levels of Mn1 were both significantly downregulated in the mn6 mutant. Due to the significant reduction in cell wall invertase activity in the transfer cell layer, mutation of Mn6 caused dramatic defects in endosperm development. These results suggest that proper maturation of Mn1 by Mn6 may be a crucial step for proper seed filling and maize development.
Collapse
Affiliation(s)
- Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Gu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianfang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Li Hu
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yang Cui
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Haiming Zhao
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
| | - Weibin Song
- State Key Laboratory of Plant Physiology and Biochemistry and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, P. R. China
- Author for communication:
| |
Collapse
|
17
|
Parsons L, Ren Y, Yobi A, Angelovici R, Rodriguez O, Holding DR. Final Selection of Quality Protein Popcorn Hybrids. FRONTIERS IN PLANT SCIENCE 2021; 12:658456. [PMID: 33841483 PMCID: PMC8025670 DOI: 10.3389/fpls.2021.658456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Quality Protein Popcorn (QPP) BC2F5 inbred lines were produced through an interpopulation breeding system between Quality Protein Maize dent (QPM) and elite popcorn germplasm. In 2019, five QPP F1 hybrids were selected for further evaluation due to superior agronomics, endosperm protein quality, and popping quality traits. Though these BC2F5 QPP hybrids were phenotypically similar to their popcorn parents, the QPP cultivars conveyed slightly inferior popping characteristics when compared to the original popcorn germplasm. The objective of this study was twofold. First, BC2F5 inbred lines were crossed to their popcorn parents and BC3F4 inbred lines were produced for hybridization to test the agronomic, protein, and popping trait effects from an additional QPP by popcorn backcross. Second, BC2- and BC3-hybrids were simultaneously evaluated alongside ConAgra Brands® elite cultivars and ranked for potential commercialization in the spring of 2020. These 10 QPP hybrids were grown alongside five ConAgra Brands® elite popcorn cultivars in three locations and agronomic, protein quality, and popping quality traits were evaluated. Significant improvements in popcorn quality traits were observed in the QPP BC3 cultivars compared to their BC2 counterparts, and yield averages were significantly lower in BC3-derived QPP hybrids compared to the BC2 population. Protein quality traits were not significantly different between QPP backcrossing populations and significantly superior to ConAgra elite popcorn varieties. Utilizing a previously published ranking system, six QPP hybrids, three from the BC2F5 population and three from the BC3F4 population, were evaluated as candidates for final selection. The successful evaluation and ranking system methodology employed is transferable to other hybrid production and testing programs. Incorporating this analysis with concurrent sensory studies, two QPP hybrids were chosen as premier cultivars for potential commercialization.
Collapse
Affiliation(s)
- Leandra Parsons
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Ying Ren
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Abou Yobi
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Ruthie Angelovici
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | | | - David R. Holding
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, NE, United States
| |
Collapse
|
18
|
Sethi M, Singh A, Kaur H, Phagna RK, Rakshit S, Chaudhary DP. Expression profile of protein fractions in the developing kernel of normal, Opaque-2 and quality protein maize. Sci Rep 2021; 11:2469. [PMID: 33510248 PMCID: PMC7844038 DOI: 10.1038/s41598-021-81906-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 12/03/2020] [Indexed: 11/29/2022] Open
Abstract
Maize protein quality is determined by the composition of its endosperm proteins, which are classified as nutritionally poor zeins (prolamin and prolamin-like) and nutritionally rich non-zeins (albumin, globulin, glutelin-like, and glutelin). Protein quality is considerably higher in opaque-2 mutants due to increased content of non-zeins over zeins. However, the opaque-2 endosperm is soft, which leads to poor agronomic performance and post-harvest infestation. Endosperm modification of opaque-2 had led to the development of Quality Protein Maize (QPM), which has higher protein quality along with hard kernel endosperm. The present study was planned to analyze the expression dynamics of different protein fractions in the endospem of developing maize kernel in normal, opaque-2 and QPM in response to the introgression of endosperm modifiers. Results revealed that albumin and globulin content decreases, whereas, prolamin, prolamin-like, glutelin-like, and glutelin content increases with kernel maturity. It has been observed that opaque-2 mutation affects protein expression at initial stages, whereas, the effect of endosperm modifiers was observed at the intermediate and later stages of kernel development. It has also been noted that prolamin, glutelin, and glutelin-like fractions can be used as quick markers for quality assessment for differentiating QPM varieties, even at the immature stage of kernel development. Overall, the present study implicates the role of different protein fractions in developing and utilizing nutritionally improved maize varieties.
Collapse
Affiliation(s)
- Mehak Sethi
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Alla Singh
- ICAR - Indian Institute of Maize Research, Ludhiana, 141004, Punjab, India
| | - Harmanjot Kaur
- Department of Biochemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | | | - Sujay Rakshit
- ICAR - Indian Institute of Maize Research, Ludhiana, 141004, Punjab, India
| | | |
Collapse
|
19
|
Chen Y, Fu Z, Zhang H, Tian R, Yang H, Sun C, Wang L, Zhang W, Guo Z, Zhang X, Tang J. Cytosolic malate dehydrogenase 4 modulates cellular energetics and storage reserve accumulation in maize endosperm. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2420-2435. [PMID: 32436613 PMCID: PMC7680550 DOI: 10.1111/pbi.13416] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/03/2020] [Indexed: 05/30/2023]
Abstract
Cytosolic malate dehydrogenase (MDH) is a key enzyme that regulates the interconversion between malate and oxaloacetate (OAA). However, its role in modulating storage compound accumulation in maize endosperm is largely unknown. Here, we characterized a novel naturally occurring maize mdh4-1 mutant, which produces small, opaque kernels and exhibits reduced starch but enhanced lysine content. Map-based cloning, functional complementation and allelism analyses identified ZmMdh4 as the causal gene. Enzymatic assays demonstrated that ZmMDH4 predominantly catalyses the conversion from OAA to malate. In comparison, the activity of the mutant enzyme, which lacks one glutamic acid (Glu), was completed abolished, demonstrating that the Glu residue was essential for ZmMDH4 function. Knocking down ZmMdh4 in vivo led to a substantial metabolic shift towards glycolysis and a dramatic disruption in the activity of the mitochondrial complex I, which was correlated with transcriptomic alterations. Taken together, these results demonstrate that ZmMdh4 regulates the balance between mitochondrial respiration and glycolysis, ATP production and endosperm development, through a yet unknown feedback regulatory mechanism in mitochondria.
Collapse
Affiliation(s)
- Yongqiang Chen
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Runmiao Tian
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Huili Yang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Canran Sun
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Lulin Wang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Wen Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhanyong Guo
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crops Science/Collaborative Innovation Center of Henan Grain Crops/College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
20
|
Xu YC, Guo YL. Less Is More, Natural Loss-of-Function Mutation Is a Strategy for Adaptation. PLANT COMMUNICATIONS 2020; 1:100103. [PMID: 33367264 PMCID: PMC7743898 DOI: 10.1016/j.xplc.2020.100103] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/08/2020] [Accepted: 08/12/2020] [Indexed: 05/12/2023]
Abstract
Gene gain and loss are crucial factors that shape the evolutionary success of diverse organisms. In the past two decades, more attention has been paid to the significance of gene gain through gene duplication or de novo genes. However, gene loss through natural loss-of-function (LoF) mutations, which is prevalent in the genomes of diverse organisms, has been largely ignored. With the development of sequencing techniques, many genomes have been sequenced across diverse species and can be used to study the evolutionary patterns of gene loss. In this review, we summarize recent advances in research on various aspects of LoF mutations, including their identification, evolutionary dynamics in natural populations, and functional effects. In particular, we discuss how LoF mutations can provide insights into the minimum gene set (or the essential gene set) of an organism. Furthermore, we emphasize their potential impact on adaptation. At the genome level, although most LoF mutations are neutral or deleterious, at least some of them are under positive selection and may contribute to biodiversity and adaptation. Overall, we highlight the importance of natural LoF mutations as a robust framework for understanding biological questions in general.
Collapse
Affiliation(s)
- Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Kaur R, Kaur G, Vikal Y, Gill GK, Sharma S, Singh J, Dhariwal GK, Gulati A, Kaur A, Kumar A, Chawla JS. Genetic enhancement of essential amino acids for nutritional enrichment of maize protein quality through marker assisted selection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2243-2254. [PMID: 33268926 PMCID: PMC7688887 DOI: 10.1007/s12298-020-00897-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/05/2020] [Accepted: 10/11/2020] [Indexed: 06/12/2023]
Abstract
Maize grain protein is deficient in two essential amino acids, lysine and tryptophan, defining it as of low nutritive value. The discovery of opaque2 (o2) gene has led to the development of quality protein maize (QPM) that has enhanced levels of essential amino acids over normal maize. However, the adoption of QPM is still very limited. The present study aims at improving the quality of normal four maize inbred lines (LM11, LM12, LM13 and LM14) of single cross hybrids; Buland (LM11 × LM12) and PMH1 (LM13 × LM14) released in India for different agro-climatic zones by introgressing o2 allele along-with modifiers using marker assisted backcross breeding. Both foreground and background selection coupled with phenotypic selection were employed for selection of o2 specific allele and maximum recovery of the recurrent parent genome (87-90%) with minimum linkage drag across the crosses. The converted QPM lines had < 25% opaqueness which is close to the respective recurrent parents. The QPM versions showed high level of tryptophan content ranging from 0.72 to 1.03 across the four crosses. The newly developed best QPM lines were crossed in original combinations to generate QPM hybrids. The grain yield of improved QPM hybrids was at par and there was significant increase in tryptophan content over the original hybrids.The integrated marker assisted, and phenotypic selection approach holds promise to tackle complex genetics of QPM. The dissemination and adoption of improved QPM versions may help to counteract protein-energy malnutrition in developing countries.
Collapse
Affiliation(s)
- Ravneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Gurleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Gurjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Sunita Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Jagveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | | | - Ankit Gulati
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab India
| | - Amandeep Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| | - Ashok Kumar
- Reginal Research Station, Gurdaspur, Ludhiana, India
| | - Jasbir Singh Chawla
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab India
| |
Collapse
|
22
|
Carotenoids modulate kernel texture in maize by influencing amyloplast envelope integrity. Nat Commun 2020; 11:5346. [PMID: 33093471 PMCID: PMC7582188 DOI: 10.1038/s41467-020-19196-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023] Open
Abstract
The mechanism that creates vitreous endosperm in the mature maize kernel is poorly understood. We identified Vitreous endosperm 1 (Ven1) as a major QTL influencing this process. Ven1 encodes β-carotene hydroxylase 3, an enzyme that modulates carotenoid composition in the amyloplast envelope. The A619 inbred contains a nonfunctional Ven1 allele, leading to a decrease in polar and an increase in non-polar carotenoids in the amyloplast. Coincidently, the stability of amyloplast membranes is increased during kernel desiccation. The lipid composition in endosperm cells in A619 is altered, giving rise to a persistent amyloplast envelope. These changes impede the gathering of protein bodies and prevent them from interacting with starch grains, creating air spaces that cause an opaque kernel phenotype. Genetic modifiers were identified that alter the effect of Ven1A619, while maintaining a high β-carotene level. These studies provide insight for breeding vitreous kernel varieties and high vitamin A content in maize. Very little is known about how vitreous endosperm in the mature maize kernel is created. Here, via map-based cloning, the authors find that mutation of a β-carotene hydroxylase 3 encoding gene Ven1 affects carotenoids and lipids composition, which consequently influences amyloplast envelope integrity.
Collapse
|
23
|
Zang J, Huo Y, Liu J, Zhang H, Liu J, Chen H. Maize YSL2 is required for iron distribution and development in kernels. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5896-5910. [PMID: 32687576 DOI: 10.1093/jxb/eraa332] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/13/2020] [Indexed: 05/22/2023]
Abstract
Iron (Fe) is an essential micronutrient and plays an irreplaceable role in plant growth and development. Although its uptake and translocation are important biological processes, little is known about the molecular mechanism of Fe translocation within seed. Here, we characterized a novel small kernel mutant yellow stripe like 2 (ysl2) in maize (Zea mays). ZmYSL2 was predominantly expressed in developing endosperm and was found to encode a plasma membrane-localized metal-nicotianamine (NA) transporter ZmYSL2. Analysis of transporter activity revealed ZmYSL2-mediated Fe transport from endosperm to embryo during kernel development. Dysfunction of ZmYSL2 resulted in the imbalance of Fe homeostasis and abnormality of protein accumulation and starch deposition in the kernel. Significant changes of nitric oxide accumulation, mitochondrial Fe-S cluster content, and mitochondrial morphology indicated that the proper function of mitochondria was also affected in ysl2. Collectively, our study demonstrated that ZmYSL2 had a pivotal role in mediating Fe distribution within the kernel and kernel development in maize.
Collapse
Affiliation(s)
- Jie Zang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huairen Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
24
|
Zhang X, Guan Z, Li Z, Liu P, Ma L, Zhang Y, Pan L, He S, Zhang Y, Li P, Ge F, Zou C, He Y, Gao S, Pan G, Shen Y. A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2881-2895. [PMID: 32594266 DOI: 10.1007/s00122-020-03639-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Using GWAS and QTL mapping identified 100 QTL and 138 SNPs, which control yield-related traits in maize. The candidate gene GRMZM2G098557 was further validated to regulate ear row number by using a segregation population. Understanding the genetic basis of yield-related traits contributes to the improvement of grain yield in maize. This study used an inter-mated B73 × Mo17 (IBM) Syn10 doubled-haploid (DH) population and an association panel to identify the genetic loci responsible for nine yield-related traits in maize. Using quantitative trait loci (QTL) mapping, 100 QTL influencing these traits were detected across different environments in the IBM Syn10 DH population, with 25 co-detected in multiple environments. Using a genome-wide association study (GWAS), 138 single-nucleotide polymorphisms (SNPs) were identified as correlated with these traits (P < 2.04E-06) in the association panel. Twenty-one pleiotropic QTL/SNPs were identified to control different traits in both populations. A combination of QTL mapping and GWAS uncovered eight significant SNPs (PZE-101097575, PZE-103169263, ZM011204-0763, PZE-104044017, PZE-104123110, SYN8062, PZE-108060911, and PZE-102043341) that were co-located within seven QTL confidence intervals. According to the eight co-localized SNPs by the two populations, 52 candidate genes were identified, among which the ear row number (ERN)-associated SNP SYN8062 was closely linked to SBP-transcription factor 7 (GRMZM2G098557). Several SBP-transcription factors were previously demonstrated to modulate maize ERN. We then validated the phenotypic effects of SYN8062 in the IBM Syn10 DH population, indicating that the ERN of the lines with the A-allele in SYN8062 was significantly (P < 0.05) larger than that of the lines with the G-allele in SYN8062 in each environment. These findings provide valuable information for understanding the genetic mechanisms of maize grain yield formation and for improving molecular marker-assisted selection for the high-yield breeding of maize.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongrong Guan
- Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, 408000, China
| | - Zhaoling Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yinchao Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shijiang He
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peng Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Ge
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yongcong He
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China.
| |
Collapse
|
25
|
Hu X, Boeckman CJ, Cong B, Steimel JP, Richtman NM, Sturtz K, Wang Y, Walker CA, Yin J, Unger A, Farris C, Lu AL. Characterization of DvSSJ1 transcripts targeting the smooth septate junction (SSJ) of western corn rootworm (Diabrotica virgifera virgifera). Sci Rep 2020; 10:11139. [PMID: 32636422 PMCID: PMC7341793 DOI: 10.1038/s41598-020-68014-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/17/2020] [Indexed: 11/29/2022] Open
Abstract
Transgenic maize plants expressing dsRNA targeting western corn rootworm (WCR, Diabrotica virgifera virgifera) DvSSJ1 mRNA, a Drosophila snakeskin (ssk) ortholog, show insecticidal activity and significant plant protection from WCR damage. The gene encodes a membrane protein associated with the smooth sepate junction (SSJ) which is required for intestinal barrier function. To understand the active RNA form that leads to the mortality of WCR larvae by DvSSJ1 RNA interference (RNAi), we characterized transgenic plants expressing DvSSJ1 RNA transcripts targeting WCR DvSSJ1 mRNA. The expression of the silencing cassette results in the full-length transcript of 901 nucleotides containing a 210 bp inverted fragment of the DvSSJ1 gene, the formation of a double-stranded RNA (dsRNA) transcript and siRNAs in transgenic plants. Our artificial diet-feeding study indicates that dsRNAs greater than or equal to approximately 60 base-pairs (bp) are required for DvSSJ1 insecticidal activity. Impact of specificity of dsRNA targeting DvSSJ1 mRNA on insecticidal activities was also evaluated in diet bioassay, which showed a single nucleotide mutation can have a significant impact or abolish diet activities against WCR. These results provide insights as to the functional forms of plant-delivered dsRNA for the protection of transgenic maize from WCR feeding damage and information contributing to the risk assessment of transgenic maize expressing insecticidal dsRNA.
Collapse
Affiliation(s)
- Xu Hu
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA.
| | - Chad J Boeckman
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA.
| | - Bin Cong
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA.
| | - Joe P Steimel
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Nina M Richtman
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Kristine Sturtz
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Yiwei Wang
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Carl A Walker
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Jiaming Yin
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Anita Unger
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Caitlin Farris
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| | - Albert L Lu
- Corteva Agriscience, 7300 NW 62nd Ave., Johnston, IA, 50131, USA
| |
Collapse
|
26
|
Parsons L, Ren Y, Yobi A, Hurst P, Angelovici R, Rodriguez O, Holding DR. Production and Selection of Quality Protein Popcorn Hybrids Using a Novel Ranking System and Combining Ability Estimates. FRONTIERS IN PLANT SCIENCE 2020; 11:698. [PMID: 32655587 PMCID: PMC7325744 DOI: 10.3389/fpls.2020.00698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/04/2020] [Indexed: 05/27/2023]
Abstract
Popcorn varieties are agronomically sub-optimal and genetically limited compared to other maize subspecies. To increase genetic diversity and improve popcorn agronomics, dent germplasm has been introduced to popcorn with limited success and generally, major loss of popping. Between 2013 and 2018, 12 Quality Protein Popcorn (QPP) inbreds containing Quality Protein Maize (QPM) and popcorn germplasm were produced that maintained popping while carrying the opaque-2 allele conferring elevated kernel lysine. This is an opportune trait in the growing market for healthier snacks and a model for mining QPM traits into popcorn. We crossed QPP inbreds to explore the effects of heterosis on popcorn protein, popping quality, and plant agronomics and selected hybrids for further production. To rank and intermediately prescreen hybrids, we utilized a novel hybrid-ranking model adapted from a rank summation index while examining the inbred general combining ability and hybrid specific combining ability estimates for all traits. We observed a biological manifestation of heterosis by categorizing hybrids by pedigree that resulted in a stepwise progression of trait improvement. These results corroborated our hybrid selection and offered insight in basic heterosis research. Estimates for popcorn quality and agronomic trait covariances also suggest the synergistic introgression of highly vitreous dent maize (QPM) into popcorn, providing a likely explanation for the successfully maintained vitreous endosperm, protein quality and popping traits in line with a remodeled proteome. QPP hybrids maintained improved amino acid profiles although different popping methods variably affected popcorn's protein bound and free amino acid levels. This preliminary screening of QPP hybrids is enabling further quantitative selection for large-scale, complex trait comparison to currently marketed elite popcorn varieties.
Collapse
Affiliation(s)
- Leandra Parsons
- Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, United States
| | - Ying Ren
- Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, United States
| | - Abou Yobi
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Preston Hurst
- Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, United States
| | - Ruthie Angelovici
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | | | - David R. Holding
- Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
27
|
Li C, Song R. The regulation of zein biosynthesis in maize endosperm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1443-1453. [PMID: 31897513 DOI: 10.1007/s00122-019-03520-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 05/06/2023]
Abstract
We review the current knowledge regarding the regulation of zein storage proteins biosynthesis and protein body formation, which are crucial processes for the successful accumulation of nutrients in maize kernels. Storage proteins in the seeds of crops in the grass family (Poaceae) are a major source of dietary protein for humans. In maize (Zea mays), proteins are the second largest nutrient component in the kernels, accounting for ~ 10% of the kernel weight. Over half of the storage proteins in maize kernels are zeins, which lack two essential amino acids, lysine and tryptophan. This deficiency limits the use of maize proteins in the food and feed industries. Zeins are encoded by a large super-gene family. During endosperm development, zeins accumulate in protein bodies, which are derived from the rough endoplasmic reticulum. In recent years, our knowledge of the pathways of zein biosynthesis and their deposition within the endosperm has been greatly expanded. In this review, we summarize the current understanding of zeins, including the genes encoding these proteins, their expression patterns and transcriptional regulation, the process of protein body formation, and other biological processes affecting zein accumulation.
Collapse
Affiliation(s)
- Chaobin Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
28
|
Prasanna BM, Palacios-Rojas N, Hossain F, Muthusamy V, Menkir A, Dhliwayo T, Ndhlela T, San Vicente F, Nair SK, Vivek BS, Zhang X, Olsen M, Fan X. Molecular Breeding for Nutritionally Enriched Maize: Status and Prospects. Front Genet 2020; 10:1392. [PMID: 32153628 PMCID: PMC7046684 DOI: 10.3389/fgene.2019.01392] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Maize is a major source of food security and economic development in sub-Saharan Africa (SSA), Latin America, and the Caribbean, and is among the top three cereal crops in Asia. Yet, maize is deficient in certain essential amino acids, vitamins, and minerals. Biofortified maize cultivars enriched with essential minerals and vitamins could be particularly impactful in rural areas with limited access to diversified diet, dietary supplements, and fortified foods. Significant progress has been made in developing, testing, and deploying maize cultivars biofortified with quality protein maize (QPM), provitamin A, and kernel zinc. In this review, we outline the status and prospects of developing nutritionally enriched maize by successfully harnessing conventional and molecular marker-assisted breeding, highlighting the need for intensification of efforts to create greater impacts on malnutrition in maize-consuming populations, especially in the low- and middle-income countries. Molecular marker-assisted selection methods are particularly useful for improving nutritional traits since conventional breeding methods are relatively constrained by the cost and throughput of nutritional trait phenotyping.
Collapse
Affiliation(s)
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Abebe Menkir
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | | | | | | | | | | | | | - Mike Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Xingming Fan
- Institute of Crop Sciences, Yunnan Academy of Agricultural Sciences (YAAS), Kunming, China
| |
Collapse
|
29
|
Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize. Nat Commun 2020; 11:17. [PMID: 31911615 PMCID: PMC6946643 DOI: 10.1038/s41467-019-14023-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/12/2019] [Indexed: 02/05/2023] Open
Abstract
Mutation of o2 doubles maize endosperm lysine content, but it causes an inferior kernel phenotype. Developing quality protein maize (QPM) by introgressing o2 modifiers (Mo2s) into the o2 mutant benefits millions of people in developing countries where maize is a primary protein source. Here, we report genome sequence and annotation of a South African QPM line K0326Y, which is assembled from single-molecule, real-time shotgun sequencing reads collinear with an optical map. We achieve a N50 contig length of 7.7 million bases (Mb) directly from long-read assembly, compared to those of 1.04 Mb for B73 and 1.48 Mb for Mo17. To characterize Mo2s, we map QTLs to chromosomes 1, 6, 7, and 9 using an F2 population derived from crossing K0326Y and W64Ao2. RNA-seq analysis of QPM and o2 endosperms reveals a group of differentially expressed genes that coincide with Mo2 QTLs, suggesting a potential role in vitreous endosperm formation. The South African quality protein maize (QPM) cultivars have the desired high lysine content and kernel hardness due to o2 mutation and the introgression of modifiers of o2 (Mo2) QTLs, respectively. Here, the authors assemble the genome of a QPM line and identify candidate genes underlying Mo2 QTLs.
Collapse
|
30
|
Khan NU, Sheteiwy M, Lihua N, Khan MMU, Han Z. An update on the maize zein-gene family in the post-genomics era. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0012-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMaize (Zea mays) is a cereal crop of global food importance. However, the deficiency of essential amino acids, more importantly lysine, methionine and tryptophan, in the major seed storage zein proteins makes corn nutritionally of low value for human consumption. The idea of improving maize nutritional value prompted the search for maize natural mutants harboring low zein contents and higher amount of lysine. These studies resulted in the identification of more than dozens of maize opaque mutants in the previous few decades,o2mutant being the most extensively studied one. However, the high lysine contents but soft kernel texture and chalky endosperm halted the widespread application and commercial success of maize opaque mutants, which ultimately paved the way for the development of Quality Protein Maize (QPM) by modifying the soft endosperm ofo2 mutant into lysine-rich hard endosperm. The previous few decades have witnessed a marked progress in maize zein research. It includes elucidation of molecular mechanism underlying the role of different zein genes in seed endosperm development by cloning different components of zein family, exploring the general organization, function and evolution of zein family members within maize species and among other cereals, and elucidating the cis- and trans-regulatory elements modulating the regulation of different molecular players of maize seed endosperm development. The current advances in high quality reference genomes of maize lines B73 and Mo17 plus the completion of ongoing pan genome sequencing projects of more maize lines with NGS technologies are expected to revolutionize maize zein gene research in near future. This review highlights the recent advances in QPM development and its practical application in the post genomic era, genomic and physical composition and evolution of zein family, and expression, regulation and downstream role of zein genes in endosperm development. Moreover, recent genomic tools and methods developed for functional validation of maize zein genes are also discussed.Graphical abstract
Collapse
|
31
|
Liu H, Huang Y, Li X, Wang H, Ding Y, Kang C, Sun M, Li F, Wang J, Deng Y, Yang X, Huang X, Gao X, Yuan L, An D, Wang W, Holding DR, Wu Y. High frequency DNA rearrangement at qγ27 creates a novel allele for Quality Protein Maize breeding. Commun Biol 2019; 2:460. [PMID: 31840105 PMCID: PMC6904753 DOI: 10.1038/s42003-019-0711-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/21/2019] [Indexed: 12/18/2022] Open
Abstract
Copy number variation (CNV) is a major source of genetic variation and often contributes to phenotypic variation in maize. The duplication at the 27-kDa γ-zein locus (qγ27) is essential to convert soft endosperm into hard endosperm in quality protein maize (QPM). This duplication is unstable and generally produces CNV at this locus. We conducted genetic experiments designed to directly measure DNA rearrangement frequencies occurring in males and females of different genetic backgrounds. The average frequency with which the duplication rearranges to single copies is 1.27 × 10-3 and varies among different lines. A triplication of γ27 gene was screened and showed a better potential than the duplication for the future QPM breeding. Our results highlight a novel approach to directly determine the frequency of DNA rearrangements, in this case resulting in CNV at the qγ27 locus. Furthermore, this provides a highly effective way to test suitable parents in QPM breeding.
Collapse
Affiliation(s)
- Hongjun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaohan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yahui Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Congbin Kang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Mingfei Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Fangyuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yiting Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Xuerong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoyan Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Lingling Yuan
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE 68588-0665 USA
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - David R. Holding
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE 68588-0665 USA
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
32
|
Pan Z, Liu M, Xiao Z, Ren X, Zhao H, Gong D, Liang K, Tan Z, Shao Y, Qiu F. ZmSMK9, a pentatricopeptide repeat protein, is involved in the cis-splicing of nad5, kernel development and plant architecture in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110205. [PMID: 31521217 DOI: 10.1016/j.plantsci.2019.110205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 05/23/2023]
Abstract
Maize kernel size and weight are essential contributors to its yield. So the identification of the genes controlling kernel size and weight can give us a chance to gain the yield. Here, we identified a small kernel mutant, Zea mays small kernel 9 (Zmsmk9), in maize. Cytological observation showed that the development of the endosperm and embryo was delayed in Zmsmk9 mutants at the early stages, resulting in a small kernel phenotype. Interestingly, despite substantial variation in kernel size, the germination of Zmsmk9 seeds was comparable to that of WT, and could develop into normal plants with upright leaf architecture. We cloned Zmsmk9 via map-based cloning. ZmSMK9 encodes a P-type pentatricopeptide repeat protein that targets to mitochondria, and is involved in RNA splicing in mitochondrial NADH dehydrogenase5 (nad5) intron-1 and intron-4. Consistent with the delayed development phenotype, transcriptome analysis of 12-DAP endosperm showed that starch and zeins biosynthesis related genes were dramatically down regulated in Zmsmk9, while cell cycle and cell growth related genes were dramatically increased. As a result, ZmSMK9 is a novel gene required for the splicing of nad5 intron-1 and intron-4, kernel development, and plant architecture in maize.
Collapse
Affiliation(s)
- Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Min Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ziyi Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuemei Ren
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yangqing Shao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
33
|
Variance of Zein Protein and Starch Granule Morphology between Corn and Steam Flaked Products Determined Starch Ruminal Degradability Through Altering Starch Hydrolyzing Bacteria Attachment. Animals (Basel) 2019; 9:ani9090626. [PMID: 31470611 PMCID: PMC6769831 DOI: 10.3390/ani9090626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/13/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
The current study investigated differences of γ-zein protein contents and starch granule characteristics between raw and steam flaked corns and their influences on ruminal starch hydrolyzing bacteria (SHB) attached to corn grain. Two types of raw (Corn1 and Corn2) and their steam-flaked products (SFCorn1 and SFCorn2) were applied to explore physiochemical structures and SHB attachment. SDS-PAGE was conducted to detect γ-zein protein patterns, scanning electron microscope, and small angle X-ray scattering were performed to obtain starch granule morphology, while crystallinity, DQ starch, and DAPI staining were applied to quantify SHB. The steam flaking process destroyed γ-zein proteins and gelatinized starch granules. The median particle size of Corn1 and Corn2 starch granules increased from 17.8 and 18.0 μm to 30.8 and 26.0 μm, but crystallinity decreased from 22.0 and 25.0% to 9.9 and 16.9%, respectively. The percentage of SHB attached to Corn1 residues decreased (p = 0.01) after 4 h incubation, but SHB attached to SFCorn1 residues increased (p = 0.03) after 12 h incubation. Thus, the differences of γ-zein proteins and starch granule physiochemical structures between raw and steam flaked corn played an important role in improving the rate and extent of starch ruminal degradation through altering the process of SHB attached to corn.
Collapse
|
34
|
Huang Y, Wang H, Huang X, Wang Q, Wang J, An D, Li J, Wang W, Wu Y. Maize VKS1 Regulates Mitosis and Cytokinesis During Early Endosperm Development. THE PLANT CELL 2019; 31:1238-1256. [PMID: 30962394 PMCID: PMC6588315 DOI: 10.1105/tpc.18.00966] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 05/18/2023]
Abstract
Cell number is a critical factor that determines kernel size in maize (Zea mays). Rapid mitotic divisions in early endosperm development produce most of the cells that make up the starchy endosperm; however, the mechanisms underlying early endosperm development remain largely unknown. We isolated a maize mutant that shows a varied-kernel-size phenotype (vks1). Vks1 encodes ZmKIN11, which belongs to the kinesin-14 subfamily and is predominantly expressed in early endosperm development. VKS1 dynamically localizes to the nucleus and microtubules and plays key roles in the migration of free nuclei in the coenocyte as well as in mitosis and cytokinesis in early mitotic divisions. Absence of VKS1 has relatively minor effects on plants but causes deformities in spindle assembly, sister chromatid separation, and phragmoplast formation in early endosperm development, thereby resulting in reduced cell proliferation. Severities of aberrant mitosis and cytokinesis within individual vks1 endosperms differ, thereby resulting in varied kernel sizes. Our discovery highlights VKS1 as a central regulator of mitosis in early maize endosperm development and provides a potential approach for future yield improvement.
Collapse
Affiliation(s)
- Yongcai Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiqin Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenqin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
35
|
Song W, Zhu J, Zhao H, Li Y, Liu J, Zhang X, Huang L, Lai J. OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:706-727. [PMID: 30506638 DOI: 10.1111/jipb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Uncovering the genetic basis of seed development will provide useful tools for improving both crop yield and nutritional value. However, the genetic regulatory networks of maize (Zea mays) seed development remain largely unknown. The maize opaque endosperm and small germ 1 (os1) mutant has opaque endosperm and a small embryo. Here, we cloned OS1 and show that it encodes a putative transcription factor containing an RWP-RK domain. Transcriptional analysis indicated that OS1 expression is elevated in early endosperm development, especially in the basal endosperm transfer layer (BETL), conducting zone (CZ), and central starch endosperm (CSE) cells. RNA sequencing (RNA-Seq) analysis of the os1 mutant revealed sharp downregulation of certain genes in specific cell types, including ZmMRP-1 and Meg1 in BETL cells and a majority of zein- and starch-related genes in CSE cells. Using a haploid induction system, we show that wild-type endosperm could rescue the smaller size of os1 embryo, which suggests that nutrients are allocated by the wild-type endosperm. Therefore, our data imply that the network regulated by OS1 accomplishes a key step in nutrient allocation between endosperm and embryo within maize seeds. Identification of this network will help uncover the mechanisms regulating the nutritional balance between endosperm and embryo.
Collapse
Affiliation(s)
- Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinjie Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Yingnan Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jiangtao Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Liangliang Huang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| |
Collapse
|
36
|
Ren Y, Yobi A, Marshall L, Angelovici R, Rodriguez O, Holding DR. Generation and Evaluation of Modified Opaque-2 Popcorn Suggests a Route to Quality Protein Popcorn. FRONTIERS IN PLANT SCIENCE 2018; 9:1803. [PMID: 30574157 PMCID: PMC6291453 DOI: 10.3389/fpls.2018.01803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/20/2018] [Indexed: 06/01/2023]
Abstract
Introducing traits from dent corn to popcorn is challenging because it is difficult to recover adequate popping characteristics. QPM (Quality Protein Maize) is a dent corn variety carrying the opaque-2 (o2) mutation, specifying increased amounts of normally limiting essential amino acids, and modifier genes which restore the wild type vitreous kernel phenotype. In this study, we introgressed o2 and selected for endosperm modification using vitreousness and high 27-kD gamma zein content. In this way, we recovered high-lysine, fully poppable Quality Protein Popcorn (QPP). BC2F4 individuals with vitreous kernels were confirmed to be o2 mutants by both genotyping and SDS-PAGE. Amino acid profiling of BC2F4 individuals showed that they all have significantly increased lysine compared with popcorn parental lines. Principal Component Analysis of the amino acid profiles showed that all introgressions were grouped with corresponding QPM parental lines. Popping analysis of the BC2F5 individuals showed that while there is variability in popping volume between lines, some lines show equivalent popping to the popcorn parent. In this proof-of-concept study for QPP, we have shown that it is possible to rapidly recover sufficient popcorn characteristics in a modified o2 background using simple phenotypic, biochemical and genetic selection. Furthermore, this shows increased γ-zein is an acceptable substitute for α-zein for full poppability. Since we have developed multiple QPP introgressions, this gives good scope for ongoing hybrid production and future evaluation of agronomic performance and selection of elite hybrids. In a wider context, this study shows the potential for breeding beneficial traits into popcorn for agronomic improvement.
Collapse
Affiliation(s)
- Ying Ren
- Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, United States
| | - Abou Yobi
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Leandra Marshall
- Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, United States
| | - Ruthie Angelovici
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Oscar Rodriguez
- Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Lincoln, NE, United States
| | - David R. Holding
- Department of Agronomy and Horticulture, University of Nebraska – Lincoln, Lincoln, NE, United States
- Center for Plant Science Innovation – Beadle Center for Biotechnology, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
37
|
Li C, Yue Y, Chen H, Qi W, Song R. The ZmbZIP22 Transcription Factor Regulates 27-kD γ-Zein Gene Transcription during Maize Endosperm Development. THE PLANT CELL 2018; 30:2402-2424. [PMID: 30242039 PMCID: PMC6241260 DOI: 10.1105/tpc.18.00422] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 05/18/2023]
Abstract
Zeins are the most abundant storage proteins in maize (Zea mays) kernels, thereby affecting the nutritional quality and texture of this crop. 27-kD γ-zein is highly expressed and plays a crucial role in protein body formation. Several transcription factors (TFs) (O2, PBF1, OHP1, and OHP2) regulate the expression of the 27-kD γ-zein gene, but the complexity of its transcriptional regulation is not fully understood. Here, using probe affinity purification and mass spectrometry analysis, we identified ZmbZIP22, a TF that binds to the 27-kD γ-zein promoter. ZmbZIP22 is a bZIP-type TF that is specifically expressed in endosperm. ZmbZIP22 bound directly to the ACAGCTCA box in the 27-kD γ-zein promoter and activated its expression in wild tobacco (Nicotiana benthamiana) cells. 27-kD γ-zein gene expression was significantly reduced in CRISPR/Cas9-generated zmbzip22 mutants. ChIP-seq (chromatin immunoprecipitation coupled to high-throughput sequencing) confirmed that ZmbZIP22 binds to the 27-kD γ-zein promoter in vivo and identified additional direct targets of ZmbZIP22. ZmbZIP22 can interact with PBF1, OHP1, and OHP2, but not O2. Transactivation assays using various combinations of these TFs revealed multiple interaction modes for the transcriptional activity of the 27-kD γ-zein promoter. Therefore, ZmbZIP22 regulates 27-kD γ-zein gene expression together with other known TFs.
Collapse
Affiliation(s)
- Chaobin Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yihong Yue
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hanjun Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
38
|
Zhang S, Zhan J, Yadegari R. Maize opaque mutants are no longer so opaque. PLANT REPRODUCTION 2018; 31:319-326. [PMID: 29978299 PMCID: PMC6105308 DOI: 10.1007/s00497-018-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/23/2018] [Indexed: 05/02/2023]
Abstract
The endosperm of angiosperms is a zygotic seed organ that stores nutrient reserves to support embryogenesis and seed germination. Cereal endosperm is also a major source of human calories and an industrial feedstock. Maize opaque endosperm mutants commonly exhibit opaque, floury kernels, along with other abnormal seed and/or non-seed phenotypes. The opaque endosperm phenotype is sometimes accompanied by a soft kernel texture and increased nutritional quality, including a higher lysine content, which are valuable agronomic traits that have drawn attention of maize breeders. Recently, an increasing number of genes that underlie opaque mutants have been cloned, and their characterization has begun to shed light on the molecular basis of the opaque endosperm phenotype. These mutants are categorized by disruption of genes encoding zein or non-zein proteins localized to protein bodies, enzymes involved in endosperm metabolic processes, or transcriptional regulatory proteins associated with endosperm storage programs.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
39
|
Chen P, Shen Z, Ming L, Li Y, Dan W, Lou G, Peng B, Wu B, Li Y, Zhao D, Gao G, Zhang Q, Xiao J, Li X, Wang G, He Y. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:612. [PMID: 29868069 PMCID: PMC5954490 DOI: 10.3389/fpls.2018.00612] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/18/2018] [Indexed: 05/18/2023]
Abstract
Rice seed storage protein (SSP) is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb), globulin (Glo), prolamin (Pro), glutelin (Glu), and total SSP (Total). A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97) and NIL(Delong208), and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs) were located less than 20 kb upstream from grain-quality-related genes (PG5a, Wx, AGPS2a, RP6, and, RM1). Several starch-metabolism-related genes (AGPS2a, OsACS6, PUL, GBSSII, and ISA2) were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6, RM1, Wx, and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would provide new insights into the genetic basis of SSP content that will help in developing rice cultivars with improved grain nutritional quality through marker-assisted breeding.
Collapse
Affiliation(s)
- Pingli Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Zhikang Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Luchang Ming
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Wenhan Dan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bo Peng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bian Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yanhua Li
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Da Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Guanjun Gao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Qinglu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Gongwei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
40
|
Li C, Huang Y, Huang R, Wu Y, Wang W. The genetic architecture of amylose biosynthesis in maize kernel. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:688-695. [PMID: 28796926 PMCID: PMC5787843 DOI: 10.1111/pbi.12821] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/14/2017] [Accepted: 08/05/2017] [Indexed: 05/18/2023]
Abstract
Starch is the most abundant storage carbohydrate in maize kernel. The content of amylose and amylopectin confers unique properties in food processing and industrial application. Thus, the resurgent interest has been switched to the study of individual amylose or amylopectin rather than total starch, whereas the enzymatic machinery for amylose synthesis remains elusive. We took advantage of the phenotype of amylose content and the genotype of 9,007,194 single nucleotide polymorphisms from 464 inbred maize lines. The genome-wide association study identified 27 associated loci involving 39 candidate genes that were linked to amylose content including transcription factors, glycosyltransferases, glycosidases, as well as hydrolases. Except the waxy gene that encodes the granule-bound starch synthase, the remaining candidate genes were located in the upstream pathway of amylose synthesis, while the downstream members were already known from prior studies. The linked candidate genes could be transferred to manipulate amylose content and thus add value to maize kernel in the breeding programme.
Collapse
Affiliation(s)
- Changsheng Li
- College of Agriculture and BiologyShanghai Jiaotong UniversityShanghaiChina
- College of AgronomyShenyang Agriculture UniversityShenyangChina
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yongcai Huang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Ruidong Huang
- College of AgronomyShenyang Agriculture UniversityShenyangChina
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology & EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Wenqin Wang
- College of Agriculture and BiologyShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
41
|
SSR-based association mapping of fiber quality in upland cotton using an eight-way MAGIC population. Mol Genet Genomics 2018; 293:793-805. [PMID: 29392407 DOI: 10.1007/s00438-018-1419-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
The quality of fiber is significant in the upland cotton industry. As complex quantitative traits, fiber quality traits are worth studying at a genetic level. To investigate the genetic architecture of fiber quality traits, we conducted an association analysis using a multi-parent advanced generation inter-cross (MAGIC) population developed from eight parents and comprised of 960 lines. The reliable phenotypic data for six major fiber traits of the MAGIC population were collected from five environments in three locations. Phenotypic analysis showed that the MAGIC lines have a wider variation amplitude and coefficient than the founders. A total of 284 polymorphic SSR markers among eight parents screened from a high-density genetic map were used to genotype the MAGIC population. The MAGIC population showed abundant genetic variation and fast linkage disequilibrium (LD) decay (0.76 cM, r2 > 0.1), which revealed the advantages of high efficiency and power in QTL exploration. Association mapping via a mixed linear model identified 52 significant loci associated with six fiber quality traits; 14 of them were mapped in reported QTL regions with fiber-related or other agronomic traits. Nine markers demonstrated the pleiotropism that controls more than two fiber traits. Furthermore, two SSR markers, BNL1231 and BNL3452, were authenticated as hotspots that were mapped with multi-traits. In addition, we provided candidate regions and screened six candidate genes for identified loci according to the LD decay distance. Our results provide valuable QTL for further genetic mapping and will facilitate marker-based breeding for fiber quality in cotton.
Collapse
|
42
|
Contributions of Zea mays subspecies mexicana haplotypes to modern maize. Nat Commun 2017; 8:1874. [PMID: 29187731 PMCID: PMC5707364 DOI: 10.1038/s41467-017-02063-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10-8 ~3.87 × 10-8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.
Collapse
|
43
|
Quality Protein Maize Based on Reducing Sulfur in Leaf Cells. Genetics 2017; 207:1687-1697. [PMID: 29054859 DOI: 10.1534/genetics.117.300288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
Low levels of the essential amino acids lysine (Lys) and methionine (Met) in a maize-based diet are a major cost to feed and food. Lys deficiency is due to the abundance of Lys-poor proteins in maize kernels. Although a maize mutant, opaque-2 (o2), has sufficient levels of Lys, its soft kernel renders it unfit for storage and transportation. Breeders overcame this problem by selecting quantitative trait loci (QTL) restoring kernel hardness in the presence of o2, a variety called Quality Protein Maize (QPM). Although at least one QTL acts by enhancing the expression of the γ-zein proteins, we could surprisingly achieve rebalancing of the Lys content and a vitreous kernel phenotype by targeting suppression of γ-zeins without the o2 mutant. Reduced levels of γ-zeins were achieved with RNA interference (RNAi). Another transgenic event, PE5 expresses the Escherichia coli enzyme 3'-phosphoadenosine-5'-phosphosulfate reductase involved in sulfate assimilation, specifically in leaves. The stacked transgenic events produce a vitreous endosperm, which has higher Lys level than the classical opaque W64Ao2 variant. Moreover, due to the increased sulfate reduction in the leaf, Met level is elevated in the seed. Such a combination of transgenes produces hybrid seeds superior to classical QPMs that would neither require a costly feed mix nor synthetic Met supplementation, potentially creating a novel and cost-effective means for improving maize nutritional quality.
Collapse
|
44
|
Deng M, Li D, Luo J, Xiao Y, Liu H, Pan Q, Zhang X, Jin M, Zhao M, Yan J. The genetic architecture of amino acids dissection by association and linkage analysis in maize. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1250-1263. [PMID: 28218981 PMCID: PMC5595712 DOI: 10.1111/pbi.12712] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/28/2017] [Accepted: 02/14/2017] [Indexed: 05/03/2023]
Abstract
Amino acids are both constituents of proteins, providing the essential nutrition for humans and animals, and signalling molecules regulating the growth and development of plants. Most cultivars of maize are deficient in essential amino acids such as lysine and tryptophan. Here, we measured the levels of 17 different total amino acids, and created 48 derived traits in mature kernels from a maize diversity inbred collection and three recombinant inbred line (RIL) populations. By GWAS, 247 and 281 significant loci were identified in two different environments, 5.1 and 4.4 loci for each trait, explaining 7.44% and 7.90% phenotypic variation for each locus in average, respectively. By linkage mapping, 89, 150 and 165 QTLs were identified in B73/By804, Kui3/B77 and Zong3/Yu87-1 RIL populations, 2.0, 2.7 and 2.8 QTLs for each trait, explaining 13.6%, 16.4% and 21.4% phenotypic variation for each QTL in average, respectively. It implies that the genetic architecture of amino acids is relative simple and controlled by limited loci. About 43.2% of the loci identified by GWAS were verified by expression QTL, and 17 loci overlapped with mapped QTLs in the three RIL populations. GRMZM2G015534, GRMZM2G143008 and one QTL were further validated using molecular approaches. The amino acid biosynthetic and catabolic pathways were reconstructed on the basis of candidate genes proposed in this study. Our results provide insights into the genetic basis of amino acid biosynthesis in maize kernels and may facilitate marker-based breeding for quality protein maize.
Collapse
Affiliation(s)
- Min Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dongqin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haijun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qingchun Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuehai Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Minliang Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
45
|
Li Q, Wang J, Ye J, Zheng X, Xiang X, Li C, Fu M, Wang Q, Zhang Z, Wu Y. The Maize Imprinted Gene Floury3 Encodes a PLATZ Protein Required for tRNA and 5S rRNA Transcription through Interaction with RNA Polymerase III. THE PLANT CELL 2017; 29:2661-2675. [PMID: 28874509 PMCID: PMC5774582 DOI: 10.1105/tpc.17.00576] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 05/03/2023]
Abstract
Maize (Zea mays) floury3 (fl3) is a classic semidominant negative mutant that exhibits severe defects in the endosperm but fl3 plants otherwise appear normal. We cloned the fl3 gene and determined that it encodes a PLATZ (plant AT-rich sequence and zinc binding) protein. The mutation in fl3 resulted in an Asn-to-His replacement in the conserved PLATZ domain, creating a dominant allele. Fl3 is specifically expressed in starchy endosperm cells and regulated by genomic imprinting, which leads to the suppressed expression of fl3 when transmitted through the male, perhaps as a consequence the semidominant behavior. Yeast two-hybrid screening and bimolecular luciferase complementation experiments revealed that FL3 interacts with the RNA polymerase III subunit 53 (RPC53) and transcription factor class C 1 (TFC1), two critical factors of the RNA polymerase III (RNAPIII) transcription complex. In the fl3 endosperm, the levels of many tRNAs and 5S rRNA that are transcribed by RNAPIII are significantly reduced, suggesting that the incorrectly folded fl3 protein may impair the function of RNAPIII. The transcriptome is dramatically altered in fl3 mutants, in which the downregulated genes are primarily enriched in pathways related to translation, ribosome, misfolded protein responses, and nutrient reservoir activity. Collectively, these changes may lead to defects in endosperm development and storage reserve filling in fl3 seeds.
Collapse
Affiliation(s)
- Qi Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jianwei Ye
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Xiang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Science, Chengdu 610061, China
| | - Changsheng Li
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Miaomiao Fu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiyong Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
46
|
Liu H, Zhang L, Wang J, Li C, Zeng X, Xie S, Zhang Y, Liu S, Hu S, Wang J, Lee M, Lübberstedt T, Zhao G. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population. FRONTIERS IN PLANT SCIENCE 2017; 8:813. [PMID: 28588594 PMCID: PMC5439002 DOI: 10.3389/fpls.2017.00813] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/01/2017] [Indexed: 05/09/2023]
Abstract
Deep-sowing is an effective measure to ensure seeds absorbing water from deep soil layer and emerging normally in arid and semiarid regions. However, existing varieties demonstrate poor germination ability in deep soil layer and some key quantitative trait loci (QTL) or genes related to deep-sowing germination ability remain to be identified and analyzed. In this study, a high-resolution genetic map based on 280 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population which comprised 6618 bin markers was used for the QTL analysis of deep-sowing germination related traits. The results showed significant differences in germination related traits under deep-sowing condition (12.5 cm) and standard-germination condition (2 cm) between two parental lines. In total, 8, 11, 13, 15, and 18 QTL for germination rate, seedling length, mesocotyl length, plumule length, and coleoptile length were detected for the two sowing conditions, respectively. These QTL explained 2.51-7.8% of the phenotypic variance with LOD scores ranging from 2.52 to 7.13. Additionally, 32 overlapping QTL formed 11 QTL clusters on all chromosomes except for chromosome 8, indicating the minor effect genes have a pleiotropic role in regulating various traits. Furthermore, we identified six candidate genes related to deep-sowing germination ability, which were co-located in the cluster regions. The results provide a basis for molecular marker assisted breeding and functional study in deep-sowing germination ability of maize.
Collapse
Affiliation(s)
- Hongjun Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural UniversityTai'an, China
| | - Lin Zhang
- Department of Agronomy, Northeast Agricultural UniversityHarbin, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Changsheng Li
- Department of Agronomy, Shenyang Agricultural UniversityShenyang, China
| | - Xing Zeng
- Department of Agronomy, Northeast Agricultural UniversityHarbin, China
| | - Shupeng Xie
- Suihua Sub-academy, Heilongjiang Academy of Agricultural SciencesSuihua, China
| | - Yongzhong Zhang
- Department of Plant Genetics and Breeding, College of Agronomy Sciences, Shandong Agricultural UniversityTai'an, China
| | - Sisi Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural UniversityChengdu, China
| | - Songlin Hu
- Department of Agronomy, Iowa State UniversityAmes, IA, United States
| | - Jianhua Wang
- Department of Plant Genetics, Breeding and Seed Science, China Agricultural UniversityBeijing, China
| | - Michael Lee
- Department of Agronomy, Iowa State UniversityAmes, IA, United States
| | | | - Guangwu Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry UniversityLin'an, China
- *Correspondence: Guangwu Zhao
| |
Collapse
|
47
|
Pedrazzini E, Mainieri D, Marrano CA, Vitale A. Where do Protein Bodies of Cereal Seeds Come From? FRONTIERS IN PLANT SCIENCE 2016; 7:1139. [PMID: 27540384 PMCID: PMC4973428 DOI: 10.3389/fpls.2016.01139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/18/2016] [Indexed: 05/03/2023]
Abstract
Protein bodies of cereal seeds consist of ordered, largely insoluble heteropolymers formed by prolamin storage proteins within the endoplasmic reticulum (ER) of developing endosperm cells. Often these structures are permanently unable to traffic along the secretory pathway, thus representing a unique example for the use of the ER as a protein storage compartment. In recent years, marked progress has been made in understanding what is needed to make a protein body and in formulating hypotheses on how protein body formation might have evolved as an efficient mechanism to store large amounts of protein during seed development, as opposed to the much more common system of seed storage protein accumulation in vacuoles. The major key evolutionary events that have generated prolamins appear to have been insertions or deletions that have disrupted the conformation of the eight-cysteine motif, a protein folding motif common to many proteins with different functions and locations along the secretory pathway, and, alternatively, the fusion between the eight-cysteine motif and domains containing additional cysteine residues.
Collapse
|