1
|
Minne AJP, Vranken S, Wheeler D, Wood G, Batley J, Wernberg T, Coleman MA. Strong Environmental and Genome-Wide Population Differentiation Underpins Adaptation and High Genomic Vulnerability in the Dominant Australian Kelp ( Ecklonia radiata). Ecol Evol 2025; 15:e71158. [PMID: 40365477 PMCID: PMC12068950 DOI: 10.1002/ece3.71158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 05/15/2025] Open
Abstract
Ongoing and predicted range loss of kelp forests in response to climatic stressors is pressing marine managers to look into the adaptive capacity of populations to inform conservation strategies. Characterising how adaptive genetic diversity and structure relate to present and future environmental variation represents an emerging approach to quantifying kelp vulnerability to environmental change and identifying populations with genotypes that potentially confer an adaptive advantage in future ocean conditions. The dominant Australian kelp, Ecklonia radiata, was genotyped from 10 locations spanning 2000 km of coastline and a 9.5°C average temperature gradient along the east coast of Australia, a global warming hotspot. ddRAD sequencing generated 10,700 high-quality single nucleotide polymorphisms (SNPs) and characterized levels of neutral and adaptive genomic diversity and structure. The adaptive dataset, reflecting portions of the genome putatively under selection, was used to infer genomic vulnerability by 2050 under the RCP 8.5 scenario. There was strong neutral genetic differentiation between Australia mainland and Tasmanian populations, but only weak genetic structure among mainland populations within the main path of the East Australian Current. Genetic diversity was highest in the center of the range and lowest in the warm-edge population. The adaptive SNP candidates revealed similar genetic structure patterns, with a spread of adaptive alleles across most warm (northern) populations. The lowest, but most unique, adaptive genetic diversity values were found in both warm and cool population edges, suggesting local adaptation but low evolutionary potential. Critically, genomic vulnerability modeling identified high levels of vulnerability to future environmental conditions in Tasmanian populations. Populations of kelp at range edges are unlikely to adapt and keep pace with predicted climate change. Ensuring the persistence of these kelp forests, by boosting resilience to climate change, may require active management strategies with assisted adaptation in warm-edge (northern) populations and assisted gene flow in cool-edge (Tasmania) populations.
Collapse
Affiliation(s)
- Antoine J. P. Minne
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Sofie Vranken
- Biology Department, Research Group PhycologyGhent UniversityGhentBelgium
| | - David Wheeler
- New South Wales Department of Primary IndustriesOrange Agricultural InstituteOrangeNew South WalesAustralia
| | - Georgina Wood
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- Flinders UniversityAdelaideSouth AustraliaAustralia
| | - Jacqueline Batley
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Thomas Wernberg
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Institute of Marine ResearchHisNorway
| | - Melinda A. Coleman
- UWA Oceans InstituteCrawleyWestern AustraliaAustralia
- New South Wales FisheriesNational Marine Science CentreCoffs HarbourNew South WalesAustralia
- National Marine Science CentreSouthern Cross UniversityCoffs HarbourNew South WalesAustralia
| |
Collapse
|
2
|
Coleman LJM, Read S, Sokhey AK, Bisgrove S. A simple and effective protocol for cryopreservation of germplasm of the bull kelp, Nereocystis luetkeana (Phaeophyceae). JOURNAL OF PHYCOLOGY 2025. [PMID: 40285715 DOI: 10.1111/jpy.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/29/2025]
Abstract
Kelps are large brown seaweeds that can form three-dimensional underwater forests that provide food and habitat for a wide diversity of marine organisms. They also provide a wealth of ecosystem services to humans and may be able to help combat climate change through blue carbon. However, kelps are currently in decline in many parts of the world, most likely due to rising ocean temperatures, and conservation action is needed quickly to preserve kelp biodiversity. One kelp conservation strategy that needs further development is biobanking, the storage of biological material. In particular, the development of cryopreservation protocols would permit easier storage of large quantities of kelp germplasm under stable conditions. In this paper, we compare the effectiveness of different cryoprotective agents-chemicals that mitigate the damaging effects of freezing on living tissue-for use in cryopreservation of gametophyte tissue of the bull kelp, Nereocystis luetkeana. We observed that when cryopreserved in a solution of 10% ethylene glycol + 9% sorbitol, Nereocystis gametophytes of both sexes showed excellent survivorship 6 weeks after removal from cryogenic conditions. Although kelp cryopreservation protocols still need to be further researched, we believe that these methods have great potential to improve and expand kelp biobanking, and we would encourage the development of protocols for more kelp species as well as more widespread adoption of cryopreservation by existing kelp biobanking efforts.
Collapse
Affiliation(s)
- Liam J M Coleman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Silven Read
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amnit K Sokhey
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sherryl Bisgrove
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
3
|
Amélie S, Salomé C, Xuan-Minh-Ai N, Abdessalem S, Elena O, Catherine F. Biogenic volatile organic compounds from marine benthic organisms: a review. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107162. [PMID: 40286479 DOI: 10.1016/j.marenvres.2025.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Biogenic Volatile Organic Compounds (BVOCs) play crucial roles in terrestrial environments, acting as defense compounds against environmental stresses and as chemical cues in species interactions. These roles were mainly highlighted on terrestrial plants whereas marine BVOCs are still understudied except dimethyl sufide (DMS) or isoprene. However, recent research highlights that marine organisms, particularly phytoplankton, and to a lesser extent benthic organisms such as macroalgae, seagrasses, and corals, also produce and emit a larger panel of BVOCs. In this review, we compiled and analyzed articles focusing on BVOCs production and emission by benthic photosynthetic organisms. Our review synthesizes current knowledge on the BVOCs produced or emitted by these species, categorized by compounds classes, geographic location and sampling methods. This synthesis provides a preliminary overview of the chemical diversity among benthic organisms, indicating rich and varied BVOCs profiles that warrants further investigation. Furthermore, we explore the potential physiological and ecological roles of BVOCs in benthic ecosystems, discussing their implications for environmental stress responses and interspecies communication. This review underscores the need for more comprehensive studies to fully understand the ecological significance and chemical complexity of BVOCs in benthic environments.
Collapse
Affiliation(s)
- Saunier Amélie
- Aix Marseille Univ, CNRS, Avignon Univ, IRD, IMBE, France.
| | - Coquin Salomé
- Aix Marseille Univ, CNRS, Avignon Univ, IRD, IMBE, France
| | - Nguyen Xuan-Minh-Ai
- Department of Ecology and Evolutionary Biology, Faculty of Biology and Biotechnology, University of Science, Vietnam; Vietnam National University, Ho Chi Minh City, 700000, Vietnam
| | | | - Ormeno Elena
- Aix Marseille Univ, CNRS, Avignon Univ, IRD, IMBE, France
| | | |
Collapse
|
4
|
Ward MR, Burridge CP, McCammon S, Smolenski A, Hurd CL, Visch W. Applications of environmental DNA monitoring for seaweed reproductive phenology: A case study with giant kelp (Macrocystis pyrifera). JOURNAL OF PHYCOLOGY 2025; 61:288-298. [PMID: 40103189 PMCID: PMC12044407 DOI: 10.1111/jpy.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
Monitoring the seasonal reproductive cycles of seaweeds is crucial for effective population and ecosystem management, as well as mariculture seedstock collection. Traditional methods, such as visual monitoring by SCUBA diving or snorkeling, are costly, labor-intensive, and limited in temporal and spatial coverage. This study explores substituting these methods with environmental DNA (eDNA) techniques for giant kelp (Macrocystis pyrifera, order Laminariales). This laboratory study aimed to determine the minimum detectable concentration of zoospores and sporophyte tissue needed for detecting the reproductive phenology of M. pyrifera and to assess the ability and sensitivity to discriminate between life stages. The study involved syringe-filtering seawater samples through 0.45-μm pore-size filters before quantitative polymerase chain reaction (qPCR) analysis with species-specific primers. There was a strong positive correlation between zoospore concentration and eDNA copies per μL (ρ = 0.982, p < 0.001), and a weak correlation for sporophyte wet weight (ρ = 0.367, p = 0.134). There was a significant difference between zoospore and zoospore + sporophyte treatments (p = 0.010), indicating the substantial influence of sporophyte tissue on detected eDNA quantity. Sporophyte tissue obscures the zoospore signal, especially at lower zoospore concentrations (<37 zoospores · mL-1), highlighting that eDNA analysis is suitable for monitoring reproductive peaks and broader patterns in seasonal reproduction cycles of giant kelp when zoospore concentrations are high.
Collapse
Affiliation(s)
- Madeline R. Ward
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | | | - Sharee McCammon
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Adam Smolenski
- School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Catriona L. Hurd
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Wouter Visch
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
5
|
Graiff A, Franke K, Karsten U, Liesner D, Gordillo FJL, Iñiguez C. Differential effects of warming on carbon budget, photosynthetic yield and biochemical composition of cold-temperate and Arctic isolates of Laminaria digitata (Phaeophyceae). JOURNAL OF PLANT PHYSIOLOGY 2025; 306:154436. [PMID: 39874621 DOI: 10.1016/j.jplph.2025.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed. Temperature significantly affected growth rates of L. digitata from SPT and HLG, with the highest rates occurring at 10 °C, but growth did not differ between both isolates neither at 10 °C nor at 16 °C. Nevertheless, maximum quantum yield and carbon fixation rate were highest at 4 °C for the Arctic and at 16 °C for the cold-temperate L. digitata. Significantly higher rates of oxygen production and carbon fixation were observed in the cold-temperate relative to the Artic L. digitata at 10 and 16 °C, respectively. Neither temperature nor biogeographic region of origin affected the photosynthetic quotient, and release rates of dissolved or particulate organic carbon. Total carbon and mannitol content were significantly higher in the Arctic compared to the cold-temperate L. digitata at 10 °C, revealing an increased accumulation of storage compounds in the high latitude L. digitata. We conclude that L. digitata from SPT and HLG differ in their sensitivity to increasing temperatures and that the Arctic population from Spitsbergen is likely to benefit from ocean warming, while the temperate population from Helgoland will be negatively affected by further increases in ambient temperature.
Collapse
Affiliation(s)
- Angelika Graiff
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany.
| | - Kiara Franke
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany; Interdisciplinary Faculty, Department of Maritime Systems, University of Rostock, Rostock, Germany
| | - Daniel Liesner
- Functional Ecology, Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany; Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | | | - Concepción Iñiguez
- Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain
| |
Collapse
|
6
|
Bulleri F, Pedicini L, Bertocci I, Ravaglioli C. The impact of a marine heatwave on the productivity and carbon budget of a NW Mediterranean seaweed forest. MARINE POLLUTION BULLETIN 2025; 212:117595. [PMID: 39879851 DOI: 10.1016/j.marpolbul.2025.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/30/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Marine forests support coastal biodiversity and ecosystem functioning. Nonetheless, how their productivity and carbon uptake might be affected by extreme events, such as marine heatwaves (MHWs), is yet to be explored. We experimentally evaluated the changes in oxygen and carbon budgets of the benthic community formed by the fucoid Ericaria brachycarpa induced by the exposure to a MHW. Rocks colonized by E. brachycarpa and associated macroalgal and invertebrate assemblages were collected at Capraia Island (NW Mediterranean) and put into six 500 L tanks at 23 °C. After 10 days of acclimation, the seawater temperature in three randomly chosen tanks was gradually elevated to 30.5 °C and maintained for 5 days, to simulate a MHW predicted by the end of the century under the RCP 8.5 scenario. Oxygen and carbon metabolic rates of the whole community were evaluated under light and dark conditions, using transparent and black incubation chambers, respectively. The exposure to the MHW caused a reduction in Net Community Productivity (NCP) and increased Community Respiration (CR). There was a trend for MHW to enhance total DIC release through the reduction of calcification and the increase of respiration rates, thus shifting the community metabolism to net heterotrophic. Lower net productivity and carbon uptake suggest that the role of these forests in sustaining coastal food webs and mitigating CO2 emissions could be reduced under future climates. These results have implications for devising climate-proof strategies of conservation and restoration of macroalgal forests.
Collapse
Affiliation(s)
- Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy; Centro interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy
| | - Ludovica Pedicini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy.
| | - Iacopo Bertocci
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy; Centro interdipartimentale di Ricerca per lo Studio degli Effetti del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, via Derna 1, 56126 Pisa, Italy
| |
Collapse
|
7
|
Molnar NB, Weigel BL, Fales RJ, Pfister CA. Warming Seawater Temperature and Nutrient Depletion Alters Microbial Community Composition on a Foundational Canopy Kelp Species. Environ Microbiol 2025; 27:e70077. [PMID: 40075558 PMCID: PMC11903912 DOI: 10.1111/1462-2920.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
Warming seawater temperatures and low dissolved inorganic nitrogen (DIN) levels are environmental stressors that affect the health and abundance of marine macroalgae and their microbiomes. Nereocystis luetkeana, a canopy-forming species of brown algae that forms critical habitat along the Pacific coast, has declined in regions impacted by these synergistic stressors. Little is known about how these environmental factors affect the microbiome of N. luetkeana, which could affect nutrient availability, vitamin production, and stress response for the host. We experimentally tested the interactive effects of three seawater temperatures (13°C, 16°C, 21°C) crossed with abundant and replete DIN levels on the diversity and composition of blade-associated microbiomes from two spatially separated kelp host populations. We hypothesised that kelp microbiomes exposed to high temperatures and low DIN would experience the lowest diversity. Contrary to our hypothesis, the highest temperature treatment resulted in the largest increase in microbial diversity, and microbiomes in all temperature treatments experienced a decrease in previously dominant taxa. Temperature had a larger effect than DIN on the kelp microbiome in all cases. The disruption to the kelp microbiome across all temperatures, especially at the highest temperature, suggests that the effects of warming on N. luetkeana extend to the microbiome.
Collapse
Affiliation(s)
| | - Brooke L. Weigel
- University of Washington, Friday Harbor LabsFriday HarborWashingtonUSA
| | - Robin J. Fales
- University of Washington, Friday Harbor LabsFriday HarborWashingtonUSA
- University of WashingtonDepartment of BiologySeattleWashingtonUSA
| | - Catherine A. Pfister
- The College, The University of ChicagoChicagoIllinoisUSA
- Department of Ecology and EvolutionThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
8
|
Pausch RE, Hale JR, Kiffney P, Sanderson B, Azat S, Barnas K, Chesney WB, Cosentino‐Manning N, Ehinger S, Lowry D, Marx S. Review of ecological valuation and equivalency analysis methods for assessing temperate nearshore submerged aquatic vegetation. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14380. [PMID: 39417608 PMCID: PMC11780217 DOI: 10.1111/cobi.14380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 10/19/2024]
Abstract
Nearshore seagrass, kelp, and other macroalgae beds (submerged aquatic vegetation [SAV]) are productive and important ecosystems. Mitigating anthropogenic impacts on these habitats requires tools to quantify their ecological value and the debits and credits of impact and mitigation. To summarize and clarify the state of SAV habitat quantification and available tools, we searched peer-reviewed literature and other agency documents for methods that either assigned ecological value to or calculated equivalencies between impact and mitigation in SAV. Out of 47 tools, there were 11 equivalency methods, 7 of which included a valuation component. The remaining valuation methods were most commonly designed for seagrasses and rocky intertidal macroalgae rather than canopy-forming kelps. Tools were often designed to address specific resource policies and associated habitat evaluation. Frequent categories of tools and methods included those associated with habitat equivalency analyses and those that scored habitats relative to reference or ideal conditions, including models designed for habitat suitability indices and the European Union's Water and Marine Framework Directives. Over 29 tool input metrics spanned 3 spatial scales of SAV: individual shoots or stipes, bed or site, and landscape or region. The most common metric used for both seagrasses and macroalgae was cover. Seagrass tools also often employed density measures, and some categories used measures of tissue content (e.g., carbon, nitrogen). Macroalgal tools for rocky intertidal habitats frequently included species richness or incorporated indicator species to assess habitat. We provide a flowchart for decision-makers to identify representative tools that may apply to their specific management needs.
Collapse
Affiliation(s)
- Rachel E. Pausch
- Department of Ecology and Evolutionary BiologyUniversity of California, Santa CruzSanta CruzCaliforniaUSA
| | - Jessica R. Hale
- National Marine Sanctuary FoundationSilver SpringMarylandUSA
- NOAA NWFSCSeattleWashingtonUSA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Pérez-Matus A, Micheli F, Konar B, Shears N, Low NHN, Okamoto DK, Wernberg T, Krumhansl KA, Ling SD, Kingsford M, Navarrete-Fernandez T, Ruz CS, Byrnes JEK. Kelp forests as nursery and foundational habitat for reef fishes. Ecology 2025; 106:e70007. [PMID: 39989445 DOI: 10.1002/ecy.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 10/10/2024] [Accepted: 11/25/2024] [Indexed: 02/25/2025]
Abstract
Conservation of marine biodiversity requires an understanding of the habitats needed to support and replenish species of interest. It also requires knowledge about the abundance and diversity of multispecies assemblages. Variation in the distribution and composition of kelp forests, one of the most productive marine coastal habitats globally, can have major influences on reef fishes-a group of ecologically and socioeconomically important species. In the face of widespread and escalating loss of kelp forests, quantification of these effects is urgently needed to assess and project cascading impacts on biodiversity. Here, we evaluate relationships between kelp forests and associated reef fish populations using a global meta-analysis of experimental kelp removals and comparative surveys of kelp and adjacent non-kelp habitats. These analyses show that kelp forests increase the abundance of reef fishes, though the significance of this effect varied depending on the structural complexity of kelp forests. In experimental studies, kelp forests have a significant positive effect on fish species richness, revealing that kelp act as true foundation species by supporting the diversity of associated multispecies assemblages. Importantly, regardless of kelp forest morphology and type of study (observational or experimental studies), kelp forests enhance the recruitment of early life history stages suggesting they are nursery habitats for many reef fish taxa. Lastly, kelp forests differentially affected species with different functional traits; small body size fishes from low trophic levels (e.g., herbivore and detritivores, micropredators, and mesopredators) and large body size fish from higher trophic level (e.g., piscivores, general carnivores) were both facilitated by kelp forests. Taken together, these results indicate that the loss of kelp forest, particularly those with more complex morphology, can reduce total abundance and diversity of fish, with possible cascading consequences for coastal ecosystem function.
Collapse
Affiliation(s)
- Alejandro Pérez-Matus
- Subtidal Ecology Laboratory, Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for the Ecology and Conservation of Temperate Mesophotic Reef Ecosystem (NUTME), Valparaiso, Chile
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station and Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, California, USA
| | - Brenda Konar
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Nick Shears
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Auckland, New Zealand
| | - Natalie H N Low
- California Academy of Science, San Francisco, California, USA
| | - Daniel K Okamoto
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Thomas Wernberg
- UWA Oceans Institute & School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
- Flødevigen Research Station, Institute of Marine Research, His, Norway
| | - Kira A Krumhansl
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
| | - Scott D Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Michael Kingsford
- Marine Biology and Aquaculture, James Cook University, Townsville, Queensland, Australia
| | - Teresa Navarrete-Fernandez
- Subtidal Ecology Laboratory, Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina S Ruz
- Subtidal Ecology Laboratory, Estación Costera de Investigaciones Marinas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Starko S, Allchurch A, Neufeld C. Asynchronous shifts in the demographics of two wave-swept kelp species (Laminariales) after nearly four decades. JOURNAL OF PHYCOLOGY 2025; 61:250-254. [PMID: 39854093 PMCID: PMC11914948 DOI: 10.1111/jpy.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/26/2025]
Abstract
Kelp forests are among the most abundant and productive marine ecosystems but are under threat from climate change and other anthropogenic stressors. Although knowledge is growing about how the abundance and distribution of kelp forests are changing, much less is known about the "non-lethal" effects that global change is having on the performance and health of kelp populations in areas where they persist. Here we assessed the age distribution of two common stipitate kelp species, Laminaria setchelli and Pterygophora californica, at Wizard Islet in Barkley Sound, British Columbia, Canada, and compared these data to historical demographic data collected by De Wreede (1984) and Klinger and DeWreede (1988) from the same site between 1981 and 1983. We observed that L. setchelli populations in 2020 were younger and less evenly aged than the same populations sampled nearly four decades prior, while the P. californica population was composed of older individuals on average than at the historical time point. Although the drivers of these demographic changes remain unclear, Barkley Sound has experienced substantial changes in the physical and biological environment over the past decade that could be responsible for these patterns. Given that the size of an individual and its probability of reproduction increases with age, shifting demographics may impact the reproductive output of each population, potentially altering the competitive relationships between co-occurring species. Changes in size distribution may also influence ecosystem-level processes such as habitat complexity or productivity.
Collapse
Affiliation(s)
- Samuel Starko
- UWA Oceans Institute & School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
- Bamfield Marine Sciences CentreBamfieldBritish ColumbiaCanada
| | - Alyssa Allchurch
- Bamfield Marine Sciences CentreBamfieldBritish ColumbiaCanada
- School of Resource and Environmental ManagementSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Christopher Neufeld
- Bamfield Marine Sciences CentreBamfieldBritish ColumbiaCanada
- Department of BiologyUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
11
|
Giraldo‐Ospina A, Bell T, Carr MH, Caselle JE. Drivers of spatiotemporal variability in a marine foundation species. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3092. [PMID: 39957275 PMCID: PMC11831097 DOI: 10.1002/eap.3092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/18/2024] [Accepted: 12/06/2024] [Indexed: 02/18/2025]
Abstract
Marine foundation species are critical for the structure and functioning of ecosystems and constitute the pillar of trophic chains while also providing a variety of ecosystem services. In recent decades, many foundation species have declined in abundance, sometimes threatening their current geographical distribution. Kelps (Laminariales) are the primary foundation species in temperate coastal systems worldwide. Kelp ecosystems are notoriously variable, challenging the identification of key factors controlling their dynamics. Identification of these drivers is key to predicting the fate of kelp ecosystems under climatic change and to informing management and conservation decisions such as restoration. Here, we used in situ data from long-term monitoring programs across 1350 km of coast spanning multiple biogeographic regions in the state of California (USA) to identify the major regional drivers of density of two dominant canopy-forming kelp species and to elucidate the spatial and temporal scales over which they operate. We used generalized additive mixed models to identify the key drivers of density of two dominant kelp species (Nereocystis luetkeana and Macrocystis pyrifera) across four ecological regions of the state of California (north, central, southwest, and southeast) and for the past two decades (2004-2021). The dominant drivers of kelp density varied among regions and species but always included some combination of nitrate availability, wave energy and exposure, density of purple sea urchins, and temperature as the most important predictors. These variables explained 63% of the variability of bull kelp in the northern and central regions, and 45% and 51.4% of the variability in giant kelp for the central/southwest and southeast regions, respectively. These large-scale analyses infer that a combination of lower nutrient availability, changes in wave energy and exposure, and increases in temperature and purple sea urchin counts have contributed to the decline of kelp observed in the last decade. Understanding the drivers of kelp dynamics can be used to identify regional patterns of historical stability and periods of significant change, ultimately informing resource management and conservation decisions such as site selection for kelp protection and restoration.
Collapse
Affiliation(s)
- Anita Giraldo‐Ospina
- Marine Science Institute, University of California Santa BarbaraSanta BarbaraCaliforniaUSA
- School of Biological Sciences, University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Tom Bell
- Department of Applied Ocean Physics and EngineeringWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Mark H. Carr
- Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzCaliforniaUSA
| | - Jennifer E. Caselle
- Marine Science Institute, University of California Santa BarbaraSanta BarbaraCaliforniaUSA
| |
Collapse
|
12
|
Barrientos S, Piñeiro-Corbeira C, Barreiro R. Twenty-five years on: Widespread kelp forest decline revealed in a potential climatic refugium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123734. [PMID: 39700941 DOI: 10.1016/j.jenvman.2024.123734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Kelp forests are key temperate ecosystems that experience the combined effects of global and local stressors throughout their distribution range. Niche modelling projections identified NW Spain, a region influenced by an intense upwelling system, as one such potential refugium. However, the recent discovery that fish overgrazing has eradicated kelp forests from certain reefs calls into question the validity of these projections. To determine the actual persistence of kelp forests (Laminaria ochroleuca and Laminaria hyperborea) on a regional scale, we resurveyed 50 sites in 2023 where kelp forests had been recorded up to 25 years earlier. Kelp had either disappeared or been reduced to a few scattered individuals at two-thirds (58%) of the sites. Furthermore, where kelp forests persist, L. ochroleuca is now the dominant canopy-forming kelp, while L. hyperborea has only been recorded at two sites. Kelp forest persistence was negatively correlated with summer sea surface temperature and wave exposure. Altogether, our results indicate that kelp forest decline is widespread in NW Spain, challenging the view of this region as a climate refugium and underscoring the difficulty of accurately predicting the trajectory of such complex and fragile ecosystems. Furthermore, in line with the recommendations of the OSPAR Convention, this study lays the foundation for a long-term monitoring network along a region where kelp forests are undergoing rapid change.
Collapse
Affiliation(s)
- Sara Barrientos
- BioCost Research Group, Facultad de Ciencias, Universidad de A Coruña, 15071, A Coruña, Spain; Centro de Investigaciones en Tecnología de la Información y las Comunicaciones (CITIC), Universidad de A Coruña, 15071, A Coruña, Spain.
| | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, Universidad de A Coruña, 15071, A Coruña, Spain; Centro Interdisciplinar de Química e Bioloxía (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias, Universidad de A Coruña, 15071, A Coruña, Spain; Centro Interdisciplinar de Química e Bioloxía (CICA), Universidad de A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
13
|
Young MA, Critchell K, Sams MA. Using predictive models to identify kelp refuges in marine protected areas for management prioritization. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3084. [PMID: 39831801 DOI: 10.1002/eap.3084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/05/2024] [Indexed: 01/22/2025]
Abstract
Kelp forests serve as the foundation for shallow marine ecosystems in many temperate areas of the world but are under threat from various stressors, including climate change. To better manage these ecosystems now and into the future, understanding the impacts of climate change and identifying potential refuges will help to prioritize management actions. In this study, we use a long-term dataset of observations of kelp percentage cover for two dominant canopy-forming species off the coast of Victoria, Australia: Ecklonia radiata and Phyllospora comosa. These observations were collected across three scuba sampling programs that extend from 1998 to 2019. We then associated those observations with habitat and environmental variables including depth, seafloor structure, wave climate, currents, temperature, and population connectivity in generalized additive mixed-effects models and used these models to develop predictive maps of kelp cover across the Victorian marine protected areas (MPAs). These models were also used to project kelp coverage into the future by replacing wave climate and temperature with future projections (2090, Representative Concentration Pathways [RCPs] 4.5 and 8.5). Once the spatial predictions were compiled, we calculated percent cover change from 1998 to 2019, stability over the same period, and future predicted change in percent cover (2019-2090) to understand the dynamics for each species across the MPAs. We also used the current percentage cover, stability, and future percentage cover to develop a ranking system for classifying the maps into very unlikely refugia, unlikely refugia, neutral, potential refugia, and likely refugia. A management framework was then developed to use those refugia ranking values to inform management actions, and we applied this framework across three case studies: one at the scale of the MPA network and two at the scale of individual MPAs, one where management decisions were the same for both species, and one where the actions were species-specific. This study shows how species distribution models, both contemporary and with future projections, can help to identify potential refugia areas that can be used to prioritize management decisions and future-proof restoration actions.
Collapse
Affiliation(s)
- Mary A Young
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Warrnambool Campus, Warrnambool, Victoria, Australia
| | - Kay Critchell
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Queenscliff Campus, Queenscliff, Victoria, Australia
| | - Michael A Sams
- Parks Victoria, Marine and Coastal Science and Programs, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Chandrani S, Drishanu D, Vaishnavi G, Gunaseelan S, Ashokkumar B, Bharathi KSU, Chew KW, Varalakshmi P. Role of macroalgal blue carbon ecosystems in climate change mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177751. [PMID: 39644633 DOI: 10.1016/j.scitotenv.2024.177751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/24/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
This review explicitly emphasizes the important yet unnoticed potential of macroalgae, such as seaweeds and kelps, as a powerful nature-based solution for climate change mitigation, with greater focus on the Indian Ocean seaweed diversity and efforts towards their conservation and management. Despite the IPCC's recognition of Blue Carbon ecosystems, seaweed ecosystems remain largely excluded from carbon accounting and policy frameworks. Herein, we specifically focus on the immense capacity of macroalgae globally and in the Indian Ocean coastal communities to sequester carbon, support marine biodiversity, and provide a range of ecosystem services. Through comprehensive analysis of existing literature on the primary productivity, species distribution and carbon sequestration capabilities of seaweeds, we highlight their pivotal role in carbon capture and utilization within a circular economy model. This review explores the ecosystem services provided by both wild and cultivated seaweeds, advocating for innovative applications and responsible management practices to maximize their climate mitigation potential. Our investigation identifies significant knowledge gaps and barriers in the conservation of economically significant, dwindling populations of seaweeds in the Indian Ocean and the integration of seaweed ecosystems into blue carbon policies, including the need for standardized classification, valuation, and long-term conservation strategies. Further, we address the impact of anthropogenic activities on wild seaweed biodiversity and the necessity for reliable carbon removal technologies to support seaweed aquaculture beds. This review urges policy reform, increased research and funding to this critical area. We aim to accentuate the importance of a blue economy in establishing carbon-neutral markets and effective climate change mitigation by improving the classification, finance and governance of seaweed ecosystem services.
Collapse
Affiliation(s)
- Samadder Chandrani
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Dey Drishanu
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Ganesh Vaishnavi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Kit Wayne Chew
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
15
|
Siegel K, Dee LE. Foundations and Future Directions for Causal Inference in Ecological Research. Ecol Lett 2025; 28:e70053. [PMID: 39831541 DOI: 10.1111/ele.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
Ecology often seeks to answer causal questions, and while ecologists have a rich history of experimental approaches, novel observational data streams and the need to apply insights across naturally occurring conditions pose opportunities and challenges. Other fields have developed causal inference approaches that can enhance and expand our ability to answer ecological causal questions using observational or experimental data. However, the lack of comprehensive resources applying causal inference to ecological settings and jargon from multiple disciplines creates barriers. We introduce approaches for causal inference, discussing the main frameworks for counterfactual causal inference, how causal inference differs from other research aims and key challenges; the application of causal inference in experimental and quasi-experimental study designs; appropriate interpretation of the results of causal inference approaches given their assumptions and biases; foundational papers; and the data requirements and trade-offs between internal and external validity posed by different designs. We highlight that these designs generally prioritise internal validity over generalisability. Finally, we identify opportunities and considerations for ecologists to further integrate causal inference with synthesis science and meta-analysis and expand the spatiotemporal scales at which causal inference is possible. We advocate for ecology as a field to collectively define best practices for causal inference.
Collapse
Affiliation(s)
- Katherine Siegel
- Cooperative Institute for Research in Environmental Sciences, University of Colorado-Boulder, Boulder, Colorado, USA
- Department of Geography, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Laura E Dee
- Department of Ecology & Evolutionary Biology, University of Colorado-Boulder, Boulder, Colorado, USA
| |
Collapse
|
16
|
Cavanaugh KC, Bell TW, Aerni KE, Byrnes JEK, McCammon S, Smith MM. New Technologies for Monitoring Coastal Ecosystem Dynamics. ANNUAL REVIEW OF MARINE SCIENCE 2025; 17:409-433. [PMID: 39059419 DOI: 10.1146/annurev-marine-040523-020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In recent years, our view of coastal ecosystems has expanded and come into greater focus. We are currently making more types of observations over larger areas and at higher frequencies than ever before. These advances are timely, as coastal ecosystems are facing increasing pressures from climate change and anthropogenic stressors. This article synthesizes recent literature on emerging technologies for coastal ecosystem monitoring, including satellite monitoring, aerial and underwater drones, in situ sensor networks, fiber optic systems, and community science observatories. We also describe how advances in artificial intelligence and deep learning underpin all these technologies by enabling insights to be drawn from increasingly large data volumes. Even with these recent advances, there are still major gaps in coastal ecosystem monitoring that must be addressed to manage coastal ecosystems during a period of accelerating global change.
Collapse
Affiliation(s)
- Kyle C Cavanaugh
- Department of Geography, University of California, Los Angeles, California, USA;
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Karen E Aerni
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Seth McCammon
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Madison M Smith
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
17
|
Gittman RK, Baillie CJ, Cros A, Grabowski JH, McKinney MM, Saccomanno VR, Smith CS, DeAngelis B. Assessing how restoration can facilitate 30×30 goals for climate-resilient coastal ecosystems in the United States. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14429. [PMID: 39739555 DOI: 10.1111/cobi.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 01/02/2025]
Abstract
Ecosystems globally have reached critical tipping points because of climate change, urbanization, unsustainable resource consumption, and pollution. In response, international agreements have set targets for conserving 30% of global ecosystems and restoring 30% of degraded lands and waters by 2030 (30×30). In 2021, the United States set a target to jointly conserve and restore 30% of US lands and waters by 2030, with a specific goal to restore coastal ecosystems, namely wetlands, seagrasses, coral and oyster reefs, and mangrove and kelp forests, to increase resilience to climate change. Although US efforts to conserve and restore coastal ecosystems have increased in recent decades, critical knowledge gaps about the effectiveness of past and current efforts remain. To address key knowledge gaps, we first collated information on current and historic extent and drivers of change for wetlands, seagrasses, coral and oyster reefs, and mangrove and kelp forests in the United States. We then synthesized guiding principles from the literature for restoration practitioners to evaluate ecosystem trade-offs, sustain and enhance ecosystem connectivity, bolster climate resilience, and promote social equity. Significant investment in standardized ecosystem mapping and monitoring and multispecies, landscape-scale restoration efforts can improve resilience of coastal ecosystems to climate change and help the United States achieve its 30×30 target.
Collapse
Affiliation(s)
- Rachel K Gittman
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
- Coastal Studies Institute, East Carolina University, Wanchese, North Carolina, USA
| | | | - Annick Cros
- California Division, The Nature Conservancy, California, USA
| | | | - Mary-Margaret McKinney
- Department of Coastal Studies, East Carolina University, Greenville, North Carolina, USA
- Native Shorelines, a Davey Tree Company, Raleigh, North Carolina, USA
| | | | - Carter S Smith
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, Washington, USA
| | - Bryan DeAngelis
- California Division, The Nature Conservancy, California, USA
| |
Collapse
|
18
|
Niedzwiedz S, Schmidt C, Yang Y, Burgunter-Delamare B, Andersen S, Hildebrandt L, Pröfrock D, Thomas H, Zhang R, Damsgård B, Bischof K. Run-off impacts on Arctic kelp holobionts have strong implications on ecosystem functioning and bioeconomy. Sci Rep 2024; 14:30506. [PMID: 39681619 PMCID: PMC11649688 DOI: 10.1038/s41598-024-82287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Kelps (Laminariales, Phaeophyceae) are foundation species along Arctic rocky shores, providing the basis for complex ecosystems and supporting a high secondary production. Due to ongoing climate change glacial and terrestrial run-off are currently accelerating, drastically changing physical and chemical water column parameters, e.g., water transparency for photosynthetically active radiation or dissolved concentrations of (harmful) elements. We investigated the performance and functioning of Arctic kelp holobionts in response to run-off gradients, with a focus on the effect of altered element concentrations in the water column. We found that the kelp Saccharina latissima accumulates harmful elements (e.g., cadmium, mercury) originating from coastal run-off. As kelps are at the basis of the food web, this might lead to biomagnification, with potential consequences for high-latitude kelp maricultures. In contrast, the high biosorption potential of kelps might be advantageous in monitoring environmental pollution or potentially extracting dissolved rare earth elements. Further, we found that the relative abundances of several kelp-associated microbial taxa significantly responded to increasing run-off influence, changing the kelps functioning in the ecosystem, e.g., the holobionts nutritional value and elemental cycling. The responses of kelp holobionts to environmental changes imply cascading ecological and economic consequences for Arctic kelp ecosystems in future climate change scenarios.
Collapse
Affiliation(s)
- Sarina Niedzwiedz
- Marine Botany, Faculty of Biology and Chemistry & MARUM, University of Bremen, 28359, Bremen, Germany.
| | - Claudia Schmidt
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26111, Oldenburg, Germany
- Department of Marine Carbon Cycles, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Yunlan Yang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518052, China
| | - Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743, Jena, Germany
| | | | - Lars Hildebrandt
- Department Inorganic Environmental Chemistry, Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Daniel Pröfrock
- Department Inorganic Environmental Chemistry, Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Helmuth Thomas
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26111, Oldenburg, Germany
- Department of Marine Carbon Cycles, Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, 21502, Geesthacht, Germany
| | - Rui Zhang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518052, China
| | - Børge Damsgård
- The University Centre of Svalbard (UNIS), Longyearbyen, 9171, Norway
| | - Kai Bischof
- Marine Botany, Faculty of Biology and Chemistry & MARUM, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
19
|
Clausing RJ, Falace A, De La Fuente G, Della Torre C, Chiantore M, Asnaghi V. Ex-situ restoration of the Mediterranean forest-forming macroalga Ericaria amentacea: Optimizing growth in culture may not be the key to growth in the field. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106718. [PMID: 39232470 DOI: 10.1016/j.marenvres.2024.106718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Evidence of local and regional declines in the canopy-forming alga Ericaria amentacea, a foundation species of diverse marine forest communities on exposed Mediterranean coasts, have spurred restoration efforts focused on sustainable ex-situ techniques. The need to balance the costs of culture maintenance and the susceptibility of early life stages to stressors in the native habitat, including rapid, often extreme shifts in temperature, hydrodynamics and nutrient availability, have driven current efforts to create a culture environment that primes seedlings for outplant, increasing their resilience rather than maximizing growth. We tested the effects of 1) higher culture temperature (25 °C) combined with wave simulation and 2) reduced nutrient loads (10% of standard protocol) with wave simulation on post-culture and post-outplant outcomes relative to optimal growth conditions in established protocols (20 °C, no waves, high-nutrient culture medium). While increased temperature and water motion negatively affected seedling growth in culture, and higher nutrients caused oxidative stress likely associated with enhanced epiphyte overgrowth, these effects were not clearly translated into patterns of long-term growth in the field. Instead, survival in the initial days post-outplant appeared to be the bottleneck for restoration potential, where substrates with persisting seedlings at one month were generally found with flourishing juveniles at four months. Larger clumps of seedlings, in turn, were strongly associated with both initial survival and future growth. These results underscore the importance of the zygote settlement phase to establish high seedling densities, which may be optimized by phenological monitoring of the donor population. They also suggest that less-controlled, more environmentally-realistic culture conditions involving the introduction of mild stress may enhance the survival of early life stages of E. amentacea during the transition to the native environment, providing a means to simultaneously reduce human resource costs in culture and move toward scaling up.
Collapse
Affiliation(s)
- Rachel J Clausing
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA; Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy.
| | - Annalisa Falace
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gina De La Fuente
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | | | - Mariachiara Chiantore
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy; National Biodiversity Future Center, Palermo, Italy
| | - Valentina Asnaghi
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy; National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
20
|
Sánchez-Astráin B, Sainz-Villegas S, Guinda X, Fernández de la Hoz C, Juanes JA. Assessment of the growth capacity of newly sprouted shoots of Gelidium corneum (Florideophyceae, Rhodophyta) through field-based experiments. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106781. [PMID: 39418967 DOI: 10.1016/j.marenvres.2024.106781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
The macrophyte Gelidium corneum (Hudson) J. V. Lamouroux, 1813 plays an important role as an ecosystem engineer on temperate rocky shores on the northeastern Atlantic coast. However, its cover and population biomass have declined in recent decades within the southern Bay of Biscay. This study aimed to identify the environmental thresholds, with respect to seawater temperature and irradiance, that influence the development capacity of newly formed individuals of G. corneum through vegetative reproduction. Therefore, an in situ experiment was conducted at two depths within the range of distribution of this species (5 and 12 m) and at two coastal sites on the north coast of Spain (east and west coasts of the Cantabria region, Spain). Our results revealed that G. corneum apical fragments undergoing vegetative propagation developed many new shoots over a period of sixteen weeks. The temperature and irradiance seemed to contribute to the length reached by the new fronds, whereas the number of recruits remained constant throughout the duration of the experiment. Given the slow growth rate characteristic of this species, the total shoot length in this study reached 2.97 cm, which confirms the gradual and restrained developmental pattern during the early stages of its life. We also quantified bite marks at the tips of the new plants, and more than three-quarters of them presented these signs by the final month of the study. Our study provides valuable insights into the growth process of the endangered species G. corneum through vegetative propagation and elucidates the impact that abiotic and biotic factors can have on its growth.
Collapse
Affiliation(s)
| | - Samuel Sainz-Villegas
- IHCantabria - Instituto de Hidráulica Ambiental de La Universidad de Cantabria, Spain
| | - Xabier Guinda
- IHCantabria - Instituto de Hidráulica Ambiental de La Universidad de Cantabria, Spain
| | | | - José A Juanes
- IHCantabria - Instituto de Hidráulica Ambiental de La Universidad de Cantabria, Spain.
| |
Collapse
|
21
|
Kang HY, Lee BG, Park SR, Kim C, Jang J, Kang CK. Trophic niche overlap in coralline algae- and coral-dominated rocky-bottom subtidal communities. MARINE POLLUTION BULLETIN 2024; 208:116997. [PMID: 39305844 DOI: 10.1016/j.marpolbul.2024.116997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
We investigated trophic structures in rocky subtidal ecosystems transitioning from canopy-forming to barren states across coastlines with varying oceanographic conditions. We examined stable isotopes and functional traits of common invertebrate and fish taxa to understand the food-web consequences. We hypothesized that resource exploitation patterns of functional guilds would result in distinct isotopic niches, defining trophic diversity and niche. δ13C and δ15N ranges of invertebrate functional groups differentiated pelagic from benthic trophic pathways, reflecting flexible dietary use in the absence of macroalgae. Fish production relied on prey using pelagic and benthic basal resources. Trophic redundancy among consumers within functional guilds contributed to intrinsic trophic structure in barren ecosystems. The resulting community-wide trophic diversity has led to consistent niche widths and overlapping niche space. Overall, our findings highlight the crucial roles of consumers that persist with diverse functional guilds in conferring the adaptability of barren rocky ecosystems following habitat disturbance.
Collapse
Affiliation(s)
- Hee Yoon Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; Department of Oceanography, College of Natural Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byeong-Gweon Lee
- Department of Oceanography, College of Natural Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang Rul Park
- Department of Marine Life Science (BK21 FOUR) and Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Changseong Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jaebin Jang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chang-Keun Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
22
|
Gissi E, Goodman MC, Elahi R, McDevitt-Irwin JM, Arnoldi NS, Arafeh-Dalmau N, Knight CJ, Olguín-Jacobson C, Palmisciano M, Tillman CM, De Leo GA, Micheli F. Sex-specific variation in species interactions matters in ecological communities. Trends Ecol Evol 2024; 39:1004-1013. [PMID: 39107207 DOI: 10.1016/j.tree.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/09/2024]
Abstract
Understanding how natural communities and ecosystems are structured and respond to anthropogenic pressures in a rapidly changing world is key to successful management and conservation. A fundamental but often overlooked biological characteristic of organisms is sex. Sex-based responses are often considered when conducting studies at organismal and population levels, but are rarely investigated in community ecology. Focusing on kelp forests as a model system, and through a review of other marine and terrestrial ecosystems, we found evidence of widespread sex-based variation in species interactions. Sex-based variation in species interactions is expected to affect ecosystem structure and functioning via multiple trophic and nontrophic pathways. Understanding the drivers and consequences of sex-based variation in species interactions can inform more effective management and restoration.
Collapse
Affiliation(s)
- Elena Gissi
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; National Research Council, Institute of Marine Science, Venice, 30122, Italy; National Biodiversity Future Center, Palermo, 90133, Italy.
| | | | - Robin Elahi
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Jamie M McDevitt-Irwin
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; Marine Science Institute, University of California Santa Barbara, Santa Barbara, CA 93117, USA
| | - Natalie S Arnoldi
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Nur Arafeh-Dalmau
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; Department of Geography, University of California Los Angeles, Los Angeles, CA 90095, USA; Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christopher J Knight
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | | | - Melissa Palmisciano
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Ceyenna M Tillman
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Giulio A De Leo
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Fiorenza Micheli
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA; Stanford Center for Ocean Solutions, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
23
|
Hung CC, Chang JS, Liao CH, Lee TM. Exploring the impact of ocean warming and nutrient overload on macroalgal blooms and carbon sequestration in deep-sea sediments of the subtropical western North Pacific. MARINE POLLUTION BULLETIN 2024; 208:116918. [PMID: 39265309 DOI: 10.1016/j.marpolbul.2024.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The role of macroalgae as blue carbon (BC) under changing climate was investigated in the subtropical western North Pacific. Sea surface temperatures (SSTs) and nutrient influx increased over the past two decades (2001-2021). The proliferation of climate-resilient macroalgae was facilitated. Using Pterocladiella capillacea and Turbinaria ornata, outdoor laboratory experiments and elemental assays underscored the influence of nutrient enrichment on their resilience under ocean warming and low salinity. Macroalgal incorporation into marine sediments, indicated by environmental DNA barcoding, total organic carbon (TOC), and stable isotope analysis. Over time, an increase in δ13C and δ15N values, particularly at greater depths, suggests a tendency of carbon signature towards macroalgaeand nitrogen pollution or high tropic levels. eDNA analysis revealed selective deposition of these species. The species-dependent nature of macroalgae in deep-sea sediments highlights the role of nutrients on climate-resilient macroalgal blooms as carbon sinks in the western North Pacific.
Collapse
Affiliation(s)
- Chin-Chang Hung
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jui-Sheng Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20234, Taiwan
| | - Chin-Hsin Liao
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resource, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
24
|
Bolton JJ, Rothman MD. The potential for kelp (order Laminariales) aquaculture in South Africa: a biological review. BOTANICA MARINA 2024; 67:525-541. [DOI: 10.1515/bot-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
The Benguela upwelling region on the west coast of South Africa/Namibia has the only major kelp forests on the African continent. South Africa has four species of laminarian kelps; Ecklonia maxima, Laminaria pallida dominate kelp forests in the west coast Benguela upwelling system, with Macrocystis pyrifera occurring rarely in this region and Ecklonia radiata largely confined to the more nutrient-poor south and east coasts. Growth studies on these species have been limited to laboratory experiments and very few initial, small-scale coastal studies. As in other Atlantic regions, there is growing interest in the potential for kelp aquaculture in Southern Africa, and recent pilot initiatives. A comprehensive summary of available literature on South African kelps, their biology and ecology, distribution and growth parameters, is presented, and the potential for kelp aquaculture discussed in relation to recent developments elsewhere on Atlantic and Eastern Pacific coastlines. Recommendations are made with respect to the choice of potential species and sites.
Collapse
Affiliation(s)
- John J. Bolton
- Department of Biological Sciences , University of Cape Town , Private Bag X3 , Rondebosch 7701 , South Africa
| | - Mark D. Rothman
- Department of Biological Sciences , University of Cape Town , Private Bag X3 , Rondebosch 7701 , South Africa
- Department of Forestry, Fisheries and the Environment , Private Bag X2 , Vlaeberg 8018 , Cape Town , South Africa
| |
Collapse
|
25
|
Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA, Venhuizen R, Kearns L, Marzinelli EM, Pettersen AK. Novel high-throughput oxygen saturation measurements for quantifying the physiological performance of macroalgal early life stages. JOURNAL OF PHYCOLOGY 2024; 60:1161-1172. [PMID: 39105657 DOI: 10.1111/jpy.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
Understanding how macroalgal forests will respond to environmental change is critical for predicting future impacts on coastal ecosystems. Although measures of adult macroalgae physiological responses to environmental stress are advancing, measures of early life-stage physiology are rare, in part due to the methodological difficulties associated with their small size. Here we tested a novel, high-throughput method (rate of oxygen consumption and production;V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ ) via a sensor dish reader microplate system to rapidly measure physiological rates of the early life stages of three habitat-forming macroalgae, the kelp Ecklonia radiata and the fucoids Hormosira banksii and Phyllospora comosa. We measured the rate of O2 consumption (respiration) and O2 production (net primary production) to then calculate gross primary production (GPP) under temperatures representing their natural thermal range. TheV ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ microplate system was suitable for rapidly measuring physiological rates over a temperature gradient to establish thermal performance curves for all species. TheV ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ microplate system proved efficient for measures of early life stages of macroalgae ranging in size from approximately 50 μm up to 150 mm. This method has the potential for measuring responses of early life stages across a range of environmental factors, species, populations, and developmental stages, vastly increasing the speed, precision, and efficacy of macroalgal physiological measures under future ocean change scenarios.
Collapse
Affiliation(s)
- R J Veenhof
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - M A Coleman
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - C Champion
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - S A Dworjanyn
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - R Venhuizen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - L Kearns
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - E M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - A K Pettersen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| |
Collapse
|
26
|
Strain EMA, Swearer SE, Ambler I, Morris RL, Nickols KJ. Assessing the role of natural kelp forests in modifying seawater chemistry. Sci Rep 2024; 14:22386. [PMID: 39333559 PMCID: PMC11436852 DOI: 10.1038/s41598-024-72801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Climate change is causing widespread impacts on seawater pH through ocean acidification (OA). Kelp forests, in some locations can buffer the effects of OA through photosynthesis. However, the factors influencing this variation remain poorly understood. To address this gap, we conducted a literature review and field deployments of pH and dissolved oxygen (DO) loggers within four habitats: intact kelp forest, moderate kelp cover, sparse kelp cover and barrens at one site in Port Phillip Bay, a wind-wave dominated coastal embayment in Victoria, Australia. Additionally, a wave logger was placed directly in front of the intact kelp forest and barrens habitats. Most studies reported that kelp increased seawater pH and DO during the day, compared to controls without kelp. This effect was more pronounced in densely populated forests, particularly in shallow, sheltered conditions. Our field study was broadly consistent with these observations, with intact kelp habitat having higher seawater pH than habitats with less kelp or barrens and higher seawater DO compared to barrens, particularly in the afternoon and during calmer wave conditions. Although kelp forests can provide local refuges to biota from OA, the benefits are variable through time and may be reduced by declines in kelp density and increased wave exposure.
Collapse
Affiliation(s)
- Elisabeth M A Strain
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia.
- Centre for Marine Socioecology, University of Tasmania, Hobart, TAS, 7053, Australia.
| | - Stephen E Swearer
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Oceans Institute, The University of Western Australia, Crawley, WA, 6009, Australia
| | - India Ambler
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Rebecca L Morris
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kerry J Nickols
- Department of Biology, California State University Northridge, Northridge, CA, 91330, USA
- Ocean Visions, Leesburg, VA, 20176, USA
| |
Collapse
|
27
|
Zuelow AN, Roberts KT, Burnaford JL, Burnett NP. Freezing and Mechanical Failure of a Habitat-Forming Kelp in the Rocky Intertidal Zone. Integr Comp Biol 2024; 64:222-233. [PMID: 38521985 DOI: 10.1093/icb/icae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/25/2024] Open
Abstract
Kelp and other habitat-forming seaweeds in the intertidal zone are exposed to a suite of environmental factors, including temperature and hydrodynamic forces, that can influence their growth, survival, and ecological function. Relatively little is known about the interactive effect of temperature and hydrodynamic forces on kelp, especially the effect of cold stress on biomechanical resistance to hydrodynamic forces. We used the intertidal kelp Egregia menziesii to investigate how freezing in air during a low tide changes the kelp's resistance to breaking from hydrodynamic forces. We conducted a laboratory experiment to test how short-term freezing, mimicking a brief low-tide freezing event, affected the kelp's mechanical properties. We also characterized daily minimum winter temperatures in an intertidal E. menziesii population on San Juan Island, WA, near the center of the species' geographic range. In the laboratory, acute freezing events decreased the strength and toughness of kelp tissue by 8-20% (change in medians). During low tides in the field, we documented sub-zero temperatures, snow, and low canopy cover (compared to summer surveys). These results suggest that freezing can contribute to frond breakage and decreased canopy cover in intertidal kelp. Further work is needed to understand whether freezing and the biomechanical performance in cold temperatures influence the fitness and ecological function of kelp and whether this will change as winter conditions, such as freezing events and storms, change in frequency and intensity.
Collapse
Affiliation(s)
- Angelina N Zuelow
- Department of Biological Science, CSU Fullerton, Fullerton, CA 92831, USA
| | - Kevin T Roberts
- Department of Integrative Biology, UC Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
28
|
Pica ML, Vitale E, Donadio R, Costanzo G, Munari M, Fabbrizzi E, Fraschetti S, Arena C. Functional ecological traits in young and adult thalli of canopy-forming brown macroalga Gongolaria barbata (Phaeophyta) from a transitional water system. PeerJ 2024; 12:e17959. [PMID: 39282112 PMCID: PMC11402337 DOI: 10.7717/peerj.17959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
Background Gongolaria barbata is a canopy-forming brown macroalga that thrives in the intertidal and subtidal habitats of the warm-temperate Mediterranean Sea, which is particularly exposed to environmental changes due to its peculiar geographical location and exposure to both global and local stressors. Testing whether this species is featured by specific functional, eco-physiological and biochemical traits allowing an efficient use of habitat resources and adaptation to environmental stress, and whether this potential might change with population growth, is essential for predicting the performance of the algae under different environmental abiotic variables (e.g., temperature, nutrient availability, light) and biotic interactions (such as grazing). Methods Young (juveniles) and adult thalli of G. barbata were sampled in the winter season from the Venice Lagoon, Italy, featured by high environmental changes (temperature, salinity) and analyzed for thallus dry matter content (TDMC), photosynthetic activity, photosynthetic pigment and protein content, and antioxidant capacity to assess if thallus age may be considered a significant driver in determining the ecological responses of this species to environmental changes. Results Our results showed that TDMC was higher in adults than juveniles. At the functional level, rapid light curves indicated an elevated photosynthetic efficiency in juveniles compared to adults highlighted by the higher quantum yield of PSII electron transport, electron transport rate, and Rubisco content observed in juveniles. On the contrary, adults exhibited a higher non-photochemical quenching and total pigment concentration. No difference in maximum PSII photochemical efficiency and D1 protein content between the two thalli groups was found. Along with better photosynthesis, juveniles also displayed a higher amount of total polyphenols, flavonoids, and tannins, and a stronger antioxidant capacity compared to adults. Conclusions Our findings revealed significant differences in the eco-physiological characteristics of G. barbata at different growth stages. It was observed that young thalli, allocate more energy to photosynthesis and chemical defenses by increasing the production of antioxidant compounds, such as polyphenols, flavonoids, and tannins. With growth, thalli likely adopt a more conservative strategy, reducing photosynthesis and promoting structural biomass accumulation to mitigate the potential risks associated with prolonged exposure to environmental stressors, such as the wavy way. Although our study focused on a single phase of G. barbata life cycle under winter settings, it offers preliminary insights into this species eco-physiological traits and auto-ecology. Future research could explore the potential implications of these findings, evaluating the species' resilience to environmental changes at the population level.
Collapse
Affiliation(s)
- Maria Luisa Pica
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Rosa Donadio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giulia Costanzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
- Department of Biology, Stazione Idrobiologica 'Umberto d'Ancona', University of Padova, Padova, Italy
| | - Erika Fabbrizzi
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Simonetta Fraschetti
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
29
|
Li JJ, Du XK. Will climate change cause Sargassum beds in temperate waters to expand or contract? Evidence from the range shift pattern of Sargassum. MARINE ENVIRONMENTAL RESEARCH 2024; 200:106659. [PMID: 39083877 DOI: 10.1016/j.marenvres.2024.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/03/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Understanding the range shift patterns of foundation species (e.g., macroalgae) under future climatic conditions is critical for biodiversity conservation in coastal ecosystems. These predictions are typically made using species distribution models (SDMs), and severe habitat loss has been predicted for most brown algal forests. Nevertheless, some models showed that local adaptation within species can reduce range loss projections. In this study, we used the brown algae Sargassum fusiforme and Sargassum thunbergii, which are distributed in the Northwest Pacific, to determine whether climate change will cause the Sargassum beds in Northwest Pacific temperate waters to expand or contract. We divided S. fusiforme and S. thunbergii into northern and southern lineages, considering the temperature gradients and phylogeographic structures. We quantified the realized niches of the two lineages using an n-dimensional hypervolume. Significant niche differentiation was detected between lineages for both species, suggesting the existence of local adaptation. Based on these results, lineage-level SDMs were constructed for both species. The prediction results showed the different responses of different lineages to climate change. The suitable distribution area for both species was predicted to move northward, retaining part of the suitable habitat at low latitudes (along the East China Sea). Unfortunately, this expansion could not compensate for losing middle-low latitude areas. Our results have important implications for the future management and protection of macroalgae and emphasize the importance of incorporating intraspecific variation into species distribution predictions.
Collapse
Affiliation(s)
- Jing-Jing Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China.
| | - Xiao-Kang Du
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China
| |
Collapse
|
30
|
Burnett NP, Ricart AM, Winquist T, Saley AM, Edwards MS, Hughes B, Hodin J, Baskett ML, Gaylord B. Bimodal spore release heights in the water column enhance local retention and population connectivity of bull kelp, Nereocystis luetkeana. Ecol Evol 2024; 14:e70177. [PMID: 39145038 PMCID: PMC11322238 DOI: 10.1002/ece3.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Dispersal of reproductive propagules determines recruitment patterns and connectivity among populations and can influence how populations respond to major disturbance events. Dispersal distributions can depend on propagule release strategies. For instance, the bull kelp, Nereocystis luetkeana, can release propagules (spores) from two heights in the water column ("bimodal release"): at the water surface, directly from the reproductive tissues (sori) on the kelp's blades, and near the seafloor after the sori abscise and sink through the water column. N. luetkeana is a foundation species that occurs from central California to Alaska and is experiencing unprecedented levels of population declines near its southern range limit. We know little of the kelp's dispersal distributions, which could influence population recovery and restoration. Here, we quantify how bimodal spore release heights affect dispersal outcomes based on a numerical model specifically designed for N. luetkeana. The model incorporates oceanographic conditions typical of the species' coastal range and kelp biological traits. With bimodal release heights, 34% of spores are predicted to settle within 10 m of the parental alga and 60% are predicted to disperse beyond 100 m. As an annual species, bimodal release heights can facilitate the local regeneration of adults within a source kelp forest while also supporting connectivity among multiple forests within broader bull kelp metapopulations. To leverage this pattern of bimodal spore dispersal in bull kelp restoration management, directing resources toward strategically located focal populations that can seed other ones could amplify the scale of recovery.
Collapse
Affiliation(s)
- Nicholas P. Burnett
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Department of Neurobiology, Physiology, and BehaviorUniversity of California, DavisDavisCaliforniaUSA
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
| | - Aurora M. Ricart
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
- Institut de Ciències del Mar (ICM‐CSIC)BarcelonaSpain
- Bigelow Laboratory for Ocean SciencesEast BoothbayMaineUSA
| | - Tallulah Winquist
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Alisha M. Saley
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
| | | | - Brent Hughes
- Department of BiologySonoma State UniversityRohnert ParkCaliforniaUSA
| | - Jason Hodin
- Friday Harbor LabsUniversity of WashingtonFriday HarborWashingtonUSA
| | - Marissa L. Baskett
- Deparment of Environmental Science and PolicyUniversity of California, DavisDavisCaliforniaUSA
| | - Brian Gaylord
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
- Bodega Marine LaboratoryBodega BayCaliforniaUSA
| |
Collapse
|
31
|
Marzinelli EM, Thomas T, Vadillo Gonzalez S, Egan S, Steinberg PD. Seaweeds as holobionts: Current state, challenges, and potential applications. JOURNAL OF PHYCOLOGY 2024; 60:785-796. [PMID: 39047050 DOI: 10.1111/jpy.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Seaweeds play a strong ecological and economical role along the world's coastlines, where they support industries (e.g., aquaculture, bioproducts) and essential ecosystem services (e.g., biodiversity, fisheries, carbon capture). Evidence from wild and cultured seaweeds suggests that microorganisms play crucial roles in their health and functioning, prompting the need for considering seaweeds and their microbiome as a coherent entity or "holobiont." Here we show that the number of studies investigating seaweed hosts and their microbiome have increased in the last two decades. This likely reflects the increase in the appreciation of the importance of microbiomes for eukaryotic hosts, improved molecular approaches used to characterize their interactions, and increasing interest in commercial use of seaweeds. However, although increasing, most studies of seaweed holobionts have focused on (i) a few seaweed species of ecological or commercial significance, (ii) interactions involving only bacteria, and (iii) descriptive rather than experimental approaches. The relatively few experimental studies have mostly focused on manipulating abiotic factors to examine responses of seaweeds and their microbiome. Of the few studies that directly manipulated microorganisms to investigate their effects on seaweeds, most were done in laboratory or aquaria. We emphasize the need to move beyond the descriptions of patterns to experimental approaches for understanding causation and mechanisms. We argue that such experimental approaches are necessary for a better understanding of seaweed holobionts, for management actions for wild and cultivated seaweeds, and to better integrate studies of seaweed holobionts with the broader fields of seaweed ecology and biology, which are strongly experimental.
Collapse
Affiliation(s)
- Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sebastian Vadillo Gonzalez
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
32
|
Suskiewicz TS, Byrnes JEK, Steneck RS, Russell R, Wilson CJ, Rasher DB. Ocean warming undermines the recovery resilience of New England kelp forests following a fishery-induced trophic cascade. Ecology 2024; 105:e4334. [PMID: 38887829 DOI: 10.1002/ecy.4334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 06/20/2024]
Abstract
Ecological theory predicts that kelp forests structured by trophic cascades should experience recovery and persistence of their foundation species when herbivores become rare. Yet, climate change may be altering the outcomes of top-down forcing in kelp forests, especially those located in regions that have rapidly warmed in recent decades, such as the Gulf of Maine. Here, using data collected annually from 30+ sites spanning >350 km of coastline, we explored the dynamics of Maine's kelp forests in the ~20 years after a fishery-induced elimination of sea urchin herbivores. Although forests (Saccharina latissima and Laminaria digitata) had broadly returned to Maine in the late 20th century, we found that forests in northeast Maine have since experienced slow but significant declines in kelp, and forest persistence in the northeast was juxtaposed by a rapid, widespread collapse in the southwest. Forests collapsed in the southwest apparently because ocean warming has-directly and indirectly-made this area inhospitable to kelp. Indeed, when modeling drivers of change using causal techniques from econometrics, we discovered that unusually high summer seawater temperatures the year prior, unusually high spring seawater temperatures, and high sea urchin densities each negatively impacted kelp abundance. Furthermore, the relative power and absolute impact of these drivers varied geographically. Our findings reveal that ocean warming is redefining the outcomes of top-down forcing in this system, whereby herbivore removal no longer predictably leads to a sustained dominance of foundational kelps but instead has led to a waning dominance (northeast) or the rise of a novel phase state defined by "turf" algae (southwest). Such findings indicate that limiting climate change and managing for low herbivore abundances will be essential for preventing further loss of the vast forests that still exist in northeast Maine. They also more broadly highlight that climate change is "rewriting the rules" of nature, and thus that ecological theory and practice must be revised to account for shifting species and processes.
Collapse
Affiliation(s)
| | - Jarrett E K Byrnes
- Department of Biology, University of Massachusetts, Boston, Massachusetts, USA
| | - Robert S Steneck
- School of Marine Sciences, University of Maine, Walpole, Maine, USA
| | - Robert Russell
- Maine Department of Marine Resources, West Boothbay Harbor, Maine, USA
| | - Carl J Wilson
- Maine Department of Marine Resources, West Boothbay Harbor, Maine, USA
| | - Douglas B Rasher
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA
| |
Collapse
|
33
|
Manca F, Benedetti-Cecchi L, Bradshaw CJA, Cabeza M, Gustafsson C, Norkko AM, Roslin TV, Thomas DN, White L, Strona G. Projected loss of brown macroalgae and seagrasses with global environmental change. Nat Commun 2024; 15:5344. [PMID: 38914573 PMCID: PMC11196678 DOI: 10.1038/s41467-024-48273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2024] [Indexed: 06/26/2024] Open
Abstract
Although many studies predict extensive future biodiversity loss and redistribution in the terrestrial realm, future changes in marine biodiversity remain relatively unexplored. In this work, we model global shifts in one of the most important marine functional groups-ecosystem-structuring macrophytes-and predict substantial end-of-century change. By modelling the future distribution of 207 brown macroalgae and seagrass species at high temporal and spatial resolution under different climate-change projections, we estimate that by 2100, local macrophyte diversity will decline by 3-4% on average, with 17 to 22% of localities losing at least 10% of their macrophyte species. The current range of macrophytes will be eroded by 5-6%, and highly suitable macrophyte habitat will be substantially reduced globally (78-96%). Global macrophyte habitat will shift among marine regions, with a high potential for expansion in polar regions.
Collapse
Affiliation(s)
- Federica Manca
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland.
| | | | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (EpicAustralia.org.au), Wollongong, NSW, Australia
| | - Mar Cabeza
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
- Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| | - Camilla Gustafsson
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Alf M Norkko
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | - Tomas V Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51, Uppsala, Sweden
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 5, 00014, Helsinki, Finland
| | - David N Thomas
- Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, Viikinkaari 1, 00014, Helsinki, Finland
| | - Lydia White
- Tvärminne Zoological Station, University of Helsinki, J.A. Palménin tie 260, 10900, Hanko, Finland
| | | |
Collapse
|
34
|
Rovira GL, Capdevila P, Zentner Y, Margarit N, Ortega J, Casals D, Figuerola-Ferrando L, Aspillaga E, Medrano A, Pagès-Escolà M, Hereu B, Garrabou J, Linares C. When resilience is not enough: 2022 extreme marine heatwave threatens climatic refugia for a habitat-forming Mediterranean octocoral. J Anim Ecol 2024. [PMID: 38867406 DOI: 10.1111/1365-2656.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/12/2024] [Indexed: 06/14/2024]
Abstract
Climate change is impacting ecosystems worldwide, and the Mediterranean Sea is no exception. Extreme climatic events, such as marine heat waves (MHWs), are increasing in frequency, extent and intensity during the last decades, which has been associated with an increase in mass mortality events for multiple species. Coralligenous assemblages, where the octocoral Paramuricea clavata lives, are strongly affected by MHWs. The Medes Islands Marine Reserve (NW Mediterranean) was considered a climate refugia for P. clavata, as their populations were showing some resilience to these changing conditions. In this study, we assessed the impacts of the MHWs that occurred between 2016 and 2022 in seven shallow populations of the octocoral P. clavata from a Mediterranean Marine Protected Area. The years that the mortality rates increased significantly were associated with the ones with strong MHWs, 2022 being the one with higher mortalities. In 2022, with 50 MHW days, the proportion of total affected colonies was almost 70%, with a proportion of the injured surface of almost 40%, reaching levels never attained in our study site since the monitoring was started. We also found spatial variability between the monitored populations. Whereas few of them showed low levels of mortality, others lost around 75% of their biomass. The significant impacts documented here raise concerns about the future of shallow P. clavata populations across the Mediterranean, suggesting that the resilience of this species may not be maintained to sustain these populations face the ongoing warming trends.
Collapse
Affiliation(s)
- Graciel la Rovira
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Pol Capdevila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Yanis Zentner
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Núria Margarit
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Julia Ortega
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - David Casals
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laura Figuerola-Ferrando
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB), Esporles, Spain
| | - Alba Medrano
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Pagès-Escolà
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Bernat Hereu
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Joaquim Garrabou
- Institut de Ciències del Mar-CSIC, Barcelona, Spain
- Aix Marseille Université, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
35
|
Düsedau L, Fredriksen S, Brand M, Fischer P, Karsten U, Bischof K, Savoie A, Bartsch I. Kelp forest community structure and demography in Kongsfjorden (Svalbard) across 25 years of Arctic warming. Ecol Evol 2024; 14:e11606. [PMID: 38919650 PMCID: PMC11199086 DOI: 10.1002/ece3.11606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
The Arctic archipelago of Svalbard is a hotspot of global warming and many fjords experience a continuous increase in seawater temperature and glacial melt while sea-ice cover declines. In 1996/1998, 2012-2014, and 2021 macroalgal biomass and species diversity were quantified at the study site Hansneset, Kongsfjorden (W-Spitsbergen) in order to identify potential changes over time. In 2021, we repeated the earlier studies by stratified random sampling (1 × 1 m2, n = 3) along a sublittoral depth transect (0, 2.5, 5, 10, and 15 m) and investigated the lower depth limits of dominant brown algae between 3 and 19 m. The maximum fresh weight (FW) of all seaweeds was 11.5 kg m-2 at 2.5 m and to 99.9% constituted of kelp. Although biomass distribution along the depth transect in 2021 was not significantly different compared to 2012/2013, the digitate kelp community (Laminaria digitata/Hedophyllum nigripes) had transformed into an Alaria esculenta-dominated kelp forest. Consequently, a pronounced shift in kelp forest structure occurred over time as we demonstrate that biomass allocation to thallus parts is kelp species-specific. Over the past decade, kelp demography changed and in 2021 a balanced age structure of kelps (juveniles plus many older kelp individuals) was only apparent at 2.5 m. In addition, the abundances and lower depth limits of all dominant brown algae declined noticeably over the last 25 years while the red algal flora abundance remained unchanged at depth. We propose that the major factor driving the observed changes in the macroalgal community are alterations in underwater light climate, as in situ data showed increasing turbidity and decreasing irradiance since 2012 and 2017, respectively. As a consequence, the interplay between kelp forest retreat to lower depth levels caused by coastal darkening and potential macroalgal biomass gain with increasing temperatures will possibly intensify in the future with unforeseen consequences for melting Arctic coasts and fjord ecosystem services.
Collapse
Affiliation(s)
- Luisa Düsedau
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
- Department of Marine BotanyUniversity of Bremen & MARUMBremenGermany
| | | | - Markus Brand
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Philipp Fischer
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| | - Ulf Karsten
- Department of Applied Ecology and PhycologyInstitute of Biological Sciences, University of RostockRostockGermany
| | - Kai Bischof
- Department of Marine BotanyUniversity of Bremen & MARUMBremenGermany
| | - Amanda Savoie
- Centre for Arctic Knowledge and Exploration, Canadian Museum of NatureOttawaOntarioCanada
| | - Inka Bartsch
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
| |
Collapse
|
36
|
Lees LE, Jordan SNZ, Bracken MES. Kelps may compensate for low nitrate availability by using regenerated forms of nitrogen, including urea and ammonium. JOURNAL OF PHYCOLOGY 2024; 60:768-777. [PMID: 38703050 DOI: 10.1111/jpy.13459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Nitrate, the form of nitrogen often associated with kelp growth, is typically low in summer during periods of high macroalgal growth. More ephemeral, regenerated forms of nitrogen, such as ammonium and urea, are much less studied as sources of nitrogen for kelps, despite the relatively high concentrations of regenerated nitrogen found in the Southern California Bight, where kelps are common. To assess how nitrogen uptake by kelps varies by species and nitrogen form in southern California, USA, we measured uptake rates of nitrate, ammonium, and urea by Macrocystis pyrifera and Eisenia arborea individuals from four regions characterized by differences in nitrogen availability-Orange County, San Pedro, eastern Santa Catalina Island, and western Santa Catalina Island-during the summers of 2021 and 2022. Seawater samples collected at each location showed that overall nitrogen availability was low, but ammonium and urea were often more abundant than nitrate. We also quantified the internal %nitrogen of each kelp blade collected, which was positively associated with ambient environmental nitrogen concentrations at the time of collection. We observed that both kelp species readily took up nitrate, ammonium, and urea, with M. pyrifera taking up nitrate and ammonium more efficiently than E. arborea. Urea uptake efficiency for both species increased as internal percent nitrogen decreased. Our results indicate that lesser-studied, more ephemeral forms of nitrogen can readily be taken up by these kelps, with possible upregulation of urea uptake as nitrogen availability declines.
Collapse
Affiliation(s)
- Lauren E Lees
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Sydney N Z Jordan
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Matthew E S Bracken
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
37
|
Gouraguine A, Smale DA, Edwards A, King NG, Jackson-Bué M, Kelly S, Earp HS, Moore PJ. Temporal and spatial drivers of the structure of macroinvertebrate assemblages associated with Laminaria hyperborea detritus in the northeast Atlantic. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106518. [PMID: 38648698 DOI: 10.1016/j.marenvres.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Kelp forests occur on more than a quarter of the world's coastlines, serving as foundation species supporting high levels of biodiversity. They are also a major source of organic matter in coastal ecosystems, with the majority of primary production released and exported as detritus. Kelp detritus also provides food and shelter for macroinvertebrates, which comprise important components of inshore food-webs. Hitherto, research on kelp detritus-associated macroinvertebrate assemblages remains relatively limited. We quantified spatiotemporal variability in the structure of detritus-associated macroinvertebrate assemblages within Laminaria hyperborea forests and evaluated the influence of putative drivers of the observed variability in assemblages across eight study sites within four regions of the United Kingdom in May and September 2015. We documented 5167 individuals from 106 taxa with Malacostraca, Gastropoda, Isopoda and Bivalvia the most abundant groups sampled. Assemblage structure varied across months, sites, and regions, with highest richness in September compared to May. Many taxa were unique to individual regions, with few documented in all regions. Finally, key drivers of assemblage structure included detritus tissue nitrogen content, depth, sea surface temperature, light intensity, as well as L. hyperborea canopy density and canopy biomass. Despite their dynamic composition and transient existence, accumulations of L. hyperborea detritus represent valuable repositories of biodiversity and represent an additional kelp forest component which influences secondary productivity, and potentially kelp forest food-web dynamics.
Collapse
Affiliation(s)
- Adam Gouraguine
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Dan A Smale
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL2 1PB, UK
| | - Arwyn Edwards
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Nathan G King
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth, PL2 1PB, UK
| | | | - Sean Kelly
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Hannah S Earp
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Pippa J Moore
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
38
|
Madeira P, Reddy MM, Assis J, Bolton JJ, Rothman MD, Anderson RJ, Kandjengo L, Kreiner A, Coleman MA, Wernberg T, De Clerck O, Leliaert F, Bandeira S, Ada AM, Neiva J, Pearson GA, Serrão EA. Cryptic diversity in southern African kelp. Sci Rep 2024; 14:11071. [PMID: 38745036 PMCID: PMC11093989 DOI: 10.1038/s41598-024-61336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
The southern coast of Africa is one of the few places in the world where water temperatures are predicted to cool in the future. This endemism-rich coastline is home to two sister species of kelps of the genus Ecklonia maxima and Ecklonia radiata, each associated with specific thermal niches, and occuring primarily on opposite sides of the southern tip of Africa. Historical distribution records indicate that E. maxima has recently shifted its distribution ~ 70 km eastward, to sites where only E. radiata was previously reported. The contact of sister species with contrasting thermal affinities and the occurrence of mixed morphologies raised the hypothesis that hybridization might be occurring in this contact zone. Here we describe the genetic structure of the genus Ecklonia along the southern coast of Africa and investigate potential hybridization and cryptic diversity using a combination of nuclear microsatellites and mitochondrial markers. We found that both species have geographically discrete genetic clusters, consistent with expected phylogeographic breaks along this coastline. In addition, depth-isolated populations were found to harbor unique genetic diversity, including a third Ecklonia lineage. Mito-nuclear discordance and high genetic divergence in the contact zones suggest multiple hybridization events between Ecklonia species. Discordance between morphological and molecular identification suggests the potential influence of abiotic factors leading to convergent phenotypes in the contact zones. Our results highlight an example of cryptic diversity and hybridization driven by contact between two closely related keystone species with contrasting thermal affinities.
Collapse
Affiliation(s)
- Pedro Madeira
- CCMAR, University of Algarve, Gambelas, Faro, Portugal.
| | - Maggie M Reddy
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa.
| | - Jorge Assis
- CCMAR, University of Algarve, Gambelas, Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, Bodø, Norway
| | - John J Bolton
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa.
| | - Mark D Rothman
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa.
- Department of Environment, Forestry and Fisheries, Private Bag X2, Vlaeberg, 8012, South Africa.
| | - Robert J Anderson
- Department of Biological Sciences, University of Cape Town, Cape Town, 7701, South Africa
| | - Lineekela Kandjengo
- Department of Fisheries and Ocean Sciences, University of Namibia, Sam Nujoma Campus, Henties Bay, Namibia
| | - Anja Kreiner
- National Marine Information and Research Centre, Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
| | - Melinda A Coleman
- New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
- National Marine Science Centre, Southern Cross University, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Thomas Wernberg
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Olivier De Clerck
- Biology Department, Ghent University, Krijgslaan 281 S8, 9000, Ghent, Belgium
| | | | - Salomão Bandeira
- Department of Biological Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Abdul M Ada
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - João Neiva
- CCMAR, University of Algarve, Gambelas, Faro, Portugal
| | | | | |
Collapse
|
39
|
Liang M, Lamy T, Reuman DC, Wang S, Bell TW, Cavanaugh KC, Castorani MCN. A marine heatwave changes the stabilizing effects of biodiversity in kelp forests. Ecology 2024; 105:e4288. [PMID: 38522859 DOI: 10.1002/ecy.4288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
Biodiversity can stabilize ecological communities through biological insurance, but climate and other environmental changes may disrupt this process via simultaneous ecosystem destabilization and biodiversity loss. While changes to diversity-stability relationships (DSRs) and the underlying mechanisms have been extensively explored in terrestrial plant communities, this topic remains largely unexplored in benthic marine ecosystems that comprise diverse assemblages of producers and consumers. By analyzing two decades of kelp forest biodiversity survey data, we discovered changes in diversity, stability, and their relationships at multiple scales (biological organizational levels, spatial scales, and functional groups) that were linked with the most severe marine heatwave ever documented in the North Pacific Ocean. Moreover, changes in the strength of DSRs during/after the heatwave were more apparent among functional groups than both biological organizational levels (population vs. ecosystem levels) and spatial scales (local vs. broad scales). Specifically, the strength of DSRs decreased for fishes, increased for mobile invertebrates and understory algae, and were unchanged for sessile invertebrates during/after the heatwave. Our findings suggest that biodiversity plays a key role in stabilizing marine ecosystems, but the resilience of DSRs to adverse climate impacts primarily depends on the functional identities of ecological communities.
Collapse
Affiliation(s)
- Maowei Liang
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, East Bethel, Minnesota, USA
| | - Thomas Lamy
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Center for Ecological Research, University of Kansas, Lawrence, Kansas, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Tom W Bell
- Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Kyle C Cavanaugh
- Department of Geography, University of California, Los Angeles, Los Angeles, California, USA
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
40
|
Zhang Y, Nair S, Zhang Z, Zhao J, Zhao H, Lu L, Chang L, Jiao N. Adverse Environmental Perturbations May Threaten Kelp Farming Sustainability by Exacerbating Enterobacterales Diseases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5796-5810. [PMID: 38507562 DOI: 10.1021/acs.est.3c09921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Globally kelp farming is gaining attention to mitigate land-use pressures and achieve carbon neutrality. However, the influence of environmental perturbations on kelp farming remains largely unknown. Recently, a severe disease outbreak caused extensive kelp mortality in Sanggou Bay, China, one of the world's largest high-density kelp farming areas. Here, through in situ investigations and simulation experiments, we find indications that an anomalously dramatic increase in elevated coastal seawater light penetration may have contributed to dysbiosis in the kelp Saccharina japonica's microbiome. This dysbiosis promoted the proliferation of opportunistic pathogenic Enterobacterales, mainly including the genera Colwellia and Pseudoalteromonas. Using transcriptomic analyses, we revealed that high-light conditions likely induced oxidative stress in kelp, potentially facilitating opportunistic bacterial Enterobacterales attack that activates a terrestrial plant-like pattern recognition receptor system in kelp. Furthermore, we uncover crucial genotypic determinants of Enterobacterales dominance and pathogenicity within kelp tissue, including pathogen-associated molecular patterns, potential membrane-damaging toxins, and alginate and mannitol lysis capability. Finally, through analysis of kelp-associated microbiome data sets under the influence of ocean warming and acidification, we conclude that such Enterobacterales favoring microbiome shifts are likely to become more prevalent in future environmental conditions. Our study highlights the need for understanding complex environmental influences on kelp health and associated microbiomes for the sustainable development of seaweed farming.
Collapse
Affiliation(s)
- Yongyu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Shailesh Nair
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Zenghu Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Jiulong Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Shandong Energy Institute, No. 189 Songling Road, Qingdao 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, Shandong, China
| | - Hanshuang Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longfei Lu
- Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China
| | - Lirong Chang
- Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361100, China
| |
Collapse
|
41
|
Filbee-Dexter K, Starko S, Pessarrodona A, Wood G, Norderhaug KM, Piñeiro-Corbeira C, Wernberg T. Marine protected areas can be useful but are not a silver bullet for kelp conservation. JOURNAL OF PHYCOLOGY 2024; 60:203-213. [PMID: 38546039 DOI: 10.1111/jpy.13446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.
Collapse
Affiliation(s)
- Karen Filbee-Dexter
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| | - Samuel Starko
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Albert Pessarrodona
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Georgina Wood
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | | | - Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, and CICA - Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Thomas Wernberg
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
- Institute of Marine Research, His, Norway
| |
Collapse
|
42
|
Twist BA, Mazel F, Zaklan Duff S, Lemay MA, Pearce CM, Martone PT. Kelp and sea urchin settlement mediated by biotic interactions with benthic coralline algal species. JOURNAL OF PHYCOLOGY 2024; 60:363-379. [PMID: 38147464 DOI: 10.1111/jpy.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
Species interactions can influence key ecological processes that support community assembly and composition. For example, coralline algae encompass extensive diversity and may play a major role in regime shifts from kelp forests to urchin-dominated barrens through their role in inducing invertebrate larval metamorphosis and influencing kelp spore settlement. In a series of laboratory experiments, we tested the hypothesis that different coralline communities facilitate the maintenance of either ecosystem state by either promoting or inhibiting early recruitment of kelps or urchins. Coralline algae significantly increased red urchin metamorphosis compared with a control, while they had varying effects on kelp settlement. Urchin metamorphosis and density of juvenile canopy kelps did not differ significantly across coralline species abundant in both kelp forests and urchin barrens, suggesting that recruitment of urchin and canopy kelps does not depend on specific corallines. Non-calcified fleshy red algal crusts promoted the highest mean urchin metamorphosis percentage and showed some of the lowest canopy kelp settlement. In contrast, settlement of one subcanopy kelp species was reduced on crustose corallines, but elevated on articulated corallines, suggesting that articulated corallines, typically absent in urchin barrens, may need to recover before this subcanopy kelp could return. Coralline species differed in surface bacterial microbiome composition; however, urchin metamorphosis was not significantly different when microbiomes were removed with antibiotics. Our results clarify the role played by coralline algal species in kelp forest community assembly and could have important implications for kelp forest recovery.
Collapse
Affiliation(s)
- Brenton A Twist
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Vancouver, British Columbia, Canada
| | - Florent Mazel
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Stefanie Zaklan Duff
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, British Columbia, Canada
| | | | - Christopher M Pearce
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Patrick T Martone
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
43
|
Almeida-Saá AC, Umanzor S, Zertuche-González JA, Cruz-López R, Muñiz-Salazar R, Ferreira-Arrieta A, Bonet Melià P, García-Pantoja JA, Rangel-Mendoza LK, Vivanco-Bercovich M, Ruiz-Montoya L, Guzmán-Calderón JM, Sandoval-Gil JM. Bathymetric origin shapes the physiological responses of Pterygophora californica (Laminariales, Phaeophyceae) to deep marine heatwaves. JOURNAL OF PHYCOLOGY 2024; 60:483-502. [PMID: 38264946 DOI: 10.1111/jpy.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Kelp communities are experiencing exacerbated heat-related impacts from more intense, frequent, and deeper marine heatwaves (MHWs), imperiling the long-term survival of kelp forests in the climate change scenario. The occurrence of deep thermal anomalies is of critical importance, as elevated temperatures can impact kelp populations across their entire bathymetric range. This study evaluates the impact of MHWs on mature sporophytes of Pterygophora californica (walking kelp) from the bathymetric extremes (8-10 vs. 25-27 m) of a population situated in Baja California (Mexico). The location is near the southernmost point of the species's broad distribution (from Alaska to Mexico). The study investigated the ecophysiological responses (e.g., photobiology, nitrate uptake, oxidative stress) and growth of adult sporophytes through a two-phase experiment: warming simulating a MHW and a post-MHW phase without warming. Generally, the effects of warming differed depending on the bathymetric origin of the sporophytes. The MHW facilitated essential metabolic functions of deep-water sporophytes, including photosynthesis, and promoted their growth. In contrast, shallow-water sporophytes displayed metabolic stress, reduced growth, and oxidative damage. Upon the cessation of warming, certain responses, such as a decline in nitrate uptake and net productivity, became evident in shallow-water sporophytes, implying a delay in heat-stress response. This indicates that variation in temperatures can result in more prominent effects than warming alone. The greater heat tolerance of sporophytes in deeper waters shows convincing evidence that deep portions of P. californica populations have the potential to serve as refuges from the harmful impacts of MHWs on shallow reefs.
Collapse
Affiliation(s)
- Antonella C Almeida-Saá
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Schery Umanzor
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | | | - Ricardo Cruz-López
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Raquel Muñiz-Salazar
- Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - Paula Bonet Melià
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - Laura K Rangel-Mendoza
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Manuel Vivanco-Bercovich
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Leonardo Ruiz-Montoya
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | - Jose Miguel Sandoval-Gil
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| |
Collapse
|
44
|
James C, Layton C, Hurd CL, Britton D. The endemic kelp Lessonia corrugata is being pushed above its thermal limits in an ocean warming hotspot. JOURNAL OF PHYCOLOGY 2024; 60:503-516. [PMID: 38426571 DOI: 10.1111/jpy.13434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Kelps are in global decline due to climate change, which includes ocean warming. To identify vulnerable species, we need to identify their tolerances to increasing temperatures and determine whether tolerances are altered by co-occurring drivers such as inorganic nutrient levels. This is particularly important for those species with restricted distributions, which may already be experiencing thermal stress. To identify thermal tolerance of the range-restricted kelp Lessonia corrugata, we conducted a laboratory experiment on juvenile sporophytes to measure performance (growth, photosynthesis) across its thermal range (4-22°C). We determined the upper thermal limit for growth and photosynthesis to be ~22-23°C, with a thermal optimum of ~16°C. To determine if elevated inorganic nitrogen availability could enhance thermal tolerance, we compared the performance of juveniles under low (4.5 μmol · d-1) and high (90 μmol · d-1) nitrate conditions at and above the thermal optimum (16-23.5°C). Nitrate enrichment did not enhance thermal performance at temperatures above the optimum but did lead to elevated growth rates at the thermal optimum. Our results indicate L. corrugata is likely to be extremely susceptible to moderate ocean warming and marine heatwaves. Peak sea surface temperatures during summer in eastern and northeastern Tasmania can reach up to 20-21°C, and climate projections suggest that L. corrugata's thermal limit will be regularly exceeded by 2050 as southeastern Australia is a global ocean-warming hotspot. By identifying the upper thermal limit of L. corrugata, we have taken a critical step in predicting the future of the species in a warming climate.
Collapse
Affiliation(s)
- Cody James
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Cayne Layton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Damon Britton
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
45
|
Krumhansl KA, Brooks CM, Lowen JB, O’Brien JM, Wong MC, DiBacco C. Loss, resilience and recovery of kelp forests in a region of rapid ocean warming. ANNALS OF BOTANY 2024; 133:73-92. [PMID: 37952103 PMCID: PMC10921841 DOI: 10.1093/aob/mcad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND AND AIMS Changes in kelp abundances on regional scales have been highly variable over the past half-century owing to strong effects of local and regional drivers. Here, we assess patterns and dominant environmental variables causing spatial and interspecific variability in kelp persistence and resilience to change in Nova Scotia over the past 40 years. METHODS We conducted a survey of macrophyte abundance at 251 sites spanning the Atlantic coast of Nova Scotia from 2019 to 2022. We use this dataset to describe spatial variability in kelp species abundances, compare species occurrences to surveys conducted in 1982 and assess changes in kelp abundance over the past 22 years. We then relate spatial and temporal patterns in abundance and resilience to environmental metrics. KEY RESULTS Our results show losses of sea urchins and the cold-tolerant kelp species Alaria esculenta, Saccorhiza dermatodea and Agarum clathratum in Nova Scotia since 1982 in favour of the more warm-tolerant kelps Saccharina latissima and Laminaria digitata. Kelp abundances have increased slightly since 2000, and Saccharina latissima and L. digitata are widely abundant in the region today. The highest kelp cover occurs on wave-exposed shores and at sites where temperatures have remained below thresholds for growth (21 °C) and mortality (23 °C). Moreover, kelp has recovered from turf dominance following losses at some sites during a warm period from 2010 to 2012. CONCLUSIONS Our results indicate that dramatic changes in kelp community composition and a loss of sea urchin herbivory as a dominant driver of change in the system have occurred in Nova Scotia over the past 40 years. However, a broad-scale shift to turf-dominance has not occurred, as predicted, and our results suggest that resilience and persistence are still a feature of kelp forests in the region despite rapid warming over the past several decades.
Collapse
Affiliation(s)
- K A Krumhansl
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - C M Brooks
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - J B Lowen
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - J M O’Brien
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - M C Wong
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| | - C DiBacco
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2, Canada
| |
Collapse
|
46
|
Piñeiro-Corbeira C, Barrientos S, Provera I, García ME, Díaz-Tapia P, Peña V, Bárbara I, Barreiro R. Kelp forests collapse reduces understorey seaweed β-diversity. ANNALS OF BOTANY 2024; 133:93-104. [PMID: 37815049 PMCID: PMC10921829 DOI: 10.1093/aob/mcad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/25/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AND AIMS Kelps are the primary foundation species in temperate subtidal rocky shores worldwide. However, global change is causing their decline with consequences for the organisms that rely on them. An accurate assessment of these consequences may depend on which attributes of the associated community are considered. This study shows that conventional α-diversity approaches may overlook some of these consequences compared to spatially explicit approaches such as with β-diversity. METHODS A 1-year seasonal study was conducted to compare the macroalgal understorey between healthy reefs with a Laminaria ochroleuca canopy and degraded reefs where the canopy collapsed years ago due to excessive fish herbivory. At each reef, the understorey seaweed assemblage was recorded in five replicate quadrats to estimate α-diversity (total richness, species density, Shannon index) and β-diversity (intra- and inter-reef scale). KEY RESULTS The understorey assemblage exhibited a distinct seasonal dynamic in both healthy and degraded reefs. α-Diversity attributes increased in spring and summer; turf-forming algae were particularly dominant in degraded reefs during summer. β-Diversity also showed seasonal variability, but mostly due to the changes in degraded reefs. None of the α-diversity estimates differed significantly between healthy and degraded reefs. In contrast, spatial β-diversity was significantly lower in degraded reefs. CONCLUSIONS Although the loss of the kelp canopy affected the composition of the macroalgal understorey, none of the conventional indicators of α-diversity detected significant differences between healthy and degraded reefs. In contrast, small-scale spatial β-diversity decreased significantly as a result of deforestation, suggesting that the loss of kelp canopy may not significantly affect the number of species but still have an effect on their spatial arrangement. Our results suggest that small-scale β-diversity may be a good proxy for a more comprehensive assessment of the consequences of kelp forest decline.
Collapse
Affiliation(s)
- Cristina Piñeiro-Corbeira
- BioCost Research Group, Facultad de Ciencias, and CICA – Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Sara Barrientos
- BioCost Research Group, Facultad de Ciencias, and CICA – Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Isabella Provera
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Manuel E García
- Department of Ecology and Marine Resources, Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Pilar Díaz-Tapia
- BioCost Research Group, Facultad de Ciencias, and CICA – Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de A Coruña, Paseo Marítimo Alcalde Francisco Vázquez, 10, 15001, Coruña, Spain
| | - Viviana Peña
- BioCost Research Group, Facultad de Ciencias, and CICA – Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Ignacio Bárbara
- BioCost Research Group, Facultad de Ciencias, and CICA – Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| | - Rodolfo Barreiro
- BioCost Research Group, Facultad de Ciencias, and CICA – Centro Interdisciplinar de Química e Bioloxía, Universidad de A Coruña, A Coruña, Spain
| |
Collapse
|
47
|
Hanley ME, Firth LB, Foggo A. Victim of changes? Marine macroalgae in a changing world. ANNALS OF BOTANY 2024; 133:1-16. [PMID: 37996092 PMCID: PMC10921835 DOI: 10.1093/aob/mcad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Marine macroalgae ('seaweeds') are a diverse and globally distributed group of photosynthetic organisms that together generate considerable primary productivity, provide an array of different habitats for other organisms, and contribute many important ecosystem functions and services. As a result of continued anthropogenic stress on marine systems, many macroalgal species and habitats face an uncertain future, risking their vital contribution to global productivity and ecosystem service provision. SCOPE After briefly considering the remarkable taxonomy and ecological distribution of marine macroalgae, we review how the threats posed by a combination of anthropogenically induced stressors affect seaweed species and communities. From there we highlight five critical avenues for further research to explore (long-term monitoring, use of functional traits, focus on early ontogeny, biotic interactions and impact of marine litter on coastal vegetation). CONCLUSIONS Although there are considerable parallels with terrestrial vascular plant responses to the many threats posed by anthropogenic stressors, we note that the impacts of some (e.g. habitat loss) are much less keenly felt in the oceans than on land. Nevertheless, and in common with terrestrial plant communities, the impact of climate change will inevitably be the most pernicious threat to the future persistence of seaweed species, communities and service provision. While understanding macroalgal responses to simultaneous environmental stressors is inevitably a complex exercise, our attempt to highlight synergies with terrestrial systems, and provide five future research priorities to elucidate some of the important trends and mechanisms of response, may yet offer some small contribution to this goal.
Collapse
Affiliation(s)
- Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, UK
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, UK
| | - Andy Foggo
- School of Biological and Marine Sciences, University of Plymouth, UK
| |
Collapse
|
48
|
Hollarsmith JA, Cornett JC, Evenson E, Tugaw A. A century of canopy kelp persistence and recovery in the Gulf of Alaska. ANNALS OF BOTANY 2024; 133:105-116. [PMID: 37832150 PMCID: PMC10921840 DOI: 10.1093/aob/mcad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS Coastal Alaska contains vast kelp habitat that supports diverse marine and human communities. Over the past century, the North Pacific Ocean has undergone oceanographic and ecological regime shifts that have the potential to influence the structure and function of kelp ecosystems strongly. However, the remoteness and complexity of the glacially carved region precludes the regular monitoring efforts that would be necessary to detect such changes. METHODS To begin to fill this critical knowledge gap, we drew upon historical and modern surveys to analyse the change in spatial coverage and species composition of canopy kelp between two time points (1913 and the early 2000s to 2010s). We also incorporated decadal surveys on sea otter range expansion following complete extirpation and reintroduction to assess the influence of sea otter recovery on the spatial extent of canopy kelp. KEY RESULTS We found increases in the spatial extent of canopy kelp throughout the Gulf of Alaska where there was coverage from both surveys. Kelp in Southcentral Alaska showed extensive recovery after the catastrophic Novarupta volcano. Kelp in Southeast Alaska showed persistence and spatial increase that closely matched increases in the range of sea otters. Observations of thermally tolerant kelp species increased more than observations of cold-adapted species between the two surveys. CONCLUSIONS Contrary to trends observed at lower latitudes, the kelp forests that ring the Gulf of Alaska have been remarkably stable and even increased in the past century, despite oceanographic and ecosystem changes. To improve monitoring, we propose identification of sentinel kelp beds for regular monitoring to detect changes to these iconic and foundational canopy kelp species more readily.
Collapse
Affiliation(s)
- Jordan A Hollarsmith
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 17109 Point Lena Loop Road, Juneau, AK 99801, USA
| | - Juliana C Cornett
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 17109 Point Lena Loop Road, Juneau, AK 99801, USA
- Alaska Sea Grant, University of Alaska Fairbanks, 218 O’Neill Building, PO Box 755040, Fairbanks, AK 99775, USA
| | - Emily Evenson
- Washington State University, 1815 Wilson Road, Pullman, WA 99163, USA
- Cooperative Institute for Climate, Ocean, & Ecosystem Studies, University of Washington, 3737 Brooklyn Avenue NE, Seattle, WA 98105, USA and
| | - Alex Tugaw
- University of Alaska Southeast, 11066 Auke Lake Way, Juneau, AK 99801, USA
| |
Collapse
|
49
|
Johnson CR, Dudgeon S. Understanding change in benthic marine systems. ANNALS OF BOTANY 2024; 133:131-144. [PMID: 38079203 PMCID: PMC10921837 DOI: 10.1093/aob/mcad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/10/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND The unprecedented influence of human activities on natural ecosystems in the 21st century has resulted in increasingly frequent large-scale changes in ecological communities. This has heightened interest in understanding such changes and effective means to manage them. Accurate interpretation of state changes is challenging because of difficulties translating theory to empirical study, and most theory emphasizes systems near equilibrium, which may not be relevant in rapidly changing environments. SCOPE We review concepts of long-transient stages and phase shifts between stable community states, both smooth, continuous and discontinuous shifts, and the relationships among them. Three principal challenges emerge when applying these concepts. The first is how to interpret observed change in communities - distinguishing multiple stable states from long transients, or reversible shifts in the phase portrait of single attractor systems. The second is how to quantify the magnitudes of three sources of variability that cause switches between community states: (1) 'noise' in species' abundances, (2) 'wiggle' in system parameters and (3) trends in parameters that affect the topography of the basin of attraction. The third challenge is how variability of the system shapes evidence used to interpret community changes. We outline a novel approach using critical length scales to potentially address these challenges. These concepts are highlighted by a review of recent examples involving macroalgae as key players in marine benthic ecosystems. CONCLUSIONS Real-world examples show three or more stable configurations of ecological communities may exist for a given set of parameters, and transient stages may persist for long periods necessitating their respective consideration. The characteristic length scale (CLS) is a useful metric that uniquely identifies a community 'basin of attraction', enabling phase shifts to be distinguished from long transients. Variabilities of CLSs and time series data may likewise provide proactive management measures to mitigate phase shifts and loss of ecosystem services. Continued challenges remain in distinguishing continuous from discontinuous phase shifts because their respective dynamics lack unique signatures.
Collapse
Affiliation(s)
- Craig R Johnson
- Institute for Marine & Antarctic Studies, University of Tasmania, Private Bag 129, Hobart, Tasmania, Australia 7001, and
| | - Steve Dudgeon
- Department of Biology, California State University, Northridge, CA 91330-8303, USA
| |
Collapse
|
50
|
Gonzalez‐Aragon D, Rivadeneira MM, Lara C, Torres FI, Vásquez JA, Broitman BR. A species distribution model of the giant kelp Macrocystis pyrifera: Worldwide changes and a focus on the Southeast Pacific. Ecol Evol 2024; 14:e10901. [PMID: 38435006 PMCID: PMC10905252 DOI: 10.1002/ece3.10901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 03/05/2024] Open
Abstract
Worldwide climate-driven shifts in the distribution of species is of special concern when it involves habitat-forming species. In the coastal environment, large Laminarian algae-kelps-form key coastal ecosystems that support complex and diverse food webs. Among kelps, Macrocystis pyrifera is the most widely distributed habitat-forming species and provides essential ecosystem services. This study aimed to establish the main drivers of future distributional changes on a global scale and use them to predict future habitat suitability. Using species distribution models (SDM), we examined the changes in global distribution of M. pyrifera under different emission scenarios with a focus on the Southeast Pacific shores. To constrain the drivers of our simulations to the most important factors controlling kelp forest distribution across spatial scales, we explored a suite of environmental variables and validated the predictions derived from the SDMs. Minimum sea surface temperature was the single most important variable explaining the global distribution of suitable habitat for M. pyrifera. Under different climate change scenarios, we always observed a decrease of suitable habitat at low latitudes, while an increase was detected in other regions, mostly at high latitudes. Along the Southeast Pacific, we observed an upper range contraction of -17.08° S of latitude for 2090-2100 under the RCP8.5 scenario, implying a loss of habitat suitability throughout the coast of Peru and poleward to -27.83° S in Chile. Along the area of Northern Chile where a complete habitat loss is predicted by our model, natural stands are under heavy exploitation. The loss of habitat suitability will take place worldwide: Significant impacts on marine biodiversity and ecosystem functioning are likely. Furthermore, changes in habitat suitability are a harbinger of massive impacts in the socio-ecological systems of the Southeast Pacific.
Collapse
Affiliation(s)
- Daniel Gonzalez‐Aragon
- Doctorado en Ciencias, mención en Biodiversidad y Biorecursos, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Núcleo Milenio UPWELL
| | - Marcelo M. Rivadeneira
- Centro de Estudios Avanzados en Zonas ÁridasCoquimboChile
- Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Carlos Lara
- Departamento de Ecología, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Centro de Investigación en Recursos Naturales y SustentabilidadUniversidad Bernardo O'HigginsSantiagoChile
| | - Felipe I. Torres
- Doctorado en Ciencias, mención en Biodiversidad y Biorecursos, Facultad de CienciasUniversidad Católica de la Santísima ConcepciónConcepcionChile
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Data Observatory Foundation, ANID Technology Center No. DO210001SantiagoChile
| | - Julio A. Vásquez
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos (CIDTA)CoquimboChile
| | - Bernardo R. Broitman
- Instituto Milenio en Socio‐Ecología Costera (SECOS)SantiagoChile
- Núcleo Milenio UPWELL
- Facultad de Artes LiberalesUniversidad Adolfo IbañezViña Del MarChile
| |
Collapse
|