1
|
Augustin HG, Koh GY. A systems view of the vascular endothelium in health and disease. Cell 2024; 187:4833-4858. [PMID: 39241746 DOI: 10.1016/j.cell.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 09/09/2024]
Abstract
The dysfunction of blood-vessel-lining endothelial cells is a major cause of mortality. Although endothelial cells, being present in all organs as a single-cell layer, are often conceived as a rather inert cell population, the vascular endothelium as a whole should be considered a highly dynamic and interactive systemically disseminated organ. We present here a holistic view of the field of vascular research and review the diverse functions of blood-vessel-lining endothelial cells during the life cycle of the vasculature, namely responsive and relaying functions of the vascular endothelium and the responsive roles as instructive gatekeepers of organ function. Emerging translational perspectives in regenerative medicine, preventive medicine, and aging research are developed. Collectively, this review is aimed at promoting disciplinary coherence in the field of angioscience for a broader appreciation of the importance of the vasculature for organ function, systemic health, and healthy aging.
Collapse
Affiliation(s)
- Hellmut G Augustin
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ), 69120 Heidelberg, Germany.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Rizzuti M, Melzi V, Brambilla L, Quetti L, Sali L, Ottoboni L, Meneri M, Ratti A, Verde F, Ticozzi N, Comi GP, Corti S, Abati E. Shaping the Neurovascular Unit Exploiting Human Brain Organoids. Mol Neurobiol 2024; 61:6642-6657. [PMID: 38334812 PMCID: PMC11338975 DOI: 10.1007/s12035-024-03998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Brain organoids, three-dimensional cell structures derived from pluripotent stem cells, closely mimic key aspects of the human brain in vitro, providing a powerful tool for studying neurodevelopment and disease. The neuroectodermal induction protocol employed for brain organoid generation primarily gives rise to the neural cellular component but lacks the vital vascular system, which is crucial for the brain functions by regulating differentiation, migration, and circuit formation, as well as delivering oxygen and nutrients. Many neurological diseases are caused by dysfunctions of cerebral microcirculation, making vascularization of human brain organoids an important tool for pathogenetic and translational research. Experimentally, the creation of vascularized brain organoids has primarily focused on the fusion of vascular and brain organoids, on organoid transplantation in vivo, and on the use of microfluidic devices to replicate the intricate microenvironment of the human brain in vitro. This review summarizes these efforts and highlights the importance of studying the neurovascular unit in a forward-looking perspective of leveraging their use for understanding and treating neurological disorders.
Collapse
Affiliation(s)
- Mafalda Rizzuti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Melzi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Brambilla
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenzo Quetti
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Sali
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giacomo Pietro Comi
- Neurology Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Sun XY, Ju XC, Zhao HF, You ZW, Han RR, Luo ZG. Generation of Human Blood Vessel and Vascularized Cerebral Organoids. Bio Protoc 2023; 13:e4870. [PMID: 37969757 PMCID: PMC10632161 DOI: 10.21769/bioprotoc.4870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 11/17/2023] Open
Abstract
Brain organoids have been widely used to study diseases and the development of the nervous system. Many reports have investigated the application of brain organoids, but most of these models lack vascular structures, which play essential roles in brain development and neurological diseases. The brain and blood vessels originate from two different germ layers, making it difficult to induce vascularized brain organoids in vitro. We developed this protocol to generate brain-specific blood vessel and cerebral organoids and then fused them at a specific developmental time point. The fused cerebral organoids exhibited robust vascular network-like structures, which allows simulating the in vivo developmental processes of the brain for further applications in various neurological diseases. Key Features • Culturing vascularized brain organoids using human embryonic stem cells (hESCs). • The new approach generates not only neural cells and vessel-like networks but also brain-resident microglia immune cells in a single organoid.
Collapse
Affiliation(s)
- Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiang-Chun Ju
- Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Hong-Fang Zhao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Wen You
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Run-Run Han
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
4
|
Wang Y, Yu S, Li M. Neurovascular crosstalk and cerebrovascular alterations: an underestimated therapeutic target in autism spectrum disorders. Front Cell Neurosci 2023; 17:1226580. [PMID: 37692552 PMCID: PMC10491023 DOI: 10.3389/fncel.2023.1226580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Normal brain development, function, and aging critically depend on unique characteristics of the cerebrovascular system. Growing evidence indicated that cerebrovascular defects can have irreversible effects on the brain, and these defects have been implicated in various neurological disorders, including autism spectrum disorder (ASD). ASD is a neurodevelopmental disorder with heterogeneous clinical manifestations and anatomical changes. While extensive research has focused on the neural abnormalities underlying ASD, the role of brain vasculature in this disorder remains poorly understood. Indeed, the significance of cerebrovascular contributions to ASD has been consistently underestimated. In this work, we discuss the neurovascular crosstalk during embryonic development and highlight recent findings on cerebrovascular alterations in individuals with ASD. We also discuss the potential of vascular-based therapy for ASD. Collectively, these investigations demonstrate that ASD can be considered a neurovascular disease.
Collapse
Affiliation(s)
- Yiran Wang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shunyu Yu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mengqian Li
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Toh HSY, Choo XY, Sun AX. Midbrain organoids-development and applications in Parkinson's disease. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad009. [PMID: 38596240 PMCID: PMC10913847 DOI: 10.1093/oons/kvad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Indexed: 04/11/2024]
Abstract
Human brain development is spatially and temporally complex. Insufficient access to human brain tissue and inadequacy of animal models has limited the study of brain development and neurodegenerative diseases. Recent advancements of brain organoid technology have created novel opportunities to model human-specific neurodevelopment and brain diseases. In this review, we discuss the use of brain organoids to model the midbrain and Parkinson's disease. We critically evaluate the extent of recapitulation of PD pathology by organoids and discuss areas of future development that may lead to the model to become a next-generation, personalized therapeutic strategy for PD and beyond.
Collapse
Affiliation(s)
- Hilary S Y Toh
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Xin Yi Choo
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Alfred Xuyang Sun
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
- National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore
| |
Collapse
|
6
|
Crouch EE, Joseph T, Marsan E, Huang EJ. Disentangling brain vasculature in neurogenesis and neurodegeneration using single-cell transcriptomics. Trends Neurosci 2023; 46:551-565. [PMID: 37210315 PMCID: PMC10560453 DOI: 10.1016/j.tins.2023.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
The vasculature is increasingly recognized to impact brain function in health and disease across the life span. During embryonic brain development, angiogenesis and neurogenesis are tightly coupled, coordinating the proliferation, differentiation, and migration of neural and glial progenitors. In the adult brain, neurovascular interactions continue to play essential roles in maintaining brain function and homeostasis. This review focuses on recent advances that leverage single-cell transcriptomics of vascular cells to uncover their subtypes, their organization and zonation in the embryonic and adult brain, and how dysfunction in neurovascular and gliovascular interactions contributes to the pathogenesis of neurodegenerative diseases. Finally, we highlight key challenges for future research in neurovascular biology.
Collapse
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Elise Marsan
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric J Huang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Pathology Service (113B), San Francisco Veterans Administration Health Care System, San Francisco, CA 94121, USA.
| |
Collapse
|
7
|
Xu Z, Kusumbe AP, Cai H, Wan Q, Chen J. Type H blood vessels in coupling angiogenesis-osteogenesis and its application in bone tissue engineering. J Biomed Mater Res B Appl Biomater 2023; 111:1434-1446. [PMID: 36880538 DOI: 10.1002/jbm.b.35243] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
One specific capillary subtype, termed type H vessel, has been found with unique functional characteristics in coupling angiogenesis with osteogenesis. Researchers have fabricated a variety of tissue engineering scaffolds to enhance bone healing and regeneration through the accumulation of type H vessels. However, only a limited number of reviews discussed the tissue engineering strategies for type H vessel regulation. The object of this review is to summary the current utilizes of bone tissue engineering to regulate type H vessels through various signal pathways including Notch, PDGF-BB, Slit3, HIF-1α, and VEGF signaling. Moreover, we give an insightful overview of recent research progress about the morphological, spatial and age-dependent characteristics of type H blood vessels. Their unique role in tying angiogenesis and osteogenesis together via blood flow, cellular microenvironment, immune system and nervous system are also summarized. This review article would provide an insight into the combination of tissue engineering scaffolds with type H vessels and identify future perspectives for vasculized tissue engineering research.
Collapse
Affiliation(s)
- Zhengyi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Anjali P Kusumbe
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford, UK
| | - He Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Bishop D, Schwarz Q, Wiszniak S. Endothelial-derived angiocrine factors as instructors of embryonic development. Front Cell Dev Biol 2023; 11:1172114. [PMID: 37457293 PMCID: PMC10339107 DOI: 10.3389/fcell.2023.1172114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Blood vessels are well-known to play roles in organ development and repair, primarily owing to their fundamental function in delivering oxygen and nutrients to tissues to promote their growth and homeostasis. Endothelial cells however are not merely passive conduits for carrying blood. There is now evidence that endothelial cells of the vasculature actively regulate tissue-specific development, morphogenesis and organ function, as well as playing roles in disease and cancer. Angiocrine factors are growth factors, cytokines, signaling molecules or other regulators produced directly from endothelial cells to instruct a diverse range of signaling outcomes in the cellular microenvironment, and are critical mediators of the vascular control of organ function. The roles of angiocrine signaling are only beginning to be uncovered in diverse fields such as homeostasis, regeneration, organogenesis, stem-cell maintenance, cell differentiation and tumour growth. While in some cases the specific angiocrine factor involved in these processes has been identified, in many cases the molecular identity of the angiocrine factor(s) remain to be discovered, even though the importance of angiocrine signaling has been implicated. In this review, we will specifically focus on roles for endothelial-derived angiocrine signaling in instructing tissue morphogenesis and organogenesis during embryonic and perinatal development.
Collapse
|
9
|
Karakatsani A, Álvarez-Vergara MI, de Almodóvar CR. The vasculature of neurogenic niches: Properties and function. Cells Dev 2023; 174:203841. [PMID: 37060947 DOI: 10.1016/j.cdev.2023.203841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
In the adult rodent brain, neural stem cells (NSCs) reside in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. In these areas, NSCs and their progeny integrate intrinsic signals and extrinsic cues provided by their microenvironment that control their behavior. The vasculature in the SVZ and SGZ, and the choroid plexus (ChP) in the SVZ, have emerged as critical compartments of the neurogenic niches as they provide a rich repertoire of cues to regulate NSC quiescence, proliferation, self-renewal and differentiation. Physical contact between NSCs and blood vessels is also a feature within the niches and supports different processes such as quiescence, migration and vesicle transport. In this review, we provide a description of the brain and choroid plexus vasculature in both stem cell niches, highlighting the main properties and role of the vasculature in each niche. We also summarize the current understanding of how blood vessel- and ChP-derived signals influence the behavior of NSCs in physiological adulthood, as well as upon aging.
Collapse
Affiliation(s)
- Andromachi Karakatsani
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - María I Álvarez-Vergara
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, University of Bonn, Bonn, Germany; Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
10
|
Organization of self-advantageous niche by neural stem/progenitor cells during development via autocrine VEGF-A under hypoxia. Inflamm Regen 2023; 43:8. [PMID: 36726165 PMCID: PMC9893632 DOI: 10.1186/s41232-022-00254-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tissue stem cells are confined within a special microenvironment called niche. Stem cells in such a niche are supplied with nutrients and contacted by other cells to maintain their characters and also to keep or expand their population size. Besides, oxygen concentration is a key factor for stem cell niche. Adult neural stem/progenitor cells (NSPCs) are known to reside in a hypoxic niche. Oxygen concentration levels are lower in fetal organs including brain than maternal organs. However, how fetal NSPCs adapt to the hypoxic environment during brain development, particularly before pial and periventricular vessels start to invade the telencephalon, has not fully been elucidated. METHODS NSPCs were prepared from cerebral cortices of embryonic day (E) 11.5 or E14.5 mouse embryos and were enriched by 4-day incubation with FGF2. To evaluate NSPC numbers, neurosphere formation assay was performed. Sparsely plated NSPCs were cultured to form neurospheres under the hypoxic (1% O2) or normoxic condition. VEGF-A secreted from NSPCs in the culture medium was measured by ELISA. VEGF-A expression and Hif-1a in the developing brain was investigated by in situ hybridization and immunohistochemistry. RESULTS Here we show that neurosphere formation of embryonic NSPCs is dramatically increased under hypoxia compared to normoxia. Vegf-A gene expression and its protein secretion were both up-regulated in the NSPCs under hypoxia. Either recombinant VEGF-A or conditioned medium of the hypoxic NSPC culture enhanced the neurosphere forming ability of normoxic NSPCs, which was attenuated by a VEGF-A signaling inhibitor. Furthermore, in the developing brain, VEGF-A was strongly expressed in the VZ where NSPCs are confined. CONCLUSIONS We show that NSPCs secret VEGF-A in an autocrine fashion to efficiently maintain themselves under hypoxic developmental environment. Our results suggest that NSPCs have adaptive potential to respond to hypoxia to organize self-advantageous niche involving VEGF-A when the vascular system is immature.
Collapse
|
11
|
Vieira JR, Shah B, Dupraz S, Paredes I, Himmels P, Schermann G, Adler H, Motta A, Gärtner L, Navarro-Aragall A, Ioannou E, Dyukova E, Bonnavion R, Fischer A, Bonanomi D, Bradke F, Ruhrberg C, Ruiz de Almodóvar C. Endothelial PlexinD1 signaling instructs spinal cord vascularization and motor neuron development. Neuron 2022; 110:4074-4089.e6. [PMID: 36549270 PMCID: PMC9796814 DOI: 10.1016/j.neuron.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/04/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022]
Abstract
How the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs. Using cell-specific knockout mice and in vitro assays, we demonstrate that removal of Sema3C in MNs, or its receptor PlexinD1 in ECs, results in premature and aberrant vascularization of MN columns. Those vascular defects impair MN axon exit from the spinal cord. Impaired PlexinD1 signaling in ECs also causes MN maturation defects at later stages. This study highlights the importance of a timely and spatially controlled communication between MNs and ECs for proper spinal cord development.
Collapse
Affiliation(s)
- José Ricardo Vieira
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Sebastian Dupraz
- Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Isidora Paredes
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer 234, 69120 Heidelberg, Germany
| | - Géza Schermann
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heike Adler
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Alessia Motta
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Lea Gärtner
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany
| | - Ariadna Navarro-Aragall
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Elena Ioannou
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Elena Dyukova
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Remy Bonnavion
- Max-Planck-Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Andreas Fischer
- Department of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany; Division Vascular Signaling and Cancer, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dario Bonanomi
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 60, 20132 Milan, Italy
| | - Frank Bradke
- Laboratory of Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL London, UK
| | - Carmen Ruiz de Almodóvar
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Neurovascular Cell Biology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Schlegel Chair for Neurovascular Cell Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
12
|
Sun XY, Ju XC, Li Y, Zeng PM, Wu J, Zhou YY, Shen LB, Dong J, Chen Y, Luo ZG. Generation of vascularized brain organoids to study neurovascular interactions. eLife 2022; 11:76707. [PMID: 35506651 PMCID: PMC9246368 DOI: 10.7554/elife.76707] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/01/2022] [Indexed: 12/05/2022] Open
Abstract
Brain organoids have been used to recapitulate the processes of brain development and related diseases. However, the lack of vasculatures, which regulate neurogenesis and brain disorders, limits the utility of brain organoids. In this study, we induced vessel and brain organoids, respectively, and then fused two types of organoids together to obtain vascularized brain organoids. The fused brain organoids were engrafted with robust vascular network-like structures and exhibited increased number of neural progenitors, in line with the possibility that vessels regulate neural development. Fusion organoids also contained functional blood–brain barrier-like structures, as well as microglial cells, a specific population of immune cells in the brain. The incorporated microglia responded actively to immune stimuli to the fused brain organoids and showed ability of engulfing synapses. Thus, the fusion organoids established in this study allow modeling interactions between the neuronal and non-neuronal components in vitro, particularly the vasculature and microglia niche. Understanding how the organs form and how their cells behave is essential to finding the causes and treatment for developmental disorders, as well as understanding certain diseases. However, studying most organs in live animals or humans is technically difficult, expensive and invasive. To address this issue, scientists have developed models called ‘organoids’ that recapitulate the development of organs using stem cells in the lab. These models are easier to study and manipulate than the live organs. Brain organoids have been used to recapitulate brain formation as well as developmental, degenerative and psychiatric brain conditions such as microcephaly, autism and Alzheimer’s disease. However, these brain organoids lack the vasculature (the network of blood vessels) that supplies a live brain with nutrients and regulates its development, and which has important roles in brain disorders. Partly due to this lack of blood vessels, brain organoids also do not develop a blood brain barrier, the structure that prevents certain contents of the blood, including pathogens, toxins and even certain drugs from entering the brain. These characteristics limit the utility of existing brain organoids. To overcome these limitations, Sun, Ju et al. developed brain organoids and blood vessel organoids independently, and then fused them together to obtain vascularized brain organoids. These fusion organoids developed a robust network of blood vessels that was well integrated with the brain cells, and produced more neural cell precursors than brain organoids that had not been fused. This result is consistent with the idea that blood vessels can regulate brain development. Analyzing the fusion organoids revealed that they contain structures similar to the blood-brain barrier, as well as microglial cells (immune cells specific to the brain). When exposed to lipopolysaccharide – a component of the cell wall of certain bacteria – these cells responded by initiating an immune response in the fusion organoids. Notably, the microglial cells were also able to engulf connections between brain cells, a process necessary for the brain to develop the correct structures and work normally. Sun, Ju et al. have developed a new organoid system that will be of broad interest to researchers studying interactions between the brain and the circulatory system. The development of brain-blood-barrier-like structures in the fusion organoids could also facilitate the development of drugs that can cross this barrier, making it easier to treat certain conditions that affect the brain. Refining this model to allow the fusion organoids to grow for longer times in the lab, and adding blood flow to the system will be the next steps to establish this system.
Collapse
Affiliation(s)
- Xin-Yao Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiang-Chun Ju
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Ying Zhou
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Li-Bing Shen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jian Dong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuejun Chen
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
13
|
Vogenstahl J, Parrilla M, Acker-Palmer A, Segarra M. Vascular Regulation of Developmental Neurogenesis. Front Cell Dev Biol 2022; 10:890852. [PMID: 35573692 PMCID: PMC9099230 DOI: 10.3389/fcell.2022.890852] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Evolutionary studies indicate that the nervous system evolved prior to the vascular system, but the increasing complexity of organisms prompted the vascular system to emerge in order to meet the growing demand for oxygen and nutrient supply. In recent years, it has become apparent that the symbiotic communication between the nervous and the vascular systems goes beyond the exclusive covering of the demands on nutrients and oxygen carried by blood vessels. Indeed, this active interplay between both systems is crucial during the development of the central nervous system (CNS). Several neural-derived signals that initiate and regulate the vascularization of the CNS have been described, however less is known about the vascular signals that orchestrate the development of the CNS cytoarchitecture. Here, we focus on reviewing the effects of blood vessels in the process of neurogenesis during CNS development in vertebrates. In mammals, we describe the spatiotemporal features of vascular-driven neurogenesis in two brain regions that exhibit different neurogenic complexity in their germinal zone, the hindbrain and the forebrain.
Collapse
Affiliation(s)
- Johanna Vogenstahl
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Marta Parrilla
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
- *Correspondence: Amparo Acker-Palmer, ; Marta Segarra,
| | - Marta Segarra
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
- *Correspondence: Amparo Acker-Palmer, ; Marta Segarra,
| |
Collapse
|
14
|
D'Amico G, Ruhrberg C. The Embryonic Mouse Hindbrain Model to Study Sprouting Angiogenesis In Vivo. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:3-18. [PMID: 35099724 DOI: 10.1007/978-1-0716-2059-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Blood vessel growth is a fundamental process for organ development and wound healing but is also associated with ischemic diseases and cancer. The growth of new blood vessels from preexisting vasculature, termed sprouting angiogenesis, is the predominant mode of blood vessel growth in central nervous system vascularization and pathological vessel growth. Accordingly, studying the molecular and cellular mechanisms of angiogenesis holds the promise to find novel therapeutic targets to stimulate new vessel formation in ischemic tissues or inhibit pathological vessel growth in disease. The embryonic mouse hindbrain provides an excellent model to study sprouting angiogenesis in vivo by histochemical or fluorescent wholemount immunolabeling, thus allowing high-resolution image capture of nascent vasculature and subsequent quantification of relevant angiogenic parameters. This chapter describes how to use the mouse embryonic hindbrain as a model to study physiological angiogenesis, including detailed protocols for hindbrain dissection, wholemount staining, and angiogenic parameters analysis.
Collapse
Affiliation(s)
- Gabriela D'Amico
- UCL Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
15
|
Salmina AB, Malinovskaya NA, Morgun AV, Khilazheva ED, Uspenskaya YA, Illarioshkin SN. Reproducibility of developmental neuroplasticity in in vitro brain tissue models. Rev Neurosci 2022; 33:531-554. [PMID: 34983132 DOI: 10.1515/revneuro-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Experimental Brain Cytology, Research Center of Neurology, Volokolamskoe Highway 80, Moscow, 125367, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Andrey V Morgun
- Department of Ambulatory Pediatrics, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Yulia A Uspenskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Sergey N Illarioshkin
- Department of Brain Studies, Research Center of Neurology, Volokolamskoe Highway, 80, Moscow 125367, Russia
| |
Collapse
|
16
|
Peguera B, Segarra M, Acker-Palmer A. Neurovascular crosstalk coordinates the central nervous system development. Curr Opin Neurobiol 2021; 69:202-213. [PMID: 34077852 PMCID: PMC8411665 DOI: 10.1016/j.conb.2021.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
Purpose of the review: The synchronic development of vascular and nervous systems is orchestrated by common molecules that regulate the communication between both systems. The identification of these common guiding cues and the developmental processes regulated by neurovascular communication are slowly emerging. In this review, we describe the molecules modulating the neurovascular development and their impact in processes such as angiogenesis, neurogenesis, neuronal migration, and brain homeostasis. Recent findings: Blood vessels not only are involved in nutrient and oxygen supply of the central nervous system (CNS) but also exert instrumental functions controlling developmental neurogenesis, CNS cytoarchitecture, and neuronal plasticity. Conversely, neurons modulate CNS vascularization and brain endothelial properties such as blood–brain barrier and vascular hyperemia. Summary: The integration of the active role of endothelial cells in the development and maintenance of neuronal function is important to obtain a more holistic view of the CNS complexity and also to understand how the vasculature is involved in neuropathological conditions.
Collapse
Affiliation(s)
- Blanca Peguera
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Marta Segarra
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany; Max Planck Institute for Brain Research, Max-von-Laue-Str. 4 Frankfurt am Main, 60438, Germany.
| |
Collapse
|
17
|
Taberner L, Bañón A, Alsina B. Sensory Neuroblast Quiescence Depends on Vascular Cytoneme Contacts and Sensory Neuronal Differentiation Requires Initiation of Blood Flow. Cell Rep 2021; 32:107903. [PMID: 32668260 DOI: 10.1016/j.celrep.2020.107903] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
In many organs, stem cell function depends on communication with their niche partners. Cranial sensory neurons develop in close proximity to blood vessels; however, whether vasculature is an integral component of their niches is yet unknown. Here, two separate roles for vasculature in cranial sensory neurogenesis in zebrafish are uncovered. The first involves precise spatiotemporal endothelial-neuroblast cytoneme contacts and Dll4-Notch signaling to restrain neuroblast proliferation. The second, instead, requires blood flow to trigger a transcriptional response that modifies neuroblast metabolic status and induces sensory neuron differentiation. In contrast, no role of sensory neurogenesis in vascular development is found, suggesting unidirectional signaling from vasculature to sensory neuroblasts. Altogether, we demonstrate that the cranial vasculature constitutes a niche component of the sensory ganglia that regulates the pace of their growth and differentiation dynamics.
Collapse
Affiliation(s)
- Laura Taberner
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Bañón
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Berta Alsina
- Developmental Biology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-Parc de Recerca Biomèdica de Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
18
|
Gupta A, Rarick KR, Ramchandran R. Established, New and Emerging Concepts in Brain Vascular Development. Front Physiol 2021; 12:636736. [PMID: 33643074 PMCID: PMC7907611 DOI: 10.3389/fphys.2021.636736] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we discuss the state of our knowledge as it relates to embryonic brain vascular patterning in model systems zebrafish and mouse. We focus on the origins of endothelial cell and the distinguishing features of brain endothelial cells compared to non-brain endothelial cells, which is revealed by single cell RNA-sequencing methodologies. We also discuss the cross talk between brain endothelial cells and neural stem cells, and their effect on each other. In terms of mechanisms, we focus exclusively on Wnt signaling and the recent developments associated with this signaling network in brain vascular patterning, and the benefits and challenges associated with strategies for targeting the brain vasculature. We end the review with a discussion on the emerging areas of meningeal lymphatics, endothelial cilia biology and novel cerebrovascular structures identified in vertebrates.
Collapse
Affiliation(s)
- Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Children’s Research Institute (CRI), Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kevin R. Rarick
- Department of Pediatrics, Division of Critical Care, Children’s Research Institute (CRI), Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Developmental Vascular Biology Program, Children’s Research Institute (CRI), Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
19
|
Gonçalves RC, Banfi A, Oliveira MB, Mano JF. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials 2020; 269:120628. [PMID: 33412374 DOI: 10.1016/j.biomaterials.2020.120628] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022]
Abstract
The maintenance of a healthy vascular system is essential to ensure the proper function of all organs of the human body. While macrovessels have the main role of blood transportation from the heart to all tissues, microvessels, in particular capillaries, are responsible for maintaining tissues' functionality by providing oxygen, nutrients and waste exchanges. Occlusion of blood vessels due to atherosclerotic plaque accumulation remains the leading cause of mortality across the world. Autologous vein and artery grafts bypassing are the current gold standard surgical procedures to substitute primarily obstructed vascular structures. Ischemic scenarios that condition blood supply in downstream tissues may arise from blockage phenomena, as well as from other disease or events leading to trauma. The (i) great demand for new vascular substitutes, arising from both the limited availability of healthy autologous vessels, as well as the shortcomings associated with small-diameter synthetic vascular grafts, and (ii) the challenging induction of the formation of adequate and stable microvasculature are current driving forces for the growing interest in the development of bioinspired strategies to ensure the proper function of vasculature in all its dimensional scales. Here, a critical review of well-established technologies and recent biotechnological advances to substitute or regenerate the vascular system is provided.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Andrea Banfi
- Department of Biomedicine, University of Basel, Basel, 4056, Switzerland; Department of Surgery, University Hospital Basel, Basel, 4056, Switzerland
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
20
|
Di Marco B, Crouch EE, Shah B, Duman C, Paredes MF, Ruiz de Almodovar C, Huang EJ, Alfonso J. Reciprocal Interaction between Vascular Filopodia and Neural Stem Cells Shapes Neurogenesis in the Ventral Telencephalon. Cell Rep 2020; 33:108256. [PMID: 33053356 DOI: 10.1016/j.celrep.2020.108256] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis and neurogenesis are tightly coupled during embryonic brain development. However, little is known about how these two processes interact. We show that nascent blood vessels actively contact dividing neural stem cells by endothelial filopodia in the ventricular zone (VZ) of the murine ventral telencephalon; this association is conserved in the human ventral VZ. Using mouse mutants with altered vascular filopodia density, we show that this interaction leads to prolonged cell cycle of apical neural progenitors (ANPs) and favors early neuronal differentiation. Interestingly, pharmacological experiments reveal that ANPs induce vascular filopodia formation by upregulating vascular endothelial growth factor (VEGF)-A in a cell-cycle-dependent manner. This mutual relationship between vascular filopodia and ANPs works as a self-regulatory system that senses ANP proliferation rates and rapidly adjusts neuronal production levels. Our findings indicate a function of vascular filopodia in fine-tuning neural stem cell behavior, which is the basis for proper brain development.
Collapse
Affiliation(s)
- Barbara Di Marco
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim and Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim and Heidelberg University, Friedrich-Ebert-Straße 107, 68167 Mannheim, Germany
| | - Ceren Duman
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mercedes F Paredes
- Department of Neurology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim and Heidelberg University, Ludolf-Krehl-Straße 13-17, 68167 Mannheim, Germany; Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim and Heidelberg University, Friedrich-Ebert-Straße 107, 68167 Mannheim, Germany
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Gilard V, Tebani A, Bekri S, Marret S. Intraventricular Hemorrhage in Very Preterm Infants: A Comprehensive Review. J Clin Med 2020; 9:E2447. [PMID: 32751801 PMCID: PMC7465819 DOI: 10.3390/jcm9082447] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 11/30/2022] Open
Abstract
Germinal matrix-intraventricular-intraparenchymal hemorrhage (GMH-IVH-IPH) is a major complication of very preterm births before 32 weeks of gestation (WG). Despite progress in clinical management, its incidence remains high before 27 WG. In addition, severe complications may occur such as post-hemorrhagic hydrocephalus and/or periventricular intraparenchymal hemorrhage. IVH is strongly associated with subsequent neurodevelopmental disabilities. For this review, an automated literature search and a clustering approach were applied to allow efficient filtering as well as topic clusters identification. We used a programmatic literature search for research articles related to intraventricular hemorrhage in preterms that were published between January 1990 and February 2020. Two queries ((Intraventricular hemorrhage) AND (preterm)) were used in PubMed. This search resulted in 1093 articles. The data manual curation left 368 documents that formed 12 clusters. The presentation and discussion of the clusters provide a comprehensive overview of existing data on the pathogenesis, complications, neuroprotection and biomarkers of GMH-IVH-IPH in very preterm infants. Clinicians should consider that the GMH-IVH-IPH pathogenesis is mainly due to developmental immaturity of the germinal matrix and cerebral autoregulation impairment. New multiomics investigations of intraventricular hemorrhage could foster the development of predictive biomarkers for the benefit of very preterm newborns.
Collapse
Affiliation(s)
- Vianney Gilard
- Department of Pediatric Neurosurgery, Rouen University Hospital, 76000 Rouen, France;
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76000 Rouen, France;
- Normandie University, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France;
| | - Stéphane Marret
- Normandie University, UNIROUEN, CHU Rouen, INSERM U1245, 76000 Rouen, France;
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76000 Rouen, France
| |
Collapse
|
22
|
Segarra M, Aburto MR, Hefendehl J, Acker-Palmer A. Neurovascular Interactions in the Nervous System. Annu Rev Cell Dev Biol 2020; 35:615-635. [PMID: 31590587 DOI: 10.1146/annurev-cellbio-100818-125142] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular cross talk between the nervous and vascular systems is necessary to maintain the correct coupling of organ structure and function. Molecular pathways shared by both systems are emerging as major players in the communication of the neuronal compartment with the endothelium. Here we review different aspects of this cross talk and how vessels influence the development and homeostasis of the nervous system. Beyond the classical role of the vasculature as a conduit to deliver oxygen and metabolites needed for the energy-demanding neuronal compartment, vessels emerge as powerful signaling systems that control and instruct a variety of cellular processes during the development of neurons and glia, such as migration, differentiation, and structural connectivity. Moreover, a broad spectrum of mild to severe vascular dysfunctions occur in various pathologies of the nervous system, suggesting that mild structural and functional changes at the neurovascular interface may underlie cognitive decline in many of these pathological conditions.
Collapse
Affiliation(s)
- Marta Segarra
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Maria R Aburto
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Jasmin Hefendehl
- Neurovascular Disorders, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany; , .,Institute of Cell Biology and Neuroscience, University of Frankfurt, D-60438 Frankfurt am Main, Germany.,Max Planck Institute for Brain Research, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
23
|
Yuan X, Sipe CW, Suzawa M, Bland ML, Siegrist SE. Dilp-2-mediated PI3-kinase activation coordinates reactivation of quiescent neuroblasts with growth of their glial stem cell niche. PLoS Biol 2020; 18:e3000721. [PMID: 32463838 PMCID: PMC7282672 DOI: 10.1371/journal.pbio.3000721] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/09/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Dietary nutrients provide macromolecules necessary for organism growth and development. In response to animal feeding, evolutionarily conserved growth signaling pathways are activated, leading to increased rates of cell proliferation and tissue growth. It remains unclear how different cell types within developing tissues coordinate growth in response to dietary nutrients and whether coordinated growth of different cell types is necessary for proper tissue function. Using the early Drosophila larval brain, we asked whether nutrient-dependent growth of neural stem cells (neuroblasts), glia, and trachea is coordinated and whether coordinated growth among these major brain cell types is required for neural development. It is known that in response to dietary nutrients and PI3-kinase activation, brain and ventral nerve cord neuroblasts reactivate from quiescence and ventral nerve cord glia expand their membranes. Here, we assay growth in a cell-type specific manner at short time intervals in the brain and determine that growth is coordinated among different cell types and that coordinated growth is mediated in part through activation of PI3-kinase signaling. Of the 7 Drosophila insulin-like peptides (Dilps), we find that Dilp-2 is required for PI3-kinase activation and growth coordination between neuroblasts and glia in the brain. Dilp-2 induces brain cortex glia to initiate membrane growth and make first contact with quiescent neuroblasts. Once reactivated, neuroblasts promote cortex glia growth to ultimately form a selective membrane barrier. Our results highlight the importance of bidirectional growth signaling between neural stem cells and surrounding cell types in the brain in response to nutrition and demonstrate how coordinated growth among different cell types drives tissue morphogenesis and function.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Conor W. Sipe
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biology, Shepherd University, Shepherdstown, West Virginia, United States of America
| | - Miyuki Suzawa
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michelle L. Bland
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Sarah E. Siegrist
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Jeong HJ, Jimenez Z, Mukhambetiyar K, Seo M, Choi JW, Park TE. Engineering Human Brain Organoids: From Basic Research to Tissue Regeneration. Tissue Eng Regen Med 2020; 17:747-757. [PMID: 32329023 DOI: 10.1007/s13770-020-00250-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Brain organoids are self-organized from human pluripotent stem cells and developed into various brain region following the developmental process of brain. Brain organoids provide promising approach for studying brain development process and neurological diseases and for tissue regeneration. METHODS In this review, we summarized the development of brain organoids technology, potential applications focusing on disease modeling for regeneration medicine, and multidisciplinary approaches to overcome current limitations of the technology. RESULTS Generations of brain organoids are categorized into two major classes by depending on the patterning method. In order to guide the differentiation into specific brain region, the extrinsic factors such as growth factors, small molecules, and biomaterials are actively studied. For better modelling of diseases with brain organoids and clinical application for tissue regeneration, improvement of the brain organoid maturation is one of the most important steps. CONCLUSION Brain organoids have potential to develop into an innovative platform for pharmacological studies and tissue engineering. However, they are not identical replicas of their in vivo counterpart and there are still a lot of limitations to move forward to clinical applications.
Collapse
Affiliation(s)
- Hye-Jin Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Zuly Jimenez
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Karakoz Mukhambetiyar
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Minwook Seo
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jeong-Won Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
25
|
Zhu X, Yao Y, Yang J, Ge Q, Niu D, Liu X, Zhang C, Gan G, Zhang A, Yao H. Seizure-induced neuroinflammation contributes to ectopic neurogenesis and aggressive behavior in pilocarpine-induced status epilepticus mice. Neuropharmacology 2020; 170:108044. [PMID: 32179291 DOI: 10.1016/j.neuropharm.2020.108044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022]
Abstract
Epilepsy is a chronic neurological disorder often associated with recurrent seizures. A growing body of evidence suggests that seizures cause structural and functional alterations of the brain. It is reported that behavioral abnormalities frequently occur in patients with epilepsy and experimental epilepsy models. However, the precise pathological mechanisms associated with these epilepsy comorbidities remain largely unknown. Neurogenesis persists throughout life in the hippocampal dentate gyrus (DG) to maintain proper brain function. However, aberrant neurogenesis usually generates abnormal neural circuits and consequently causes neuronal dysfunction. Neuroinflammatory responses are well known to affect neurogenesis and lead to aberrant reorganization of neural networks in the hippocampal DG. Here, in this study, we observed a significant increase in neuroinflammation and in the proliferation and survival of newborn granular cells in the hippocampus of pilocarpine-induced status epilepticus (SE) mice. More importantly, these proliferating and surviving newborn granular cells are largely ectopically located in the hippocampal DG hilus region. Our behavior test demonstrated that SE mice displayed severe aggressive behavior. Pharmacological inhibition of neuroinflammation, however, suppressed the ectopic neurogenesis and countered the enhanced aggressive behavior in SE mice, indicating that seizure-induced neuroinflammation may contribute to ectopic neurogenesis and aggressive behavior in SE mice. These findings establish a key role for neuroinflammation in seizure-induced aberrant neurogenesis and aggressive behavior. Suppressing neuroinflammation in the epileptic brain may reduce ectopic neurogenesis and effectively block the pathophysiological process that leads to aggressive behavior in TLE mice.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Qiyue Ge
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Diejing Niu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Chenchen Zhang
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China
| | - Guangming Gan
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China; Department of Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
26
|
Matarredona ER, Pastor AM. Neural Stem Cells of the Subventricular Zone as the Origin of Human Glioblastoma Stem Cells. Therapeutic Implications. Front Oncol 2019; 9:779. [PMID: 31482066 PMCID: PMC6710355 DOI: 10.3389/fonc.2019.00779] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Human glioblastoma is the most aggressive type of primary malignant brain tumors. Standard treatment includes surgical resection followed by radiation and chemotherapy but it only provides short-term benefits and the prognosis of these brain tumors is still very poor. Glioblastomas contain a population of glioma stem cells (GSCs), with self-renewal ability, which are partly responsible for the tumor resistance to therapy and for the tumor recurrence after treatment. The human adult subventricular zone contains astrocyte-like neural stem cells (NSCs) that are probably reminiscent of the radial glia present in embryonic brain development. There are numerous molecules involved in the biology of subventricular zone NSCs that are also instrumental in glioblastoma development. These include cytoskeletal proteins, telomerase, tumor suppressor proteins, transcription factors, and growth factors. Interestingly, genes encoding these molecules are frequently mutated in glioblastoma cells. Indeed, it has been recently shown that NSCs in the subventricular zone are a potential cell of origin that contains the driver mutations of human glioblastoma. In this review we will describe common features between GSCs and subventricular zone NSCs, and we will discuss the relevance of this important finding in terms of possible future therapeutic strategies.
Collapse
|
27
|
Karakatsani A, Shah B, Ruiz de Almodovar C. Blood Vessels as Regulators of Neural Stem Cell Properties. Front Mol Neurosci 2019; 12:85. [PMID: 31031591 PMCID: PMC6473036 DOI: 10.3389/fnmol.2019.00085] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/20/2019] [Indexed: 01/07/2023] Open
Abstract
In the central nervous system (CNS), a precise communication between the vascular and neural compartments is essential for proper development and function. Recent studies demonstrate that certain neuronal populations secrete various molecular cues to regulate blood vessel growth and patterning in the spinal cord and brain during development. Interestingly, the vasculature is now emerging as a critical component that regulates stem cell niches during neocortical development, as well as during adulthood. In this review article, we will first provide an overview of blood vessel development and maintenance in embryonic and adult neurogenic niches. We will also summarize the current understanding of how blood vessel-derived signals influence the behavior of neural stem cells (NSCs) during early development as well as in adulthood, with a focus on their metabolism.
Collapse
Affiliation(s)
- Andromachi Karakatsani
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Bhavin Shah
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute for Transfusion Medicine and Immunology, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
28
|
Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES, Ginhoux F, Knudsen TB. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res 2018; 109:1680-1710. [PMID: 29251840 DOI: 10.1002/bdr2.1180] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) serves as a gateway for passage of drugs, chemicals, nutrients, metabolites, and hormones between vascular and neural compartments in the brain. Here, we review BBB development with regard to the microphysiology of the neurovascular unit (NVU) and the impact of BBB disruption on brain development. Our focus is on modeling these complex systems. Extant in silico models are available as tools to predict the probability of drug/chemical passage across the BBB; in vitro platforms for high-throughput screening and high-content imaging provide novel data streams for profiling chemical-biological interactions; and engineered human cell-based microphysiological systems provide empirical models with which to investigate the dynamics of NVU function. Computational models are needed that bring together kinetic and dynamic aspects of NVU function across gestation and under various physiological and toxicological scenarios. This integration will inform adverse outcome pathways to reduce uncertainty in translating in vitro data and in silico models for use in risk assessments that aim to protect neurodevelopmental health.
Collapse
Affiliation(s)
- Katerine S Saili
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Todd J Zurlinden
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Andrew J Schwab
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Nancy C Baker
- Leidos, contractor to NCCT, Research Triangle Park, North Carolina 27711
| | - E Sidney Hunter
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Thomas B Knudsen
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| |
Collapse
|
29
|
McDonald RP, Vickaryous MK. Evidence for neurogenesis in the medial cortex of the leopard gecko, Eublepharis macularius. Sci Rep 2018; 8:9648. [PMID: 29941970 PMCID: PMC6018638 DOI: 10.1038/s41598-018-27880-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/12/2018] [Indexed: 12/23/2022] Open
Abstract
Although lizards are often described as having robust neurogenic abilities, only a handful of the more than 6300 species have been explored. Here, we provide the first evidence of homeostatic neurogenesis in the leopard gecko (Eublepharis macularius). We focused our study on the medial cortex, homologue of the mammalian hippocampal formation. Using immunostaining, we identified proliferating pools of neural stem/progenitor cells within the sulcus septomedialis, the pseudostratified ventricular zone adjacent to the medial cortex. Consistent with their identification as radial glia, these cells expressed SOX2, glial fibrillary acidic protein, and Vimentin, and demonstrated a radial morphology. Using a 5-bromo-2′-deoxyuridine cell tracking strategy, we determined that neuroblast migration from the ventricular zone to the medial cortex takes ~30-days, and that newly generated neuronal cells survived for at least 140-days. We also found that cell proliferation within the medial cortex was not significantly altered following rupture of the tail spinal cord (as a result of the naturally evolved process of caudal autotomy). We conclude that the sulcus septomedialis of the leopard gecko demonstrates all the hallmarks of a neurogenic niche.
Collapse
Affiliation(s)
- Rebecca P McDonald
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Matthew K Vickaryous
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
30
|
Paredes I, Himmels P, Ruiz de Almodóvar C. Neurovascular Communication during CNS Development. Dev Cell 2018; 45:10-32. [PMID: 29634931 DOI: 10.1016/j.devcel.2018.01.023] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/22/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022]
Abstract
A precise communication between the nervous and the vascular systems is crucial for proper formation and function of the central nervous system (CNS). Interestingly, this communication does not only occur by neural cells regulating the growth and properties of the vasculature, but new studies show that blood vessels actively control different neurodevelopmental processes. Here, we review the current knowledge on how neurons in particular influence growing blood vessels during CNS development and on how vessels participate in shaping the neural compartment. We also review the identified molecular mechanisms of this bidirectional communication.
Collapse
Affiliation(s)
- Isidora Paredes
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Patricia Himmels
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Carmen Ruiz de Almodóvar
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Cross-talk between blood vessels and neural progenitors in the developing brain. Neuronal Signal 2018; 2:NS20170139. [PMID: 32714582 PMCID: PMC7371013 DOI: 10.1042/ns20170139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/26/2023] Open
Abstract
The formation of the central nervous system (CNS) involves multiple cellular and molecular interactions between neural progenitor cells (NPCs) and blood vessels to establish extensive and complex neural networks and attract a vascular supply that support their function. In this review, we discuss studies that have performed genetic manipulations of chick, fish and mouse embryos to define the spatiotemporal roles of molecules that mediate the reciprocal regulation of NPCs and blood vessels. These experiments have highlighted core functions of NPC-expressed ligands in initiating vascular growth into and within the neural tube as well as establishing the blood-brain barrier. More recent findings have also revealed indispensable roles of blood vessels in regulating NPC expansion and eventual differentiation, and specific regional differences in the effect of angiocrine signals. Accordingly, NPCs initially stimulate blood vessel growth and maturation to nourish the brain, but blood vessels subsequently also regulate NPC behaviour to promote the formation of a sufficient number and diversity of neural cells. A greater understanding of the molecular cross-talk between NPCs and blood vessels will improve our knowledge of how the vertebrate nervous system forms and likely help in the design of novel therapies aimed at regenerating neurons and neural vasculature following CNS disease or injury.
Collapse
|
32
|
Abstract
The mouse embryo forebrain is the most commonly employed system for studying mammalian neurogenesis during development. However, the highly folded forebrain neuroepithelium is not amenable to wholemount analysis to examine organ-wide neurogenesis patterns. Moreover, defining the mechanisms of forebrain neurogenesis is not necessarily predictive of neurogenesis in other parts of the brain; for example, due to the presence of forebrain-specific progenitor subtypes. The mouse hindbrain provides an alternative model for studying embryonic neurogenesis that is amenable to wholemount analysis, as well as tissue sections to observe the spatiotemporal distribution and behavior of neural progenitors. Moreover, it is easily dissected for other downstream applications, such as cell isolation or molecular biology analysis. As the mouse hindbrain can be readily analyzed in the vast number of cell lineage reporter and mutant mouse strains that have become available, it offers a powerful model for studying the cellular and molecular mechanisms of developmental neurogenesis in a mammalian organism. Here, we present a simple and quick method to use the mouse embryo hindbrain for analyzing mammalian neural progenitor cell (NPC) behavior in wholemount preparations and tissue sections.
Collapse
|
33
|
Taberner L, Bañón A, Alsina B. Anatomical map of the cranial vasculature and sensory ganglia. J Anat 2017; 232:431-439. [PMID: 29235648 DOI: 10.1111/joa.12762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2017] [Indexed: 12/29/2022] Open
Abstract
There is growing evidence of a direct influence of vasculature on the development of neurons in the brain. The development of the cranial vasculature has been well described in zebrafish but its anatomical relationship with the adjacent developing sensory ganglia has not been addressed. Here, by 3D imaging of fluorescently labelled blood vessels and sensory ganglia, we describe for the first time the spatial organization of the cranial vasculature in relation to the cranial ganglia during zebrafish development. We show that from 24 h post-fertilization (hpf) onwards, the statoacoustic ganglion (SAG) develops in direct contact with two main blood vessels, the primordial hindbrain channel and the lateral dorsal aortae (LDA). At 48 hpf, the LDA is displaced medially, losing direct contact with the SAG. The relationship of the other cranial ganglia with the vasculature is evident for the medial lateral line ganglion and for the vagal ganglia that grow along the primary head sinus (PHS). We also observed that the innervation of the anterior macula runs over the PHS vessel. Our spatiotemporal anatomical map of the cranial ganglia and the head vasculature indicates physical interactions between both systems and suggests a possible functional interaction during development.
Collapse
Affiliation(s)
- Laura Taberner
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| | - Aitor Bañón
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| | - Berta Alsina
- Laboratory of Developmental Biology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra-PRBB, 08003, Barcelona, Spain
| |
Collapse
|