1
|
Lewis MA, Lachgar-Ruiz M, Di Domenico F, Duddy G, Chen J, Fernandez S, Morin M, Williams G, Moreno Pelayo MA, Steel KP. Pathological mechanisms and candidate therapeutic approaches in the hearing loss of mice carrying human MIR96 mutations. Genome Med 2024; 16:121. [PMID: 39434156 PMCID: PMC11492784 DOI: 10.1186/s13073-024-01394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Progressive hearing loss is a common problem in the human population with no effective therapeutics currently available. However, it has a strong genetic contribution, and investigating the genes and regulatory interactions underlying hearing loss offers the possibility of identifying therapeutic candidates. Mutations in regulatory genes are particularly useful for this, and an example is the microRNA miR-96, a post-transcriptional regulator which controls hair cell maturation. Mice and humans carrying mutations in miR-96 all exhibit hearing impairment, in homozygosis if not in heterozygosis, but different mutations result in different physiological, structural and transcriptional phenotypes. METHODS Here we present our characterisation of two lines of mice carrying different human mutations knocked-in to Mir96. We have carried out auditory brainstem response tests to examine their hearing with age and after noise exposure and have used confocal and scanning electron microscopy to examine the ultrastructure of the organ of Corti and hair cell synapses. Bulk RNA-seq was carried out on the organs of Corti of postnatal mice, followed by bioinformatic analyses to identify candidate targets. RESULTS While mice homozygous for either mutation are profoundly deaf from 2 weeks old, the heterozygous phenotypes differ markedly, with only one mutation resulting in hearing impairment in heterozygosis. Investigations of the structural phenotype showed that one mutation appears to lead to synaptic defects, while the other has a much more severe effect on the hair cell stereociliary bundles. Transcriptome analyses revealed a wide range of misregulated genes in both mutants which were notably dissimilar. We used the transcriptome analyses to investigate candidate therapeutics, and tested one, finding that it delayed the progression of hearing loss in heterozygous mice. CONCLUSIONS Our work adds further support for the importance of the gain of novel targets in microRNA mutants and offers a proof of concept for the identification of pharmacological interventions to maintain hearing.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Maria Lachgar-Ruiz
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Francesca Di Domenico
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jing Chen
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sergio Fernandez
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Matias Morin
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Gareth Williams
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Miguel Angel Moreno Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Karen P Steel
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
2
|
Rao F, Cao J, Wang C, Xiang S, Wu K, Lin D, Lv J, Wang X, Wang M, Xiang L. Overexpression of miR-96 leads to retinal degeneration in mice. Biochem Biophys Res Commun 2024; 719:150048. [PMID: 38763044 DOI: 10.1016/j.bbrc.2024.150048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
Double knockout of miR-183 and miR-96 results in retinal degeneration in mice; however, single knockout of miR-96 leads to developmental delay but not substantial retinal degeneration. To further explore the role of miR-96, we overexpressed this miRNA in mouse retinas. Interestingly, we found that overexpression of miR-96 at a safe dose results in retinal degeneration in the mouse retina. The retinal photoreceptors dramatically degenerated in the miR-96-overexpressing group, as shown by OCT, ERG and cryosectioning at one month after subretinal injection. Degenerative features such as TUNEL signals and reactive gliosis were observed in the miR-96-overexpressing retina. RNA-seq data revealed that immune responses and microglial activation occurred in the degenerating retina. Further qRT‒PCR and immunostaining experiments verified the microglial activation. Moreover, the number of microglia in the miR-96-overexpressing retinas was significantly increased. Our findings demonstrate that appropriate miR-96 expression is required for mouse retinal homeostasis.
Collapse
Affiliation(s)
- Fengqin Rao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, China; Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; College of Nursing, Wenzhou Medical University, Wenzhou 325035, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jianbin Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, China
| | - Chenyu Wang
- Department of Preventive Medicine, School of Public Health & Management, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjin Xiang
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Kunchao Wu
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; Department of Ophthalmology, The First People's Hospital of Guiyang, China
| | - Dan Lin
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jineng Lv
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Mingcang Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, China.
| | - Lue Xiang
- Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
3
|
Gwilliam K, Sperber M, Perry K, Rose KP, Ginsberg L, Paladugu N, Song Y, Milon B, Elkon R, Hertzano R. A cell type-specific approach to elucidate the role of miR-96 in inner ear hair cells. FRONTIERS IN AUDIOLOGY AND OTOLOGY 2024; 2:1400576. [PMID: 38826689 PMCID: PMC11141775 DOI: 10.3389/fauot.2024.1400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Introduction Mutations in microRNA-96 (miR-96), a microRNA expressed within the hair cells (HCs) of the inner ear, result in progressive hearing loss in both mouse models and humans. In this study, we present the first HC-specific RNA-sequencing (RNA-seq) dataset from newborn Mir96Dmdo heterozygous, homozygous mutant, and wildtype mice. Methods Bulk RNA-seq was performed on HCs of newborn Mir96Dmdo heterozygous, homozygous mutant, and wildtype mice. Differentially expressed gene analysis was conducted on Mir96Dmdo homozygous mutant HCs compared to wildtype littermate controls, followed by GO term and protein-protein interaction analysis on these differentially expressed genes. Results We identify 215 upregulated and 428 downregulated genes in the HCs of the Mir96Dmdo homozygous mutant mice compared to their wildtype littermate controls. Many of the significantly downregulated genes in Mir96Dmdo homozygous mutant HCs have established roles in HC development and/or known roles in deafness including Myo15a, Myo7a, Ush1c, Gfi1, and Ptprq and have enrichment in gene ontology (GO) terms with biological functions such as sensory perception of sound. Interestingly, upregulated genes in Mir96Dmdo homozygous mutants, including possible miR-96 direct targets, show higher wildtype expression in supporting cells compared to HCs. Conclusion Our data further support a role for miR-96 in HC development, possibly as a repressor of supporting cell transcriptional programs in HCs. The HC-specific Mir96Dmdo RNA-seq data set generated from this manuscript are now publicly available in a dedicated profile in the gene expression analysis resource (gEAR-https://umgear.org/p?l=miR96).
Collapse
Affiliation(s)
- Kathleen Gwilliam
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Katherine Perry
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kevin P. Rose
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Laura Ginsberg
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nikhil Paladugu
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Beatrice Milon
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Tel Aviv University School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronna Hertzano
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Gupta N, Somayajulu M, Gurdziel K, LoGrasso G, Aziz H, Rosati R, McClellan S, Pitchaikannu A, Santra M, Shukkur MFA, Stemmer P, Hazlett LD, Xu S. The miR-183/96/182 cluster regulates sensory innervation, resident myeloid cells and functions of the cornea through cell type-specific target genes. Sci Rep 2024; 14:7676. [PMID: 38561433 PMCID: PMC10985120 DOI: 10.1038/s41598-024-58403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | | | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Haidy Aziz
- School of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Manoranjan Santra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Muhammed Farooq Abdul Shukkur
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Paul Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, 540 E Canfield Street, Detroit, MI, 48201, USA.
| |
Collapse
|
5
|
Jimeno D, Lillo C, de la Villa P, Calzada N, Santos E, Fernández-Medarde A. GRF2 Is Crucial for Cone Photoreceptor Viability and Ribbon Synapse Formation in the Mouse Retina. Cells 2023; 12:2574. [PMID: 37947653 PMCID: PMC10650203 DOI: 10.3390/cells12212574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.
Collapse
Affiliation(s)
- David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | | | - Pedro de la Villa
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Alcalá de Henares, and IRYCIS, 28034 Madrid, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biologıá Molecular y Celular del Cáncer (CSIC–Universidad de Salamanca) and CIBERONC, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Li W, Gurdziel K, Pitchaikannu A, Gupta N, Hazlett LD, Xu S. The miR-183/96/182 cluster is a checkpoint for resident immune cells and shapes the cellular landscape of the cornea. Ocul Surf 2023; 30:17-41. [PMID: 37536656 PMCID: PMC10834862 DOI: 10.1016/j.jtos.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.
Collapse
Affiliation(s)
- Weifeng Li
- Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, USA; Wilmer Eye Institute, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Liang J, Fang D, Yao F, Chen L, Zou Z, Tang X, Feng L, Zhuang Y, Xie T, Wei P, Li P, Zheng H, Zhang S. Analysis of shared ceRNA networks and related-hub genes in rats with primary and secondary photoreceptor degeneration. Front Neurosci 2023; 17:1259622. [PMID: 37811327 PMCID: PMC10552924 DOI: 10.3389/fnins.2023.1259622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Photoreceptor degenerative diseases are characterized by the progressive death of photoreceptor cells, resulting in irreversible visual impairment. However, the role of competing endogenous RNA (ceRNA) in photoreceptor degeneration is unclear. We aimed to explore the shared ceRNA regulation network and potential molecular mechanisms between primary and secondary photoreceptor degenerations. Methods We established animal models for both types of photoreceptor degenerations and conducted retina RNA sequencing to identify shared differentially expressed long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs). Using ceRNA regulatory principles, we constructed a shared ceRNA network and performed function enrichment and protein-protein interaction (PPI) analyses to identify hub genes and key pathways. Immune cell infiltration and drug-gene interaction analyses were conducted, and hub gene expression was validated by quantitative real-time polymerase chain reaction (qRT-PCR). Results We identified 37 shared differentially expressed lncRNAs, 34 miRNAs, and 247 mRNAs and constructed a ceRNA network consisting of 3 lncRNAs, 5 miRNAs, and 109 mRNAs. Furthermore, we examined 109 common differentially expressed genes (DEGs) through functional annotation, PPI analysis, and regulatory network analysis. We discovered that these diseases shared the complement and coagulation cascades pathway. Eight hub genes were identified and enriched in the immune system process. Immune infiltration analysis revealed increased T cells and decreased B cells in both photoreceptor degenerations. The expression of hub genes was closely associated with the quantities of immune cell types. Additionally, we identified 7 immune therapeutical drugs that target the hub genes. Discussion Our findings provide new insights and directions for understanding the common mechanisms underlying the development of photoreceptor degeneration. The hub genes and related ceRNA networks we identified may offer new perspectives for elucidating the mechanisms and hold promise for the development of innovative treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Celiker C, Weissova K, Cerna KA, Oppelt J, Dorgau B, Gambin FM, Sebestikova J, Lako M, Sernagor E, Liskova P, Barta T. Light-responsive microRNA molecules in human retinal organoids are differentially regulated by distinct wavelengths of light. iScience 2023; 26:107237. [PMID: 37485345 PMCID: PMC10362355 DOI: 10.1016/j.isci.2023.107237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/25/2023] [Indexed: 07/25/2023] Open
Abstract
Cells in the human retina must rapidly adapt to constantly changing visual stimuli. This fast adaptation to varying levels and wavelengths of light helps to regulate circadian rhythms and allows for adaptation to high levels of illumination, thereby enabling the rest of the visual system to remain responsive. It has been shown that retinal microRNA (miRNA) molecules play a key role in regulating these processes. However, despite extensive research using various model organisms, light-regulated miRNAs in human retinal cells remain unknown. Here, we aim to characterize these miRNAs. We generated light-responsive human retinal organoids that express miRNA families and clusters typically found in the retina. Using an in-house developed photostimulation device, we identified a subset of light-regulated miRNAs. Importantly, we found that these miRNAs are differentially regulated by distinct wavelengths of light and have a rapid turnover, highlighting the dynamic and adaptive nature of the human retina.
Collapse
Affiliation(s)
- Canan Celiker
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Weissova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Katerina Amruz Cerna
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Philadelphia, PA, USA
| | - Birthe Dorgau
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Francisco Molina Gambin
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Sebestikova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Evelyne Sernagor
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
9
|
Feng Y, Wang K, Qin M, Zhuang Q, Chen Z. MiR-183-5p promotes migration and invasion of prostate cancer by targeting TET1. BMC Urol 2023; 23:116. [PMID: 37430206 DOI: 10.1186/s12894-023-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/01/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the common malignant tumors worldwide. MiR-183-5p has been reported involved in the initiation of human PCa, this study aimed to investigate whether miR-183-5p affects the development of prostate cancer. METHODS In this study, we analyzed the expression of miR-183-5p in PCa patients and its correlation with clinicopathological parameters based on TCGA data portal. CCK-8, migration assay and invasion and wound-healing assay were performed to detect proliferation, migration and invasion in PCa cells. RESULTS We found the expression of miR-183-5p was significantly increased in PCa tissues, and high expression of miR-183 was positively associated with poor prognosis of PCa patients. Over-expression of miR-183-5p promoted the migration, invasion capacities of PCa cells, whereas knockdown of miR-183-5p showed reversed function. Furthermore, luciferase reporter assay showed TET1 was identified as a direct target of miR-183-5p, which was negatively correlation with miR-183-5p expression level. Importantly, rescue experiments demonstrated TET1 over-expression could reverse miR-183-5p mimic induced-acceleration of PCa malignant progression. CONCLUSION Our results indicated that miR-183-5p could act as a tumor promoter in PCa and it accelerated the malignant progression of PCa by directly targeting and down-regulating TET1.
Collapse
Affiliation(s)
- Yuehua Feng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Kai Wang
- Department of Urology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minchao Qin
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
10
|
Ferdous S, Shelton DA, Getz TE, Chrenek MA, L’Hernault N, Sellers JT, Summers VR, Iuvone PM, Boss JM, Boatright JH, Nickerson JM. Deletion of histone demethylase Lsd1 (Kdm1a) during retinal development leads to defects in retinal function and structure. Front Cell Neurosci 2023; 17:1104592. [PMID: 36846208 PMCID: PMC9950115 DOI: 10.3389/fncel.2023.1104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
Purpose The purpose of this study was to investigate the role of Lysine specific demethylase 1 (Lsd1) in murine retinal development. LSD1 is a histone demethylase that can demethylate mono- and di-methyl groups on H3K4 and H3K9. Using Chx10-Cre and Rho-iCre75 driver lines, we generated novel transgenic mouse lines to delete Lsd1 in most retinal progenitor cells or specifically in rod photoreceptors. We hypothesize that Lsd1 deletion will cause global morphological and functional defects due to its importance in neuronal development. Methods We tested the retinal function of young adult mice by electroretinogram (ERG) and assessed retinal morphology by in vivo imaging by fundus photography and SD-OCT. Afterward, eyes were enucleated, fixed, and sectioned for subsequent hematoxylin and eosin (H&E) or immunofluorescence staining. Other eyes were plastic fixed and sectioned for electron microscopy. Results In adult Chx10-Cre Lsd1fl/fl mice, we observed a marked reduction in a-, b-, and c-wave amplitudes in scotopic conditions compared to age-matched control mice. Photopic and flicker ERG waveforms were even more sharply reduced. Modest reductions in total retinal thickness and outer nuclear layer (ONL) thickness were observed in SD-OCT and H&E images. Lastly, electron microscopy revealed significantly shorter inner and outer segments and immunofluorescence showed modest reductions in specific cell type populations. We did not observe any obvious functional or morphological defects in the adult Rho-iCre75 Lsd1fl/fl animals. Conclusion Lsd1 is necessary for neuronal development in the retina. Adult Chx10-Cre Lsd1fl/fl mice show impaired retinal function and morphology. These effects were fully manifested in young adults (P30), suggesting that Lsd1 affects early retinal development in mice.
Collapse
Affiliation(s)
- Salma Ferdous
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | | | - Tatiana E. Getz
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Micah A. Chrenek
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Nancy L’Hernault
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Jana T. Sellers
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Vivian R. Summers
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - P. Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Jeffrey H. Boatright
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
- Atlanta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, GA, United States
| | - John M. Nickerson
- Department of Ophthalmology, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Koffler-Brill T, Noy Y, Avraham KB. The long and short: Non-coding RNAs in the mammalian inner ear. Hear Res 2023; 428:108666. [PMID: 36566643 PMCID: PMC9883734 DOI: 10.1016/j.heares.2022.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Non-coding RNAs (ncRNAs) play a critical role in the entire body, and their mis-regulation is often associated with disease. In parallel with the advances in high-throughput sequencing technologies, there is a great deal of focus on this broad class of RNAs. Although these molecules are not translated into proteins, they are now well established as significant regulatory components in many biological pathways and pathological conditions. ncRNAs can be roughly divided into two main sub-groups based on the length of the transcript, with both the small and long non-coding RNAs having diverse regulatory functions. The smaller length group includes ribosomal RNAs (rRNA), transfer RNAs (tRNA), small nuclear RNAs (snRNA), small nucleolar RNAs (snoRNA), microRNAs (miRNA), small interfering RNAs (siRNA), and PIWI-associated RNAs (piRNA). The longer length group includes linear long non-coding RNAs (lncRNA) and circular RNAs (circRNA). This review is designed to present the different classes of small and long ncRNA molecules and describe some of their known roles in physiological and pathological conditions, as well as methods used to assess the validity and function of miRNAs and lncRNAs, with a focus on their role and functions in the inner ear, hearing and deafness.
Collapse
Affiliation(s)
- Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yael Noy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
12
|
Abstract
Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
| | - Kathleen Gwilliam
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Avrutsky MI, Lawson JM, Smart JE, Chen CW, Troy CM. Noninvasive Ophthalmic Imaging Measures Retinal Degeneration and Vision Deficits in Ndufs4-/- Mouse Model of Mitochondrial Complex I Deficiency. Transl Vis Sci Technol 2022; 11:5. [PMID: 35921115 PMCID: PMC9360534 DOI: 10.1167/tvst.11.8.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To characterize postnatal ocular pathology in a Ndufs4−/− mouse model of complex I deficiency using noninvasive retinal imaging and visual testing. Methods Ndufs4−/− mice and wild-type (WT) littermates were analyzed at 3, 5, and 7 weeks postnatal. Retinal morphology was visualized by optical coherence tomography (OCT). OCT images were analyzed for changes in retinal thickness and reflectivity profiles. Visual function was assessed by electroretinogram (ERG) and optomotor reflex (OMR). Results Ndufs4−/− animals have normal OCT morphology at weaning and develop inner plexiform layer atrophy over weeks 5 to 7. Outer retinal layers show hyporeflectivity of the external limiting membrane (ELM) and photoreceptor ellipsoid zone (EZ). Retinal function is impaired at 3 weeks, with profound deficits in b-wave, a-wave, and oscillatory potential amplitudes. The b-wave and oscillatory potential implicit times are delayed, but the a-wave implicit time is unaffected. Ndufs4−/− animals have normal OMR at 3 weeks and present with increasing acuity and contrast OMR deficits at 5 and 7 weeks. Physiological thinning of inner retinal layers, attenuation of ELM reflectivity, and attenuation of ERG b- and a-wave amplitudes occur in WT C57BL/6 littermates between weeks 3 and 7. Conclusions Noninvasive ocular imaging captures early-onset retinal degeneration in Ndufs4−/− mice and is a tractable approach for investigating retinal pathology subsequent to complex I deficiency. Translational Relevance Ophthalmic imaging captures clinically relevant measures of retinal disease in a fast-progressing mouse model of complex I deficiency consistent with human Leigh syndrome.
Collapse
Affiliation(s)
- Maria I Avrutsky
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jacqueline M Lawson
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jade E Smart
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Claire W Chen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carol M Troy
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
14
|
Gene-independent therapeutic interventions to maintain and restore light sensitivity in degenerating photoreceptors. Prog Retin Eye Res 2022; 90:101065. [PMID: 35562270 DOI: 10.1016/j.preteyeres.2022.101065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative retinal diseases are a prime cause of blindness in industrialized countries. In many cases, there are no therapeutic treatments, although they are essential to improve patients' quality of life. A set of disease-causing genes, which primarily affect photoreceptors, has already been identified and is of major interest for developing gene therapies. Nevertheless, depending on the nature and the state of the disease, gene-independent strategies are needed. Various strategies to halt disease progression or maintain function of the retina are under research. These therapeutic interventions include neuroprotection, direct reprogramming of affected photoreceptors, the application of non-coding RNAs, the generation of artificial photoreceptors by optogenetics and cell replacement strategies. During recent years, major breakthroughs have been made such as the first optogenetic application to a blind patient whose visual function partially recovered by targeting retinal ganglion cells. Also, RPE cell transplantation therapies are under clinical investigation and show great promise to improve visual function in blind patients. These cells are generated from human stem cells. Similar therapies for replacing photoreceptors are extensively tested in pre-clinical models. This marks just the start of promising new cures taking advantage of developments in the areas of genetic engineering, optogenetics, and stem-cell research. In this review, we present the recent therapeutic advances of gene-independent approaches that are currently under clinical evaluation. Our main focus is on photoreceptors as these sensory cells are highly vulnerable to degenerative diseases, and are crucial for light detection.
Collapse
|
15
|
Avraham KB, Khalaily L, Noy Y, Kamal L, Koffler-Brill T, Taiber S. The noncoding genome and hearing loss. Hum Genet 2022; 141:323-333. [PMID: 34491412 DOI: 10.1007/s00439-021-02359-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/29/2021] [Indexed: 12/16/2022]
Abstract
The age of sequencing has provided unprecedented insights into the human genome. The coding region of the genome comprises nearly 20,000 genes, of which approximately 4000 are associated with human disease. Beyond the protein-coding genome, which accounts for only 3% of the genome, lies a vast pool of regulatory elements in the form of promoters, enhancers, RNA species, and other intricate elements. These features undoubtably influence human health and disease, and as a result, a great deal of effort is currently being invested in deciphering their identity and mechanism. While a paucity of material has caused a lag in identifying these elements in the inner ear, the emergence of technologies for dealing with a minimal number of cells now has the field working overtime to catch up. Studies on microRNAs (miRNAs), long non-coding RNAs (lncRNAs), methylation, histone modifications, and more are ongoing. A number of microRNAs and other noncoding elements are known to be associated with hearing impairment and there is promise that regulatory elements will serve as future tools and targets of therapeutics and diagnostics. This review covers the current state of the field and considers future directions for the noncoding genome and implications for hearing loss.
Collapse
Affiliation(s)
- Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel.
| | - Lama Khalaily
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Yael Noy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Lara Kamal
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
16
|
Xiang L, Zhang J, Rao FQ, Yang QL, Zeng HY, Huang SH, Xie ZX, Lv JN, Lin D, Chen XJ, Wu KC, Lu F, Huang XF, Chen Q. Depletion of miR-96 Delays, But Does Not Arrest, Photoreceptor Development in Mice. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35481839 PMCID: PMC9055555 DOI: 10.1167/iovs.63.4.24] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Abundant retinal microRNA-183 cluster (miR-183C) has been reported to be a key player in photoreceptor development and functionality in mice. However, whether there is a protagonist in this cluster remains unclear. Here, we used a mutant mouse model to study the role of miR-96, a member of miR-183C, in photoreceptor development and functionality. Methods The mature miR-96 sequence was removed using the CRISPR/Cas9 genome-editing system. Electroretinogram (ERG) and optical coherence tomography (OCT) investigated the changes in structure and function in mouse retinas. Immunostaining determined the localization and morphology of the retinal cells. RNA sequencing was conducted to observe retinal transcription alterations. Results The miR-96 mutant mice exhibited cone developmental delay, as occurs in miR-183/96 double knockout mice. Immunostaining of cone-specific marker genes revealed cone nucleus mislocalization and exiguous Opn1mw/Opn1sw in the mutant (MT) mouse outer segments at postnatal day 10. Interestingly, this phenomenon could be relieved in the adult stages. Transcriptome analysis revealed activation of microtubule-, actin filament–, and cilia-related pathways, further supporting the findings. Based on ERG and OCT results at different ages, the MT mice displayed developmental delay not only in cones but also in rods. In addition, a group of miR-96 potential direct and indirect target genes was summarized for interpretation and further studies of miR-96–related retinal developmental defects. Conclusions Depletion of miR-96 delayed but did not arrest photoreceptor development in mice. This miRNA is indispensable for mouse photoreceptor maturation, especially for cones.
Collapse
Affiliation(s)
- Lue Xiang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Juan Zhang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Feng-Qin Rao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, China
| | - Qiao-Li Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui-Yi Zeng
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Sheng-Hai Huang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhen-Xiang Xie
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ji-Neng Lv
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Dan Lin
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiao Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Kun-Chao Wu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fan Lu
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| | - Xiu-Feng Huang
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Chen
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Ophthalmology, Optometry and Vision Science, Wenzhou, China
| |
Collapse
|
17
|
McClellan S, Pitchaikannu A, Wright R, Bessert D, Iulianelli M, Hazlett LD, Xu S. Prophylactic Knockdown of the miR-183/96/182 Cluster Ameliorates Pseudomonas aeruginosa-Induced Keratitis. Invest Ophthalmol Vis Sci 2021; 62:14. [PMID: 34919120 PMCID: PMC8684302 DOI: 10.1167/iovs.62.15.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Previously, we demonstrated that miR-183/96/182 cluster (miR-183C) knockout mice exhibit decreased severity of Pseudomonas aeruginosa (PA)-induced keratitis. This study tests the hypothesis that prophylactic knockdown of miR-183C ameliorates PA keratitis indicative of a therapeutic potential. Methods Eight-week-old miR-183C wild-type and C57BL/6J inbred mice were used. Locked nucleic acid-modified anti-miR-183C or negative control oligoribonucleotides with scrambled sequences (NC ORNs) were injected subconjunctivally 1 day before and then topically applied once daily for 5 days post-infection (dpi) (strain 19660). Corneal disease was graded at 1, 3, and 5 dpi. Corneas were harvested for RT-PCR, ELISA, immunofluorescence (IF), myeloperoxidase and plate count assays, and flow cytometry. Corneal nerve density was evaluated in flatmounted corneas by IF staining with anti-β-III tubulin antibody. Results Anti-miR-183C downregulated miR-183C in the cornea. It resulted in an increase in IL-1β at 1 dpi, which was decreased at 5 dpi; fewer polymorphonuclear leukocytes (PMNs) at 5 dpi; lower viable bacterial plate count at both 1 and 5 dpi; increased percentages of MHCII+ macrophages (Mϕ) and dendritic cells (DCs), consistent with enhanced activation/maturation; and decreased severity of PA keratitis. Anti-miR-183C treatment in the cornea of naïve mice resulted in a transient reduction of corneal nerve density, which was fully recovered one week after the last anti-miR application. miR-183C targets repulsive axon-guidance receptor molecule Neuropilin 1, which may mediate the effect of anti-miR-183C on corneal nerve regression. Conclusions Prophylactic miR-183C knockdown is protective against PA keratitis through its regulation of innate immunity, corneal innervation, and neuroimmune interactions.
Collapse
Affiliation(s)
- Sharon McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Ahalya Pitchaikannu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Robert Wright
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Denise Bessert
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Mason Iulianelli
- Departments of Biological Sciences and Public Health, College of Liberal Arts and Sciences, Wayne State University, Detroit, Michigan, United States
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
18
|
Whole transcriptome sequencing identifies key circRNAs, lncRNAs, and miRNAs regulating neurogenesis in developing mouse retina. BMC Genomics 2021; 22:779. [PMID: 34717547 PMCID: PMC8557489 DOI: 10.1186/s12864-021-08078-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background The molecular complexity of neural retina development remains poorly studied. Knowledge of retinal neurogenesis regulation sheds light on retinal degeneration therapy exploration. Therefore, we integrated the time-series circRNA, lncRNA, miRNA, and mRNA expression profiles of the developing retina through whole-transcriptome sequencing. The key functional ncRNAs and the ceRNA network regulating retinal neurogenesis were identified. Results Transcriptomic analysis identified circRNA as the most variable ncRNA subtype. We screened a series of neurogenesis-related circRNAs, lncRNAs, and miRNAs using different strategies based on their diversified molecular functions. The expression of circCDYL, circATXN1, circDYM, circPRGRIP, lncRNA Meg3, and lncRNA Vax2os was validated by quantitative real-time PCR. These circRNAs and lncRNAs participate in neurotransmitter transport and multicellular organism growth through the intricate circRNA/lncRNA-miRNA-mRNA network. Conclusion Whole-transcriptome sequencing and bioinformatics analysis systematically screened key ncRNAs in retinal neurogenesis. The validated ncRNAs and their circRNA/lncRNA-miRNA-mRNA network involve neurotransmitter transport and multicellular organism growth during retinal development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08078-z.
Collapse
|
19
|
Shan S, Wang SN, Song X, Khashaveh A, Lu ZY, Dhiloo KH, Li RJ, Gao XW, Zhang YJ. Characterization and target gene analysis of microRNAs in the antennae of the parasitoid wasp Microplitis mediator. INSECT SCIENCE 2021; 28:1033-1048. [PMID: 32496619 DOI: 10.1111/1744-7917.12832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs), a class of non-coding single-strand RNA molecules encoded by endogenous genes, are about 21-24 nucleotides long and are involved in the post-transcriptional regulation of gene expression in plants and animals. Generally, the types and quantities of miRNAs in the different tissues of an organism are diverse, and these divergences may be related to their specific functions. Here we have identified 296 known miRNAs and 46 novel miRNAs in the antennae of the parasitoid wasp Microplitis mediator by high-throughput sequencing. Thirty-three miRNAs were predicted to target olfactory-associated genes, including odorant binding proteins (OBPs), chemosensory proteins, odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors. Among these, 17 miRNAs were significantly highly expressed in the antennae, four miRNAs were highly expressed both in the antennae and head or wings, while the remaining 12 miRNAs were mainly expressed in the head, thorax, abdomen, legs and wings. Notably, miR-9a-5p and miR-2525-3p were highly expressed in male antennae, whereas miR-1000-5p and novel-miR-13 were enriched in female antennae. The 17 miRNAs highly expressed in antennae are likely to be associated with olfaction, and were predicted to target one OBP (targeted by miR-3751-3p), one IR (targeted by miR-7-5p) and 14 ORs (targeted by 15 miRNAs including miR-6-3p, miR-9a-5p, miR-9b-5p, miR-29-5p, miR-71-5p, miR-275-3p, miR-1000-5p, miR-1000-3p, miR-2525-3p, miR-6012-3p, miR-9719-3p, novel-miR-10, novel-miR-13, novel-miR-14 and novel-miR-28). These candidate olfactory-associated miRNAs are all likely to be involved in chemoreception through the regulation of chemosensory gene expression in the antennae of M. mediator.
Collapse
Affiliation(s)
- Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Ning Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant and Environment Protection, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Xuan Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zi-Yun Lu
- IPM Center of Hebei Province, Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, Hebei, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Rui-Jun Li
- College of Plant Protection, Agricultural University of Hebei, Baoding, Hebei, China
| | - Xi-Wu Gao
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Li LJ, Chang WM, Hsiao M. Aberrant Expression of microRNA Clusters in Head and Neck Cancer Development and Progression: Current and Future Translational Impacts. Pharmaceuticals (Basel) 2021; 14:ph14030194. [PMID: 33673471 PMCID: PMC7997248 DOI: 10.3390/ph14030194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are small non-coding RNAs known to negative regulate endogenous genes. Some microRNAs have high sequence conservation and localize as clusters in the genome. Their coordination is regulated by simple genetic and epigenetic events mechanism. In cells, single microRNAs can regulate multiple genes and microRNA clusters contain multiple microRNAs. MicroRNAs can be differentially expressed and act as oncogenic or tumor suppressor microRNAs, which are based on the roles of microRNA-regulated genes. It is vital to understand their effects, regulation, and various biological functions under both normal and disease conditions. Head and neck squamous cell carcinomas are some of the leading causes of cancer-related deaths worldwide and are regulated by many factors, including the dysregulation of microRNAs and their clusters. In disease stages, microRNA clusters can potentially control every field of oncogenic function, including growth, proliferation, apoptosis, migration, and intercellular commutation. Furthermore, microRNA clusters are regulated by genetic mutations or translocations, transcription factors, and epigenetic modifications. Additionally, microRNA clusters harbor the potential to act therapeutically against cancer in the future. Here, we review recent advances in microRNA cluster research, especially relative to head and neck cancers, and discuss their regulation and biological functions under pathological conditions as well as translational applications.
Collapse
Affiliation(s)
- Li-Jie Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-2-2789–8752
| |
Collapse
|
21
|
Carrella S, Banfi S, Karali M. Sophisticated Gene Regulation for a Complex Physiological System: The Role of Non-coding RNAs in Photoreceptor Cells. Front Cell Dev Biol 2021; 8:629158. [PMID: 33537317 PMCID: PMC7848107 DOI: 10.3389/fcell.2020.629158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/18/2020] [Indexed: 12/26/2022] Open
Abstract
Photoreceptors (PRs) are specialized neuroepithelial cells of the retina responsible for sensory transduction of light stimuli. In the highly structured vertebrate retina, PRs have a highly polarized modular structure to accommodate the demanding processes of phototransduction and the visual cycle. Because of their function, PRs are exposed to continuous cellular stress. PRs are therefore under pressure to maintain their function in defiance of constant environmental perturbation, besides being part of a highly sophisticated developmental process. All this translates into the need for tightly regulated and responsive molecular mechanisms that can reinforce transcriptional programs. It is commonly accepted that regulatory non-coding RNAs (ncRNAs), and in particular microRNAs (miRNAs), are not only involved but indeed central in conferring robustness and accuracy to developmental and physiological processes. Here we integrate recent findings on the role of regulatory ncRNAs (e.g., miRNAs, lncRNAs, circular RNAs, and antisense RNAs), and of their contribution to PR pathophysiology. We also outline the therapeutic implications of translational studies that harness ncRNAs to prevent PR degeneration and promote their survival and function.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marianthi Karali
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
22
|
Zhou L, Miller C, Miraglia LJ, Romero A, Mure LS, Panda S, Kay SA. A genome-wide microRNA screen identifies the microRNA-183/96/182 cluster as a modulator of circadian rhythms. Proc Natl Acad Sci U S A 2021; 118:e2020454118. [PMID: 33443164 PMCID: PMC7817116 DOI: 10.1073/pnas.2020454118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The regulatory mechanisms of circadian rhythms have been studied primarily at the level of the transcription-translation feedback loops of protein-coding genes. Regulatory modules involving noncoding RNAs are less thoroughly understood. In particular, emerging evidence has revealed the important role of microRNAs (miRNAs) in maintaining the robustness of the circadian system. To identify miRNAs that have the potential to modulate circadian rhythms, we conducted a genome-wide miRNA screen using U2OS luciferase reporter cells. Among 989 miRNAs in the library, 120 changed the period length in a dose-dependent manner. We further validated the circadian regulatory function of an miRNA cluster, miR-183/96/182, both in vitro and in vivo. We found that all three members of this miRNA cluster can modulate circadian rhythms. Particularly, miR-96 directly targeted a core circadian clock gene, PER2. The knockout of the miR-183/96/182 cluster in mice showed tissue-specific effects on circadian parameters and altered circadian rhythms at the behavioral level. This study identified a large number of miRNAs, including the miR-183/96/182 cluster, as circadian modulators. We provide a resource for further understanding the role of miRNAs in the circadian network and highlight the importance of miRNAs as a genome-wide layer of circadian clock regulation.
Collapse
Affiliation(s)
- Lili Zhou
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Caitlyn Miller
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
| | - Loren J Miraglia
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121
| | - Angelica Romero
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121
| | - Ludovic S Mure
- Salk Institute for Biological Studies, La Jolla, CA 92037
| | | | - Steve A Kay
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089;
| |
Collapse
|
23
|
Xu S, Coku A, Muraleedharan CK, Harajli A, Mishulin E, Dahabra C, Choi J, Garcia WJ, Webb K, Birch D, Goetz K, Li W. Mutation Screening in the miR-183/96/182 Cluster in Patients With Inherited Retinal Dystrophy. Front Cell Dev Biol 2020; 8:619641. [PMID: 33425925 PMCID: PMC7785829 DOI: 10.3389/fcell.2020.619641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal dystrophy (IRD) is a heterogenous blinding eye disease and affects more than 200,000 Americans and millions worldwide. By far, 270 protein-coding genes have been identified to cause IRD when defective. However, only one microRNA (miRNA), miR-204, has been reported to be responsible for IRD when a point-mutation occurs in its seed sequence. Previously, we identified that a conserved, polycistronic, paralogous miRNA cluster, the miR-183/96/182 cluster, is highly specifically expressed in all photoreceptors and other sensory organs; inactivation of this cluster in mice resulted in syndromic IRD with multi-sensory defects. We hypothesized that mutations in the miR-183/96/182 cluster in human cause IRD. To test this hypothesis, we perform mutation screening in the pre-miR-183, -96, -182 in >1000 peripheral blood DNA samples of patients with various forms of IRD. We identified six sequence variants, three in pre-miR-182 and three in pre-miR-96. These variants are in the pre-miRNA-182 or -96, but not in the mature miRNAs, and are unlikely to be the cause of the IRD in these patients. In spite of this, the nature and location of these sequence variants in the pre-miRNAs suggest that some may have impact on the biogenesis and maturation of miR-182 or miR-96 and potential roles in the susceptibility to diseases. Although reporting on negative results so far, our study established a system for mutation screening in the miR-183/96/182 cluster in human for a continued effort to unravel and provides deeper insight into the potential roles of miR-183/96/182 cluster in human diseases.
Collapse
Affiliation(s)
- Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ardian Coku
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Chithra K. Muraleedharan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ali Harajli
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eric Mishulin
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Chafic Dahabra
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Joanne Choi
- Class of 2020, School of Medicine, Wayne State University, Detroit, MI, United States
| | - William J. Garcia
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kaylie Webb
- Retina Foundation of the Southwest, Dallas, TX, United States
| | - David Birch
- Retina Foundation of the Southwest, Dallas, TX, United States
| | - Kerry Goetz
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Weifeng Li
- Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Lewis MA, Di Domenico F, Ingham NJ, Prosser HM, Steel KP. Hearing impairment due to Mir183/96/182 mutations suggests both loss and gain of function effects. Dis Model Mech 2020; 14:dmm.047225. [PMID: 33318051 PMCID: PMC7903918 DOI: 10.1242/dmm.047225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/03/2020] [Indexed: 01/13/2023] Open
Abstract
The microRNA miR-96 is important for hearing, as point mutations in humans and mice result in dominant progressive hearing loss. Mir96 is expressed in sensory cells along with Mir182 and Mir183, but the roles of these closely-linked microRNAs are as yet unknown. Here we analyse mice carrying null alleles of Mir182, and of Mir183 and Mir96 together to investigate their roles in hearing. We found that Mir183/96 heterozygous mice had normal hearing and homozygotes were completely deaf with abnormal hair cell stereocilia bundles and reduced numbers of inner hair cell synapses at four weeks old. Mir182 knockout mice developed normal hearing then exhibited progressive hearing loss. Our transcriptional analyses revealed significant changes in a range of other genes, but surprisingly there were fewer genes with altered expression in the organ of Corti of Mir183/96 null mice compared with our previous findings in Mir96 Dmdo mutants, which have a point mutation in the miR-96 seed region. This suggests the more severe phenotype of Mir96 Dmdo mutants compared with Mir183/96 mutants, including progressive hearing loss in Mir96 Dmdo heterozygotes, is likely to be mediated by the gain of novel target genes in addition to the loss of its normal targets. We propose three mechanisms of action of mutant miRNAs; loss of targets that are normally completely repressed, loss of targets whose transcription is normally buffered by the miRNA, and gain of novel targets. Any of these mechanisms could lead to a partial loss of a robust cellular identity and consequent dysfunction.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Neil J Ingham
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Haydn M Prosser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
25
|
Yang D, Wu X, Zhou Y, Wang W, Wang Z. The microRNA/TET3/REST axis is required for olfactory globose basal cell proliferation and male behavior. EMBO Rep 2020; 21:e49431. [PMID: 32677323 DOI: 10.15252/embr.201949431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
In the main olfactory epithelium (MOE), new olfactory sensory neurons (OSNs) are persistently generated to replace lost neurons throughout an organism's lifespan. This process predominantly depends on the proliferation of globose basal cells (GBCs), the actively dividing stem cells in the MOE. Here, by using CRISPR/Cas9 and RNAi coupled with adeno-associated virus (AAV) nose delivery approaches, we demonstrated that knockdown of miR-200b/a in the MOE resulted in supernumerary Mash1-marked GBCs and decreased numbers of differentiated OSNs, accompanied by abrogation of male behaviors. We further showed that in the MOE, miR-200b/a targets the ten-eleven translocation methylcytosine dioxygenase TET3, which cooperates with RE1-silencing transcription factor (REST) to exert their functions. Deficiencies including proliferation, differentiation, and behaviors illustrated in miR-200b/a knockdown mice were rescued by suppressing either TET3 or REST. Our work describes a mechanism of coordination of GBC proliferation and differentiation in the MOE and olfactory male behaviors through miR-200/TET3/REST signaling.
Collapse
Affiliation(s)
- Dong Yang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xiangbo Wu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yanfen Zhou
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Weina Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Zhenshan Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
26
|
Sun L, Chen X, Jin Z. Emerging roles of non‐coding RNAs in retinal diseases: A review. Clin Exp Ophthalmol 2020; 48:1085-1101. [PMID: 32519377 DOI: 10.1111/ceo.13806] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Lan‐Fang Sun
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Xue‐Jiao Chen
- Laboratory of Stem Cell and Retinal Regeneration, Division of Ophthalmic Genetics, The Eye Hospital Wenzhou Medical University Wenzhou China
| | - Zi‐Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory Beijing China
| |
Collapse
|
27
|
Zhang CJ, Xiang L, Chen XJ, Wang XY, Wu KC, Zhang BW, Chen DF, Jin GH, Zhang H, Chen YC, Liu WQ, Li ML, Ma Y, Jin ZB. Ablation of Mature miR-183 Leads to Retinal Dysfunction in Mice. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 32176259 PMCID: PMC7401733 DOI: 10.1167/iovs.61.3.12] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The microRNA cluster miR-183C, which includes miR-183 and two other genes, is critical for multiple sensory systems. In mouse retina, removal of this cluster results in photoreceptor defects in polarization, phototransduction, and outer segment elongation. However, the individual roles of the three components of this cluster are not clearly known. We studied the separate role of mouse miR-183 in in vivo. Methods miR-183 knockout mice were generated using the CRISPR/Cas9 genome-editing system. Electroretinography were carried out to investigate the changes of retinal structures and function. miR-183 was overexpressed by subretinal adeno-associated virus (AAV) injection in vivo. Rnf217, a target of miR-183 was overexpressed by cell transfection of the photoreceptor-derived cell line 661W in vitro. RNA sequencing and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to compare the gene expression changes in AAV-injected mice and transfected cells. Results The miR-183 knockout mice showed progressively attenuated electroretinogram responses. Over- or under-expression of Rnf217, a direct target of miR-183, misregulated expression of cilia-related BBSome genes. Rnf217 overexpression also led to compromised electroretinography responses in WT mice, indicating that it may contribute to functional abnormalities in miR-183 knockout mice. Conclusions miR-183 is essential for mouse retinal function mediated directly and indirectly through Rnf217 and cilia-related genes. Our findings provide valuable insights into the explanation and analysis of the regulatory role of the individual miR-183 in miR-183C.
Collapse
|
28
|
Kiltschewskij DJ, Geaghan MP, Cairns MJ. Characterising the Transcriptional and Translational Impact of the Schizophrenia-Associated miR-1271-5p in Neuronal Cells. Cells 2020; 9:cells9041014. [PMID: 32325711 PMCID: PMC7226585 DOI: 10.3390/cells9041014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNA (miRNA) coordinate complex gene expression networks in cells that are vital to support highly specialised morphology and cytoarchitecture. Neurons express a rich array of miRNA, including many that are specific or enriched, which have important functions in this context and implications for neurological conditions. While the neurological function of a number of brain-derived miRNAs have been examined thoroughly, the mechanistic basis of many remain obscure. In this case, we investigated the transcriptome-wide impact of schizophrenia-associated miR-1271-5p in response to bidirectional modulation. Alteration of miR-1271-5p induced considerable changes to mRNA abundance and translation, which spanned a diverse range of cellular functions, including directly targeted genes strongly associated with cytoskeletal dynamics and cellular junctions. Mechanistic analyses additionally revealed that upregulation of miR-1271-5p predominantly repressed mRNAs through destabilisation, wherein 3'UTR and coding sequence binding sites exhibited similar efficacy. Knockdown, however, produced no discernible trend in target gene expression and strikingly resulted in increased expression of the highly conserved miR-96-5p, which shares an identical seed region with miR-1271-5p, suggesting the presence of feedback mechanisms that sense disruptions to miRNA levels. These findings indicate that, while bidirectional regulation of miR-1271-5p results in substantial remodeling of the neuronal transcriptome, these effects are not inverse in nature. In addition, we provide further support for the idea that destabilisation of mRNA is the predominant mechanism by which miRNAs regulate complementary mRNAs.
Collapse
Affiliation(s)
- Dylan J. Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia; (D.J.K.); (M.P.G.)
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
| | - Michael P. Geaghan
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia; (D.J.K.); (M.P.G.)
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, Australia; (D.J.K.); (M.P.G.)
- Centre for Brain and Mental Health Research, Hunter Medical Research Institute, New Lambton 2305, Australia
- Schizophrenia Research Institute, Randwick 2031, Australia
- Correspondence: ; Tel.: +61-02-4921-8670
| |
Collapse
|
29
|
Chen J, Liu Z, Yan H, Xing W, Mi W, Wang R, Li W, Chen F, Qiu J, Zha D. miR-182 prevented ototoxic deafness induced by co-administration of kanamycin and furosemide in rats. Neurosci Lett 2020; 723:134861. [PMID: 32105765 DOI: 10.1016/j.neulet.2020.134861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/12/2022]
Abstract
Ototoxic drugs may induce auditory sensory hair cell loss and permanent deafness; however, there is still no effective treatments or prevention strategies for this side effect. A recent study found that microRNA182 (miR-182) protected cochlear hair cells from ototoxic drug-induced apoptosis in vitro. However, it remains unclear whether miR-182 can protect drug-induced deafness in vivo. In this study, we overexpressed cochlear miR-182 in Sprague-Dawley rats by trans-round window niche delivery of miR-182 mimics. The rats subsequently received intraperitoneal injections of kanamycin and furosemide to induce acute cochlear outer hair cell death and permanent deafness. Auditory brainstem response tests showed that miR-182 attenuated permanent threshold shifts. Consistent with this result, miR-182 reduced the loss of outer hair cells and missing stereocilia. miR-182 treatment also increased the level of phosphoinositide-3 kinase regulatory subunit p85α in the outer hair cells after co-administration of kanamycin and furosemide. Our findings suggest that miR-182 has powerful protective potential against ototoxic drug-induced acute auditory sensory hair cell loss and permanent deafness.
Collapse
Affiliation(s)
- Jun Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Zhenzhen Liu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Hui Yan
- Department of Otolaryngology, the Bingtuan Hospital, the Second Affiliated Hospital, School of Medicine, Shihezi University, Xinjiang 830002, China
| | - Wei Xing
- Department of Otolaryngology, Sanitarial District, Lintong Sanatorium of Lanzhou Military Region, Xi'an, 710600, China
| | - Wenjuan Mi
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Renfeng Wang
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Wei Li
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Fuquan Chen
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China
| | - Jianhua Qiu
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China.
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an710032, China.
| |
Collapse
|
30
|
Overexpression of MiR-183/96/182 Triggers Retina-Like Fate in Human Bone Marrow-Derived Mesenchymal Stem Cells (hBMSCs) in Culture. J Ophthalmol 2019; 2019:2454362. [PMID: 31885884 PMCID: PMC6927023 DOI: 10.1155/2019/2454362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/30/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Retinal degeneration is considered as a condition ensued by different blinding disorders such as retinitis pigmentosa, age-related macular degeneration, and diabetic retinopathy, which can cause loss of photoreceptor cells and also lead to significant vision deficiencies. Although there is no efficient treatment in this domain, transplantation of stem cells has been regarded as a therapeutic approach for retinal degeneration. Thus, the purpose of this study was to analyze the potential of human bone marrow-derived mesenchymal stem cells (hBMSCs) to differentiate into photoreceptor cells via transfection of microRNA (miRNA) in vitro for regenerative medicine purposes. To this end, miR-183/96/182 cluster was transfected into hBMSCs; then, qRT-PCR was performed to measure the expression levels of miR-183/96/182 cluster and some retina-specific neuronal genes such as OTX2, NRL, PKCα, and recoverin. CRX and rhodopsin (RHO) levels were also measured through qRT-PCR and immunocytochemistry, and subsequently, cellular change morphology was detected. The findings showed no changes in the morphology of the given cells, and the expression of the neuroretinal genes such as OTX2, NRL, and PKCα. Moreover, recoverin was upregulated upon miR-183/-96/-182 overexpression in cultured hBMSCs. Ectopic overexpression of the miR-183 cluster could further increase the expression of CRX and RHO at the messenger RNA (mRNA) and protein levels. Furthermore, the data indicated that the miR-183 cluster could serve as a crucial function in photoreceptor cell differentiation. In fact, miRNAs could be assumed as potential targets to exploit silent neuronal differentiation. Ultimately, it was suggested that in vitro overexpression of miR-183 cluster could trigger reprogramming of the hBMSCs to retinal neuron fate, especially photoreceptor cells.
Collapse
|
31
|
Xu S, Hazlett LD. MicroRNAs in Ocular Infection. Microorganisms 2019; 7:microorganisms7090359. [PMID: 31533211 PMCID: PMC6780979 DOI: 10.3390/microorganisms7090359] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding, regulatory RNA molecules and constitute a newly recognized, important layer of gene-expression regulation at post-transcriptional levels. miRNAs quantitatively fine tune the expression of their downstream genes in a cell type- and developmental stage-specific fashion. miRNAs have been proven to play important roles in the normal development and function as well as in the pathogenesis of diseases in all tissues and organ systems. miRNAs have emerged as new therapeutic targets and biomarkers for treatment and diagnosis of various diseases. Although miRNA research in ocular infection remains in its early stages, a handful of pioneering studies have provided insight into the roles of miRNAs in the pathogenesis of parasitic, fungal, bacterial, and viral ocular infections. Here, we review the current status of research in miRNAs in several major ocular infectious diseases. We predict that the field of miRNAs in ocular infection will greatly expand with the discovery of novel miRNA-involved molecular mechanisms that will inform development of new therapies and identify novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
32
|
Wu KC, Chen XJ, Jin GH, Wang XY, Yang DD, Li YP, Xiang L, Zhang BW, Zhou GH, Zhang CJ, Jin ZB. Deletion of miR-182 Leads to Retinal Dysfunction in Mice. Invest Ophthalmol Vis Sci 2019; 60:1265-1274. [PMID: 30924851 DOI: 10.1167/iovs.18-24166] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose MicroRNA-182 (miR-182) is abundantly expressed in mammalian retinas; however, the association between miR-182 and retinal function remains unclear. In this study, we explored whether miR-182 contributes to functional decline in retinas using a miR-182 depleted mouse. Methods Electroretinogram (ERG) amplitudes at different ages were measured in miR-182 knockout (KO) mice. The thickness and lamination of retinas were assessed using a color fundus camera and high-resolution optical coherence tomography. Expression levels of key photoreceptor-specific genes and the miR-183/96/182 cluster (miR-183C) were quantified using quantitative real-time PCR. RNA sequencing and light-induced damage were carried out to observe the changes in the retinal transcriptome and sensitivity to light damage in the miR-182 KO mice. Results The ERG recording reveals that the ERG response amplitude decreased both at early and later ages when compared with control littermates. The expression of some key photoreceptor-specific genes was down-regulated with deletion of miR-182 in retina. RNA sequencing indicated that some biological processes of visual system were affected, and the numbers of potential target genes of miR-182 were presented in the mouse retina using bioinformatics analysis. The miR-182 KO mice were characterized by progressively losing the outer segment after being treated with light-damage exposure. The thickness and lamination of retina as well as compensatory expression of miR-183C showed no apparent changes in retina of miR-182 KO mice under normal laboratory lighting condition. Conclusions Our findings provided new insights into the relationship between the miR-182 and retinal development and revealed that miR-182 may play a critical role in maintaining retinal function.
Collapse
Affiliation(s)
- Kun-Chao Wu
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xue-Jiao Chen
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Guang-Hui Jin
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yun Wang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dan-Dan Yang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yan-Ping Li
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lue Xiang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bo-Wen Zhang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gao-Hui Zhou
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chang-Jun Zhang
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zi-Bing Jin
- Lab for Stem Cell & Retinal Regeneration, Institute of Stem Cell Research, State Key Laboratory of Ophthalmology, Optometry and Vision Science, National Center for International Research in Regenerative Medicine and Neurogenetics, Wenzhou Medical University, Wenzhou, China.,Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
33
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
34
|
Genomic non-redundancy of the mir-183/96/182 cluster and its requirement for hair cell maintenance. Sci Rep 2019; 9:10302. [PMID: 31311951 PMCID: PMC6635406 DOI: 10.1038/s41598-019-46593-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/02/2019] [Indexed: 01/02/2023] Open
Abstract
microRNAs are important regulators of gene expression. In the retina, the mir-183/96/182 cluster is of particular interest due to its robust expression and studies in which loss of the cluster caused photoreceptor degeneration. However, it is unclear which of the three miRNAs in the cluster are ultimately required in photoreceptors, whether each may have independent, contributory roles, or whether a single miRNA from the cluster compensates for the loss of another. These are important questions that will not only help us to understand the role of these particular miRNAs in the retina, but will deepen our understanding of how clustered microRNAs evolve and operate. To that end, we have developed a complete panel of single, double, and triple mir-183/96/182 mutant zebrafish. While the retinas of all mutant animals were normal, the triple mutants exhibited acute hair cell degeneration which corresponded with impaired swimming and death at a young age. By measuring the penetrance of this phenotype in each mutant line, we determine which of the three miRNAs in the cluster are necessary and/or sufficient to ensure normal hair cell development and function.
Collapse
|
35
|
Aldunate EZ, Di Foggia V, Di Marco F, Hervas LA, Ribeiro JC, Holder DL, Patel A, Jannini TB, Thompson DA, Martinez-Barbera JP, Pearson RA, Ali RR, Sowden JC. Conditional Dicer1 depletion using Chrnb4-Cre leads to cone cell death and impaired photopic vision. Sci Rep 2019; 9:2314. [PMID: 30783126 PMCID: PMC6381178 DOI: 10.1038/s41598-018-38294-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/03/2018] [Indexed: 12/16/2022] Open
Abstract
Irreversible photoreceptor cell death is a major cause of blindness in many retinal dystrophies. A better understanding of the molecular mechanisms underlying the progressive loss of photoreceptor cells remains therefore crucial. Abnormal expression of microRNAs (miRNAs) has been linked with the aetiology of a number of retinal dystrophies. However, their role during the degenerative process remains poorly understood. Loss of cone photoreceptors in the human macula has the greatest impact on sight as these cells provide high acuity vision. Using a Chrnb4-cre; Dicerflox/flox conditional knockout mouse (Dicer CKO) to delete Dicer1 from cone cells, we show that cone photoreceptor cells degenerate and die in the Dicer-deleted retina. Embryonic eye morphogenesis appeared normal in Dicer CKO mice. Cone photoreceptor abnormalities were apparent by 3 weeks of age, displaying either very short or absent outer segments. By 4 months 50% of cones were lost and cone function was impaired as assessed by electroretinography (ERG). RNAseq analysis of the Dicer CKO retina revealed altered expression of genes involved in the visual perception pathway. These data show that loss of Dicer1 leads to early-onset cone cell degeneration and suggest that Dicer1 is essential for cone photoreceptor survival and homeostasis.
Collapse
Affiliation(s)
- Eduardo Zabala Aldunate
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Valentina Di Foggia
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Fabiana Di Marco
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Laura Abelleira Hervas
- UCL Institute of Ophthalmology, Department of Genetics, London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Joana Claudio Ribeiro
- UCL Institute of Ophthalmology, Department of Genetics, London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Daniel L Holder
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Aara Patel
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Tommaso B Jannini
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Dorothy A Thompson
- Clinical and Academic Department of Ophthalmology Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Juan Pedro Martinez-Barbera
- Developmental Biology of Birth Defects Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Rachael A Pearson
- UCL Institute of Ophthalmology, Department of Genetics, London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Robin R Ali
- UCL Institute of Ophthalmology, Department of Genetics, London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Jane C Sowden
- Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
36
|
Muraleedharan CK, McClellan SA, Ekanayaka SA, Francis R, Zmejkoski A, Hazlett LD, Xu S. The miR-183/96/182 Cluster Regulates Macrophage Functions in Response to Pseudomonas aeruginosa. J Innate Immun 2019; 11:347-358. [PMID: 30625496 DOI: 10.1159/000495472] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
Macrophages (Mϕ) are an important component of the innate immune system; they play critical roles in the first line of defense to pathogen invasion and modulate adaptive immunity. MicroRNAs (miRNAs) are a newly recognized, important level of gene expression regulation. However, their roles in the regulation of Mϕ and the immune system are still not fully understood. In this report, we provide evidence that the conserved miR-183/96/182 cluster (miR-183/96/182) modulates Mϕ function in their production of reactive nitrogen (RNS) and oxygen species (ROS) and their inflammatory response to Pseudomonas aeruginosa (PA) infection and/or lipopolysaccharide (LPS) treatment. We show that knockdown of miR-183/96/182 results in decreased production of multiple proinflammatory cytokines in response to PA or LPS treatment in Mϕ-like Raw264.7 cells. Consistently, peritoneal Mϕ from miR-183/96/182-knockout versus wild-type mice are less responsive to PA or LPS, although their basal levels of proinflammatory cytokines are increased. In addition, overexpression of miR-183/96/182 results in decreased production of nitrite and ROS in Raw264.7 cells. We also provide evidence that DAP12 and Nox2 are downstream target genes of miR-183/96/182. These data suggest that miR-183/96/182 imposes global regulation on various aspects of Mϕ function through different downstream target genes.
Collapse
Affiliation(s)
- Chithra K Muraleedharan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sandamali A Ekanayaka
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Rebecca Francis
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Alex Zmejkoski
- Irvin D. Reed Honors College, Wayne State University, Detroit, Michigan, USA
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA,
| |
Collapse
|
37
|
The microRNA-183/96/182 Cluster is Essential for Stereociliary Bundle Formation and Function of Cochlear Sensory Hair Cells. Sci Rep 2018; 8:18022. [PMID: 30575790 PMCID: PMC6303392 DOI: 10.1038/s41598-018-36894-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
The microRNA (miR)-183/96/182 cluster plays important roles in the development and functions of sensory organs, including the inner ear. Point-mutations in the seed sequence of miR-96 result in non-syndromic hearing loss in both mice and humans. However, the lack of a functionally null mutant has hampered the evaluation of the cluster’s physiological functions. Here we have characterized a loss-of-function mutant mouse model (miR-183CGT/GT), in which the miR-183/96/182 cluster gene is inactivated by a gene-trap (GT) construct. The homozygous mutant mice show profound congenital hearing loss with severe defects in cochlear hair cell (HC) maturation, alignment, hair bundle formation and the checkboard-like pattern of the cochlear sensory epithelia. The stereociliary bundles retain an immature appearance throughout the cochlea at postnatal day (P) 3 and degenerate soon after. The organ of Corti of mutant newborn mice has no functional mechanoelectrical transduction. Several predicted target genes of the miR-183/96/182 cluster that are known to play important roles in HC development and function, including Clic5, Rdx, Ezr, Rac1, Myo1c, Pvrl3 and Sox2, are upregulated in the cochlea. These results suggest that the miR-183/96/182 cluster is essential for stereociliary bundle formation, morphogenesis and function of the cochlear HCs.
Collapse
|
38
|
Shu P, Wu C, Liu W, Ruan X, Liu C, Hou L, Zeng Y, Fu H, Wang M, Chen P, Zhang X, Yin B, Yuan J, Qiang B, Peng X. The spatiotemporal expression pattern of microRNAs in the developing mouse nervous system. J Biol Chem 2018; 294:3444-3453. [PMID: 30578296 DOI: 10.1074/jbc.ra118.004390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) control various biological processes by inducing translational repression and transcript degradation of the target genes. In mammalian development, knowledge of the timing and expression pattern of each miRNA is important to determine and predict its function in vivo So far, no systematic analyses of the spatiotemporal expression pattern of miRNAs during mammalian neurodevelopment have been performed. Here, we isolated total RNAs from the embryonic dorsal forebrain of mice at different developmental stages and subjected these RNAs to microarray analyses. We selected 279 miRNAs that exhibited high signal intensities or ascending or descending expression dynamics. To ascertain the expression patterns of these miRNAs, we used locked nucleic acid (LNA)-modified miRNA probes in in situ hybridization experiments. Multiple miRNAs exhibited spatially restricted/enriched expression in anatomically distinct regions or in specific neuron subtypes in the embryonic brain and spinal cord, such as in the ventricular area, the striatum (and other basal ganglia), hypothalamus, choroid plexus, and the peripheral nervous system. These findings provide new insights into the expression and function of miRNAs during the development of the nervous system and could be used as a resource to facilitate studies in neurodevelopment.
Collapse
Affiliation(s)
- Pengcheng Shu
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Chao Wu
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Wei Liu
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Xiangbin Ruan
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Chang Liu
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Lin Hou
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Yi Zeng
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Hongye Fu
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Ming Wang
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Pan Chen
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Xiaoling Zhang
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Bin Yin
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Jiangang Yuan
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Boqin Qiang
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and
| | - Xiaozhong Peng
- From the Departments of Molecular Biology and Biochemistry, The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Medical Primates Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005 and .,the Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
39
|
Role of microRNAs in inner ear development and hearing loss. Gene 2018; 686:49-55. [PMID: 30389561 DOI: 10.1016/j.gene.2018.10.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
The etiology of hearing loss tends to be multi-factorial and affects a significant proportion of the global population. Despite the differences in etiology, a common physical pathological change that leads to hearing loss is damage to the mechanosensory hair cells of the inner ear. MicroRNAs (miRNAs) have been shown to play a role in inner ear development and thus, may play a role in the development or prevention of hearing loss. In this paper, we review the mechanism of action of miRNAs in the auditory system. We present an overview about the role of miRNAs in inner ear development, summarize the current research on the role of miRNAs in gene regulation, and discuss the effects of both miRNA mutations as well as overexpression. We discuss the crucial role of miRNAs in ensuring normal physiological development of the inner ear. Any deviation from the proper function of miRNA in the cochlea seems to contribute to deleterious damage to the structure of the auditory system and subsequently results in hearing loss. As interest for miRNA research increases, this paper serves as a platform to review current understandings and postulate future avenues for research. A better knowledge about the role of miRNA in the auditory system will help in developing novel treatment modalities for restoring hearing function based on regeneration of damaged inner ear hair cells.
Collapse
|
40
|
Meng C, Guo Z, Li D, Li H, Zhou J, Wen D, Luo B. miR-183 and miR-141 in lesion tissues are potential risk factors for poor prognosis in patients with infected abdominal aortic aneurysm. Exp Ther Med 2018; 16:4695-4699. [PMID: 30542422 PMCID: PMC6257808 DOI: 10.3892/etm.2018.6733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 09/04/2018] [Indexed: 12/25/2022] Open
Abstract
The expression levels of micro ribonucleic acid-183 (miR-183) and miR-141 in the lesion tissues of infected abdominal aortic aneurysm (IAAA) and their relationship with prognosis were investigated. Thirty-six patients with IAAA admitted and who underwent vascular surgery in People's Hospital of Shenzhen from June 2003 to June 2013 were selected. Reverse transcription polymerase chain reaction (RT-PCR) was utilized to detect the expression levels of miR-183 and miR-141 in lesion tissues and adjacent tissues 1 cm away from the aneurysm in 36 patients with IAAA. The relationship between the expression levels of miR-183 and miR-141 as well as the clinicopathological features of patients with IAAA were analyzed, and the factors influencing the prognosis of IAAA were analyzed by univariate and multiva-riate analysis. The expression levels of miR-183 and miR-141 were significantly downregulated in the lesions of patients with IAAA, and miR-183 and miR-141 levels in the lesion tissues of the IAAA patients were significantly lower than those in the adjacent tissues (P<0.05). The expression levels of miR-183 and miR-141 were not related to sex, age, history of hypertension, and alcoholism (P>0.05), but they were related to smoking history or aneurysm size (P<0.05). The overall survival rate of patients with IAAA was 41.6% (15/36). The multivariate analysis found that aneurysm size, low expression of miR-183, and low expression of miR-141 were independent factors affecting the prognosis of patients with IAAA. In conclusion, the expression levels of miR-183 and miR-141 in the lesion tissues of IAAA are low, and the lower the expression level is, the worse the prognosis gets. miR-183 and miR-141 can be used as predictors of prognosis in patients with IAAA.
Collapse
Affiliation(s)
- Chunying Meng
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, Shenzhen, Guangdong 518020, P.R. China
| | - Zeheng Guo
- Out-patient Department, Futian District Maternal and Child Health Hospital of Shenzhen City, Shenzhen, Guangdong 518045, P.R. China
| | - Dagang Li
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, Shenzhen, Guangdong 518020, P.R. China
| | - Hanwei Li
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, Shenzhen, Guangdong 518020, P.R. China
| | - Jun Zhou
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, Shenzhen, Guangdong 518020, P.R. China
| | - Dingguo Wen
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, Shenzhen, Guangdong 518020, P.R. China
| | - Bin Luo
- Department of Cardiovascular Surgery, Jinan University 2nd Clinical Medicine College People's Hospital of Shenzhen, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
41
|
Non-coding RNAs in retinal development and function. Hum Genet 2018; 138:957-971. [DOI: 10.1007/s00439-018-1931-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/24/2018] [Indexed: 12/12/2022]
|
42
|
Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T. Transcriptional and Epigenetic Control of Mammalian Olfactory Epithelium Development. Mol Neurobiol 2018. [PMID: 29532253 DOI: 10.1007/s12035-018-0987-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration. Many factors, including transcription and epigenetic factors, have been identified as key regulators of the expression of such requisite genes to permit normal OE morphogenesis. Typically, specific interactive regulatory networks established between transcription and epigenetic factors/cofactors orchestrate histogenesis in the embryonic and adult OE. Hence, investigation of these regulatory networks critical for OE development promises to disclose strategies that may be employed in manipulating the stepwise transition of olfactory precursor cells to become fully differentiated and functional neuronal and non-neuronal cell types. Such strategies potentially offer formidable means of replacing injured or degenerated neural cells as therapeutics for nervous system perturbations. This review recapitulates the developmental cellular diversity of the olfactory neuroepithelium and discusses findings on how the precise and cooperative molecular control by transcriptional and epigenetic machinery is indispensable for OE ontogeny.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Eman Abbas
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| |
Collapse
|
43
|
Zelinger L, Swaroop A. RNA Biology in Retinal Development and Disease. Trends Genet 2018; 34:341-351. [PMID: 29395379 DOI: 10.1016/j.tig.2018.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/28/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
For decades, RNA has served in a supporting role between the genetic carrier (DNA) and the functional molecules (proteins). It is finally time for RNA to take center stage in all aspects of biology. The retina provides a unique opportunity to dissect the molecular underpinnings of neuronal diversity and disease. Transcriptome profiles of the retina and its resident cell types have unraveled unique features of the RNA landscape. The discovery of distinct RNA molecules and the recognition that RNA processing is a major cause of retinal neurodegeneration have prompted the design of biomarkers and novel therapeutic paradigms. We review here RNA biology as it pertains to the retina, emphasizing new avenues for investigations in development and disease.
Collapse
Affiliation(s)
- Lina Zelinger
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
44
|
Schlüter T, Berger C, Rosengauer E, Fieth P, Krohs C, Ushakov K, Steel KP, Avraham KB, Hartmann AK, Felmy F, Nothwang HG. miR-96 is required for normal development of the auditory hindbrain. Hum Mol Genet 2018; 27:860-874. [DOI: 10.1093/hmg/ddy007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/30/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Tina Schlüter
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Christina Berger
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
| | - Elena Rosengauer
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Pascal Fieth
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Constanze Krohs
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen P Steel
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander K Hartmann
- Computational Theoretical Physics Group, Institute of Physics, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Felix Felmy
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians University Munich, 82152 Martinsried, Germany
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hans Gerd Nothwang
- Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
- Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
45
|
Daum JM, Keles Ö, Holwerda SJ, Kohler H, Rijli FM, Stadler M, Roska B. The formation of the light-sensing compartment of cone photoreceptors coincides with a transcriptional switch. eLife 2017; 6:31437. [PMID: 29106373 PMCID: PMC5685475 DOI: 10.7554/elife.31437] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
High-resolution daylight vision is mediated by cone photoreceptors. The molecular program responsible for the formation of their light sensor, the outer segment, is not well understood. We correlated daily changes in ultrastructure and gene expression in postmitotic mouse cones, between birth and eye opening, using serial block-face electron microscopy (EM) and RNA sequencing. Outer segments appeared rapidly at postnatal day six and their appearance coincided with a switch in gene expression. The switch affected over 14% of all expressed genes. Genes that switched off were rich in transcription factors and neurogenic genes. Those that switched on contained genes relevant for cone function. Chromatin rearrangements in enhancer regions occurred before the switch was completed, but not after. We provide a resource comprised of correlated EM, RNAseq, and ATACseq data, showing that the growth of a key compartment of a postmitotic cell involves an extensive switch in gene expression and chromatin accessibility.
Collapse
Affiliation(s)
- Janine M Daum
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Özkan Keles
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sjoerd Jb Holwerda
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Michael Stadler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Insitute of Bioinformatics, Basel, Switzerland
| | - Botond Roska
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland
| |
Collapse
|