1
|
Fan Y, Gao Z, Liang X, Liu C, Zhang W, Dai Y, Geng S, Chen M, Yang Q, Li X, Xie J. Impacts of O 2:CH 4 ratios and CH 4 concentrations on the denitrification and CH 4 oxidations of a novel AME-AD system. ENVIRONMENTAL RESEARCH 2024; 262:119866. [PMID: 39208973 DOI: 10.1016/j.envres.2024.119866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Aerobic methane (CH4) oxidation coupled to denitrification (AME-D) is a promising process for the denitrification of low C/N wastewater. Compared with anaerobic denitrifying bacteria, aerobic denitrifying bacteria may enable AME-D have high denitrification ability under aerobic conditions. This study constructed a novel aerobic methane oxidation coupled to aerobic denitrification (AME-AD) system using the typical aerobic denitrifying bacteria Paracoccus pantotrophus ATCC35512 and the typical aerobic methane oxidizing bacteria Methylosinus trichosporium OB3b. The denitrification and CH4 oxidations of AME-AD with different O2:CH4 ratios (0:1, 0.25:1, 0.5:1, 0.75:1, 1:1 and 1.25:1) and CH4 concentrations (0, 14000, 28000, 42000, 56000 and 70000 mg m-3) were investigated in batch experiments. Higher O2:CH4 ratios can significantly improve the denitrification and CH4 oxidations of the AME-AD (P < 0.05). The treatment with an O2:CH4 ratio of 1.25:1 had the highest denitrification rate (0.036 mg h-1) and highest CH4 oxidation rate (0.20 mg h-1). The CH4 concentration in the headspace was positively correlated with the AME-AD denitrification rate. The calculated CH4/NO3-(mol/mol) in most treatments ranged from 5.76 to 6.84. In addition, excessively high O2 and CH4 concentrations can lead to increased nitrous oxide (N2O) production in AME-AD. The N2O production rate was up to 1.00 μg h-1 when the O2:CH4 was 1.25:1. These results can provide data support for the application of AME-AD for low-C/N wastewater treatment and greenhouse gas emission reduction.
Collapse
Affiliation(s)
- Yujing Fan
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Zhiling Gao
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Xueyou Liang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Chunjing Liu
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China.
| | - Weitao Zhang
- General Husbandry Station of Hebei Province, Shijiazhuang, 050000, PR China
| | - Yufei Dai
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Shicheng Geng
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Miaomiao Chen
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Qing Yang
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Xiang Li
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| | - Jianzhi Xie
- College of Resources and Environmental Sciences, Hebei Agricultural University, Baoding, 071000, PR China; Key Laboratory for Farmland Eco-Environment of Hebei Province, Baoding, 071000, PR China
| |
Collapse
|
2
|
Wigley K, Armstrong C, Smaill SJ, Reid NM, Kiely L, Wakelin SA. Methane cycling in temperate forests. CARBON BALANCE AND MANAGEMENT 2024; 19:37. [PMID: 39438363 PMCID: PMC11515791 DOI: 10.1186/s13021-024-00283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Temperate forest soils are considered significant methane (CH4) sinks, but other methane sources and sinks within these forests, such as trees, litter, deadwood, and the production of volatile organic compounds are not well understood. Improved understanding of all CH4 fluxes in temperate forests could help mitigate CH4 emissions from other sources and improve the accuracy of global greenhouse gas budgets. This review highlights the characteristics of temperate forests that influence CH4 flux and assesses the current understanding of the CH4 cycle in temperate forests, with a focus on those managed for specific purposes. Methane fluxes from trees, litter, deadwood, and soil, as well as the interaction of canopy-released volatile organic compounds on atmospheric methane chemistry are quantified, the processes involved and factors (biological, climatic, management) affecting the magnitude and variance of these fluxes are discussed. Temperate forests are unique in that they are extremely variable due to strong seasonality and significant human intervention. These features control CH4 flux and need to be considered in CH4 budgets. The literature confirmed that temperate planted forest soils are a significant CH4 sink, but tree stems are a small CH4 source. CH4 fluxes from foliage and deadwood vary, and litter fluxes are negligible. The production of volatile organic compounds could increase CH4's lifetime in the atmosphere, but current in-forest measurements are insufficient to determine the magnitude of any effect. For all sources and sinks more research is required into the mechanisms and microbial community driving CH4 fluxes. The variability in CH4 fluxes within each component of the forest, is also not well understood and has led to overestimation of CH4 fluxes when scaling up measurements to a forest or global scale. A roadmap for sampling and scaling is required to ensure that all CH4 sinks and sources within temperate forests are accurately accounted for and able to be included in CH4 budgets and models to ensure accurate estimates of the contribution of temperate planted forests to the global CH4 cycle.
Collapse
Affiliation(s)
| | | | - Simeon J Smaill
- Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand
| | - Nicki M Reid
- Scion, Private Bag 3020, Rotorua, 3046, New Zealand
| | - Laura Kiely
- Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand
| | - Steve A Wakelin
- Scion, P.O. Box 29237, Riccarton, Christchurch, 8440, New Zealand
| |
Collapse
|
3
|
Gafni A, Rubin-Blum M, Murrell C, Vigderovich H, Eckert W, Larke-Mejía N, Sivan O. Survival strategies of aerobic methanotrophs under hypoxia in methanogenic lake sediments. ENVIRONMENTAL MICROBIOME 2024; 19:44. [PMID: 38956741 PMCID: PMC11218250 DOI: 10.1186/s40793-024-00586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Microbial methane oxidation, methanotrophy, plays a crucial role in mitigating the release of the potent greenhouse gas methane from aquatic systems. While aerobic methanotrophy is a well-established process in oxygen-rich environments, emerging evidence suggests their activity in hypoxic conditions. However, the adaptability of these methanotrophs to such environments has remained poorly understood. Here, we explored the genetic adaptability of aerobic methanotrophs to hypoxia in the methanogenic sediments of Lake Kinneret (LK). These LK methanogenic sediments, situated below the oxidic and sulfidic zones, were previously characterized by methane oxidation coupled with iron reduction via the involvement of aerobic methanotrophs. RESULTS In order to explore the adaptation of the methanotrophs to hypoxia, we conducted two experiments using LK sediments as inoculum: (i) an aerobic "classical" methanotrophic enrichment with ambient air employing DNA stable isotope probing (DNA-SIP) and (ii) hypoxic methanotrophic enrichment with repeated spiking of 1% oxygen. Analysis of 16S rRNA gene amplicons revealed the enrichment of Methylococcales methanotrophs, being up to a third of the enriched community. Methylobacter, Methylogaea, and Methylomonas were prominent in the aerobic experiment, while hypoxic conditions enriched primarily Methylomonas. Using metagenomics sequencing of DNA extracted from these experiments, we curated five Methylococcales metagenome-assembled genomes (MAGs) and evaluated the genetic basis for their survival in hypoxic environments. A comparative analysis with an additional 62 Methylococcales genomes from various environments highlighted several core genetic adaptations to hypoxia found in most examined Methylococcales genomes, including high-affinity cytochrome oxidases, oxygen-binding proteins, fermentation-based methane oxidation, motility, and glycogen use. We also found that some Methylococcales, including LK Methylococcales, may denitrify, while metals and humic substances may also serve as electron acceptors alternative to oxygen. Outer membrane multi-heme cytochromes and riboflavin were identified as potential mediators for the utilization of metals and humic material. These diverse mechanisms suggest the ability of methanotrophs to thrive in ecological niches previously thought inhospitable for their growth. CONCLUSIONS Our study sheds light on the ability of enriched Methylococcales methanotrophs from methanogenic LK sediments to survive under hypoxia. Genomic analysis revealed a spectrum of genetic capabilities, potentially enabling these methanotrophs to function. The identified mechanisms, such as those enabling the use of alternative electron acceptors, expand our understanding of methanotroph resilience in diverse ecological settings. These findings contribute to the broader knowledge of microbial methane oxidation and have implications for understanding and potential contribution methanotrophs may have in mitigating methane emissions in various environmental conditions.
Collapse
Affiliation(s)
- Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Maxim Rubin-Blum
- Israel Limnology and Oceanography Research, Tel Shikmona, Haifa, Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | | | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
4
|
He L, Lidstrom ME. Utilisation of low methane concentrations by methanotrophs. Adv Microb Physiol 2024; 85:57-96. [PMID: 39059823 DOI: 10.1016/bs.ampbs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The growing urgency regarding climate change points to methane as a key greenhouse gas for slowing global warming to allow other mitigation measures to take effect. One approach to both decreasing methane emissions and removing methane from air is aerobic methanotrophic bacteria, those bacteria that grow on methane as sole carbon and energy source and require O2. A subset of these methanotrophs is able to grow on methane levels of 1000 parts per million (ppm) and below, and these present an opportunity for developing both environmental- and bioreactor-based methane treatment systems. However, relatively little is known about the traits of such methanotrophs that allow them to grow on low methane concentrations. This review assesses current information regarding how methanotrophs grow on low methane concentrations in the context of developing treatment strategies that could be applied for both decreasing methane emissions and removing methane from air.
Collapse
Affiliation(s)
- Lian He
- Department of Chemical Engineering, University of Washington, Seattle, WA United States
| | - Mary E Lidstrom
- Department of Chemical Engineering, University of Washington, Seattle, WA United States; Department of Microbiology, University of Washington, Seattle, WA United States.
| |
Collapse
|
5
|
Macey MC. Genome-resolved metagenomics identifies novel active microbes in biogeochemical cycling within methanol-enriched soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13246. [PMID: 38575138 PMCID: PMC10994693 DOI: 10.1111/1758-2229.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
Metagenome assembled genomes (MAGs), generated from sequenced 13C-labelled DNA from 13C-methanol enriched soils, were binned using an ensemble approach. This method produced a significantly larger number of higher-quality MAGs compared to direct binning approaches. These MAGs represent both the primary methanol utilizers and the secondary utilizers labelled via cross-feeding and predation on the labelled methylotrophs, including numerous uncultivated taxa. Analysis of these MAGs enabled the identification of multiple metabolic pathways within these active taxa that have climatic relevance relating to nitrogen, sulfur and trace gas metabolism. This includes denitrification, dissimilatory nitrate reduction to ammonium, ammonia oxidation and metabolism of organic sulfur species. The binning of viral sequence data also yielded extensive viral MAGs, identifying active viral replication by both lytic and lysogenic phages within the methanol-enriched soils. These MAGs represent a valuable resource for characterizing biogeochemical cycling within terrestrial environments.
Collapse
Affiliation(s)
- Michael C. Macey
- AstrobiologyOU, Earth, Environment and Ecosystem SciencesThe Open UniversityMilton KeynesUK
| |
Collapse
|
6
|
Lim J, Wehmeyer H, Heffner T, Aeppli M, Gu W, Kim PJ, Horn MA, Ho A. Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture. FEMS Microbiol Ecol 2024; 100:fiae008. [PMID: 38327184 PMCID: PMC10872700 DOI: 10.1093/femsec/fiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function.
Collapse
Affiliation(s)
- Jiyeon Lim
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Helena Wehmeyer
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Tanja Heffner
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Meret Aeppli
- Environmental Engineering Institute IIE-ENAC, Laboratory SOIL, Ecole Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, CH 1950 Sion, Switzerland
| | - Wenyu Gu
- Environmental Engineering Institute IIE-ENAC, Laboratory MICROBE, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Pil Joo Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Adrian Ho
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| |
Collapse
|
7
|
Liu R, Wei Z, Dong W, Wang R, Adams JM, Yang L, Krause SMB. Unraveling the impact of lanthanum on methane consuming microbial communities in rice field soils. Front Microbiol 2024; 15:1298154. [PMID: 38322316 PMCID: PMC10844099 DOI: 10.3389/fmicb.2024.1298154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
The discovery of the lanthanide requiring enzymes in microbes was a significant scientific discovery that opened a whole new avenue of biotechnological research of this important group of metals. However, the ecological impact of lanthanides on microbial communities utilizing methane (CH4) remains largely unexplored. In this study, a laboratory microcosm model experiment was performed using rice field soils with different pH origins (5.76, 7.2, and 8.36) and different concentrations of La3+ in the form of lanthanum chloride (LaCl3). Results clearly showed that CH4 consumption was inhibited by the addition of La3+ but that the response depended on the soil origin and pH. 16S rRNA gene sequencing revealed the genus Methylobacter, Methylosarcina, and Methylocystis as key players in CH4 consumption under La3+ addition. We suggest that the soil microbiome involved in CH4 consumption can generally tolerate addition of high concentrations of La3+, and adjustments in community composition ensured ecosystem functionality over time. As La3+ concentrations increase, the way that the soil microbiome reacts may not only differ within the same environment but also vary when comparing different environments, underscoring the need for further research into this subject.
Collapse
Affiliation(s)
- Ruyan Liu
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ziting Wei
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Wanying Dong
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui Wang
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jonathan M. Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Lin Yang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Sascha M. B. Krause
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Wutkowska M, Tláskal V, Bordel S, Stein LY, Nweze JA, Daebeler A. Leveraging genome-scale metabolic models to understand aerobic methanotrophs. THE ISME JOURNAL 2024; 18:wrae102. [PMID: 38861460 PMCID: PMC11195481 DOI: 10.1093/ismejo/wrae102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidizers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere. Particularly, GEMs helped to elucidate critical metabolic and regulatory pathways of several methanotrophic strains, predicted microbial responses to environmental perturbations, and were used to model metabolic interactions in cocultures. Here, we conducted a systematic review of GEMs exploring aerobic methanotrophy, summarizing recent advances, pointing out weaknesses, and drawing out probable future uses of GEMs to improve our understanding of the ecology of methane oxidizers. We also focus on their potential to unravel causes and consequences when studying interactions of methane-oxidizing bacteria with other methanotrophs or members of microbial communities in general. This review aims to bridge the gap between applied sciences and microbial ecology research on methane oxidizers as model organisms and to provide an outlook for future studies.
Collapse
Affiliation(s)
- Magdalena Wutkowska
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Vojtěch Tláskal
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Valladolid 47011, Spain
- Institute of Sustainable Processes, Valladolid 47011, Spain
| | - Lisa Y Stein
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Justus Amuche Nweze
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Nigeria
| | - Anne Daebeler
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
9
|
Deng Y, Liang C, Zhu X, Zhu X, Chen L, Pan H, Xun F, Tao Y, Xing P. Methylomonadaceae was the active and dominant methanotroph in Tibet lake sediments. ISME COMMUNICATIONS 2024; 4:ycae032. [PMID: 38524764 PMCID: PMC10960969 DOI: 10.1093/ismeco/ycae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024]
Abstract
Methane (CH4), an important greenhouse gas, significantly impacts the local and global climate. Our study focused on the composition and activity of methanotrophs residing in the lakes on the Tibetan Plateau, a hotspot for climate change research. Based on the field survey, the family Methylomonadaceae had a much higher relative abundance in freshwater lakes than in brackish and saline lakes, accounting for ~92% of total aerobic methanotrophs. Using the microcosm sediment incubation with 13CH4 followed by high throughput sequencing and metagenomic analysis, we further demonstrated that the family Methylomonadaceae was actively oxidizing CH4. Moreover, various methylotrophs, such as the genera Methylotenera and Methylophilus, were detected in the 13C-labeled DNAs, which suggested their participation in CH4-carbon sequential assimilation. The presence of CH4 metabolism, such as the tetrahydromethanopterin and the ribulose monophosphate pathways, was identified in the metagenome-assembled genomes of the family Methylomonadaceae. Furthermore, they had the potential to adapt to oxygen-deficient conditions and utilize multiple electron acceptors, such as metal oxides (Fe3+), nitrate, and nitrite, for survival in the Tibet lakes. Our findings highlighted the predominance of Methylomonadaceae and the associated microbes as active CH4 consumers, potentially regulating the CH4 emissions in the Tibet freshwater lakes. These insights contributed to understanding the plateau carbon cycle and emphasized the significance of methanotrophs in mitigating climate change.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Chulin Liang
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xiaomeng Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Xinshu Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Lei Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Hongan Pan
- School of Geography, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Fan Xun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| |
Collapse
|
10
|
Khanongnuch R, Mangayil R, Rissanen AJ. Conversion of methane to organic acids is a widely found trait among gammaproteobacterial methanotrophs of freshwater lake and pond ecosystems. Microbiol Spectr 2023; 11:e0174223. [PMID: 37861333 PMCID: PMC10715148 DOI: 10.1128/spectrum.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Aerobic gammaproteobacterial methanotrophic bacteria (gMOB) play an important role in reducing methane emissions from freshwater ecosystems. In hypoxic conditions prevalent near oxic-anoxic interfaces, gMOB potentially shift their metabolism to fermentation, resulting in the conversion of methane to extracellular organic acids, which would serve as substrates for non-methanotrophic microbes. We intended to assess the prevalence of fermentation traits among freshwater gMOB. Therefore, we isolated two strains representing relevant freshwater gMOB genera, i.e., Methylovulum and Methylomonas, from boreal lakes, experimentally showed that they convert methane to organic acids and demonstrated via metagenomics that the fermentation potential is widely dispersed among lake and pond representatives of these genera. Combined with our recent study showing coherent results from another relevant freshwater gMOB genus, i.e., Methylobacter, we conclude that the conversion of methane to organic acids is a widely found trait among freshwater gMOB, highlighting their role as pivotal mediators of methane carbon into microbial food webs.
Collapse
Affiliation(s)
- Ramita Khanongnuch
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Rahul Mangayil
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Antti Juhani Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
- Natural Resources Institute Finland, Helsinki, Finland
| |
Collapse
|
11
|
Brescia F, Sillo F, Franchi E, Pietrini I, Montesano V, Marino G, Haworth M, Zampieri E, Fusini D, Schillaci M, Papa R, Santamarina C, Vita F, Chitarra W, Nerva L, Petruzzelli G, Mennone C, Centritto M, Balestrini R. The 'microbiome counterattack': Insights on the soil and root-associated microbiome in diverse chickpea and lentil genotypes after an erratic rainfall event. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:459-483. [PMID: 37226644 PMCID: PMC10667653 DOI: 10.1111/1758-2229.13167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Legumes maintain soil fertility thanks to their associated microbiota but are threatened by climate change that causes soil microbial community structural and functional modifications. The core microbiome associated with different chickpea and lentil genotypes was described after an unexpected climatic event. Results showed that chickpea and lentil bulk soil microbiomes varied significantly between two sampling time points, the first immediately after the rainfall and the second 2 weeks later. Rhizobia were associated with the soil of the more productive chickpea genotypes in terms of flower and fruit number. The root-associated bacteria and fungi were surveyed in lentil genotypes, considering that several parcels showed disease symptoms. The metabarcoding analysis revealed that reads related to fungal pathogens were significantly associated with one lentil genotype. A lentil core prokaryotic community common to all genotypes was identified as well as a genotype-specific one. A higher number of specific bacterial taxa and an enhanced tolerance to fungal diseases characterized a lentil landrace compared to the commercial varieties. This outcome supported the hypothesis that locally adapted landraces might have a high recruiting efficiency of beneficial soil microbes.
Collapse
Affiliation(s)
- Francesca Brescia
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Fabiano Sillo
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Elisabetta Franchi
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Ilaria Pietrini
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Vincenzo Montesano
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyBernalda (MT)Italy
| | - Giovanni Marino
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
| | - Matthew Haworth
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
| | - Elisa Zampieri
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Danilo Fusini
- Eni S.p.A.R&D Environmental & Biological LaboratoriesSan Donato MilaneseItaly
| | - Martino Schillaci
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
| | - Roberto Papa
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Chiara Santamarina
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheAnconaItaly
| | - Federico Vita
- Department of Bioscience, Biotechnology and EnvironmentUniversity of Bari Aldo MoroBariItaly
| | - Walter Chitarra
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and EconomicsConeglianoItaly
| | - Luca Nerva
- Research Centre for Viticulture and EnologyCouncil for Agricultural Research and EconomicsConeglianoItaly
| | | | - Carmelo Mennone
- Azienda Pantanello, ALSIA Research Center Metapontum AgrobiosBernalda (MT)Italy
| | - Mauro Centritto
- Institute for Sustainable Plant ProtectionNational Research Council of ItalySesto FiorentinoItaly
- ENI‐CNR Water Research Center ‘Hypatia of Alexandria’ALSIA Research Center Metapontum AgrobiosBernaldaItaly
| | - Raffaella Balestrini
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyTurinItaly
- ENI‐CNR Water Research Center ‘Hypatia of Alexandria’ALSIA Research Center Metapontum AgrobiosBernaldaItaly
| |
Collapse
|
12
|
Pérez G, Krause SMB, Bodelier PLE, Meima-Franke M, Pitombo L, Irisarri P. Interactions between Cyanobacteria and Methane Processing Microbes Mitigate Methane Emissions from Rice Soils. Microorganisms 2023; 11:2830. [PMID: 38137974 PMCID: PMC10745823 DOI: 10.3390/microorganisms11122830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Cyanobacteria play a relevant role in rice soils due to their contribution to soil fertility through nitrogen (N2) fixation and as a promising strategy to mitigate methane (CH4) emissions from these systems. However, information is still limited regarding the mechanisms of cyanobacterial modulation of CH4 cycling in rice soils. Here, we focused on the response of methane cycling microbial communities to inoculation with cyanobacteria in rice soils. We performed a microcosm study comprising rice soil inoculated with either of two cyanobacterial isolates (Calothrix sp. and Nostoc sp.) obtained from a rice paddy. Our results demonstrate that cyanobacterial inoculation reduced CH4 emissions by 20 times. Yet, the effect on CH4 cycling microbes differed for the cyanobacterial strains. Type Ia methanotrophs were stimulated by Calothrix sp. in the surface layer, while Nostoc sp. had the opposite effect. The overall pmoA transcripts of Type Ib methanotrophs were stimulated by Nostoc. Methanogens were not affected in the surface layer, while their abundance was reduced in the sub surface layer by the presence of Nostoc sp. Our results indicate that mitigation of methane emission from rice soils based on cyanobacterial inoculants depends on the proper pairing of cyanobacteria-methanotrophs and their respective traits.
Collapse
Affiliation(s)
- Germán Pérez
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
- Laboratory of Microbiology, Department of Plant Biology, Agronomy Faculty, University of the Republic, Montevideo 12900, Uruguay;
| | - Sascha M. B. Krause
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands or (G.P.); (S.M.B.K.); (M.M.-F.)
| | - Leonardo Pitombo
- Department of Environmental Sciences, Federal University of São Carlos (UFSCar), São Paulo 18052-780, Brazil;
| | - Pilar Irisarri
- Laboratory of Microbiology, Department of Plant Biology, Agronomy Faculty, University of the Republic, Montevideo 12900, Uruguay;
| |
Collapse
|
13
|
Znamínko M, Falteisek L, Vrbická K, Klímová P, Christiansen JR, Jørgensen CJ, Stibal M. Methylotrophic Communities Associated with a Greenland Ice Sheet Methane Release Hotspot. MICROBIAL ECOLOGY 2023; 86:3057-3067. [PMID: 37843656 PMCID: PMC10640400 DOI: 10.1007/s00248-023-02302-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/09/2023] [Indexed: 10/17/2023]
Abstract
Subglacial environments provide conditions suitable for the microbial production of methane, an important greenhouse gas, which can be released from beneath the ice as a result of glacial melting. High gaseous methane emissions have recently been discovered at Russell Glacier, an outlet of the southwestern margin of the Greenland Ice Sheet, acting not only as a potential climate amplifier but also as a substrate for methane consuming microorganisms. Here, we describe the composition of the microbial assemblage exported in meltwater from the methane release hotspot at Russell Glacier and its changes over the melt season and as it travels downstream. We found that a substantial part (relative abundance 27.2% across the whole dataset) of the exported assemblage was made up of methylotrophs and that the relative abundance of methylotrophs increased as the melt season progressed, likely due to the seasonal development of the glacial drainage system. The methylotrophs were dominated by representatives of type I methanotrophs from the Gammaproteobacteria; however, their relative abundance decreased with increasing distance from the ice margin at the expense of type II methanotrophs and/or methylotrophs from the Alphaproteobacteria and Betaproteobacteria. Our results show that subglacial methane release hotspot sites can be colonized by microorganisms that can potentially reduce methane emissions.
Collapse
Affiliation(s)
- Matěj Znamínko
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia.
- Current address: Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Lukáš Falteisek
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Kristýna Vrbická
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Petra Klímová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jesper R Christiansen
- Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | | | - Marek Stibal
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia.
| |
Collapse
|
14
|
Xiao Y, Wu K, Batool SS, Wang Q, Chen H, Zhai X, Yu Z, Huang J. Enzymatic properties of alcohol dehydrogenase PedE_M.s. derived from Methylopila sp. M107 and its broad metal selectivity. Front Microbiol 2023; 14:1191436. [PMID: 37560521 PMCID: PMC10409515 DOI: 10.3389/fmicb.2023.1191436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
As an important metabolic enzyme in methylotrophs, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases play significant roles in the global carbon and nitrogen cycles. In this article, a calcium (Ca2+)-dependent alcohol dehydrogenase PedE_M.s., derived from the methylotroph Methylopila sp. M107 was inserted into the modified vector pCM80 and heterologously expressed in the host Methylorubrum extorquens AM1. Based on sequence analysis, PedE_M.s., a PQQ-dependent dehydrogenase belonging to a methanol/ethanol family, was successfully extracted and purified. Showing by biochemical results, its enzymatic activity was detected as 0.72 U/mg while the Km value was 0.028 mM while employing ethanol as optimal substrate. The activity of PedE_M.s. could be enhanced by the presence of potassium (K+) and calcium (Ca2+), while acetonitrile and certain common detergents have been found to decrease the activity of PedE_M.s.. In addition, its optimum temperature and pH were 30°C and pH 9.0, respectively. Chiefly, as a type of Ca2+-dependent alcohol dehydrogenase, PedE_M.s. maintained 60-80% activity in the presence of 10 mM lanthanides and displayed high affinity for ethanol compared to other PedE-type enzymes. The 3D structure of PedE_M.s. was predicted by AlphaFold, and it had an 8-bladed propeller-like super-barrel. Meanwhile, we could speculate that PedE_M.s. contained the conserved residues Glu213, Asn300, and Asp350 through multiple sequence alignment by Clustal and ESpript. The analysis of enzymatic properties of PedE_M.s. enriches our knowledge of the methanol/ethanol family PQQ-dependent dehydrogenase. This study provides new ideas to broaden the application of alcohol dehydrogenase in alcohol concentration calculation, biosensor preparation, and other industries.
Collapse
Affiliation(s)
- Ying Xiao
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Qingqun Wang
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hao Chen
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xingyu Zhai
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Lee J, Oh Y, Lee ST, Seo YO, Yun J, Yang Y, Kim J, Zhuang Q, Kang H. Soil organic carbon is a key determinant of CH 4 sink in global forest soils. Nat Commun 2023; 14:3110. [PMID: 37253779 DOI: 10.1038/s41467-023-38905-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
Soil organic carbon (SOC) is a primary regulator of the forest-climate feedback. However, its indicative capability for the soil CH4 sink is poorly understood due to the incomplete knowledge of the underlying mechanisms. Therefore, SOC is not explicitly included in the current model estimation of the global forest CH4 sink. Here, using in-situ observations, global meta-analysis, and process-based modeling, we provide evidence that SOC constitutes an important variable that governs the forest CH4 sink. We find that a CH4 sink is enhanced with increasing SOC content on regional and global scales. The revised model with SOC function better reproduces the field observation and estimates a 39% larger global forest CH4 sink (24.27 Tg CH4 yr-1) than the model without considering SOC effects (17.46 Tg CH4 yr-1). This study highlights the role of SOC in the forest CH4 sink, which shall be factored into future global CH4 budget quantification.
Collapse
Affiliation(s)
- Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Youmi Oh
- Global Monitoring Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Sang Tae Lee
- Forest Technology and Management Research Center, National Institute of Forest Science, Gyeonggi, Korea
| | - Yeon Ok Seo
- Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science, Jeju, Korea
| | - Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, Korea
| | - Qianlai Zhuang
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
16
|
Li B, Tao Y, Mao Z, Gu Q, Han Y, Hu B, Wang H, Lai A, Xing P, Wu QL. Iron oxides act as an alternative electron acceptor for aerobic methanotrophs in anoxic lake sediments. WATER RESEARCH 2023; 234:119833. [PMID: 36889095 DOI: 10.1016/j.watres.2023.119833] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Conventional aerobic CH4-oxidizing bacteria (MOB) are frequently detected in anoxic environments, but their survival strategy and ecological contribution are still enigmatic. Here we explore the role of MOB in enrichment cultures under O2 gradients and an iron-rich lake sediment in situ by combining microbiological and geochemical techniques. We found that enriched MOB consortium used ferric oxides as alternative electron acceptors for oxidizing CH4 with the help of riboflavin when O2 was unavailable. Within the MOB consortium, MOB transformed CH4 to low molecular weight organic matter such as acetate for consortium bacteria as a carbon source, while the latter secrete riboflavin to facilitate extracellular electron transfer (EET). Iron reduction coupled to CH4 oxidation mediated by the MOB consortium was also demonstrated in situ, reducing 40.3% of the CH4 emission in the studied lake sediment. Our study indicates how MOBs survive under anoxia and expands the knowledge of this previously overlooked CH4 sink in iron-rich sediments.
Collapse
Affiliation(s)
- Biao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiujin Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yixuan Han
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Anxing Lai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
17
|
Zhu X, Deng Y, Hernández M, Fang J, Xing P, Liu Y. Distinct responses of soil methanotrophy in hummocks and hollows to simulated glacier meltwater and temperature rise in Tibetan glacier foreland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160888. [PMID: 36521618 DOI: 10.1016/j.scitotenv.2022.160888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Glacier foreland soils are known to be essential methane (CH4) consumers. However, global warming and increased glacier meltwater have turned some foreland meadows into swamp meadows. The potential impact of this change on the function of foreland soils in methane consumption remains unclear. Therefore, we collected Tibetan glacier foreland soils in the non-melting season from typical microtopography in swamp meadows (hummock and hollow). Three soil moisture conditions (moist, saturated, and submerged) were set by adding glacier runoff water. Soil samples were then incubated in the laboratory for two weeks at 10 °C and 20 °C. About 5 % of 13CH4/12CH4 was added to the incubation bottles, and daily methane concentrations were measured. DNA stable isotope probing (DNA-SIP) and high-throughput sequencing were combined to target the active methanotroph populations. The results showed that type Ia methanotrophs, including Crenothrix, Methylobacter, and an unclassified Methylomonadaceae cluster, actively oxidized methane at 10 °C and 20 °C. There were distinct responses of methanotrophs to soil moisture rises in hummock and hollow soils, resulting in different methane oxidation potentials. In both hummock and hollow soils, the methane oxidation potential was positively correlated with temperature. Furthermore, saturated hummock soils exhibited the highest methane oxidation potential and methanotroph populations, while submerged hollow soils had the lowest. This suggests that the in-situ hummock soils, generally saturated with water, are more essential than in-situ hollows, typically submerged in water, for alleviating the global warming potential of swamp meadows in the Tibetan glacier foreland during the growing season.
Collapse
Affiliation(s)
- Xinshu Zhu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yongcui Deng
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China.
| | - Marcela Hernández
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, United Kingdom
| | - Jie Fang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Peng Xing
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Lee J, Yun J, Yang Y, Jung JY, Lee YK, Yuan J, Ding W, Freeman C, Kang H. Attenuation of Methane Oxidation by Nitrogen Availability in Arctic Tundra Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2647-2659. [PMID: 36719133 DOI: 10.1021/acs.est.2c05228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
CH4 emission in the Arctic has large uncertainty due to the lack of mechanistic understanding of the processes. CH4 oxidation in Arctic soil plays a critical role in the process, whereby removal of up to 90% of CH4 produced in soils by methanotrophs can occur before it reaches the atmosphere. Previous studies have reported on the importance of rising temperatures in CH4 oxidation, but because the Arctic is typically an N-limited system, fewer studies on the effects of inorganic nitrogen (N) have been reported. However, climate change and an increase of available N caused by anthropogenic activities have recently been reported, which may cause a drastic change in CH4 oxidation in Arctic soils. In this study, we demonstrate that excessive levels of available N in soil cause an increase in net CH4 emissions via the reduction of CH4 oxidation in surface soil in the Arctic tundra. In vitro experiments suggested that N in the form of NO3- is responsible for the decrease in CH4 oxidation via influencing soil bacterial and methanotrophic communities. The findings of our meta-analysis suggest that CH4 oxidation in the boreal biome is more susceptible to the addition of N than in other biomes. We provide evidence that CH4 emissions in Arctic tundra can be enhanced by an increase of available N, with profound implications for modeling CH4 dynamics in Arctic regions.
Collapse
Affiliation(s)
- Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul03722, South Korea
| | - Jeongeun Yun
- School of Civil and Environmental Engineering, Yonsei University, Seoul03722, South Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Seoul03722, South Korea
| | - Ji Young Jung
- Korea Polar Research Institute, Incheon21990, South Korea
| | - Yoo Kyung Lee
- Korea Polar Research Institute, Incheon21990, South Korea
| | - Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Weixin Ding
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, China
| | - Chris Freeman
- School of Natural Sciences, Bangor University, BangorLL57 2UW, U.K
| | - Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul03722, South Korea
| |
Collapse
|
19
|
Cre/ lox-Mediated CRISPRi Library Reveals Core Genome of a Type I Methanotroph Methylotuvimicrobium buryatense 5GB1C. Appl Environ Microbiol 2023; 89:e0188322. [PMID: 36622175 PMCID: PMC9888281 DOI: 10.1128/aem.01883-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Methanotrophs play key roles in global methane cycling and are promising platforms for methane bioconversion. However, major gaps existing in fundamental knowledge undermines understanding of these methane-consuming microorganisms. To associate genes with a phenotype at the genome-wide level, we developed a Cre/lox-mediated method for constructing a large-scale CRISPRi library in a model methanotroph Methylotuvimicrobium buryatense 5GB1C. The efficiency of this Cre mediated integration method was up to a level of 105 CFU/μg DNA. Targeting 4,100 predicted protein-coding genes, our CRISPRi pooled screening uncovered 788 core genes for the growth of strain 5GB1C using methane. The core genes are highly consistent with the gene knockout results, indicating the reliability of the CRISPRi screen. Insights from the core genes include that annotated isozymes generally exist in metabolic pathways and many core genes are hypothetical genes. This work not only provides functional genomic data for both fundamental research and metabolic engineering of methanotrophs, but also offers a method for CRISPRi library construction. IMPORTANCE Due to their key role in methane cycling and their industrial potential, methanotrophs have drawn increasing attention. Genome-wide experimental approaches for gene-phenotype mapping accelerate our understanding and engineering of a bacterium. However, these approaches are still unavailable in methanotrophs. This work has two significant implications. First, the core genes identified here provide functional genetic basics for complete reconstruction of the metabolic network and afford more clues for knowledge gaps. Second, the Cre-mediated knock-in method developed in this work enables large-scale DNA library construction in methanotrophs; the CRISPRi library can be used to screen the genes associated with special culture conditions.
Collapse
|
20
|
Xie R, Takashino M, Igarashi K, Kitagawa W, Kato S. Transcriptional Regulation of Methanol Dehydrogenases in the Methanotrophic Bacterium Methylococcus capsulatus Bath by Soluble and Insoluble Lanthanides. Microbes Environ 2023; 38:ME23065. [PMID: 38092408 PMCID: PMC10728633 DOI: 10.1264/jsme2.me23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
The effects of soluble and insoluble lanthanides on gene expression in Methylococcus capsulatus Bath were investigated. Genes for lanthanide-containing methanol dehydrogenases (XoxF-MDHs) and their calcium-containing counterparts (MxaFI-MDHs) were up- and down-regulated, respectively, by supplementation with soluble lanthanide chlorides, indicating that M. capsulatus has the "lanthanide switch" observed in other methanotrophs. Insoluble lanthanide oxides also induced the lanthanide switch and were dissolved by the spent medium of M. capsulatus, suggesting the presence of lanthanide-chelating compounds. A transcriptome ana-lysis indicated that a gene cluster for the synthesis of an enterobactin-like metal chelator contributed to the dissolution of insoluble lanthanides.
Collapse
Affiliation(s)
- Ruoyun Xie
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Motoko Takashino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Wataru Kitagawa
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Souichiro Kato
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| |
Collapse
|
21
|
Kang H, Lee J, Zhou X, Kim J, Yang Y. The Effects of N Enrichment on Microbial Cycling of Non-CO 2 Greenhouse Gases in Soils-a Review and a Meta-analysis. MICROBIAL ECOLOGY 2022; 84:945-957. [PMID: 34725713 DOI: 10.1007/s00248-021-01911-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Terrestrial ecosystems are typically nitrogen (N) limited, but recent years have witnessed N enrichment in various soil ecosystems caused by human activities such as fossil fuel combustion and fertilizer application. This enrichment may alter microbial processes in soils in a way that would increase the emissions of methane (CH4) and nitrous oxide (N2O), thereby aggravating global climate change. This review focuses on the effects of N enrichment on methanogens and methanotrophs, which play a central role in the dynamics of CH4 at the global scale. We also address the effects of N enrichment on N2O, which is produced in soils mainly by nitrification and denitrification. Overall, N enrichment inhibits methanogenesis in pure culture experiments, while its effects on CH4 oxidation are more complicated. The majority of previous studies reported that N enrichment, especially NH4+ enrichment, inhibits CH4 oxidation, resulting in higher CH4 emissions from soils. However, both activation and neutral responses have also been reported, particularly in rice paddies and landfill sites, which is well reflected in our meta-analysis. In contrast, N enrichment substantially increases N2O emission by both nitrification and denitrification, which increases proportionally to the amount of N amended. Future studies should address the effects of N enrichment on the active microbes of those functional groups at multiple scales along with parameterization of microbial communities for the application to climate models at the global scale.
Collapse
Affiliation(s)
- Hojeong Kang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea.
| | - Jaehyun Lee
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Xue Zhou
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
- College of Agricultural Science and Engineering, Hohai University, Nanjing, China
| | - Jinhyun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| | - Yerang Yang
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Korea
| |
Collapse
|
22
|
Kravchenko IK, Sizov LR, Tikhonova EN, Lysak LV. The Effect of Lanthanum on the Composition of Methanotrophic Community of Sod-Podzolic Soil. Microbiology (Reading) 2022. [DOI: 10.1134/s002626172260135x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Khanongnuch R, Mangayil R, Svenning MM, Rissanen AJ. Characterization and genome analysis of a psychrophilic methanotroph representing a ubiquitous Methylobacter spp. cluster in boreal lake ecosystems. ISME COMMUNICATIONS 2022; 2:85. [PMID: 37938755 PMCID: PMC9723741 DOI: 10.1038/s43705-022-00172-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 10/21/2023]
Abstract
Lakes and ponds are considered as a major natural source of CH4 emissions, particularly during the ice-free period in boreal ecosystems. Aerobic methane-oxidizing bacteria (MOB), which utilize CH4 using oxygen as an electron acceptor, are one of the dominant microorganisms in the CH4-rich water columns. Metagenome-assembled genomes (MAGs) have revealed the genetic potential of MOB from boreal aquatic ecosystems for various microaerobic/anaerobic metabolic functions. However, experimental proof of these functions, i.e., organic acid production via fermentation, by lake MOB is lacking. In addition, psychrophilic (i.e., cold-loving) MOB and their CH4-oxidizing process have rarely been investigated. In this study, we isolated, provided a taxonomic description, and analyzed the genome of Methylobacter sp. S3L5C, a psychrophilic MOB, from a boreal lake in Finland. Based on phylogenomic comparisons to MAGs, Methylobacter sp. S3L5C represented a ubiquitous cluster of Methylobacter spp. in boreal aquatic ecosystems. At optimal temperatures (3-12 °C) and pH (6.8-8.3), the specific growth rates (µ) and CH4 utilization rate were in the range of 0.018-0.022 h-1 and 0.66-1.52 mmol l-1 d-1, respectively. In batch cultivation, the isolate could produce organic acids, and the concentrations were elevated after replenishing CH4 and air into the headspace. Up to 4.1 mM acetate, 0.02 mM malate, and 0.07 mM propionate were observed at the end of the test under optimal operational conditions. The results herein highlight the key role of Methylobacter spp. in regulating CH4 emissions and their potential to provide CH4-derived organic carbon compounds to surrounding heterotrophic microorganisms in cold ecosystems.
Collapse
Affiliation(s)
- Ramita Khanongnuch
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland.
| | - Rahul Mangayil
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland
| | - Mette Marianne Svenning
- Department of Arctic and Marine Biology, UiT, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Antti Juhani Rissanen
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, 33014, Tampere, Finland.
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland.
| |
Collapse
|
24
|
Xu X, Qin Y, Li X, Ma Z, Wu W. Heterogeneity of CH 4-derived carbon induced by O 2:CH 4 mediates the bacterial community assembly processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154442. [PMID: 35288141 DOI: 10.1016/j.scitotenv.2022.154442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
The mechanism by which O2:CH4 controls microbial community assembly in the process of aerobic methane oxidation coupled to denitrification (AMED) remains largely uncharacterized, which hinders the design of engineering microbiomes for the AMED. In this study, the changes in the bacterial community in fed-batch serum bottle reactors under different O2:CH4 ratios were systematically characterized. The ratios of CH4 consumption to the amount of nitrate removal in the treatment with O2:CH4 = 1.5:1, O2:CH4 = 0.5:1, and O2:CH4 = 0.25:1 were 13.1 ± 3.4, 4.7 ± 1.1, and 5.9 ± 3.0 mol-CH4 mol-1-NO3-, respectively. The α-diversity of the bacterial community increased as O2:CH4 decreased. Significantly different selection patterns were found for the high and low O2:CH4 ratios. The coherence process dominated the selection at high O2:CH4 ratios, while the diversification process played a role when O2:CH4 was low. Differences were also observed in the composition of CH4-derived carbon between treatments with O2:CH4 = 1.5:1 and O2:CH4 = 0.5:1. Compared with the treatments with O2:CH4 = 1.5:1, the concentrations of methanol, formaldehyde, acetate, and ethanol in the treatment with O2:CH4 = 0.5:1 were significantly higher, while the concentration of formate was significantly lower. The heterogeneity of CH4-derived carbon induced by O2:CH4 was likely to be responsible for the differences in the selection patterns. Our findings bridge the gaps between the observations of bacterial community perturbations and ecological community assembly theories, highlighting the potential of the bottom-up design approach to improve the nitrate removal rate of the AME-D.
Collapse
Affiliation(s)
- Xingkun Xu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Yong Qin
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China.
| | - Xinyu Li
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China
| | - Zhuang Ma
- Zhejiang Transper Environmental Protection Technology Co., Ltd., Hangzhou 310058, China
| | - Weixiang Wu
- Institute of Environment Pollution Control and Treatment, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Wang J, Chu YX, Schäfer H, Tian G, He R. CS 2 increasing CH 4-derived carbon emissions and active microbial diversity in lake sediments. ENVIRONMENTAL RESEARCH 2022; 208:112678. [PMID: 34999031 DOI: 10.1016/j.envres.2022.112678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Lakes are important methane (CH4) sources to the atmosphere, especially eutrophic lakes with cyanobacterial blooms accompanied by volatile sulfur compound (VSC) emissions. CH4 oxidation is a key strategy to mitigate CH4 emission from lakes. In this study, we characterized the fate of CH4-derived carbon and active microbial communities in lake sediments with CS2 used as a typical VSC, based on the investigation of CH4 and VSC fluxes from Meiliang Bay in Lake Taihu. Stable isotope probing microcosm incubation showed that the efficiency of CH4-derived carbon incorporated into organic matter was 21.1% in the sediment with CS2 existence, which was lower than that without CS2 (27.3%). SO42--S was the main product of CS2 oxidation under aerobic condition, accounting for 59.3-62.7% of the input CS2-S. CS2 and CH4 coexistence led to a decrease of methanotroph and methylotroph abundances and stimulated the production of extracellular polymeric substances. CS2 and its metabolites including total sulfur, SO42- and acid volatile sulfur acted as the main drivers influencing the active microbial community structure in the sediments. Compared with α-proteobacteria methanotrophs, γ-proteobacteria methanotrophs Methylomicrobium, Methylomonas, Crenothrix and Methylosarcina were more dominant in the sediments. CH4-derived carbon mainly flowed into methylotrophs in the first stage. With CH4 consumption, more CH4-derived carbon flowed into non-methylotrophs. CS2 could prompt more CH4-derived carbon flowing into non-methanotrophs and non-methylotrophs, such as sulfur-metabolizing bacteria. These findings can help elucidate the influence of VSCs on microorganisms and provide insights to carbon fluxes from eutrophic lake systems.
Collapse
Affiliation(s)
- Jing Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Xuan Chu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Guangming Tian
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32467-32512. [PMID: 35182344 DOI: 10.1007/s11356-022-19048-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
27
|
Kaupper T, Mendes LW, Poehlein A, Frohloff D, Rohrbach S, Horn MA, Ho A. The methane-driven interaction network in terrestrial methane hotspots. ENVIRONMENTAL MICROBIOME 2022; 17:15. [PMID: 35382875 PMCID: PMC8981696 DOI: 10.1186/s40793-022-00409-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Biological interaction affects diverse facets of microbial life by modulating the activity, diversity, abundance, and composition of microbial communities. Aerobic methane oxidation is a community function, with emergent community traits arising from the interaction of the methane-oxidizers (methanotrophs) and non-methanotrophs. Yet little is known of the spatial and temporal organization of these interaction networks in naturally-occurring complex communities. We hypothesized that the assembled bacterial community of the interaction network in methane hotspots would converge, driven by high substrate availability that favors specific methanotrophs, and in turn influences the recruitment of non-methanotrophs. These environments would also share more co-occurring than site-specific taxa. RESULTS We applied stable isotope probing (SIP) using 13C-CH4 coupled to a co-occurrence network analysis to probe trophic interactions in widespread methane-emitting environments, and over time. Network analysis revealed predominantly unique co-occurring taxa from different environments, indicating distinctly co-evolved communities more strongly influenced by other parameters than high methane availability. Also, results showed a narrower network topology range over time than between environments. Co-occurrence pattern points to Chthoniobacter as a relevant yet-unrecognized interacting partner particularly of the gammaproteobacterial methanotrophs, deserving future attention. In almost all instances, the networks derived from the 13C-CH4 incubation exhibited a less connected and complex topology than the networks derived from the unlabelledC-CH4 incubations, likely attributable to the exclusion of the inactive microbial population and spurious connections; DNA-based networks (without SIP) may thus overestimate the methane-dependent network complexity. CONCLUSION We demonstrated that site-specific environmental parameters more strongly shaped the co-occurrence of bacterial taxa than substrate availability. Given that members of the interactome without the capacity to oxidize methane can exert interaction-induced effects on community function, understanding the co-occurrence pattern of the methane-driven interaction network is key to elucidating community function, which goes beyond relating activity to community composition, abundances, and diversity. More generally, we provide a methodological strategy that substantiates the ecological linkages between potentially interacting microorganisms with broad applications to elucidate the role of microbial interaction in community function.
Collapse
Affiliation(s)
- Thomas Kaupper
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Lucas W Mendes
- Center for Nuclear Energy in Agriculture, University of São Paulo CENA-USP, Piracicaba, SP, Brazil
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, George-August University Göttingen, Grisebachstr. 8, 37077, Göttingen, Germany
| | - Daria Frohloff
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Stephan Rohrbach
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| | - Adrian Ho
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.
| |
Collapse
|
28
|
Sharma K, Park YK, Nadda AK, Banerjee P, Singh P, Raizada P, Banat F, Bharath G, Jeong SM, Lam SS. Emerging chemo-biocatalytic routes for valorization of major greenhouse gases (GHG) into industrial products: A comprehensive review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Qian L, Yu X, Zhou J, Gu H, Ding J, Peng Y, He Q, Tian Y, Liu J, Wang S, Wang C, Shu L, Yan Q, He J, Liu G, Tu Q, He Z. MCycDB: a curated database for comprehensively profiling methane cycling processes of environmental microbiomes. Mol Ecol Resour 2022; 22:1803-1823. [DOI: 10.1111/1755-0998.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Lu Qian
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Jiayin Zhou
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Hang Gu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Jijuan Ding
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Yisheng Peng
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Qiang He
- Department of Civil and Environmental Engineering the University of Tennessee Knoxville TN 37996 USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems School of Life Sciences Xiamen University Xiamen 361005 China
| | - Jihua Liu
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Cheng Wang
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Longfei Shu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Jianguo He
- School of Life Science Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Guangli Liu
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
| | - Qichao Tu
- Institute of Marine Science and Technology Shandong University Qingdao 266237 China
| | - Zhili He
- Environmental Microbiomics Research Center School of Environmental Science and Engineering Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Sun Yat‐sen University Guangzhou 510006 China
- College of Agronomy Hunan Agricultural University Changsha 410128 China
| |
Collapse
|
30
|
Qi X, Yan W, Cao Z, Ding M, Yuan Y. Current Advances in the Biodegradation and Bioconversion of Polyethylene Terephthalate. Microorganisms 2021; 10:39. [PMID: 35056486 PMCID: PMC8779501 DOI: 10.3390/microorganisms10010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.
Collapse
Affiliation(s)
- Xinhua Qi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Wenlong Yan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhibei Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Mingzhu Ding
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (X.Q.); (W.Y.); (Z.C.); (Y.Y.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
31
|
Qi X, Ma Y, Chang H, Li B, Ding M, Yuan Y. Evaluation of PET Degradation Using Artificial Microbial Consortia. Front Microbiol 2021; 12:778828. [PMID: 35003008 PMCID: PMC8733400 DOI: 10.3389/fmicb.2021.778828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 01/30/2023] Open
Abstract
Polyethylene terephthalate (PET) biodegradation is regarded as an environmentally friendly degradation method. In this study, an artificial microbial consortium composed of Rhodococcus jostii, Pseudomonas putida and two metabolically engineered Bacillus subtilis was constructed to degrade PET. First, a two-species microbial consortium was constructed with two engineered B. subtilis that could secrete PET hydrolase (PETase) and monohydroxyethyl terephthalate hydrolase (MHETase), respectively; it could degrade 13.6% (weight loss) of the PET film within 7 days. A three-species microbial consortium was further obtained by adding R. jostii to reduce the inhibition caused by terephthalic acid (TPA), a breakdown product of PET. The weight of PET film was reduced by 31.2% within 3 days, achieving about 17.6% improvement compared with the two-species microbial consortium. Finally, P. putida was introduced to reduce the inhibition caused by ethylene glycol (EG), another breakdown product of PET, obtaining a four-species microbial consortium. With the four-species consortium, the weight loss of PET film reached 23.2% under ambient temperature. This study constructed and evaluated the artificial microbial consortia in PET degradation, which demonstrated the great potential of artificial microbial consortia in the utilization of complex substrates, providing new insights for biodegradation of complex polymers.
Collapse
Affiliation(s)
- Xinhua Qi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yuan Ma
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Hanchen Chang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Bingzhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Mingzhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Frontier Science Center for Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
32
|
Multispecies populations of methanotrophic Methyloprofundus and cultivation of a likely dominant species from the Iheya North deep-sea hydrothermal field. Appl Environ Microbiol 2021; 88:e0075821. [PMID: 34788070 PMCID: PMC8788690 DOI: 10.1128/aem.00758-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Methyloprofundus clade is represented by uncultivated methanotrophic bacterial endosymbionts of deep-sea bathymodiolin mussels, but only a single free-living species has been cultivated to date. This study reveals the existence of free-living Methyloprofundus variants in the Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough. A clade-targeted amplicon analysis of the particulate methane monooxygenase gene (pmoA) detected 647 amplicon sequence variants (ASVs) of the Methyloprofundus clade in microbial communities newly formed in in situ colonization systems. Such systems were deployed at colonies of bathymodiolin mussels and a galatheoid crab in diffuse-flow areas. These ASVs were classified into 161 species-like groups. The proportion of the species-like groups representing endosymbionts of mussels was unexpectedly low. A methanotrophic bacterium designated INp10, a likely dominant species in the Methyloprofundus population in this field, was enriched in a biofilm formed in a methane-fed cultivation system operated at 10°C. Genomic characterization with the gene transcription data set of INp10 from the biofilm suggested traits advantageous to niche competition in environments, such as mobility, chemotaxis, biofilm formation, offensive and defensive systems, and hypoxia tolerance. The notable metabolic traits that INp10 shares with some Methyloprofundus members are the use of lanthanide-dependent XoxF as the sole methanol dehydrogenase due to the absence of the canonical MxaFI, the glycolytic pathway using fructose-6-phosphate aldolase instead of fructose-1,6-bisphosphate aldolase, and the potential to perform partial denitrification from nitrate under oxygen-limited conditions. These findings help us better understand the ecological strategies of this possibly widespread marine-specific methanotrophic clade. IMPORTANCE The Iheya North deep-sea hydrothermal field in the mid-Okinawa Trough is characterized by abundant methane derived from organic-rich sediments and diverse chemosynthetic animal species, including those harboring methanotrophic bacterial symbionts, such as bathymodiolin mussels Bathymodiolus japonicus and “Bathymodiolus” platifrons and a galatheoid crab, Shinkaia crosnieri. Symbiotic methanotrophs have attracted significant attention, and yet free-living methanotrophs in this environment have not been studied in detail. We focused on the free-living Methyloprofundus spp. that thrive in this hydrothermal field and identified an unexpectedly large number of species-like groups in this clade. Moreover, we enriched and characterized a methanotroph whose genome sequence indicated that it corresponds to a new species in the genus Methyloprofundus. This species might be a dominant member of the indigenous Methyloprofundus population. New information on free-living Methyloprofundus populations suggests that the hydrothermal field is a promising locale at which to investigate the adaptive capacity and associated genetic diversity of Methyloprofundus spp.
Collapse
|
33
|
Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. mBio 2021; 12:e0170821. [PMID: 34544276 PMCID: PMC8546591 DOI: 10.1128/mbio.01708-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methane-oxidizing bacterium Methylacidimicrobium thermophilum AP8 thrives in acidic geothermal ecosystems that are characterized by high degassing of methane (CH4), H2, H2S, and by relatively high lanthanide concentrations. Lanthanides (atomic numbers 57 to 71) are essential in a variety of high-tech devices, including mobile phones. Remarkably, the same elements are actively taken up by methanotrophs/methylotrophs in a range of environments, since their XoxF-type methanol dehydrogenases require lanthanides as a metal cofactor. Lanthanide-dependent enzymes seem to prefer the lighter lanthanides (lanthanum, cerium, praseodymium, and neodymium), as slower methanotrophic/methylotrophic growth is observed in medium supplemented with only heavier lanthanides. Here, we purified XoxF1 from the thermoacidophilic methanotroph Methylacidimicrobium thermophilum AP8, which was grown in medium supplemented with neodymium as the sole lanthanide. The neodymium occupancy of the enzyme is 94.5% ± 2.0%, and through X-ray crystallography, we reveal that the structure of the active site shows interesting differences from the active sites of other methanol dehydrogenases, such as an additional aspartate residue in close proximity to the lanthanide. Nd-XoxF1 oxidizes methanol at a maximum rate of metabolism (Vmax) of 0.15 ± 0.01 μmol · min-1 · mg protein-1 and an affinity constant (Km) of 1.4 ± 0.6 μM. The structural analysis of this neodymium-containing XoxF1-type methanol dehydrogenase will expand our knowledge in the exciting new field of lanthanide biochemistry. IMPORTANCE Lanthanides comprise a group of 15 elements with atomic numbers 57 to 71 that are essential in a variety of high-tech devices, such as mobile phones, but were considered biologically inert for a long time. The biological relevance of lanthanides became evident when the acidophilic methanotroph Methylacidiphilum fumariolicum SolV, isolated from a volcanic mud pot, could only grow when lanthanides were supplied to the growth medium. We expanded knowledge in the exciting and rapidly developing field of lanthanide biochemistry by the purification and characterization of a neodymium-containing methanol dehydrogenase from a thermoacidophilic methanotroph.
Collapse
|
34
|
Takeuchi M, Yoshioka H. Acetate excretion by a methanotroph, Methylocaldum marinum S8, under aerobic conditions. Biosci Biotechnol Biochem 2021; 85:2326-2333. [PMID: 34459486 DOI: 10.1093/bbb/zbab150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) often coexist with methylotrophs that utilize methanol excreted by methanotrophs. Recently, we found that a facultative methylotroph, Methyloceanibacter caenitepidi Gela4T, possibly utilizes acetate rather than methanol in the coculture with a methanotroph, Methylocaldum marinum S8. Here, we examined the effects of oxygen concentrations on growth of and acetate excretion by M. marinum S8 in pure culture and the coculture with M. caenitepidi Gela4T. M. marinum S8 excreted acetate during the exponential growth phase not only under microaerobic (O2 concentrations of 3.5%-6%) but also under aerobic (O2 concentrations of 20%-31%) conditions. RNA-Seq analyses of M. marinum S8 cells grown under aerobic conditions suggested that phosphoketolase and acetate kinase were candidate genes involved in acetate production. Nonmethylotrophic bacteria, Cupriavidus necator NBRC 102504, could grow when cocultured with M. marinum S8, also supporting the existence of methanol-independent cross-feeding from M. marinum S8 under aerobic conditions.
Collapse
Affiliation(s)
- Mio Takeuchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Midorigaoka, Ikeda, Osaka, Japan
| | - Hideyoshi Yoshioka
- Institute for Geo-resources and Environments, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki, Japan
| |
Collapse
|
35
|
Yun J, Crombie AT, Ul Haque MF, Cai Y, Zheng X, Wang J, Jia Z, Murrell JC, Wang Y, Du W. Revealing the community and metabolic potential of active methanotrophs by targeted metagenomics in the Zoige wetland of the Tibetan Plateau. Environ Microbiol 2021; 23:6520-6535. [PMID: 34390603 DOI: 10.1111/1462-2920.15697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023]
Abstract
The Zoige wetland of the Tibetan Plateau is one of the largest alpine wetlands in the world and a major emission source of methane. Methane oxidation by methanotrophs can counteract the global warming effect of methane released in the wetlands. Understanding methanotroph activity, diversity and metabolism at the molecular level can guide the isolation of the uncultured microorganisms and inform strategy-making decisions and policies to counteract global warming in this unique ecosystem. Here we applied DNA stable isotope probing using 13 C-labelled methane to label the genomes of active methanotrophs, examine the methane oxidation potential and recover metagenome-assembled genomes (MAGs) of active methanotrophs. We found that gammaproteobacteria of type I methanotrophs are responsible for methane oxidation in the wetland. We recovered two phylogenetically novel methanotroph MAGs distantly related to extant Methylobacter and Methylovulum. They belong to type I methanotrophs of gammaproteobacteria, contain both mxaF and xoxF types of methanol dehydrogenase coding genes, and participate in methane oxidation via H4 MPT and RuMP pathways. Overall, the community structure of active methanotrophs and their methanotrophic pathways revealed by DNA-SIP metagenomics and retrieved methanotroph MAGs highlight the importance of methanotrophs in suppressing methane emission in the wetland under the scenario of global warming.
Collapse
Affiliation(s)
- Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andrew T Crombie
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 10049, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
36
|
Crombie AT. The effect of lanthanum on growth and gene expression in a facultative methanotroph. Environ Microbiol 2021; 24:596-613. [PMID: 34320271 PMCID: PMC9291206 DOI: 10.1111/1462-2920.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
The biological importance of lanthanides has only recently been identified, initially as the active site metal of the alternative methanol dehydrogenase (MDH) Xox‐MDH. So far, the effect of lanthanide (Ln) has only been studied in relatively few organisms. This work investigated the effects of Ln on gene transcription and protein expression in the facultative methanotroph Methylocella silvestris BL2, a widely distributed methane‐oxidizing bacterium with the unique ability to grow not just on methane but also on other typical components of natural gas, ethane and propane. Expression of calcium‐ or Ln‐dependent MDH was controlled by Ln (the lanthanide switch) during growth on one‐, two‐ or three‐carbon substrates, and Ln imparted a considerable advantage during growth on propane, a novel result extending the importance of Ln to consumers of this component of natural gas. Two Xox‐MDHs were expressed and regulated by Ln in M. silvestris, but interestingly Ln repressed rather than induced expression of the second Xox‐MDH. Despite the metabolic versatility of M. silvestris, no other alcohol dehydrogenases were expressed, and in double‐mutant strains lacking genes encoding both Ca‐ and Ln‐dependent MDHs (mxaF and xoxF5 or xoxF1), growth on methanol and ethanol appeared to be enabled by expression of the soluble methane monooxygenase.
Collapse
Affiliation(s)
- Andrew T Crombie
- School of Biological Science, University of East Anglia, Norwich, NR4 7TJ, UK.,School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
37
|
Praeg N, Schachner I, Schuster L, Illmer P. Carbon-dependent growth, community structure and methane oxidation performance of a soil-derived methanotrophic mixed culture. FEMS Microbiol Lett 2021; 368:6035239. [PMID: 33320954 DOI: 10.1093/femsle/fnaa212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Soil-borne methane-oxidizing microorganisms act as a terrestrial methane (CH4) sink and are potentially useful in decreasing global CH4 emissions. Understanding the ecophysiology of methanotrophs is crucial for a thorough description of global carbon cycling. Here, we report the in situ balance of soils from abandoned landfills, meadows and wetlands, their capacities to produce and oxidize CH4 at laboratory-scale and the isolation of a soil-borne methanotrophic-heterotrophic mixed culture that was used for carbon (C1 and C2) feeding experiments. We showed that even with similar soil properties, the in situ CH4 balance depends on land-use. Different soils had different potentials to adapt to increased CH4 availability, leading to the highest CH4 oxidation capacities for landfill and wetland soils. The most efficient mixed culture isolated from the landfill was dominated by the methanotrophs Methylobacter sp. and Methylosinus sp., which were accompanied by Variovorax sp. and Pseudomonas sp. and remained active in oxidizing CH4 when supplied with additional C-sources. The ratios between type I and type II methanotrophs and between methanotrophic and heterotrophic bacteria changed when C-sources were altered. A significant effect of the application of the mixed culture on the CH4 oxidation of soils was established but the extent varied depending on soil type.
Collapse
Affiliation(s)
- Nadine Praeg
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Iris Schachner
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Lisa Schuster
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| | - Paul Illmer
- Universität Innsbruck, Department of Microbiology, Technikerstrasse 25d, A-6020 Innsbruck, Austria
| |
Collapse
|
38
|
Wu N, Li Z, Meng S, Wu F. Soil properties and microbial community in the rhizosphere of Populus alba var. pyramidalis along a chronosequence. Microbiol Res 2021; 250:126812. [PMID: 34246038 DOI: 10.1016/j.micres.2021.126812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/06/2020] [Accepted: 05/03/2021] [Indexed: 11/28/2022]
Abstract
By maintaining soil structure and quality, soil microbial communities usually play important role in many forest ecosystem processes, including ecological succession. Understanding changes in the microbial communities of areas afforested with stands of different ages is of interest in ecology. Populus alba var. pyramidalis Bunge has been widely planted in Northwest China for ecological restoration. Rhizospheric soil samples were collected from 4-, 9-, 15-, 25- and 30-year-old plantations of P. alba to measure soil characteristics and soil microbial community diversity using Illumina MiSeq sequencing. The soil nutrition concentration and enzymatic activities decreased with depth of soil layer increased. In terms of stand age, alkaline phosphatase and dehydrogenase and the contents of nitrate N, available P and soil organic content (SOC) increased gradually. According to Illumina MiSeq sequencing results, the fungal and bacterial community structure varied with stand age, and diversity of fungi was less than bacteria. With increasing stand age, fungal community diversity indexes first increased and then decreased, peaked at 25y or 30y. RDA results suggested that soil available P and nitrate N were the most important factors governing fungal community structure, while available P contributed significantly to the variance of the bacterial community. Structural equation modelling (SEM) results indicated soil available P, nitrate N and SOC contents largely explained the shift in the microbial community structure along the cultivation chronosequence, and soil enzyme activities were related with changes in microbial community. Our results illustrated that the successional changes in microbial communities in the P. alba plantations can largely be attributed to changes in soil nutrition level along the chronosequence.
Collapse
Affiliation(s)
- Na Wu
- Institute of Applied Biotechnology, School of Life Science, Shanxi Datong University, Datong, 037009, Shanxi, China
| | - Zhen Li
- Institute of Applied Biotechnology, School of Life Science, Shanxi Datong University, Datong, 037009, Shanxi, China.
| | - Sen Meng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, 510520, Guangdong, China
| | - Fei Wu
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| |
Collapse
|
39
|
Sarmiento-Pavía PD, Sosa-Torres ME. Bioinorganic insights of the PQQ-dependent alcohol dehydrogenases. J Biol Inorg Chem 2021; 26:177-203. [PMID: 33606117 DOI: 10.1007/s00775-021-01852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Among the several alcohol dehydrogenases, PQQ-dependent enzymes are mainly found in the α, β, and γ-proteobacteria. These proteins are classified into three main groups. Type I ADHs are localized in the periplasm and contain one Ca2+-PQQ moiety, being the methanol dehydrogenase (MDH) the most representative. In recent years, several lanthanide-dependent MDHs have been discovered exploding the understanding of the natural role of lanthanide ions. Type II ADHs are localized in the periplasm and possess one Ca2+-PQQ moiety and one heme c group. Finally, type III ADHs are complexes of two or three subunits localized in the cytoplasmic membrane and possess one Ca2+-PQQ moiety and four heme c groups, and in one of these proteins, an additional [2Fe-2S] cluster has been discovered recently. From the bioinorganic point of view, PQQ-dependent alcohol dehydrogenases have been revived recently mainly due to the discovery of the lanthanide-dependent enzymes. Here, we review the three types of PQQ-dependent ADHs with special focus on their structural features and electron transfer processes. The PQQ-Alcohol dehydrogenases are classified into three main groups. Type I and type II ADHs are located in the periplasm, while type III ADHs are in the cytoplasmic membrane. ADH-I have a Ca-PQQ or a Ln-PQQ, ADH-II a Ca-PQQ and one heme-c and ADH-III a Ca-PQQ and four hemes-c. This review focuses on their structural features and electron transfer processes.
Collapse
Affiliation(s)
- Pedro D Sarmiento-Pavía
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Martha E Sosa-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
40
|
Featherston ER, Mattocks JA, Tirsch JL, Cotruvo JA. Heterologous expression, purification, and characterization of proteins in the lanthanome. Methods Enzymol 2021; 650:119-157. [PMID: 33867019 DOI: 10.1016/bs.mie.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recent work has revealed that certain lanthanides-in particular, the more earth-abundant, lighter lanthanides-play essential roles in pyrroloquinoline quinone (PQQ) dependent alcohol dehydrogenases from methylotrophic and non-methylotrophic bacteria. More recently, efforts of several laboratories have begun to identify the molecular players (the lanthanome) involved in selective uptake, recognition, and utilization of lanthanides within the cell. In this chapter, we present protocols for the heterologous expression in Escherichia coli, purification, and characterization of many of the currently known proteins that comprise the lanthanome of the model facultative methylotroph, Methylorubrum extorquens AM1. In addition to the methanol dehydrogenase XoxF, these proteins include the associated c-type cytochrome, XoxG, and solute binding protein, XoxJ. We also present new, streamlined protocols for purification of the highly selective lanthanide-binding protein, lanmodulin, and a solute binding protein for PQQ, PqqT. Finally, we discuss simple, spectroscopic methods for determining lanthanide- and PQQ-binding stoichiometry of proteins. We envision that these protocols will be useful to investigators identifying and characterizing novel members of the lanthanome in many organisms.
Collapse
Affiliation(s)
- Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Jonathan L Tirsch
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
41
|
Ho A, Mendes LW, Lee HJ, Kaupper T, Mo Y, Poehlein A, Bodelier PLE, Jia Z, Horn MA. Response of a methane-driven interaction network to stressor intensification. FEMS Microbiol Ecol 2021; 96:5898668. [PMID: 32857837 DOI: 10.1093/femsec/fiaa180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
Microorganisms may reciprocally select for specific interacting partners, forming a network with interdependent relationships. The methanotrophic interaction network, comprising methanotrophs and non-methanotrophs, is thought to modulate methane oxidation and give rise to emergent properties beneficial for the methanotrophs. Therefore, microbial interaction may become relevant for community functioning under stress. However, empirical validation of the role and stressor-induced response of the interaction network remains scarce. Here, we determined the response of a complex methane-driven interaction network to a stepwise increase in NH4Cl-induced stress (0.5-4.75 g L-1, in 0.25-0.5 g L-1 increments) using enrichment of a naturally occurring complex community derived from a paddy soil in laboratory-scale incubations. Although ammonium and intermediates of ammonium oxidation are known to inhibit methane oxidation, methanotrophic activity was unexpectedly detected even in incubations with high ammonium levels, albeit rates were significantly reduced. Sequencing analysis of the 16S rRNA and pmoA genes consistently revealed divergent communities in the reference and stressed incubations. The 16S rRNA-based co-occurrence network analysis revealed that NH4Cl-induced stress intensification resulted in a less complex and modular network, likely driven by less stable interaction. Interestingly, the non-methanotrophs formed the key nodes, and appear to be relevant members of the community. Overall, stressor intensification unravels the interaction network, with adverse consequences for community functioning.
Collapse
Affiliation(s)
- Adrian Ho
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Lucas W Mendes
- Center of Nuclear Energy in Agriculture, University of São Paulo (CENA-USP), Avenida Centenario 303, 13416-000, Piracicaba-SP, Brazil
| | - Hyo Jung Lee
- Department of Biology, Kunsan National University, 558 Daehak-ro, Gunsan-si 54150, Republic of Korea
| | - Thomas Kaupper
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Yongliang Mo
- Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Xuan-Wu District, Nanjing 210008, China
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Xuan-Wu District, Nanjing 210008, China
| | - Marcus A Horn
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
42
|
Fritts RK, McCully AL, McKinlay JB. Extracellular Metabolism Sets the Table for Microbial Cross-Feeding. Microbiol Mol Biol Rev 2021; 85:e00135-20. [PMID: 33441489 PMCID: PMC7849352 DOI: 10.1128/mmbr.00135-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transfer of nutrients between cells, or cross-feeding, is a ubiquitous feature of microbial communities with emergent properties that influence our health and orchestrate global biogeochemical cycles. Cross-feeding inevitably involves the externalization of molecules. Some of these molecules directly serve as cross-fed nutrients, while others can facilitate cross-feeding. Altogether, externalized molecules that promote cross-feeding are diverse in structure, ranging from small molecules to macromolecules. The functions of these molecules are equally diverse, encompassing waste products, enzymes, toxins, signaling molecules, biofilm components, and nutrients of high value to most microbes, including the producer cell. As diverse as the externalized and transferred molecules are the cross-feeding relationships that can be derived from them. Many cross-feeding relationships can be summarized as cooperative but are also subject to exploitation. Even those relationships that appear to be cooperative exhibit some level of competition between partners. In this review, we summarize the major types of actively secreted, passively excreted, and directly transferred molecules that either form the basis of cross-feeding relationships or facilitate them. Drawing on examples from both natural and synthetic communities, we explore how the interplay between microbial physiology, environmental parameters, and the diverse functional attributes of extracellular molecules can influence cross-feeding dynamics. Though microbial cross-feeding interactions represent a burgeoning field of interest, we may have only begun to scratch the surface.
Collapse
Affiliation(s)
- Ryan K Fritts
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - James B McKinlay
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
43
|
Recovery in methanotrophic activity does not reflect on the methane-driven interaction network after peat mining. Appl Environ Microbiol 2021; 87:AEM.02355-20. [PMID: 33355115 PMCID: PMC8090869 DOI: 10.1128/aem.02355-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic methanotrophs are crucial in ombrotrophic peatlands, driving the methane and nitrogen cycles. Peat mining adversely affects the methanotrophs, but activity and community composition/abundances may recover after restoration. Considering that the methanotrophic activity and growth are significantly stimulated in the presence of other microorganisms, the methane-driven interaction network, encompassing methanotrophs and non-methanotrophs (i.e., methanotrophic interactome), may also be relevant in conferring community resilience. Yet, little is known of the response and recovery of the methanotrophic interactome to disturbances. Here, we determined the recovery of the methanotrophic interactome as inferred by a co-occurrence network analysis, comparing a pristine and restored peatland. We coupled a DNA-based stable isotope probing (SIP) approach using 13C-CH4 to a co-occurrence network analysis derived from the 13C-enriched 16S rRNA gene sequences to relate the response in methanotrophic activity to the structuring of the interaction network. Methanotrophic activity and abundances recovered after peat restoration since 2000. 'Methylomonaceae' was the predominantly active methanotrophs in both peatlands, but differed in the relative abundance of Methylacidiphilaceae and Methylocystis However, bacterial community composition was distinct in both peatlands. Likewise, the methanotrophic interactome was profoundly altered in the restored peatland. Structuring of the interaction network after peat mining resulted in the loss of complexity and modularity, indicating a less connected and efficient network, which may have consequences in the event of recurring/future disturbances. Therefore, determining the response of the methane-driven interaction network, in addition to relating methanotrophic activity to community composition/abundances, provided a more comprehensive understanding of the resilience of the methanotrophs.Importance The resilience and recovery of microorganisms from disturbances are often determined with regard to their activity and community composition/abundances. Rarely has the response of the network of interacting microorganisms been considered, despite accumulating evidence showing that microbial interaction modulates community functioning. Comparing the methane-driven interaction network of a pristine and restored peatland, our findings revealed that the metabolically active microorganisms were less connected and formed less modular 'hubs' in the restored peatland, indicative of a less complex network which may have consequences with recurring disturbances and environmental changes. This also suggests that the resilience and full recovery in the methanotrophic activity and abundances do not reflect on the interaction network. Therefore, it is relevant to consider the interaction-induced response, in addition to documenting changes in activity and community composition/abundances, to provide a comprehensive understanding of the resilience of microorganisms to disturbances.
Collapse
|
44
|
Picone N, Blom P, Wallenius AJ, Hogendoorn C, Mesman R, Cremers G, Gagliano AL, D'Alessandro W, Quatrini P, Jetten MSM, Pol A, Op den Camp HJM. Methylacidimicrobium thermophilum AP8, a Novel Methane- and Hydrogen-Oxidizing Bacterium Isolated From Volcanic Soil on Pantelleria Island, Italy. Front Microbiol 2021; 12:637762. [PMID: 33643272 PMCID: PMC7907005 DOI: 10.3389/fmicb.2021.637762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Favara Grande is a geothermal area located on Pantelleria Island, Italy. The area is characterized high temperatures in the top layer of the soil (60°C), low pH (3–5) and hydrothermal gas emissions mainly composed of carbon dioxide (CO2), methane (CH4), and hydrogen (H2). These geothermal features may provide a suitable niche for the growth of chemolithotrophic thermoacidophiles, including the lanthanide-dependent methanotrophs of the phylum Verrucomicrobia. In this study, we started enrichment cultures inoculated with soil of the Favara Grande at 50 and 60°C with CH4 as energy source and medium containing sufficient lanthanides at pH 3 and 5. From these cultures, a verrucomicrobial methanotroph could be isolated via serial dilution and floating filters techniques. The genome of strain AP8 was sequenced and based on phylogenetic analysis we propose to name this new species Methylacidimicrobium thermophilum AP8. The transcriptome data at μmax (0.051 ± 0.001 h−1, doubling time ~14 h) of the new strain showed a high expression of the pmoCAB2 operon encoding the membrane-bound methane monooxygenase and of the gene xoxF1, encoding the lanthanide-dependent methanol dehydrogenase. A second pmoCAB operon and xoxF2 gene were not expressed. The physiology of strain AP8 was further investigated and revealed an optimal growth in a pH range of 3–5 at 50°C, representing the first thermophilic strain of the genus Methylacidimicrobium. Moreover, strain AP8 had a KS(app) for methane of 8 ± 1 μM. Beside methane, a type 1b [NiFe] hydrogenase enabled hydrogen oxidation at oxygen concentrations up to 1%. Taken together, our results expand the knowledge on the characteristics and adaptations of verrucomicrobial methanotrophs in hydrothermal environments and add a new thermophilic strain to the genus Methylacidimicrobium.
Collapse
Affiliation(s)
- Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Pieter Blom
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Anna J Wallenius
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Carmen Hogendoorn
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Rob Mesman
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | | | - Paola Quatrini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
45
|
Adaptive laboratory evolution of methylotrophic Escherichia coli enables synthesis of all amino acids from methanol-derived carbon. Appl Microbiol Biotechnol 2021; 105:869-876. [PMID: 33404828 DOI: 10.1007/s00253-020-11058-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Recent attempts to create synthetic Escherichia coli methylotrophs identified that de novo biosynthesis of amino acids, in the presence of methanol, presents significant challenges in achieving autonomous methylotrophic growth. Previously engineered methanol-dependent strains required co-utilization of stoichiometric amounts of co-substrates and methanol. As such, these strains could not be evolved to grow on methanol alone. In this work, we have explored an alternative approach to enable biosynthesis of all amino acids from methanol-derived carbon in minimal media without stoichiometric coupling. First, we identified that biosynthesis of threonine was limiting the growth of our methylotrophic E. coli. To address this, we performed adaptive laboratory evolution to generate a strain that grew efficiently in minimal medium with methanol and threonine. Methanol assimilation and growth of the evolved strain were analyzed, and, interestingly, we found that the evolved strain synthesized all amino acids, including threonine, from methanol-derived carbon. The evolved strain was then further engineered through overexpression of an optimized threonine biosynthetic pathway. We show that the resulting methylotrophic E. coli strain has a methanol-dependent growth phenotype with homoserine as co-substrate. In contrast to previous methanol-dependent strains, co-utilization of homoserine is not stoichiometrically linked to methanol assimilation. As such, future engineering of this strain and successive adaptive evolution could enable autonomous growth on methanol as the sole carbon source. KEY POINTS: • Adaptive evolution of E. coli enables biosynthesis of all amino acids from methanol. • Overexpression of threonine biosynthesis pathway improves methanol assimilation. • Methanol-dependent growth is seen in minimal media with homoserine as co-substrate.
Collapse
|
46
|
Zhang S, Zhang Z, Xia S, Ding N, Long X, Wang J, Chen M, Ye C, Chen S. Combined genome-centric metagenomics and stable isotope probing unveils the microbial pathways of aerobic methane oxidation coupled to denitrification process under hypoxic conditions. BIORESOURCE TECHNOLOGY 2020; 318:124043. [PMID: 32911364 DOI: 10.1016/j.biortech.2020.124043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Obligate aerobic methanotrophs have been proven to oxidize methane and participate in denitrification under hypoxic conditions. However, this phenomenon and its metabolic mechanism have not been investigated in detail in aerobic methane oxidation coupled to denitrification (AME-D) process. In this study, a type of hypoxic AME-D consortium was enriched and operated for a long time in a CH4-cycling bioreactor with strict anaerobic control and the nitrite removal rate reached approximately 50 mg N/L/d. Metagenomics combined with DNA stable-isotope probing demonstrated that the genus Methylomonas, which constitutes type I aerobic methanotrophs, was the dominant member and contributed to methane oxidation and partial denitrification. Metagenomic binning recovered a near-complete (98%) draft genome affiliated with the family Methylococcaceae containing essential genes that encode nitrite reductase (nirK), nitric oxide reductase (norBC) and hydroxylamine dehydrogenase (hao). Metabolic reconstruction of the selected Methylococcaceae genomes also revealed a potential link between methanotrophy and partial denitrification.
Collapse
Affiliation(s)
- Shici Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaoji Zhang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Ningning Ding
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xien Long
- School of Geographic Sciences, Nantong University, No. 999 Tongjing Road, Nantong 226007, China
| | - Jinsong Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Minquan Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chengsong Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Shaohua Chen
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
47
|
Jung GY, Rhee SK, Han YS, Kim SJ. Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland. Microorganisms 2020; 8:microorganisms8111719. [PMID: 33147874 PMCID: PMC7716213 DOI: 10.3390/microorganisms8111719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023] Open
Abstract
Methane-oxidizing bacteria are crucial players in controlling methane emissions. This study aimed to isolate and characterize a novel wetland methanotroph to reveal its role in the wetland environment based on genomic information. Based on phylogenomic analysis, the isolated strain, designated as B8, is a novel species in the genus Methylocystis. Strain B8 grew in a temperature range of 15 °C to 37 °C (optimum 30–35 °C) and a pH range of 6.5 to 10 (optimum 8.5–9). Methane, methanol, and acetate were used as carbon sources. Hydrogen was produced under oxygen-limited conditions. The assembled genome comprised of 3.39 Mbp and 59.9 mol% G + C content. The genome contained two types of particulate methane monooxygenases (pMMO) for low-affinity methane oxidation (pMMO1) and high-affinity methane oxidation (pMMO2). It was revealed that strain B8 might survive atmospheric methane concentration. Furthermore, the genome had various genes for hydrogenase, nitrogen fixation, polyhydroxybutyrate synthesis, and heavy metal resistance. This metabolic versatility of strain B8 might enable its survival in wetland environments.
Collapse
Affiliation(s)
- Gi-Yong Jung
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Young-Soo Han
- Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
- Correspondence: ; Tel.: +82-42-868-3311; Fax: +82-42-868-3414
| |
Collapse
|
48
|
Zheng Y, Wang H, Yu Z, Haroon F, Hernández ME, Chistoserdova L. Metagenomic Insight into Environmentally Challenged Methane-Fed Microbial Communities. Microorganisms 2020; 8:microorganisms8101614. [PMID: 33092280 PMCID: PMC7589939 DOI: 10.3390/microorganisms8101614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed to investigate, through high-resolution metagenomics and metatranscriptomics, the composition and the trajectories of microbial communities originating from a natural sample, fed exclusively with methane, over 14 weeks of laboratory incubation. This study builds on our prior data, suggesting that multiple functional guilds feed on methane, likely through guild-to-guild carbon transfer, and potentially through intraguild and intraspecies interactions. We observed that, under two simulated dioxygen partial pressures—low versus high—community trajectories were different, with considerable variability among the replicates. In all microcosms, four major functional guilds were prominently present, representing Methylococcaceae (the true methanotrophs), Methylophilaceae (the nonmethanotrophic methylotrophs), Burkholderiales, and Bacteroidetes. Additional functional guilds were detected in multiple samples, such as members of Opitutae, as well as the predatory species, suggesting additional complexity for methane-oxidizing communities. Metatranscriptomic analysis suggested simultaneous expression of the two alternative types of methanol dehydrogenases in both Methylococcaceae and Methylophilaceae, while high expression of the oxidative/nitrosative stress response genes suggested competition for dioxygen among the community members. The transcriptomic analysis further suggested that Burkholderiales likely feed on acetate that is produced by Methylococcaceae under hypoxic conditions, while Bacteroidetes likely feed on biopolymers produced by both Methylococcaceae and Methylophilaceae.
Collapse
Affiliation(s)
- Yue Zheng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Y.Z.); (H.W.)
| | - Huan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Y.Z.); (H.W.)
| | - Zheng Yu
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA;
| | - Fauzi Haroon
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA;
| | - Maria E. Hernández
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA;
- Biotechnological Management of Resources Network, Institute of Ecology A. C., 91070 Xalapa, Mexico
- Correspondence: (M.E.H.); (L.C.)
| | - Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA;
- Correspondence: (M.E.H.); (L.C.)
| |
Collapse
|
49
|
Farhan Ul Haque M, Xu HJ, Murrell JC, Crombie A. Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review. MICROBIOLOGY (READING, ENGLAND) 2020; 166:894-908. [PMID: 33085587 PMCID: PMC7660913 DOI: 10.1099/mic.0.000977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
Collapse
Affiliation(s)
| | - Hui-Juan Xu
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
50
|
Featherston ER, Cotruvo JA. The biochemistry of lanthanide acquisition, trafficking, and utilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118864. [PMID: 32979423 DOI: 10.1016/j.bbamcr.2020.118864] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Lanthanides are relative newcomers to the field of cell biology of metals; their specific incorporation into enzymes was only demonstrated in 2011, with the isolation of a bacterial lanthanide- and pyrroloquinoline quinone-dependent methanol dehydrogenase. Since that discovery, the efforts of many investigators have revealed that lanthanide utilization is widespread in environmentally important bacteria, and parallel efforts have focused on elucidating the molecular details involved in selective recognition and utilization of these metals. In this review, we discuss the particular chemical challenges and advantages associated with biology's use of lanthanides, as well as the currently known lanthano-enzymes and -proteins (the lanthanome). We also review the emerging understanding of the coordination chemistry and biology of lanthanide acquisition, trafficking, and regulatory pathways. These studies have revealed significant parallels with pathways for utilization of other metals in biology. Finally, we discuss some of the many unresolved questions in this burgeoning field and their potentially far-reaching applications.
Collapse
Affiliation(s)
- Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America.
| |
Collapse
|