1
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
2
|
Zhao HH, Ma Z, Guan DS. Causal role of immune cells in obstructive sleep apnea hypopnea syndrome: Mendelian randomization study. World J Clin Cases 2024; 12:1227-1234. [PMID: 38524502 PMCID: PMC10955532 DOI: 10.12998/wjcc.v12.i7.1227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Despite being one of the most prevalent sleep disorders, obstructive sleep apnea hypoventilation syndrome (OSAHS) has limited information on its immunologic foundation. The immunological underpinnings of certain major psychiatric diseases have been uncovered in recent years thanks to the extensive use of genome-wide association studies (GWAS) and genotyping techniques using high-density genetic markers (e.g., SNP or CNVs). But this tactic hasn't yet been applied to OSAHS. Using a Mendelian randomization analysis, we analyzed the causal link between immune cells and the illness in order to comprehend the immunological bases of OSAHS. AIM To investigate the immune cells' association with OSAHS via genetic methods, guiding future clinical research. METHODS A comprehensive two-sample mendelian randomization study was conducted to investigate the causal relationship between immune cell characteristics and OSAHS. Summary statistics for each immune cell feature were obtained from the GWAS catalog. Information on 731 immune cell properties, such as morphologic parameters, median fluorescence intensity, absolute cellular, and relative cellular, was compiled using publicly available genetic databases. The results' robustness, heterogeneity, and horizontal pleiotropy were confirmed using extensive sensitivity examination. RESULTS Following false discovery rate (FDR) correction, no statistically significant effect of OSAHS on immunophenotypes was observed. However, two lymphocyte subsets were found to have a significant association with the risk of OSAHS: Basophil %CD33dim HLA DR- CD66b- (OR = 1.03, 95%CI = 1.01-1.03, P < 0.001); CD38 on IgD+ CD24- B cell (OR = 1.04, 95%CI = 1.02-1.04, P = 0.019). CONCLUSION This study shows a strong link between immune cells and OSAHS through a gene approach, thus offering direction for potential future medical research.
Collapse
Affiliation(s)
- Huang-Hong Zhao
- Department of Encephalopathy, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Zhen Ma
- Department of Personnel, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Dong-Sheng Guan
- Department of Neurology, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou 450000, Henan Province, China
| |
Collapse
|
3
|
Kasahara TDM, Gupta S. IgD +IgM - B Cells in Common Variable Immunodeficiency. Pathogens 2024; 13:136. [PMID: 38392874 PMCID: PMC10891963 DOI: 10.3390/pathogens13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent form of primary hypogammaglobulinemia in adults. In addition to recurrent infections and respiratory manifestations, CVID patients may present several non-infection complications such as autoimmune diseases. The mechanisms that lead to immune dysregulation in CVID are not completely understood. Given the role of IgD on naïve B cells in the maintenance of tolerance and secreted IgD in the respiratory mucosa, we evaluated the frequency of IgD+ naïve and IgD+ memory B cells in CVID patients. Here, no differences were observed in the percentages and proliferative responses of anergic IgD+IgM-CD27- B cells between CVID patients, with or without autoimmune disease, and the control group. Interestingly, in the compartment of memory B cells, the percentage of IgD+IgM- cells was higher only in CVID patients with allergic rhinitis/allergic asthma. Our results may indicate that anergic IgD+IgM-CD27- B cells may not be compromised in our CVID cohort. However, IgD+IgM- memory B cells may play a role in the immunopathogenesis of allergic rhinitis/allergic asthma in CVID patients. Further studies are needed to better understand the participation of IgD+IgM- memory B cells in the immunopathogenesis of allergic rhinitis/allergic asthma in CVID patients.
Collapse
Affiliation(s)
- Taissa de M. Kasahara
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil;
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Zhong X, Moresco JJ, Diedrich JK, Pinto AM, SoRelle JA, Wang J, Keller K, Ludwig S, Moresco EMY, Beutler B, Choi JH. Essential role of MFSD1-GLMP-GIMAP5 in lymphocyte survival and liver homeostasis. Proc Natl Acad Sci U S A 2023; 120:e2314429120. [PMID: 38055739 PMCID: PMC10723049 DOI: 10.1073/pnas.2314429120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023] Open
Abstract
We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Antonio M. Pinto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92037
| | - Jeffrey A. SoRelle
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
5
|
Zhong X, Moresco JJ, Keller K, Lazaro DR, Ely C, Moresco EMY, Beutler B, Choi JH. Essential requirement for IER3IP1 in B cell development. Proc Natl Acad Sci U S A 2023; 120:e2312810120. [PMID: 37934820 PMCID: PMC10655558 DOI: 10.1073/pnas.2312810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
In a forward genetic screen of mice with N-ethyl-N-nitrosourea-induced mutations for aberrant immune function, we identified animals with low percentages of B220+ cells in the peripheral blood. The causative mutation was in Ier3ip1, encoding immediate early response 3 interacting protein 1 (IER3IP1), an endoplasmic reticulum membrane protein mutated in an autosomal recessive neurodevelopmental disorder termed Microcephaly with simplified gyration, Epilepsy and permanent neonatal Diabetes Syndrome (MEDS) in humans. However, no immune function for IER3IP1 had previously been reported. The viable hypomorphic Ier3ip1 allele uncovered in this study, identical to a reported IER3IP1 variant in a MEDS patient, reveals an essential hematopoietic-intrinsic role for IER3IP1 in B cell development and function. We show that IER3IP1 forms a complex with the Golgi transmembrane protein 167A and limits activation of the unfolded protein response mediated by inositol-requiring enzyme-1α and X-box binding protein 1 in B cells. Our findings suggest that B cell deficiency may be a feature of MEDS.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Danielle Renee Lazaro
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Claire Ely
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
6
|
Herranz-Jusdado JG, Morel E, Simón R, Díaz-Rosales P, Tafalla C. Teleost IgD +IgM - B cells in gills and skin have a plasmablast profile, but functionally and phenotypically differ from IgM +IgD - B cells in these sites. iScience 2023; 26:107434. [PMID: 37593459 PMCID: PMC10428129 DOI: 10.1016/j.isci.2023.107434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/15/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Although most B cells in teleost systemic compartments co-express IgM and IgD on the surface, cells exclusively expressing either of the two Igs are common in fish mucosal tissues, providing us with a unique opportunity to further characterize IgD+IgM- B cells, an intriguing B cell subset. Hence, we compared the phenotype of IgD+IgM- cells to that of IgM+IgD- B cells in rainbow trout gills and skin, also establishing the response of these subsets to immune stimulation. The transcriptional profile and secreting capacity of IgD+IgM- B cells corresponded to that of cells that have started a differentiation program toward plasmablasts, similarly to IgM+IgD- B cells. Yet, IgM+IgD- B cells retained high levels of surface MHC II and antigen-processing abilities, while these were much lower in IgD+IgM- cells, suggesting important differences in their antigen-presenting capacities. Our findings contribute to a deeper understanding of the enigmatic role of IgD in mucosal surfaces.
Collapse
Affiliation(s)
- J. Germán Herranz-Jusdado
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos 28130 Madrid, Spain
| | - Esther Morel
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos 28130 Madrid, Spain
| | - Rocío Simón
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos 28130 Madrid, Spain
| | - Patricia Díaz-Rosales
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos 28130 Madrid, Spain
| | - Carolina Tafalla
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos 28130 Madrid, Spain
| |
Collapse
|
7
|
Al Hakeem WG, Acevedo Villanueva KY, Selvaraj RK. The Development of Gut Microbiota and Its Changes Following C. jejuni Infection in Broilers. Vaccines (Basel) 2023; 11:595. [PMID: 36992178 PMCID: PMC10056385 DOI: 10.3390/vaccines11030595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The gut is home to more than millions of bacterial species. The gut bacteria coexist with the host in a symbiotic relationship that can influence the host's metabolism, nutrition, and physiology and even module various immune functions. The commensal gut microbiota plays a crucial role in shaping the immune response and provides a continuous stimulus to maintain an activated immune system. The recent advancements in high throughput omics technologies have improved our understanding of the role of commensal bacteria in developing the immune system in chickens. Chicken meat continues to be one of the most consumed sources of protein worldwide, with the demand expected to increase significantly by the year 2050. Yet, chickens are a significant reservoir for human foodborne pathogens such as Campylobacter jejuni. Understanding the interaction between the commensal bacteria and C. jejuni is essential in developing novel technologies to decrease C. jejuni load in broilers. This review aims to provide current knowledge of gut microbiota development and its interaction with the immune system in broilers. Additionally, the effect of C. jejuni infection on the gut microbiota is addressed.
Collapse
Affiliation(s)
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Bjørgen H, Oaland Ø, Midtllyng P, Tafalla C, Krogdahl Å, Koppang EO. IgD-transcript positive cells suggest hypersensitivity in feed-related intestinal inflammation in the Atlantic salmon. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108469. [PMID: 36528310 DOI: 10.1016/j.fsi.2022.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Håvard Bjørgen
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Paul Midtllyng
- Aquamedic AS, Ullevålsveien 68, Bygn. 23, 0454, Oslo, Norway
| | - Carolina Tafalla
- Animal Health Research Center (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130, Madrid, Spain
| | - Åshild Krogdahl
- Unit of Nutrition and Health, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Erling Olaf Koppang
- Unit of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
9
|
Itoh N, Ohshima Y. The dual aspects of IgD in the development of tolerance and the pathogenesis of allergic diseases. Allergol Int 2022; 72:227-233. [PMID: 37010995 DOI: 10.1016/j.alit.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
The cell-surface form of IgD is co-expressed with IgM on mature, naïve B cells as B-cell receptors. The secreted IgD antibody (Ab) is found in relatively modest concentrations in the blood and other body fluids as it has a relatively short serum half-life. IgD Abs produced in the upper-respiratory mucosa presumably participate in host defense against pathogens. The allergen-mediated cross-linkage of basophil-bound IgD Ab enhances type 2 cytokine secretion; IgD Ab may also interfere with IgE-mediated basophil degranulation, suggesting dual and opposing roles of IgD Ab in allergen sensitization and the development of allergen immune tolerance. We recently demonstrated that children with egg allergies who avoided all forms of egg have lower ovomucoid-specific IgD and IgG4 Ab levels than those who only partially avoided egg products and that different mechanisms may regulate allergen-specific IgD Ab production compared to allergen-specific IgG4 Ab production. The relationship between antigen-specific IgD Ab levels and the clinical improvement of asthma and food allergies suggests that antigen-specific IgD Ab affects the process of outgrowing allergies. We discuss the possibility that allergen-specific IgD Ab production reflects low-affinity, allergen-specific IgE production as children outgrow a food allergy.
Collapse
Affiliation(s)
- Naohiro Itoh
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan.
| | - Yusei Ohshima
- Department of Pediatrics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
10
|
Cerutti A, Filipska M, Fa XM, Tachó-Piñot R. Impact of the mucosal milieu on antibody responses to allergens. J Allergy Clin Immunol 2022; 150:503-512. [PMID: 36075636 DOI: 10.1016/j.jaci.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Respiratory and digestive mucosal surfaces are continually exposed to common environmental antigens, which include potential allergens. Although innocuous in healthy individuals, allergens cause allergy in predisposed subjects and do so by triggering a pathologic TH2 cell response that induces IgE class switching and somatic hypermutation in allergen-specific B cells. The ensuing affinity maturation and plasma cell differentiation lead to the abnormal release of high-affinity IgE that binds to powerful FcεRI receptors on basophils and mast cells. When cross-linked by allergen, FcεRI-bound IgE instigates the release of prestored and de novo-induced proinflammatory mediators. Aside from causing type I hypersensitivity reactions underlying allergy, IgE affords protection against nematodes or venoms from insects and snakes, which raises questions as to the fundamental differences between protective and pathogenic IgE responses. In this review, we discuss the impact of the mucosal environment, including the epithelial and mucus barriers, on the induction of protective IgE responses against environmental antigens. We further discuss how perturbations of these barriers may contribute to the induction of pathogenic IgE production.
Collapse
Affiliation(s)
- Andrea Cerutti
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York.
| | - Martyna Filipska
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Xavi Marcos Fa
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roser Tachó-Piñot
- Lydia Becher Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Abstract
AbstractIn B cells, IgD is expressed together with IgM through alternative splicing of primary VHDJH-Cμ-s-m-Cδ-s-m RNAs, and also through IgD class switch DNA recombination (CSR) via double-strand DNA breaks (DSB) and synapse of Sμ with σδ. How such DSBs are resolved is still unknown, despite our previous report showing that Rad52 effects the ‘short-range’ microhomology-mediated synapsis of intra-Sμ region DSBs. Here we find that induction of IgD CSR downregulates Zfp318, and promotes Rad52 phosphorylation and recruitment to Sμ and σδ, thereby leading to alternative end-joining (A-EJ)-mediated Sμ-σδ recombination with extensive microhomologies, VHDJH-Cδs transcription and sustained IgD secretion. Rad52 ablation in mouse Rad52−/− B cells aborts IgD CSR in vitro and in vivo and dampens the specific IgD antibody response to OVA. Rad52 knockdown in human B cells also abrogates IgD CSR. Finally, Rad52 phosphorylation is associated with high levels of IgD CSR and anti-nuclear IgD autoantibodies in patients with systemic lupus erythematosus and in lupus-prone mice. Our findings thus show that Rad52 mediates IgD CSR through microhomology-mediated A-EJ in concert with Zfp318 downregulation.
Collapse
|
12
|
Wan Z, Zhao Y, Sun Y. Immunoglobulin D and its encoding genes: An updated review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104198. [PMID: 34237381 DOI: 10.1016/j.dci.2021.104198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Since the identification of a functional Cδ gene in ostriches, immunoglobulin (Ig) D has been considered to be an extremely evolutionarily conserved Ig isotype besides the IgM found in all classes of jawed vertebrates. However, in contrast to IgM (which remains stable over evolutionary time), IgD shows considerable structural plasticity among vertebrate species and, moreover, its functions are far from elucidated even in humans and mice. Recently, several studies have shown that high expression of the IgD-B-cell receptor (IgD-BCR) may help physiologically autoreactive B cells survive in peripheral lymphoid tissues thanks to unresponsiveness to self-antigens and help their entry into germinal centers to "redeem" autoreactivity via somatic hypermutation. Other studies have demonstrated that secreted IgD may enhance mucosal homeostasis and immunity by linking B cells with basophils to optimize T-helper-2 cell-mediated responses and to constrain IgE-mediated basophil degranulation. Herein, we review the new discoveries on IgD-encoding genes in jawed vertebrates in the past decade. We also highlight advances in the functions of the IgD-BCR and secreted IgD in humans and mice.
Collapse
Affiliation(s)
- Zihui Wan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Ohm-Laursen L, Meng H, Hoehn KB, Nouri N, Jiang Y, Clouser C, Johnstone TG, Hause R, Sandhar BS, Upton NEG, Chevretton EB, Lakhani R, Corrigan CJ, Kleinstein SH, Gould HJ. B Cell Mobilization, Dissemination, Fine Tuning of Local Antigen Specificity and Isotype Selection in Asthma. Front Immunol 2021; 12:702074. [PMID: 34721376 PMCID: PMC8552043 DOI: 10.3389/fimmu.2021.702074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
In order to better understand how the immune system interacts with environmental triggers to produce organ-specific disease, we here address the hypothesis that B and plasma cells are free to migrate through the mucosal surfaces of the upper and lower respiratory tracts, and that their total antibody repertoire is modified in a common respiratory tract disease, in this case atopic asthma. Using Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) we have catalogued the antibody repertoires of B cell clones retrieved near contemporaneously from multiple sites in the upper and lower respiratory tract mucosa of adult volunteers with atopic asthma and non-atopic controls and traced their migration. We show that the lower and upper respiratory tracts are immunologically connected, with trafficking of B cells directionally biased from the upper to the lower respiratory tract and points of selection when migrating from the nasal mucosa and into the bronchial mucosa. The repertoires are characterized by both IgD-only B cells and others undergoing class switch recombination, with restriction of the antibody repertoire distinct in asthmatics compared with controls. We conclude that B cells and plasma cells migrate freely throughout the respiratory tract and exhibit distinct antibody repertoires in health and disease.
Collapse
Affiliation(s)
- Line Ohm-Laursen
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Kenneth B. Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
| | - Nima Nouri
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Center for Medical Informatics, Yale School of Medicine, New Haven, CT, United States
| | - Yue Jiang
- Bristol Myers Squibb, Seattle, WA, United States
| | | | | | - Ron Hause
- Bristol Myers Squibb, Seattle, WA, United States
| | - Balraj S. Sandhar
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Nadine E. G. Upton
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| | - Elfy B. Chevretton
- Department of Ear, Nose and Throat (ENT) Services, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Raj Lakhani
- Department of Ear, Nose and Throat (ENT) Services, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Chris J. Corrigan
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
- Department of Respiratory Medicine and Allergy and School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, United States
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Hannah J. Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King’s College London, London, United Kingdom
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, United Kingdom
| |
Collapse
|
14
|
Klarquist J, Cross EW, Thompson SB, Willett B, Aldridge DL, Caffrey-Carr AK, Xu Z, Hunter CA, Getahun A, Kedl RM. B cells promote CD8 T cell primary and memory responses to subunit vaccines. Cell Rep 2021; 36:109591. [PMID: 34433030 PMCID: PMC8456706 DOI: 10.1016/j.celrep.2021.109591] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The relationship between B cells and CD4 T cells has been carefully studied, revealing a collaborative effort in which B cells promote the activation, differentiation, and expansion of CD4 T cells while the so-called “helper” cells provide signals to B cells, influencing their class switching and fate. Interactions between B cells and CD8 T cells are not as well studied, although CD8 T cells exhibit an accelerated contraction after certain infections in B-cell-deficient mice. Here, we find that B cells significantly enhance primary CD8 T cell responses after vaccination. Moreover, memory CD8 numbers and function are impaired in B-cell-deficient animals, leading to increased susceptibility to bacterial challenge. We also show that interleukin-27 production by B cells contributes to their impact on primary, but not memory, CD8 responses. Better understanding of the interactions between CD8 T cells and B cells may aid in the design of more effective future vaccine strategies. Generating cytotoxic CD8 T cell responses with vaccines can greatly improve their efficacy, but inducing adequate numbers of these cells can be challenging. Klarquist et al. reveal that the magnitude, persistence, and function of CD8 T cell vaccine responses depend on B cells.
Collapse
Affiliation(s)
- Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Eric W Cross
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Benjamin Willett
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Daniel L Aldridge
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Alayna K Caffrey-Carr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology and Molecular Genetics, The Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Christopher A Hunter
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
15
|
Yue T, Zhan X, Zhang D, Jain R, Wang KW, Choi JH, Misawa T, Su L, Quan J, Hildebrand S, Xu D, Li X, Turer E, Sun L, Moresco EMY, Beutler B. SLFN2 protection of tRNAs from stress-induced cleavage is essential for T cell-mediated immunity. Science 2021; 372:372/6543/eaba4220. [PMID: 33986151 PMCID: PMC8442736 DOI: 10.1126/science.aba4220] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/02/2020] [Accepted: 03/25/2021] [Indexed: 01/05/2023]
Abstract
Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell-specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2's mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.
Collapse
Affiliation(s)
- Tao Yue
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duanwu Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ruchi Jain
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kuan-wen Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Takuma Misawa
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Emre Turer
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lei Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Correspondence to:
| |
Collapse
|
16
|
Wang C, Zhou X, Wang M, Chen X. The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. INFECTIOUS MICROBES & DISEASES 2021; 3:14-21. [PMID: 38630064 PMCID: PMC8011344 DOI: 10.1097/im9.0000000000000045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
A recent outbreak of coronavirus disease 2019 (COVID-19) caused by the single-stranded enveloped RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global pandemic, after it was first reported in Wuhan in December 2019. SARS-CoV-2 is an emerging virus, and little is known about the basic characteristics of this pathogen, the underlying mechanism of infection, and the potential treatments. The immune system has been known to be actively involved in viral infections. To facilitate the development of COVID-19 treatments, the understanding of immune regulation by this viral infection is urgently needed. This review describes the mechanisms of immune system involvement in viral infections and provides an overview of the dysregulation of immune responses in COVID-19 patients in recent studies. Furthermore, we emphasize the role of gut microbiota in regulating immunity and summarized the impact of SARS-CoV-2 infection on the composition of the microbiome. Overall, this review provides insights for understanding and developing preventive and therapeutic strategies by regulating the immune system and microbiota.
Collapse
Affiliation(s)
- Chuxi Wang
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Xin Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Meng Wang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Xin Chen
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
17
|
Muñoz-Atienza E, Díaz-Rosales P, Tafalla C. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish. Front Immunol 2021; 11:622377. [PMID: 33664735 PMCID: PMC7921309 DOI: 10.3389/fimmu.2020.622377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
The development of mucosal vaccines against pathogens is currently a highly explored area of research in both humans and animals. This is due to the fact that mucosal vaccines have the potential to best elicit protective responses at these mucosal surfaces, which represent the frontline of host defense, thus blocking the pathogen at its initial replication sites. However, in order to provide an efficient long-lasting protection, these mucosal vaccines have to be capable of eliciting an adequate systemic immune response in addition to local responses. In aquaculture, the need for mucosal vaccines has further practical implications, as these vaccines would avoid the individual manipulation of fish out of the water, being beneficial from both an economic and animal welfare point of view. However, how B and T cells are organized in teleost fish within these mucosal sites and how they respond to mucosally delivered antigens varies greatly when compared to mammals. For this reason, it is important to establish which mucosally delivered antigens have the capacity to induce strong and long-lasting B and T cell responses. Hence, in this review, we have summarized what is currently known regarding the adaptive immune mechanisms that are induced both locally and systemically in fish after mucosal immunization through different routes of administration including oral and nasal vaccination, anal intubation and immersion vaccination. Finally, based on the data presented, we discuss how mucosal vaccination strategies could be improved to reach significant protection levels in these species.
Collapse
Affiliation(s)
- Estefanía Muñoz-Atienza
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Animal Health Research Centre (CISA-INIA), Madrid, Spain
| |
Collapse
|
18
|
Saha T, Sundaravinayagam D, Di Virgilio M. Charting a DNA Repair Roadmap for Immunoglobulin Class Switch Recombination. Trends Biochem Sci 2020; 46:184-199. [PMID: 33250286 DOI: 10.1016/j.tibs.2020.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is the process occurring in mature B cells that diversifies the effector component of antibody responses. CSR is initiated by the activity of the B cell-specific enzyme activation-induced cytidine deaminase (AID), which leads to the formation of programmed DNA double-strand breaks (DSBs) at the Ig heavy chain (Igh) locus. Mature B cells use a multilayered and complex regulatory framework to ensure that AID-induced DNA breaks are channeled into productive repair reactions leading to CSR, and to avoid aberrant repair events causing lymphomagenic chromosomal translocations. Here, we review the DNA repair pathways acting on AID-induced DSBs and their functional interplay, with a particular focus on the latest developments in their molecular composition and mechanistic regulation.
Collapse
Affiliation(s)
- Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
19
|
Geng ST, Zhang ZY, Wang YX, Lu D, Yu J, Zhang JB, Kuang YQ, Wang KH. Regulation of Gut Microbiota on Immune Reconstitution in Patients With Acquired Immunodeficiency Syndrome. Front Microbiol 2020; 11:594820. [PMID: 33193273 PMCID: PMC7652894 DOI: 10.3389/fmicb.2020.594820] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells in the gut plays an insidious role in acquired immunodeficiency syndrome (AIDS) pathogenesis. Host immune function is closely related to gut microbiota. Changes in the gut microbiota cause a different immune response. Previous studies revealed that HIV-1 infection caused changes in gut microbiota, which induced immune deficiency. HIV-1 infection results in an abnormal composition and function of the gut microbiota, which may disrupt the intestinal epithelial barrier and microbial translocation, leading to long-term immune activation, including inflammation and metabolic disorders. At the same time, an abnormal gut microbiota also hinders the effect of antiviral therapy and affects the immune reconstruction of patients. However, studies on the impact of the gut microbiota on immune reconstitution in patients with HIV/AIDS are still limited. In this review, we focus on changes in the gut microbiota caused by HIV infection, as well as the impact and regulation of the gut microbiota on immune function and immune reconstitution, while we also discuss the potential impact of probiotics/prebiotics and fecal microbiota transplantation (FMT) on immune reconstitution.
Collapse
Affiliation(s)
- Shi-Tao Geng
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zun-Yue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yue-Xin Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Danfeng Lu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian-Bo Zhang
- Department of Dermatology, Second People's Hospital of Dali City, Dali, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
20
|
Perdiguero P, Martín-Martín A, Benedicenti O, Díaz-Rosales P, Morel E, Muñoz-Atienza E, García-Flores M, Simón R, Soleto I, Cerutti A, Tafalla C. Teleost IgD +IgM - B Cells Mount Clonally Expanded and Mildly Mutated Intestinal IgD Responses in the Absence of Lymphoid Follicles. Cell Rep 2020; 29:4223-4235.e5. [PMID: 31875534 PMCID: PMC6941218 DOI: 10.1016/j.celrep.2019.11.101] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/19/2019] [Accepted: 11/25/2019] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin D (IgD) is an ancient antibody with dual membrane-bound and fluid-phase antigen receptor functions. The biology of secreted IgD remains elusive. Here, we demonstrate that teleost IgD+IgM− plasmablasts constitute a major lymphocyte population in some mucosal surfaces, including the gut mucosa. Remarkably, secreted IgD binds to gut commensal bacteria, which in turn stimulate IgD gene transcription in gut B cells. Accordingly, secreted IgD from gut as well as gill mucosae, but not the spleen, show a V(D)J gene configuration consistent with microbiota-driven clonal expansion and diversification, including mild somatic hypermutation. By showing that secreted IgD establishes a mutualistic relationship with commensals, our findings suggest that secreted IgD may play an evolutionary conserved role in mucosal homeostasis. IgD+IgM− B cells constitute the main non-IgT B cell subset in rainbow trout guts Gut IgD responses establish a two-way interaction with the local microbiota Mucosal but not splenic IgD undergoes clonal expansion and diversification Despite the lack of germinal centers, mucosal IgD is mildly mutated in rainbow trout
Collapse
Affiliation(s)
- Pedro Perdiguero
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Alba Martín-Martín
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - Esther Morel
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | | | | | - Rocío Simón
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Irene Soleto
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain
| | - Andrea Cerutti
- Catalan Institute for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain; Inflammatory and Cardiovascular Disorders Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| |
Collapse
|
21
|
Chen K, Magri G, Grasset EK, Cerutti A. Rethinking mucosal antibody responses: IgM, IgG and IgD join IgA. Nat Rev Immunol 2020; 20:427-441. [PMID: 32015473 PMCID: PMC10262260 DOI: 10.1038/s41577-019-0261-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2019] [Indexed: 02/08/2023]
Abstract
Humoral immune responses at mucosal surfaces have historically focused on IgA. Growing evidence highlights the complexity of IgA-inducing pathways and the functional impact of IgA on mucosal commensal bacteria. In the gut, IgA contributes to the establishment of a mutualistic host-microbiota relationship that is required to maintain homeostasis and prevent disease. This Review discusses how mucosal IgA responses occur in an increasingly complex humoral defence network that also encompasses IgM, IgG and IgD. Aside from integrating the protective functions of IgA, these hitherto neglected mucosal antibodies may strengthen the communication between mucosal and systemic immune compartments.
Collapse
Affiliation(s)
- Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Giuliana Magri
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain
| | - Emilie K Grasset
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
- Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona, Spain.
- The Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona, Spain.
| |
Collapse
|
22
|
IgD-Fc-Ig fusion protein, a new biological agent, inhibits T cell function in CIA rats by inhibiting IgD-IgDR-Lck-NF-κB signaling pathways. Acta Pharmacol Sin 2020; 41:800-812. [PMID: 31937932 PMCID: PMC7470893 DOI: 10.1038/s41401-019-0337-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
IgD-Fc-Ig fusion protein, a new biological agent, is constructed by linking a segment of human IgD-Fc with a segment of human IgG1-Fc, which specifically blocks the IgD-IgDR pathway and selectively inhibits the abnormal proliferation, activation, and differentiation of T cells. In this study we investigated whether IgD-Fc-Ig exerted therapeutic effects in collagen-induced arthritis (CIA) rats. CIA rats were treated with IgD-Fc-Ig (1, 3, and 9 mg/kg) or injected with biological agents etanercept (3 mg/kg) once every 3 days for 40 days. In the PBMCs and spleen lymphocytes of CIA rats, both T and B cells exhibited abnormal proliferation; the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1(CD4+IFN-γ+), and Th17(CD4+IL-17+) were significantly increased, whereas the Treg (CD4+CD25+Foxp3+) cell percentage was decreased. IgD-Fc-Ig administration dose-dependently decreased the indicators of arthritis; alleviated the histopathology of spleen and joint; reduced serum inflammatory cytokines levels; decreased the percentages of CD3+ total T cells, CD3+CD4+ Th cells, CD3+CD4+CD25+-activated Th cells, Th1 (CD4+IFN-γ+), and Th17(CD4+IL-17+); increased Treg (CD4+CD25+Foxp3+) cell percentage; and down-regulated the expression of key molecules in IgD-IgDR-Lck-NF-κB signaling (p-Lck, p-ZAP70, p-P38, p-NF-κB65). Treatment of normal T cells with IgD (9 μg/mL) in vitro promoted their proliferation. Co-treatment with IgD-Fc-Ig (0.1–10 μg/mL) dose-dependently decreased IgD-stimulated T cell subsets percentages and down-regulated the IgD-IgDR-Lck-NF-κB signaling. In summary, this study demonstrates that IgD-Fc-Ig alleviates CIA and regulates the functions of T cells through inhibiting IgD-IgDR-Lck-NF-κB signaling.
Collapse
|
23
|
Choi JH, Han J, Theodoropoulos PC, Zhong X, Wang J, Medler D, Ludwig S, Zhan X, Li X, Tang M, Gallagher T, Yu G, Beutler B. Essential requirement for nicastrin in marginal zone and B-1 B cell development. Proc Natl Acad Sci U S A 2020; 117:4894-4901. [PMID: 32071239 PMCID: PMC7060662 DOI: 10.1073/pnas.1916645117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
γ-secretase is an intramembrane protease complex that catalyzes the proteolytic cleavage of amyloid precursor protein and Notch. Impaired γ-secretase function is associated with the development of Alzheimer's disease and familial acne inversa in humans. In a forward genetic screen of mice with N-ethyl-N-nitrosourea-induced mutations for defects in adaptive immunity, we identified animals within a single pedigree exhibiting both hypopigmentation of the fur and diminished T cell-independent (TI) antibody responses. The causative mutation was in Ncstn, an essential gene encoding the protein nicastrin (NCSTN), a member of the γ-secretase complex that functions to recruit substrates for proteolysis. The missense mutation severely limits the glycosylation of NCSTN to its mature form and impairs the integrity of the γ-secretase complex as well as its catalytic activity toward its substrate Notch, a critical regulator of B cell and T cell development. Strikingly, however, this missense mutation affects B cell development but not thymocyte or T cell development. The Ncstn allele uncovered in these studies reveals an essential requirement for NCSTN during the type 2 transitional-marginal zone precursor stage and peritoneal B-1 B cell development, the TI antibody response, fur pigmentation, and intestinal homeostasis in mice.
Collapse
Affiliation(s)
- Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonghee Han
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Panayotis C Theodoropoulos
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, Physician Scientist Training Program, Washington University in St. Louis, Barnes Jewish Hospital, St. Louis, MO 63110
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jianhui Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Dawson Medler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Thomas Gallagher
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gang Yu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390;
| |
Collapse
|
24
|
Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology 2020; 160:233-247. [PMID: 32031242 DOI: 10.1111/imm.13176] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulins emerging from B lymphocytes and capable of recognizing almost all kinds of antigens owing to the extreme diversity of their antigen-binding portions, known as variable (V) regions, play an important role in immune responses. The exons encoding the V regions are known as V (variable), D (diversity), or J (joining) genes. V, D, J segments exist as multiple copy arrays on the chromosome. The recombination of the V(D)J gene is the key mechanism to produce antibody diversity. The recombinational process, including randomly choosing a pair of V, D, J segments, introducing double-strand breaks adjacent to each segment, deleting (or inverting in some cases) the intervening DNA and ligating the segments together, is defined as V(D)J recombination, which contributes to surprising immunoglobulin diversity in vertebrate immune systems. To enhance both the ability of immunoglobulins to recognize and bind to foreign antigens and the effector capacities of the expressed antibodies, naive B cells will undergo class switching recombination (CSR) and somatic hypermutation (SHM). However, the genetics mechanisms of V(D)J recombination, CSR and SHM are not clear. In this review, we summarize the major progress in mechanism studies of immunoglobulin V(D)J gene recombination and CSR as well as SHM, and their regulatory mechanisms.
Collapse
Affiliation(s)
- Xiying Chi
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yue Li
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| |
Collapse
|
25
|
Sun Y, Huang T, Hammarström L, Zhao Y. The Immunoglobulins: New Insights, Implications, and Applications. Annu Rev Anim Biosci 2019; 8:145-169. [PMID: 31846352 DOI: 10.1146/annurev-animal-021419-083720] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunoglobulins (Igs), as one of the hallmarks of adaptive immunity, first arose approximately 500 million years ago with the emergence of jawed vertebrates. Two events stand out in the evolutionary history of Igs from cartilaginous fish to mammals: (a) the diversification of Ig heavy chain (IgH) genes, resulting in Ig isotypes or subclasses associated with novel functions, and (b) the diversification of genetic and structural strategies, leading to the creation of the antibody repertoire we know today. This review first gives an overview of the IgH isotypes identified in jawed vertebrates to date and then highlights the implications or applications of five new recent discoveries arising from comparative studies of Igs derived from different vertebrate species.
Collapse
Affiliation(s)
- Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China;
| | - Tian Huang
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng 475004, Henan, People's Republic of China;
| | - Lennart Hammarström
- Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Hospital Huddinge, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden;
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
26
|
Sanz I, Wei C, Jenks SA, Cashman KS, Tipton C, Woodruff MC, Hom J, Lee FEH. Challenges and Opportunities for Consistent Classification of Human B Cell and Plasma Cell Populations. Front Immunol 2019; 10:2458. [PMID: 31681331 PMCID: PMC6813733 DOI: 10.3389/fimmu.2019.02458] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
The increasingly recognized role of different types of B cells and plasma cells in protective and pathogenic immune responses combined with technological advances have generated a plethora of information regarding the heterogeneity of this human immune compartment. Unfortunately, the lack of a consistent classification of human B cells also creates significant imprecision on the adjudication of different phenotypes to well-defined populations. Additional confusion in the field stems from: the use of non-discriminatory, overlapping markers to define some populations, the extrapolation of mouse concepts to humans, and the assignation of functional significance to populations often defined by insufficient surface markers. In this review, we shall discuss the current understanding of human B cell heterogeneity and define major parental populations and associated subsets while discussing their functional significance. We shall also identify current challenges and opportunities. It stands to reason that a unified approach will not only permit comparison of separate studies but also improve our ability to define deviations from normative values and to create a clean framework for the identification, functional significance, and disease association with new populations.
Collapse
Affiliation(s)
- Ignacio Sanz
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Chungwen Wei
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Scott A Jenks
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Kevin S Cashman
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Christopher Tipton
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Matthew C Woodruff
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Jennifer Hom
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - F Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States.,Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
27
|
Enhanced susceptibility to chemically induced colitis caused by excessive endosomal TLR signaling in LRBA-deficient mice. Proc Natl Acad Sci U S A 2019; 116:11380-11389. [PMID: 31097594 DOI: 10.1073/pnas.1901407116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
LPS-responsive beige-like anchor (LRBA) protein deficiency in humans causes immune dysregulation resulting in autoimmunity, inflammatory bowel disease (IBD), hypogammaglobulinemia, regulatory T (Treg) cell defects, and B cell functional defects, but the cellular and molecular mechanisms responsible are incompletely understood. In an ongoing forward genetic screen for N-ethyl-N-nitrosourea (ENU)-induced mutations that increase susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice, we identified two nonsense mutations in Lrba Although Treg cells have been a main focus in LRBA research to date, we found that dendritic cells (DCs) contribute significantly to DSS-induced intestinal inflammation in LRBA-deficient mice. Lrba -/- DCs exhibited excessive IRF3/7- and PI3K/mTORC1-dependent signaling and type I IFN production in response to the stimulation of the Toll-like receptors (TLRs) 3, TLR7, and TLR9. Substantial reductions in cytokine expression and sensitivity to DSS in LRBA-deficient mice were caused by knockout of Unc93b1, a chaperone necessary for trafficking of TLR3, TLR7, and TLR9 to endosomes. Our data support a function for LRBA in limiting endosomal TLR signaling and consequent intestinal inflammation.
Collapse
|
28
|
Kuri-Magaña H, Collado-Torres L, Jaffe AE, Valdovinos-Torres H, Ovilla-Muñoz M, Téllez-Sosa J, Bonifaz LC, Martínez-Barnetche J. Non-coding Class Switch Recombination-Related Transcription in Human Normal and Pathological Immune Responses. Front Immunol 2018; 9:2679. [PMID: 30519242 PMCID: PMC6260145 DOI: 10.3389/fimmu.2018.02679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022] Open
Abstract
Antibody class switch recombination (CSR) to IgG, IgA, or IgE is a hallmark of adaptive immunity, allowing antibody function diversification beyond IgM. CSR involves a deletion of the IgM/IgD constant region genes placing a new acceptor Constant gene, downstream of the VDJH exon. CSR depends on non-coding (CSRnc) transcription of donor Iμ and acceptor IH exons, located 5′ upstream of each CH coding gene. Although, our knowledge of the role of CSRnc transcription has advanced greatly, its extension and importance in healthy and diseased humans is scarce. We analyzed CSRnc transcription in 70,603 publicly available RNA-seq samples, including GTEx, TCGA, and the Sequence Read Archive using recount2, an online resource consisting of normalized RNA-seq gene and exon counts, as well as, coverage BigWig files that can be programmatically accessed through R. CSRnc transcription was validated with a qRT-PCR assay for Iμ, Iγ3, and Iγ1 in humans in response to vaccination. We mapped IH transcription for the human IGH locus, including the less understood IGHD gene. CSRnc transcription was restricted to B cells and is widely distributed in normal adult tissues, but predominant in blood, spleen, MALT-containing tissues, visceral adipose tissue and some so-called “immune privileged” tissues. However, significant Iγ4 expression was found even in non-lymphoid fetal tissues. CSRnc expression in cancer tissues mimicked the expression of their normal counterparts, with notable pattern changes in some common cancer subsets. CSRnc transcription in tumors appears to result from tumor infiltration by B cells, since CSRnc transcription was not detected in corresponding tumor-derived immortal cell lines. Additionally, significantly increased Iδ transcription in ileal mucosa in Crohn's disease with ulceration was found. In conclusion, CSRnc transcription occurs in multiple anatomical locations beyond classical secondary lymphoid organs, representing a potentially useful marker of effector B cell responses in normal and pathological immune responses. The pattern of IH exon expression may reveal clues of the local immune response (i.e., cytokine milieu) in health and disease. This is a great example of how the public recount2 data can be used to further our understanding of transcription, including regions outside the known transcriptome.
Collapse
Affiliation(s)
- Helena Kuri-Magaña
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Andrew E Jaffe
- Lieber Institute for Brain Development, Baltimore, MD, United States.,Center for Computational Biology, Johns Hopkins University, Baltimore, MD, United States.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Humberto Valdovinos-Torres
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Marbella Ovilla-Muñoz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - Laura C Bonifaz
- Unidad de Investigación Medica en Inmunoquímica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
29
|
Secreted IgD Amplifies Humoral T Helper 2 Cell Responses by Binding Basophils via Galectin-9 and CD44. Immunity 2018; 49:709-724.e8. [PMID: 30291028 DOI: 10.1016/j.immuni.2018.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 01/24/2023]
Abstract
B cells thwart antigenic aggressions by releasing immunoglobulin M (IgM), IgG, IgA, and IgE, which deploy well-understood effector functions. In contrast, the role of secreted IgD remains mysterious. We found that some B cells generated IgD-secreting plasma cells following early exposure to external soluble antigens such as food proteins. Secreted IgD targeted basophils by interacting with the CD44-binding protein galectin-9. When engaged by antigen, basophil-bound IgD increased basophil secretion of interleukin-4 (IL-4), IL-5, and IL-13, which facilitated the generation of T follicular helper type 2 cells expressing IL-4. These germinal center T cells enhanced IgG1 and IgE but not IgG2a and IgG2b responses to the antigen initially recognized by basophil-bound IgD. In addition, IgD ligation by antigen attenuated allergic basophil degranulation induced by IgE co-ligation. Thus, IgD may link B cells with basophils to optimize humoral T helper type 2-mediated immunity against common environmental soluble antigens.
Collapse
|
30
|
Gutzeit C, Chen K, Cerutti A. The enigmatic function of IgD: some answers at last. Eur J Immunol 2018; 48:1101-1113. [PMID: 29733429 DOI: 10.1002/eji.201646547] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/27/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
IgD emerged soon after IgM at the time of inception of the adaptive immune system. Despite its evolutionary conservation from fish to humans, the specific functions of IgD have only recently begun to be elucidated. Mature B cells undergo alternative mRNA splicing to express IgD and IgM receptors with identical antigenic specificity. The enigma of dual IgD and IgM expression has been tackled by several recent studies showing that IgD helps peripheral accumulation of physiologically autoreactive B cells through its functional unresponsiveness to self-antigens but prompt readiness against foreign antigens. IgD achieves this balance by attenuating IgM-mediated anergy while promoting specific responses to multimeric non-self-antigens. Additional research has clarified how and why certain mucosal B cells become plasmablasts or plasma cells specializing in IgD secretion. In particular, the microbiota has been shown to play an important role in driving class switch-mediated replacement of IgM with IgD. Secreted IgD appears to enhance mucosal homeostasis and immune surveillance by "arming" myeloid effector cells such as basophils and mast cells with IgD antibodies reactive against mucosal antigens, including commensal and pathogenic microbes. Here we will review these advances and discuss their implications in humoral immunity in human and mice.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Immunology Institute, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Mucosal Immunology Studies Team (MIST), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Cerutti
- Immunology Institute, Department of Medicine, Mount Sinai Icahn School of Medicine, New York, NY, USA.,Mucosal Immunology Studies Team (MIST), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Program for Inflammatory and Cardiovascular Disorders, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
31
|
Yewdell WT, Chaudhuri J. A transcriptional serenAID: the role of noncoding RNAs in class switch recombination. Int Immunol 2018; 29:183-196. [PMID: 28535205 DOI: 10.1093/intimm/dxx027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022] Open
Abstract
During an immune response, activated B cells may undergo class switch recombination (CSR), a molecular rearrangement that allows B cells to switch from expressing IgM and IgD to a secondary antibody heavy chain isotype such as IgG, IgA or IgE. Secondary antibody isotypes provide the adaptive immune system with distinct effector functions to optimally combat various pathogens. CSR occurs between repetitive DNA elements within the immunoglobulin heavy chain (Igh) locus, termed switch (S) regions and requires the DNA-modifying enzyme activation-induced cytidine deaminase (AID). AID-mediated DNA deamination within S regions initiates the formation of DNA double-strand breaks, which serve as biochemical beacons for downstream DNA repair pathways that coordinate the ligation of DNA breaks. Myriad factors contribute to optimal AID targeting; however, many of these factors also localize to genomic regions outside of the Igh locus. Thus, a current challenge is to explain the specific targeting of AID to the Igh locus. Recent studies have implicated noncoding RNAs in CSR, suggesting a provocative mechanism that incorporates Igh-specific factors to enable precise AID targeting. Here, we chronologically recount the rich history of noncoding RNAs functioning in CSR to provide a comprehensive context for recent and future discoveries. We present a model for the RNA-guided targeting of AID that attempts to integrate historical and recent findings, and highlight potential caveats. Lastly, we discuss testable hypotheses ripe for current experimentation, and explore promising ideas for future investigations.
Collapse
Affiliation(s)
- William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer, New York, NY 10065, USA.,Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| |
Collapse
|
32
|
Zhao Q, Elson CO. Adaptive immune education by gut microbiota antigens. Immunology 2018; 154:28-37. [PMID: 29338074 PMCID: PMC5904715 DOI: 10.1111/imm.12896] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Host-microbiota mutualism has been established during long-term co-evolution. A diverse and rich gut microbiota plays an essential role in the development and maturation of the host immune system. Education of the adaptive immune compartment by gut microbiota antigens is important in establishing immune balance. In particular, a critical time frame immediately after birth provides a 'window of opportunity' for the development of lymphoid structures, differentiation and maturation of T and B cells and, most importantly, establishment of immune tolerance to gut commensals. Depending on the colonization niche, antigen type and metabolic property of different gut microbes, CD4 T-cell responses vary greatly, which results in differentiation into distinct subsets. As a consequence, certain bacteria elicit effector-like immune responses by promoting the production of pro-inflammatory cytokines such as interferon-γ and interleukin-17A, whereas other bacteria favour the generation of regulatory CD4 T cells and provide help with gut homeostasis. The microbiota have profound effects on B cells also. Gut microbial exposure leads to a continuous diversification of B-cell repertoire and the production of T-dependent and -independent antibodies, especially IgA. These combined effects of the gut microbes provide an elegant educational process to the adaptive immune network. Contrariwise, failure of this process results in a reduced homeostasis with the gut microbiota, and an increased susceptibility to various immune disorders, both inside and outside the gut. With more definitive microbial-immune relations waiting to be discovered, modulation of the host gut microbiota has a promising future for disease intervention.
Collapse
Affiliation(s)
- Qing Zhao
- Department of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| | - Charles O. Elson
- Department of MedicineThe University of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
33
|
Nicolas L, Cols M, Choi JE, Chaudhuri J, Vuong B. Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination. F1000Res 2018; 7:458. [PMID: 29744038 PMCID: PMC5904731 DOI: 10.12688/f1000research.13247.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/03/2023] Open
Abstract
Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity.
Collapse
Affiliation(s)
- Laura Nicolas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jee Eun Choi
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bao Vuong
- Department of Biology, The City College of New York and The Graduate Center of The City University of New York, New York, NY, USA
| |
Collapse
|
34
|
Issaoui H, Ghazzaui N, Denizot Y. L’énigmatique recombinaison isotypique vers les IgD. Med Sci (Paris) 2018; 34:294-296. [DOI: 10.1051/medsci/20183404005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
35
|
Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 2018; 18:46-61. [PMID: 29063907 PMCID: PMC6369690 DOI: 10.1038/nri.2017.106] [Citation(s) in RCA: 486] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Antibodies play an essential role in host defence against pathogens by recognizing microorganisms or infected cells. Although preventing pathogen entry is one potential mechanism of protection, antibodies can control and eradicate infections through a variety of other mechanisms. In addition to binding and directly neutralizing pathogens, antibodies drive the clearance of bacteria, viruses, fungi and parasites via their interaction with the innate and adaptive immune systems, leveraging a remarkable diversity of antimicrobial processes locked within our immune system. Specifically, antibodies collaboratively form immune complexes that drive sequestration and uptake of pathogens, clear toxins, eliminate infected cells, increase antigen presentation and regulate inflammation. The diverse effector functions that are deployed by antibodies are dynamically regulated via differential modification of the antibody constant domain, which provides specific instructions to the immune system. Here, we review mechanisms by which antibody effector functions contribute to the balance between microbial clearance and pathology and discuss tractable lessons that may guide rational vaccine and therapeutic design to target gaps in our infectious disease armamentarium.
Collapse
Affiliation(s)
- Lenette L Lu
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Sarah M Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, 400 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
36
|
IgD class switch recombination is not controlled through the immunoglobulin heavy chain 3' regulatory region super-enhancer. Cell Mol Immunol 2017; 14:871-874. [PMID: 29026218 DOI: 10.1038/cmi.2017.81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 01/18/2023] Open
|
37
|
McCoy KD, Ronchi F, Geuking MB. Host-microbiota interactions and adaptive immunity. Immunol Rev 2017; 279:63-69. [DOI: 10.1111/imr.12575] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathy D. McCoy
- Department of Physiology and Pharmacology; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases; Cumming School of Medicine; University of Calgary; Calgary AB Canada
| | - Francesca Ronchi
- Maurice Müller Laboratories; Department of Clinical Research (DKF); UVCM; University Hospital; Bern Switzerland
| | - Markus B. Geuking
- Department of Microbiology, Immunology and Infectious Diseases; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases; Cumming School of Medicine; University of Calgary; Calgary AB Canada
| |
Collapse
|
38
|
Ghazzaui N, Issaoui H, Saintamand A, Boyer F, Denizot Y. Analysis of IgD CSR junctions by high-throughput sequencing. Immunol Lett 2017; 188:86-88. [PMID: 28663134 DOI: 10.1016/j.imlet.2017.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 06/25/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Nour Ghazzaui
- UMR CNRS 7276, University of Limoges, CBRS, rue Pr. Descottes, 87025 Limoges, France
| | - Hussein Issaoui
- UMR CNRS 7276, University of Limoges, CBRS, rue Pr. Descottes, 87025 Limoges, France
| | - Alexis Saintamand
- UMR CNRS 7276, University of Limoges, CBRS, rue Pr. Descottes, 87025 Limoges, France
| | - François Boyer
- UMR CNRS 7276, University of Limoges, CBRS, rue Pr. Descottes, 87025 Limoges, France
| | - Yves Denizot
- UMR CNRS 7276, University of Limoges, CBRS, rue Pr. Descottes, 87025 Limoges, France.
| |
Collapse
|
39
|
Mushegian AA. Microbiome-dependent recombination shapes the host antibody repertoire. Sci Signal 2017; 10:10/467/eaan0005. [DOI: 10.1126/scisignal.aan0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Secreted IgD concentration depends on the presence of microbiota.
Collapse
|