1
|
Hao S, Guthrie B, Kim SK, Balanda S, Kubicek J, Murtaza B, Khan NA, Khakbaz P, Su J, Goddard WA. Steviol rebaudiosides bind to four different sites of the human sweet taste receptor (T1R2/T1R3) complex explaining confusing experiments. Commun Chem 2024; 7:236. [PMID: 39424933 PMCID: PMC11489721 DOI: 10.1038/s42004-024-01324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Sucrose provides both sweetness and energy by binding to both Venus flytrap domains (VFD) of the heterodimeric sweet taste receptor (T1R2/T1R3). In contrast, non-caloric sweeteners such as sucralose and aspartame only bind to one specific domain (VFD2) of T1R2, resulting in high-intensity sweetness. In this study, we investigate the binding mechanism of various steviol glycosides, artificial sweeteners, and a negative allosteric modulator (lactisole) at four distinct binding sites: VFD2, VFD3, transmembrane domain 2 (TMD2), and TMD3 through binding experiments and computational docking studies. Our docking results reveal multiple binding sites for the tested ligands, including the radiolabeled ligands. Our experimental evidence demonstrates that the C20 carboxy terminus of the Gα protein can bind to the intracellular region of either TMD2 or TMD3, altering GPCR affinity to the high-affinity state for steviol glycosides. These findings provide a mechanistic understanding of the structure and function of this heterodimeric sweet taste receptor.
Collapse
Affiliation(s)
- Shuang Hao
- Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Brian Guthrie
- Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sergej Balanda
- Cube Biotech, Creative Campus Monheim, Creative-Campus-Allee 12, 40789, Monheim, Germany
| | - Jan Kubicek
- Cube Biotech, Creative Campus Monheim, Creative-Campus-Allee 12, 40789, Monheim, Germany
| | - Babar Murtaza
- Physiologie de Nutrition & Toxicologie, UB 1231 Center for Translational & Molecular Medicine (CTM), Université de Bourgogne, 21000 Dijon, France
| | - Naim A Khan
- Physiologie de Nutrition & Toxicologie, UB 1231 Center for Translational & Molecular Medicine (CTM), Université de Bourgogne, 21000 Dijon, France
| | - Pouyan Khakbaz
- Global Core Research and Development Group, Cargill, Inc. 14800 28th Avenue N, Plymouth, MN, 55447, USA
| | - Judith Su
- Wyant College of Optical Sciences and Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| | - William A Goddard
- Materials and Process Simulation Center (MSC), California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
2
|
Kim SK, Guthrie B, Goddard WA. Ligand-Dependent and G Protein-Dependent Properties for the Sweet Taste Heterodimer, TAS1R2/1R3. J Phys Chem B 2024; 128:8927-8932. [PMID: 39231438 PMCID: PMC11421092 DOI: 10.1021/acs.jpcb.4c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024]
Abstract
The heterodimeric sweet taste receptor, TAS1R2/1R3, is a class C G protein-coupled receptor (GPCR) that couples to gustducin (Gt), a G protein (GP) specifically involved in taste processing. This makes TAS1R2/1R3 a possible target for newly developing low caloric ligands that taste sweet to address obesity and diabetes. The activation of TAS1R2/1R3 involves the insertion of the GαP C-terminus of the GP into the GPCR in response to ligand binding. However, it is not known for sure whether the GP inserts into the TAS1R2 or TAS1R3 intracellular region of this GPCR dimer. Moreover, TAS1R2/1R3 can also connect to other GPs, such as Gs, Gi1, Gt3, Go, Gq, and G12. These GPs have different C-termini that may modify GPCR signaling. To understand the possible GP dependence of sweet perception, we use molecular dynamic (MD) simulations to examine the coupling of various GαP C20 termini to TAS1R2/1R3 for various steviol glycoside ligands and an artificial sweetener. Since the C20 could interact with the transmembrane domain (TMD) of either TAS1R2 (TMD2) or TAS1R3 (TMD3), we consider both cases. Without any sweetener, we find that the apo GPCR shows similar Go and Gt selectivities, while all steviol glycoside ligands increase the selectivity of Gt but decrease Go selectivity at TMD2. Interestingly, we find that high sweet rebaudioside M (RebM) and RebD ligands show better interactions of C20 at TMD3 for the Gt protein, but low sweet RebC and hydRebM ligands show better interaction of C20 at TMD2 for the Gt protein. Thus, our MD simulation suggests that TAS1R2/1R3 may couple the GP to either 1R2 or to 1R3 and that it can couple other GPs compared to Gt. This will likely lead to multimodal functions producing multiple patterns of intracellular signaling for sweet taste receptors, depending on the particular sweetener. Directing the GP to one of the other may have beneficial therapeutic outcomes.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials
and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Brian Guthrie
- Cargill
Global Core Research, Wayzata, Minnesota 55391, United States
| | - William A. Goddard
- Materials
and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
3
|
Muñoz-Labrador A, Hernandez-Hernandez O, Moreno FJ. A review of the state of sweeteners science: the natural versus artificial non-caloric sweeteners debate. Stevia rebaudiana and Siraitia grosvenorii into the spotlight. Crit Rev Biotechnol 2024; 44:1080-1102. [PMID: 39103281 DOI: 10.1080/07388551.2023.2254929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/08/2023] [Accepted: 07/13/2023] [Indexed: 08/07/2024]
Abstract
The rapid increase in the worldwide prevalence of obesity and certain non-communicable diseases (NCDs), such as: cardiovascular diseases, cancers, chronic respiratory diseases, and diabetes, has been mainly attributed to an excess of sugar consumption. Although the potential benefits of the synergetic use of sweeteners have been known for many years, recent development based on synthesis strategies to produce sucrose-like taste profiles is emerging where biocatalyst approaches may be preferred to produce and supply specific sweetener compounds. From a nutritional standpoint, high-intensity sweeteners have fewer calories than sugars while providing a major sweet potency, placing them in the spotlight as valuable alternatives to sugar. Due to the modern world awareness and incidence of metabolic diseases, both food research and growing markets have focused on two generally regarded as safe (GRAS) groups of compounds: the sweet diterpenoid glycosides present on the leaves of Stevia rebaudiana and, more recently, on the cucurbitane triterpene glycosides present on the fruits of Siraitia grosvenorii. In spite of their flavor advantages, biological benefits, including: antidiabetic, anticancer, and cardiovascular properties, have been elucidated. The present bibliographical review dips into the state-of-the-art of sweeteners and their role in human health as sugar replacements, as well as the biotransformation methods for steviol gylcosides and mogrosides apropos of enzymatic technology to update and locate the discoveries to date in the scientific literature to help boost the continuity of research efforts of the ongoing sweeteners.
Collapse
Affiliation(s)
| | | | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Madrid, Spain
| |
Collapse
|
4
|
Li M, Lan X, Shi X, Zhu C, Lu X, Pu J, Lu S, Zhang J. Delineating the stepwise millisecond allosteric activation mechanism of the class C GPCR dimer mGlu5. Nat Commun 2024; 15:7519. [PMID: 39209876 PMCID: PMC11362167 DOI: 10.1038/s41467-024-51999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Two-thirds of signaling hormones and one-third of approved drugs exert their effects by binding and modulating the G protein-coupled receptors (GPCRs) activation. While the activation mechanism for monomeric GPCRs has been well-established, little is known about GPCRs in dimeric form. Here, by combining transition pathway generation, extensive atomistic simulation-based Markov state models, and experimental signaling assays, we reveal an asymmetric, stepwise millisecond allosteric activation mechanism for the metabotropic glutamate receptor subtype 5 receptor (mGlu5), an obligate dimeric class C GPCR. The dynamic picture is presented that agonist binding induces dimeric ectodomains compaction, amplified by the precise association of the cysteine-rich domains, ultimately loosely bringing the intracellular 7-transmembrane (7TM) domains into proximity and establishing an asymmetric TM6-TM6 interface. The active inter-domain interface enhances their intra-domain flexibility, triggering the activation of micro-switches crucial for downstream signal transduction. Furthermore, we show that the positive allosteric modulator stabilizes both the active inter-domain 7TM interface and an open, extended intra-domain ICL2 conformation. This stabilization leads to the formation of a pseudo-cavity composed of the ICL2, ICL3, TM3, and C-terminus, which facilitates G protein coordination. Our strategy may be generalizable for characterizing millisecond events in other allosteric systems.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinchao Shi
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunhao Zhu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Xun Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, China
| | - Shaoyong Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Medicinal Chemistry and Bioinformatics Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
5
|
Cui S, Zhang S, Wang N, Su X, Luo Z, Ma X, Li M. Structural insights into the catalytic selectivity of glycosyltransferase SgUGT94-289-3 towards mogrosides. Nat Commun 2024; 15:6423. [PMID: 39080270 PMCID: PMC11289153 DOI: 10.1038/s41467-024-50662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Mogrosides constitute a series of natural sweeteners extracted from Siraitia grosvenorii fruits. These mogrosides are glucosylated to different degrees, with mogroside V (M5) and siamenoside I (SIA) being two mogrosides with high intensities of sweetness. SgUGT94-289-3 constitutes a uridine diphosphate (UDP)-dependent glycosyltransferase (UGT) responsible for the biosynthesis of M5 and SIA, by continuously catalyzing glucosylation on mogroside IIe (M2E) and on the subsequent intermediate mogroside products. However, the mechanism of its promiscuous substrate recognition and multiple catalytic modes remains unclear. Here, we report multiple complex structures and the enzymatic characterization of the glycosyltransferase SgUGT94-289-3. We show that SgUGT94-289-3 adopts a dual-pocket organization in its active site, which allows the two structurally distinct reactive ends of mogrosides to be presented from different pockets to the active site for glucosylation reaction, thus enabling both substrate promiscuity and catalytic regioselectivity. We further identified a structural motif that is essential to catalytic activity and regioselectivity, and generated SgUGT94-289-3 mutants with greatly improved M5/SIA production from M2E in an in vitro one-pot setup.
Collapse
Affiliation(s)
- Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Ning Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China.
| |
Collapse
|
6
|
Roelse M, Krasteva N, Pawlizak S, Mai MK, Jongsma MA. Tongue-on-a-Chip: Parallel Recording of Sweet and Bitter Receptor Responses to Sequential Injections of Pure and Mixed Sweeteners. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15854-15864. [PMID: 38951504 PMCID: PMC11261611 DOI: 10.1021/acs.jafc.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
A microfluidic tongue-on-a-chip platform has been evaluated relative to the known sensory properties of various sweeteners. Analogous metrics of typical sensory features reported by human panels such as sweet taste thresholds, onset, and lingering, as well as bitter off-flavor and blocking interactions were deduced from the taste receptor activation curves and then compared. To this end, a flow cell containing a receptor cell array bearing the sweet and six bitter taste receptors was transiently exposed to pure and mixed sweetener samples. The sample concentration gradient across time was separately characterized by the injection of fluorescein dye. Subsequently, cellular calcium responses to different doses of advantame, aspartame, saccharine, and sucrose were overlaid with the concentration gradient. Parameters describing the response kinetics compared to the gradient were quantified. Advantame at 15 μM recorded a significantly faster sweetness onset of 5 ± 2 s and a longer lingering time of 39 s relative to sucrose at 100 mM with an onset of 13 ± 2 s and a lingering time of 6 s. Saccharine was shown to activate the bitter receptors TAS2R8, TAS2R31, and TAS2R43, confirming its known off-flavor, whereas addition of cyclamate reduced or blocked this saccharine bitter response. The potential of using this tongue-on-a-chip to bridge the gap with in vitro assays and taste panels is discussed.
Collapse
Affiliation(s)
- Margriet Roelse
- BU
Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nadejda Krasteva
- Stuttgart
Laboratory 2, Sony Semiconductor Solutions Europe, Sony Europe B.V., Zweigniederlassung Deutschland,
Hedelfinger Str. 61, 70327 Stuttgart, Germany
| | - Steve Pawlizak
- Stuttgart
Laboratory 2, Sony Semiconductor Solutions Europe, Sony Europe B.V., Zweigniederlassung Deutschland,
Hedelfinger Str. 61, 70327 Stuttgart, Germany
| | - Michaela K. Mai
- Stuttgart
Laboratory 2, Sony Semiconductor Solutions Europe, Sony Europe B.V., Zweigniederlassung Deutschland,
Hedelfinger Str. 61, 70327 Stuttgart, Germany
| | - Maarten A. Jongsma
- BU
Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
7
|
Wang Y, Chang S, Lu S, Tong M, Kong F, Liu B. The sweet taste receptors in Lemuriformes respond to aspartame, a non-nutritive sweetener and critical residues mediating their taste. Biochimie 2024:S0300-9084(24)00164-0. [PMID: 38996999 DOI: 10.1016/j.biochi.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Aspartame is a high potency artificial sweetener which is popularly used in foods and beverages. The species-dependent sweet taste toward aspartame has not been completely understood. In a recent publication, we reported that the prosimians Lemuriformes species, which are proposed as aspartame nontasters, could taste aspartame based on the sequence and structure analysis. In this study, by mutagenesis, cell-based functional analysis and molecular simulations, we reveal that Lemuriformes species can respond to aspartame at the cell-based receptor activity level. Furthermore, it is proved that the conserved critical residues D142 and S40 mediate the species-dependent sweet taste toward aspartame. This research provides a deeper insight on the species taste, structure-activity relationship and evolution for eliciting the sweetness of this important synthetic sweetener.
Collapse
Affiliation(s)
- Yuqing Wang
- Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Shiyu Chang
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Shangyang Lu
- Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Mingqiong Tong
- School of Medicine and Nursing, Dezhou University, Dezhou, Shandong, 253023, China
| | - Fanyu Kong
- Tobacco Research Institute, Laboratory of Tobacco and Aromatic Plants Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Bo Liu
- Department of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
8
|
An JP, Wang Y, Munger SD, Tang X. A review on natural sweeteners, sweet taste modulators and bitter masking compounds: structure-activity strategies for the discovery of novel taste molecules. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 38494695 DOI: 10.1080/10408398.2024.2326012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Growing demand for the tasty and healthy food has driven the development of low-calorie sweeteners, sweet taste modulators, and bitter masking compounds originated from natural sources. With the discovery of human taste receptors, increasing numbers of sweet taste modulators have been identified through human taste response and molecular docking techniques. However, the discovery of novel taste-active molecules in nature can be accelerated by using advanced spectrometry technologies based on structure-activity relationships (SARs). SARs explain why structurally similar compounds can elicit similar taste qualities. Given the characterization of structural information from reported data, strategies employing SAR techniques to find structurally similar compounds become an innovative approach to expand knowledge of sweeteners. This review aims to summarize the structural patterns of known natural non-nutritive sweeteners, sweet taste enhancers, and bitter masking compounds. Innovative SAR-based approaches to explore sweetener derivatives are also discussed. Most sweet-tasting flavonoids belong to either the flavanonols or the dihydrochalcones and known bitter masking molecules are flavanones. Based on SAR findings that structural similarities are related to the sensory properties, innovative methodologies described in this paper can be applied to screen and discover the derivatives of taste-active compounds or potential taste modulators.
Collapse
Affiliation(s)
- Jin-Pyo An
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Yu Wang
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Steven D Munger
- Center for Smell and Taste, Department of Pharmacology and Therapeutics, Department of Otolaryngology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Xixuan Tang
- Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
9
|
Kim SK, Suebka S, Gin A, Nguyen PD, Tang Y, Su J, Goddard WA. Methotrexate Inhibits the Binding of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Receptor Binding Domain to the Host-Cell Angiotensin-Converting Enzyme-2 (ACE-2) Receptor. ACS Pharmacol Transl Sci 2024; 7:348-362. [PMID: 38357278 PMCID: PMC10863433 DOI: 10.1021/acsptsci.3c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024]
Abstract
As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus mutates, finding effective drugs becomes more challenging. In this study, we use ultrasensitive frequency locked microtoroid optical resonators in combination with in silico screening to search for COVID-19 drugs that can stop the virus from attaching to the human angiotensin-converting enzyme 2 (hACE2) receptor in the lungs. We found 29 promising candidates that could block the binding site and selected four of them that were likely to bind very strongly. We tested three of these candidates using frequency locked optical whispering evanescent resonator (FLOWER), a label-free sensing method based on microtoroid resonators. FLOWER has previously been used for sensing single macromolecules. Here we show, for the first time, that FLOWER can provide accurate binding affinities and sense the inhibition effect of small molecule drug candidates without labels, which can be prohibitive in drug discovery. One of the candidates, methotrexate, showed binding to the spike protein 1.8 million times greater than that to the receptor binding domain (RBD) binding to hACE2, making it difficult for the virus to enter cells. We tested methotrexate against different variants of the SARS-CoV-2 virus and found that it is effective against all four of the tested variants. People taking methotrexate for other conditions have also shown protection against the original SARS-CoV-2 virus. Normally, it is assumed that methotrexate inhibits the replication and release of the virus. However, our findings suggest that it may also block the virus from entering cells. These studies additionally demonstrate the possibility of extracting candidate ligands from large databases, followed by direct receptor-ligand binding experiments on the best candidates using microtoroid resonators, thus creating a workflow that enables the rapid discovery of new drug candidates for a variety of applications.
Collapse
Affiliation(s)
- Soo-Kyung Kim
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| | - Sartanee Suebka
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Adley Gin
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Phuong-Diem Nguyen
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Yisha Tang
- Department
of Biomedical Engineering, The University
of Arizona, Tucson, Arizona 85721, United States
| | - Judith Su
- Wyant
College of Optical Sciences, The University
of Arizona, Tucson, Arizona 85721, United States
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Liang L, Hao Z, Zhang J, Sun B, Xiong J, Li K, Zhang Y. Characterization and sweetness-enhancing effect of peptides from yeast extract based on sensory evaluation and molecular docking approaches. Food Res Int 2024; 178:113908. [PMID: 38309861 DOI: 10.1016/j.foodres.2023.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
Yeast extract (YE) is derived from the soluble component in yeast cells, which is rich in peptides and has been used as a sweet-enhancing agent. It has the potential to be utilized to produce natural sweet-flavored peptides or sweet-enhancing peptides. To study the synergistic effect and mechanism of sweetness-enhancing peptides derived from YE, ultrafiltration fraction with molecular weight less than 1 kDa was screened according to sensory analysis, which showed a synergistic sweetening effect in stevioside and mogroside solution. Twenty potential taste peptides were identified from the screened fractions, among which EV, AM, AVDNIPVGPN and VDNIPVGPN showed sweetness-enhancing effects on both stevioside and mogroside. The sweetener-receptor-peptide complex was constructed to investigate the interaction of stevioside and mogroside to taste receptor type 1 member 2 accompanied by these peptides. The results of the molecular docking indicated that new hydrophobic interactions (Leu 279, Pro 308, Val 309, etc.) and hydrogen bonds (Ser 40, Ala 43, Asp 278, etc.) were formed between sweeteners and active sites in the venus flytrap domain. In conclusion, the presence of sweetness-enhancing peptides from YE improved the binding stability of sweeteners and receptors by increasing the binding interaction, especially the hydrophobic interactions, which contribute to the synergistic effect of sweetness-enhancing peptides.
Collapse
Affiliation(s)
- Li Liang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Zhilin Hao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jingcheng Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Xiong
- National Key Laboratory of Agricultural Microbiology core facility, Angel Yeast Co., Ltd., Yichang 443003, China
| | - Ku Li
- National Key Laboratory of Agricultural Microbiology core facility, Angel Yeast Co., Ltd., Yichang 443003, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Flavor Science of China Gengeral Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
11
|
Yuan Y, Yiasmin MN, Tristanto NA, Chen Y, Liu Y, Guan S, Wang Z, Hua X. Computational simulations on the taste mechanism of steviol glycosides based on their interactions with receptor proteins. Int J Biol Macromol 2024; 255:128110. [PMID: 37981277 DOI: 10.1016/j.ijbiomac.2023.128110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
Steviol glycoside (SG) is a potential natural sugar substitute. The taste of various SG structures differ significantly, while their mechanism has not been thoroughly investigated. To investigate the taste mechanism, molecular docking simulations of SGs with sweet taste receptor TAS1R2 and bitter taste receptor TAS2R4 were conducted. The result suggested that four flexible coils (regions) in TAS1R2 constructed a geometry open pocket in space responsible for the binding of sweeteners. Amino acids that form hydrogen bonds with sweeteners are located in different receptor regions. In bitterness simulation, fewer hydrogen bonds were formed with the increased size of SG molecules. Particularly, there was no interaction between RM and TAS2R4 due to its size, which explains the non-bitterness of RM. Molecular dynamics simulations further indicated that the number of hydrogen bonds between SGs and TAS1R2 was maintained during a simulation time of 50 ns, while sucrose was gradually released from the binding site, leading to the break of interaction. Conclusively, the high sweetness intensity of SG can be attributed to its durative concurrent interaction with the receptor's binding site, and such behavior was determined by the structure feature of SG.
Collapse
Affiliation(s)
- Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mst Nushrat Yiasmin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | | - Yujie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Sevtia Biotechnology Co., Ltd., Wuxi 214181, China
| | - Yaxian Liu
- Department of Biotechnology and Enzyme Science, University of Hohenheim, Institute of Food Science and Biotechnology, Garbenstr. 25, 70599 Stuttgart, Germany
| | - Shuyi Guan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zijie Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Chometton S, Tsan L, Hayes AMR, Kanoski SE, Schier LA. Early-life influences of low-calorie sweetener consumption on sugar taste. Physiol Behav 2023; 264:114133. [PMID: 36801464 PMCID: PMC11062773 DOI: 10.1016/j.physbeh.2023.114133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Children and adolescents are the highest consumers of added sugars, particularly from sugar-sweetened beverages (SSB). Regular consumption of SSB early in life induces a variety of negative consequences on health that can last into adulthood. Low-calorie sweeteners (LCS) are increasingly used as an alternative to added sugars because they provide a sweet sensation without adding calories to the diet. However, the long-term effects of early-life consumption of LCS are not well understood. Considering LCS engage at least one of the same taste receptors as sugars and potentially modulate cellular mechanisms of glucose transport and metabolism, it is especially important to understand how early-life LCS consumption impacts intake of and regulatory responses to caloric sugars. In our recent study, we found that habitual intake of LCS during the juvenile-adolescence period significantly changed how rats responded to sugar later in life. Here, we review evidence that LCS and sugars are sensed via common and distinct gustatory pathways, and then discuss the implications this has for shaping sugar-associated appetitive, consummatory, and physiological responses. Ultimately, the review highlights the diverse gaps in knowledge that will be necessary to fill to understand the consequences of regular LCS consumption during important phases of development.
Collapse
Affiliation(s)
- Sandrine Chometton
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Linda Tsan
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Anna M R Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Scott E Kanoski
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lindsey A Schier
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Almiron-Roig E, Navas-Carretero S, Castelnuovo G, Kjølbæk L, Romo-Hualde A, Normand M, Maloney N, Hardman CA, Hodgkins CE, Moshoyiannis H, Finlayson G, Scott C, Raats MM, Harrold JA, Raben A, Halford JCG, Martínez JA. Impact of acute consumption of beverages containing plant-based or alternative sweetener blends on postprandial appetite, food intake, metabolism, and gastro-intestinal symptoms: Results of the SWEET beverages trial. Appetite 2023; 184:106515. [PMID: 36849009 DOI: 10.1016/j.appet.2023.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Project SWEET examined the barriers and facilitators to the use of non-nutritive sweeteners and sweetness enhancers (hereafter "S&SE") alongside potential risks/benefits for health and sustainability. The Beverages trial was a double-blind multi-centre, randomised crossover trial within SWEET evaluating the acute impact of three S&SE blends (plant-based and alternatives) vs. a sucrose control on glycaemic response, food intake, appetite sensations and safety after a carbohydrate-rich breakfast meal. The blends were: mogroside V and stevia RebM; stevia RebA and thaumatin; and sucralose and acesulfame-potassium (ace-K). At each 4 h visit, 60 healthy volunteers (53% male; all with overweight/obesity) consumed a 330 mL beverage with either an S&SE blend (0 kJ) or 8% sucrose (26 g, 442 kJ), shortly followed by a standardised breakfast (∼2600 or 1800 kJ with 77 or 51 g carbohydrates, depending on sex). All blends reduced the 2-h incremental area-under-the-curve (iAUC) for blood insulin (p < 0.001 in mixed-effects models), while the stevia RebA and sucralose blends reduced the glucose iAUC (p < 0.05) compared with sucrose. Post-prandial levels of triglycerides plus hepatic transaminases did not differ across conditions (p > 0.05 for all). Compared with sucrose, there was a 3% increase in LDL-cholesterol after stevia RebA-thaumatin (p < 0.001 in adjusted models); and a 2% decrease in HDL-cholesterol after sucralose-ace-K (p < 0.01). There was an impact of blend on fullness and desire to eat ratings (both p < 0.05) and sucralose-acesulfame K induced higher prospective intake vs sucrose (p < 0.001 in adjusted models), but changes were of a small magnitude and did not translate into energy intake differences over the next 24 h. Gastro-intestinal symptoms for all beverages were mostly mild. In general, responses to a carbohydrate-rich meal following consumption of S&SE blends with stevia or sucralose were similar to sucrose.
Collapse
Affiliation(s)
- Eva Almiron-Roig
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain; Navarra Institute for Health Research (IdiSNa), Pamplona, Spain.
| | - Santiago Navas-Carretero
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain; Navarra Institute for Health Research (IdiSNa), Pamplona, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.
| | | | - Louise Kjølbæk
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Ana Romo-Hualde
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain; University of Navarra, Center for Nutrition Research, Pamplona, Spain.
| | - Mie Normand
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Niamh Maloney
- Department of Psychology, University of Liverpool, Liverpool, UK.
| | | | - Charo E Hodgkins
- Food Consumer Behaviour and Health Research Centre, School of Psychology, University of Surrey, Guildford, UK.
| | | | | | - Corey Scott
- Cargill R&D Centre Europe, Vilvoorde, Belgium.
| | - Monique M Raats
- Food Consumer Behaviour and Health Research Centre, School of Psychology, University of Surrey, Guildford, UK.
| | - Joanne A Harrold
- Department of Psychology, University of Liverpool, Liverpool, UK.
| | - Anne Raben
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark.
| | - Jason C G Halford
- Department of Psychology, University of Liverpool, Liverpool, UK; School of Psychology, University of Leeds, Leeds, UK.
| | - J Alfredo Martínez
- University of Navarra, Faculty of Pharmacy and Nutrition, Dept. of Food Science and Physiology, Pamplona, Spain.
| |
Collapse
|
14
|
Sanematsu K, Yamamoto M, Nagasato Y, Kawabata Y, Watanabe Y, Iwata S, Takai S, Toko K, Matsui T, Wada N, Shigemura N. Prediction of dynamic allostery for the transmembrane domain of the sweet taste receptor subunit, TAS1R3. Commun Biol 2023; 6:340. [PMID: 37012338 PMCID: PMC10070457 DOI: 10.1038/s42003-023-04705-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
The sweet taste receptor plays an essential role as an energy sensor by detecting carbohydrates. However, the dynamic mechanisms of receptor activation remain unclear. Here, we describe the interactions between the transmembrane domain of the G protein-coupled sweet receptor subunit, TAS1R3, and allosteric modulators. Molecular dynamics simulations reproduced species-specific sensitivity to ligands. We found that a human-specific sweetener, cyclamate, interacted with the mouse receptor as a negative allosteric modulator. Agonist-induced allostery during receptor activation was found to destabilize the intracellular part of the receptor, which potentially interfaces with the Gα subunit, through ionic lock opening. A common human variant (R757C) of the TAS1R3 exhibited a reduced response to sweet taste, in support of our predictions. Furthermore, histidine residues in the binding site acted as pH-sensitive microswitches to modulate the sensitivity to saccharin. This study provides important insights that may facilitate the prediction of dynamic activation mechanisms for other G protein-coupled receptors.
Collapse
Affiliation(s)
- Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Oral Health/Brain Health/Total Health Research Center, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Masato Yamamoto
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuki Nagasato
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yuko Kawabata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yu Watanabe
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shusuke Iwata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kiyoshi Toko
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Institute for Advanced Study, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Toshiro Matsui
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Department of Bioresources and Biosciences, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Naohisa Wada
- Department of General Dentistry, Division of Interdisciplinary Dentistry, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
15
|
Higgins KA, Rawal R, Baer DJ, O'Connor LE, Appleton KM. Scoping Review and Evidence Map of the Relation between Exposure to Dietary Sweetness and Body Weight-Related Outcomes in Adults. Adv Nutr 2022; 13:2341-2356. [PMID: 36041167 PMCID: PMC9776634 DOI: 10.1093/advances/nmac090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/20/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023] Open
Abstract
Numerous governmental and health organizations recommend reduced intake of added sugars due to the health risks associated with excess intake, including the risk of obesity. Some organizations further recommend avoiding dietary sweetness, regardless of the source. A scoping review and evidence map were completed to characterize the research that investigated associations between dietary sweetness and body weight. The aim was to identify and map published studies that have investigated total dietary sweetness, sweet food/beverages, sugar, or sweetener intake, and body weight-related outcomes and/or energy intake. Using preregistered search terms (osf.io/my7pb), 36,779 publications (duplicates removed) were identified from PubMed, Cochrane Library, and Scopus and screened for inclusion. Eligible studies were clinical trials, longitudinal cohorts, case-control studies, cross-sectional studies, and systematic reviews conducted among adults (age ≥18 y), which were performed to investigate associations between dietary sweetness, sweet foods/beverages, sugar, or sweetener (energetic or nonenergetic) intake and body weight, BMI, adiposity, and/or energy intake. A total of 833 eligible publications were identified, detailing 804 studies. Only 7 studies (0.9% of included studies; 2 clinical trials, 4 cross-sectional studies, and 1 with another design type) investigated associations between total dietary sweetness and body weight-related outcome and/or energy intake. An additional 608 (75.6%) studies investigated intakes of sweet foods/beverages, sugar, or sweetener, and body weight-related outcomes and/or energy intake, including 225 clinical trials, 81 longitudinal cohorts, 4 case-control studies, and 280 cross-sectional studies. Most studies (90.6%) did not measure the sweetness of the diet or individual foods consumed. Ninety-two (11.4%) publications reported data from studies on dietary patterns that included sweet foods/beverages alongside other dietary components and 97 (12.1%) systematic reviews addressed different but related research questions. Although there is a breadth of evidence from studies that have investigated associations between intakes of sweet foods and beverages, sugars, and sweeteners and body weight, there is a limited depth of evidence on the association between total dietary sweetness and body weight.
Collapse
Affiliation(s)
| | - Rita Rawal
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Components and Health Laboratory, Beltsville, MD, USA
| | - David J Baer
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Components and Health Laboratory, Beltsville, MD, USA
| | - Lauren E O'Connor
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Components and Health Laboratory, Beltsville, MD, USA
| | | |
Collapse
|
16
|
Abstract
When it comes to food, one tempting substance is sugar. Although sweetness is detected by the tongue, the desire to consume sugar arises from the gut. Even when sweet taste is impaired, animals can distinguish sugars from non-nutritive sweeteners guided by sensory cues arising from the gut epithelium. Here, we review the molecular receptors, cells, circuits and behavioural consequences associated with sugar sensing in the gut. Recent work demonstrates that some duodenal cells, termed neuropod cells, can detect glucose using sodium-glucose co-transporter 1 and release glutamate onto vagal afferent neurons. Based on these and other data, we propose a model in which specific populations of vagal neurons relay these sensory cues to distinct sets of neurons in the brain, including neurons in the caudal nucleus of the solitary tract, dopaminergic reward circuits in the basal ganglia and homeostatic feeding circuits in the hypothalamus, that alter current and future sugar consumption. This emerging model highlights the critical role of the gut in sensing the chemical properties of ingested nutrients to guide appetitive decisions.
Collapse
Affiliation(s)
- Winston W Liu
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke University, Durham, NC, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.
- Department of Medicine, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
17
|
Wah Tan Z, Tee WV, Berezovsky IN. Learning about allosteric drugs and ways to design them. J Mol Biol 2022; 434:167692. [PMID: 35738428 DOI: 10.1016/j.jmb.2022.167692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
While the accelerating quest for precision medicine requires new individually targeting and selective drugs, and the ability to work with so-called undruggable targets, the realm of allosteric drugs meeting this need remains largely uncharted. Generalizing the observations on two major drug targets with widely observed inherent allostery, GPCRs and kinases, we describe and discuss basic allosteric modes of action that are universally applicable in all types of structures and functions. Using examples of Class A GPCRs and CMGC protein kinases, we show how Allosteric Signalling and Probing Fingerprints can be used to identify potential allosteric sites and reveal effector-leads that may serve as a starting point for the development of allosteric drugs targeting these regulatory sites. A set of distinct characteristics of allosteric ligands was established, which highlights the versatility of their design and make them advantageous before their orthosteric counterparts in personalized medicine. We argue that rational design of allosteric drugs should begin with the search for latent sites or design of non-natural binding sites followed by fragment-based design of allosteric ligands and by the mutual adjustment of the site-ligand pair in order to achieve required effects. On the basis of the perturbative nature and reversibility of allosteric communication, we propose a generic protocol for computational design of allosteric effectors, enabling also the allosteric tuning of biologics, in obtaining allosteric control over protein functions.
Collapse
Affiliation(s)
- Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Wei-Ven Tee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, 117579, Singapore.
| |
Collapse
|
18
|
Current Advances and Future Aspects of Sweetener Synergy: Properties, Evaluation Methods and Molecular Mechanisms. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sweetener synergy is the phenomenon in which certain combinations of sweeteners work more effectively than the theoretical sum of the effects of each components. It provides benefits in reducing sweetener dosages and improving their sweetness. Many mixtures of sweeteners with synergistic effects have been reported up to now. Both artificial high-intensity sweeteners and natural sweeteners are popularly used in sweetener mixtures for synergism, although the former seem to display more potential to exhibit synergy than the latter. Furthermore, several evaluation methods to investigate sweetener synergy have been applied, which could lead to discrepancies in results. Moreover, structurally dissimilar sweeteners could cooperatively bind at the different sites in the sweet taste receptor T1R2/T1R3 to activate the receptor, and their hydration characters/packing characteristics in solvents could affect their interaction with the receptor, providing the preliminary explanations for the molecular basis of sweetener synergy. In this article, we firstly present a systematic review, analysis and comment on the properties, evaluation methods and molecular mechanisms of sweetener synergy. Secondly, challenges of sweetener synergy in both theory and practice and possible strategies to overcome these limitations are comprehensively discussed. Finally, future perspectives for this important performance in human sweet taste perception are proposed.
Collapse
|
19
|
Miao Y, Ni H, Zhang X, Zhi F, Long X, Yang X, He X, Zhang L. Investigating mechanism of sweetness intensity differences through dynamic analysis of sweetener-T1R2-membrane systems. Food Chem 2021; 374:131807. [PMID: 34915374 DOI: 10.1016/j.foodchem.2021.131807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 11/15/2022]
Abstract
Knowing the mechanism of action of sweet taste receptors is important for the design of new, healthy sweeteners. However, little is known about the structures and recognition mechanisms of these receptors. 28 sweeteners were assessed by molecular docking, and 8 typical sweeteners were chosen to construct sweetener-T1R2-membrane systems to analyze interactions between receptor and sweeteners. Natural sweeteners with low-intensity sweetness, such as fructose and xylitol, were released from the Venus flytrap domain at ∼30 ns, with displacements greater than 50 Å. In contrast, artificial neotame and advantame bound stably to the receptor, within 5 Å. Van der Waals interactions were significant in high-intensity sweetener systems, imparting an energy difference of over 15 kcal/mol between neotame (artificial sweetener) and fructose (natural). These results provide a deeper understanding of the mechanisms of sweetener function and offer a new direction for the design of sweeteners.
Collapse
Affiliation(s)
- Yulu Miao
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xingyi Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Fengdong Zhi
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xiang Long
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xuepeng Yang
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China.
| |
Collapse
|
20
|
Biophysical and functional characterization of the human TAS1R2 sweet taste receptor overexpressed in a HEK293S inducible cell line. Sci Rep 2021; 11:22238. [PMID: 34782704 PMCID: PMC8593021 DOI: 10.1038/s41598-021-01731-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023] Open
Abstract
Sweet taste perception is mediated by a heterodimeric receptor formed by the assembly of the TAS1R2 and TAS1R3 subunits. TAS1R2 and TAS1R3 are class C G-protein-coupled receptors whose members share a common topology, including a large extracellular N-terminal domain (NTD) linked to a seven transmembrane domain (TMD) by a cysteine-rich domain. TAS1R2-NTD contains the primary binding site for sweet compounds, including natural sugars and high-potency sweeteners, whereas the TAS1R2-TMD has been shown to bind a limited number of sweet tasting compounds. To understand the molecular mechanisms governing receptor–ligand interactions, we overexpressed the human TAS1R2 (hTAS1R2) in a stable tetracycline-inducible HEK293S cell line and purified the detergent-solubilized receptor. Circular dichroism spectroscopic studies revealed that hTAS1R2 was properly folded with evidence of secondary structures. Using size exclusion chromatography coupled to light scattering, we found that the hTAS1R2 subunit is a dimer. Ligand binding properties were quantified by intrinsic tryptophan fluorescence. Due to technical limitations, natural sugars have not been tested. However, we showed that hTAS1R2 is capable of binding high potency sweeteners with Kd values that are in agreement with physiological detection. This study offers a new experimental strategy to identify new sweeteners or taste modulators that act on the hTAS1R2 and is a prerequisite for structural query and biophysical studies.
Collapse
|
21
|
Jang J, Kim SK, Guthrie B, Goddard WA. Synergic Effects in the Activation of the Sweet Receptor GPCR Heterodimer for Various Sweeteners Predicted Using Molecular Metadynamics Simulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12250-12261. [PMID: 34613740 DOI: 10.1021/acs.jafc.1c03779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sweet taste is elicited by activation of the TAS1R2/1R3 heterodimer G protein-coupled receptor. This is a therapeutic target for treatment of obesity and metabolic dysfunctions. Sweetener blends provide attractive strategies to lower the sugar level while preserving the attractive taste of food. To understand the synergic effect of various sweetener blend combinations of artificial and natural sweeteners, we carried out our molecular dynamics studies using predicted structures of the TAS1R2/1R3 heterodimer and predicted structures for the sweeteners. We used as a measure of activation the intracellular ionic lock distance between transmembrane helices 3 and 6 of TAS1R3. We find that full synergic combinations [rebaudioside A (Reb-A)/acesulfame K and Reb-A/sucralose] and partial synergic combinations (sucralose/acesulfame K) show significantly more negative changes in the free energy compared to single-ligand cases, while a pair known to be suppressive (saccharin and acesulfame K) shows significantly less changes than for the single-ligand case. This study provides an atomistic understanding of the mechanism for synergy and identifies new combinations of sweeteners to reduce the caloric content for treating diseases.
Collapse
Affiliation(s)
- Jaewan Jang
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Brian Guthrie
- Cargill Global Core Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
22
|
Mafi A, Kim SK, Chou KC, Güthrie B, Goddard WA. Predicted Structure of Fully Activated Tas1R3/1R3' Homodimer Bound to G Protein and Natural Sugars: Structural Insights into G Protein Activation by a Class C Sweet Taste Homodimer with Natural Sugars. J Am Chem Soc 2021; 143:16824-16838. [PMID: 34585929 DOI: 10.1021/jacs.1c08839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Tas1R3 G protein-coupled receptor constitutes the main component of sweet taste sensory response in humans via forming a heterodimer with Tas1R2 or a homodimer with Tas1R3. The Tas1R3/1R3' homodimer serves as a low-affinity sweet taste receptor, stimulating gustducin G protein (GGust) signaling in the presence of a high concentration of natural sugars. This provides an additional means to detect the taste of natural sugars, thereby differentiating the flavors between natural sugars and artificial sweeteners. We report here the predicted 3D structure of active state Tas1R3/1R3' homodimer complexed with heterotrimeric GGust and sucrose. We discovered that the GGust makes ionic anchors to intracellular loops 1 and 2 of Tas1R3 while the Gα-α5 helix engages the cytoplasmic region extensively through salt bridge and hydrophobic interactions. We show that in the activation of this complex the Venus flytrap domains of the homodimer undergo a remarkable twist up to ∼100° rotation around the vertical axis to adopt a closed-closed conformation while the intracellular region relaxes to an open-open conformation. We find that binding of sucrose to the homodimer stabilizes a preactivated conformation with a largely open intracellular region that recruits and activates the GGust. Upon activation, the Gα subunit spontaneously opens up the nucleotide-binding site, making nucleotide exchange facile for signaling. This activation of GGust promotes the interdomain twist of the Venus flytrap domains. These structures and transformations could potentially be a basis for the design of new sweeteners with higher activity and less unpleasant flavors.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| | - Keng C Chou
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Brian Güthrie
- Cargill Global Food Research, Wayzata, Minnesota 55391, United States
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
On the human taste perception: Molecular-level understanding empowered by computational methods. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Yang MY, Kim SK, Kim D, Liggett SB, Goddard WA. Structures and Agonist Binding Sites of Bitter Taste Receptor TAS2R5 Complexed with Gi Protein and Validated against Experiment. J Phys Chem Lett 2021; 12:9293-9300. [PMID: 34542294 PMCID: PMC8650975 DOI: 10.1021/acs.jpclett.1c02162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bitter taste receptors (TAS2Rs) function in taste perception, but are also expressed in many extraoral tissues, presenting attractive therapeutic targets. TAS2R5s expressed on human airway smooth muscle cells can induce bronchodilation for treating asthma and other obstructive diseases. But TAS2R5s display low agonist affinity and the lack of a 3D structure has hindered efforts to design more active ligands. We report the structure of the activated TAS2R5 coupled to the Gi protein and bound to each of 19 agonists, using computational approaches. These agonists bind to two polar residues in TM3 that are unique for TAS2R5 among 25 TAS2R subtypes. Our predicted results correlate well with experimental results of agonist-receptor signaling coefficients, providing validation of the predicted structure. These results provide highly specific data on how agonists activate TAS2R5, how modifications of ligand structure alter receptor activation, and a guide to structure-based drug design.
Collapse
Affiliation(s)
- Moon Young Yang
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| | - Soo-Kyung Kim
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| | - Donghwa Kim
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
| | - Stephen B. Liggett
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
- Departments of Medicine and Molecular Pharmacology and Physiology, Medical Engineering, and Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, 33602
| | - William A. Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, 91125
| |
Collapse
|
25
|
Shen T, Li J. Drinking Non-nutritive Sweetness Solution of Sodium Saccharin or Rebaudioside a for Guinea Pigs: Influence on Histologic Change and Expression of Sweet Taste Receptors in Testis and Epididymis. Front Nutr 2021; 8:720889. [PMID: 34422887 PMCID: PMC8375269 DOI: 10.3389/fnut.2021.720889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Saccharin sodium and rebaudioside A are extensively used as non-nutritive sweeteners (NNSs) in daily life. NNSs elicit a multitude of endocrine influences on animals, differing across species and chemically distinct sweeteners, whose exposure induce activation of sweet taste receptors in oral and extra-oral tissues with consequences of metabolic changes. To evaluate the influence of NNSs on histologic change and expression of sweet taste receptors in testis and epididymis of young male guinea pigs, thirty 4-week-old male guinea pigs with body weight 245.73 ± 6.02 g were randomly divided into five groups (n = 6) and received normal water (control group) and equivalent sweetness low dose or high dose of sodium saccharin (L-SS, 1.5 mM or H-SS, 7.5 mM) or rebaudioside A (L-RA, 0.5 mM or H-RA, 2.5 mM) solution for 28 consecutive days. The results showed that the relative testis weight in male guinea pig with age of 56 days represented no significant difference among all groups; in spite of heavier body weight in L-SS and H-RA, NNS contributes no significant influence on serum testosterone and estradiol level. Low-dose 0.5 mM rebaudioside A enhanced testicular and epididymal functions by elevating the expressions of taste receptor 1 subunit 2 (T1R2) and gustducin α-subunit (GNAT3), and high-dose 7.5 mM sodium saccharin exerted adverse morphologic influences on testis and epididymis with no effect on the expression of T1R2, taste receptor 1 subunit 2 (T1R3), and GNAT3. In conclusion, these findings suggest that a high dose of sodium saccharin has potential adverse biologic effects on the testes and epididymis, while rebaudioside A is a potential steroidogenic sweetener for enhancing reproductive functions.
Collapse
Affiliation(s)
- Ting Shen
- College of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Junrong Li
- College of Agriculture, Jinhua Polytechnic, Jinhua, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Choi Y, Manthey JA, Park TH, Cha YK, Kim Y, Kim Y. Correlation between in vitro binding activity of sweeteners to cloned human sweet taste receptor and sensory evaluation. Food Sci Biotechnol 2021; 30:675-682. [PMID: 34123464 DOI: 10.1007/s10068-021-00905-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 11/28/2022] Open
Abstract
The human sweet taste receptor is a TAS1R2/TAS1R3 heterodimer. To investigate the correlation between the in vitro affinity of sweeteners with stably expressed human sweet taste receptor in HEK-293 cells and human sensory evaluation, the receptor-ligand activity of bulk (sucrose, D-fructose, and allulose) and high-intensity sweeteners (saccharin, rebaudioside A, rebaudioside M, and neohesperidin dihydrochalcone) was compared by analyzing the Ca2+ release. The relative potency of the sweeteners was identified over a wide concentration range for EC50s. Relative to sucrose, bulk sweeteners showed similar concentration ranges and potency, whereas high-intensity sweeteners exhibited lower concentration ranges and higher potency. The log of the calculated EC50 of each sweetener relative to sucrose by the in vitro affinity assay was positively correlated (r = 0.9943) with the molar relative sweetness reported in the previous literatures. These results suggested a good correlation between the in vitro activity assay of sweeteners and human sensory evaluation.
Collapse
Affiliation(s)
- Yoonha Choi
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - John A Manthey
- Agricultural Research Service, U.S. Horticultural Research Lab, U. S. Dept. of Agriculture, 2001 South Rock Road, Fort Pierce, FL34945 USA
| | - Tai Hyun Park
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826 Republic of Korea.,School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yeon Kyung Cha
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yang Kim
- Center for Food & Bioconvergence, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
27
|
Predicted structure of fully activated human bitter taste receptor TAS2R4 complexed with G protein and agonists. QRB DISCOVERY 2021. [PMID: 37529671 PMCID: PMC10392674 DOI: 10.1017/qrd.2021.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Bitter taste is sensed by bitter taste receptors (TAS2Rs) that belong to the G protein-coupled receptor (GPCR) superfamily. In addition to bitter taste perception, TAS2Rs have been reported recently to be expressed in many extraoral tissues and are now known to be involved in health and disease. Despite important roles of TAS2Rs in biological functions and diseases, no crystal structure is available to help understand the signal transduction mechanism or to help develop selective ligands as new therapeutic targets. We report here the three-dimensional structure of the fully activated TAS2R4 human bitter taste receptor predicted using the GEnSeMBLE complete sampling method. This TAS2R4 structure is coupled to the gustducin G protein and to each of several agonists. We find that the G protein couples to TAS2R4 by forming strong salt bridges to each of the three intracellular loops, orienting the activated Gα5 helix of the Gα subunit to interact extensively with the cytoplasmic region of the activated receptor. We find that the TAS2Rs exhibit unique motifs distinct from typical Class A GPCRs, leading to a distinct activation mechanism and a less stable inactive state. This fully activated bitter taste receptor complex structure provides insight into the signal transduction mechanism and into ligand binding to TAS2Rs.
Collapse
|
28
|
Gorvin CM. Calcium-sensing receptor signaling - How human disease informs biology. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 16:10-28. [PMID: 34141952 PMCID: PMC7611003 DOI: 10.1016/j.coemr.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The calcium-sensing receptor (CaSR) is a class C G-protein-coupled receptor (GPCR) that plays a fundamental role in extracellular calcium homeostasis by regulating parathyroid hormone (PTH) release. Although the CaSR was identified over 25 years ago, new mechanistic details of how the CaSR controls PTH secretion have recently been uncovered demonstrating heteromerization and phosphate binding affect CaSR-mediated suppression of PTH release. In addition, understanding of how the CaSR performs diverse functions in different cellular contexts is just beginning to be elucidated, with new evidence of tissue-specific regulation, and endo-somal signaling. Insights into CaSR activation mechanisms and signaling bias have arisen from studies of CaSR mutations, which cause disorders of calcium homeostasis. Functional assessment of these mutations demonstrated the importance of the homodimer interface and transmembrane domain in biased signaling and showed CaSR mutations can facilitate G-protein-independent signaling. Population genetics studies have allowed a greater understanding of the prevalence of calcemic disorders and revealed new pathophysiological roles.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR) and Centre for Diabetes, Endocrinology and Metabolism (CEDAM), University of Birmingham, Birmingham, B15 2TT, UK
- Centre for Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, B15 2TT, UK
| |
Collapse
|
29
|
Jensterle M, Rizzo M, Janez A. Glucagon-Like Peptide 1 and Taste Perception: From Molecular Mechanisms to Potential Clinical Implications. Int J Mol Sci 2021; 22:ijms22020902. [PMID: 33477478 PMCID: PMC7830704 DOI: 10.3390/ijms22020902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/03/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Preclinical studies provided some important insights into the action of glucagon-like peptide 1 (GLP-1) in taste perception. This review examines the literature to uncover some molecular mechanisms and connections between GLP-1 and the gustatory coding. Local GLP-1 production in the taste bud cells, the expression of GLP-1 receptor on the adjacent nerves, a functional continuum in the perception of sweet chemicals from the gut to the tongue and an identification of GLP-1 induced signaling pathways in peripheral and central gustatory coding all strongly suggest that GLP-1 is involved in the taste perception, especially sweet. However, the impact of GLP-1 based therapies on gustatory coding in humans remains largely unaddressed. Based on the molecular background we encourage further exploration of the tongue as a new treatment target for GLP-1 receptor agonists in clinical studies. Given that pharmacological manipulation of gustatory coding may represent a new potential strategy against obesity and diabetes, the topic is of utmost clinical relevance.
Collapse
Affiliation(s)
- Mojca Jensterle
- Diabetes and Metabolic Diseases, Division of Internal Medicine, Department of Endocrinology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia;
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
| | - Manfredi Rizzo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of South Carolina, Columbia, SC 29208, USA;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy
| | - Andrej Janez
- Diabetes and Metabolic Diseases, Division of Internal Medicine, Department of Endocrinology, University Medical Centre Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia;
- Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Zaloška Cesta 7, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-522-3114; Fax: +386-1-522-9359
| |
Collapse
|
30
|
Gómez de Cedrón M, Wagner S, Reguero M, Menéndez-Rey A, Ramírez de Molina A. Miracle Berry as a Potential Supplement in the Control of Metabolic Risk Factors in Cancer. Antioxidants (Basel) 2020; 9:antiox9121282. [PMID: 33333960 PMCID: PMC7765360 DOI: 10.3390/antiox9121282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
The increased incidence of chronic diseases related to altered metabolism has become a social and medical concern worldwide. Cancer is a chronic and multifactorial disease for which, together with genetic factors, environmental factors are crucial. According to the World Health Organization (WHO), up to one third of cancer-related deaths could be prevented by modifying risk factors associated with lifestyle, including diet and exercise. Obesity increases the risk of cancer due to the promotion of low-grade chronic inflammation and systemic metabolic oxidative stress. The effective control of metabolic parameters, for example, controlling glucose, lipid levels, and blood pressure, and maintaining a low grade of chronic inflammation and oxidative stress might represent a specific and mechanistic approach against cancer initiation and progression. Miracle berry (MB) (Synsepalum dulcificum) is an indigenous fruit whose small, ellipsoid, and bright red berries have been described to transform a sour taste into a sweet one. MB is rich in terpenoids, phenolic compounds, and flavonoids, which are responsible for their described antioxidant activities. Moreover, MB has been reported to ameliorate insulin resistance and inhibit cancer cell proliferation and malignant transformation in vitro. Herein, we briefly summarize the current knowledge of MB to provide a scientific basis for its potential use as a supplement in the management of chronic diseases related to altered metabolism, including obesity and insulin resistance, which are well-known risk factors in cancer. First, we introduce cancer as a metabolic disease, highlighting the impact of systemic metabolic alterations, such as obesity and insulin resistance, in cancer initiation and progression. Next, as oxidative stress is closely associated with metabolic stress, we also evaluate the effect of phytochemicals in managing oxidative stress and its relationship with cancer. Finally, we summarize the main biological activities described for MB-derived extracts with a special focus on the ability of miraculin to transform a sour taste into a sweet one through its interaction with the sweet taste receptors. The identification of sweet taste receptors at the gastrointestinal level, with effects on the secretion of enterohormones, may provide an additional tool for managing chronic diseases, including cancer.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (S.W.); (M.R.)
- Correspondence: (M.G.d.C.); (A.R.d.M.); Tel.: +34-91-727-81-00 (ext. 210) (M.G.d.C.); Fax: +34-91-188-07-56 (M.G.d.C.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (S.W.); (M.R.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain;
| | - Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (S.W.); (M.R.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain
| | - Adrián Menéndez-Rey
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain;
- Biomedical Technology Center, Polytechnic University of Madrid, 28223 Pozuelo de Alarcón, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (S.W.); (M.R.)
- Correspondence: (M.G.d.C.); (A.R.d.M.); Tel.: +34-91-727-81-00 (ext. 210) (M.G.d.C.); Fax: +34-91-188-07-56 (M.G.d.C.)
| |
Collapse
|
31
|
Ahmad R, Dalziel JE. G Protein-Coupled Receptors in Taste Physiology and Pharmacology. Front Pharmacol 2020; 11:587664. [PMID: 33390961 PMCID: PMC7774309 DOI: 10.3389/fphar.2020.587664] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.
Collapse
Affiliation(s)
- Raise Ahmad
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| | - Julie E Dalziel
- Food Nutrition and Health Team, Food and Bio-based Products Group, AgResearch, Palmerston North, New Zealand
| |
Collapse
|
32
|
Goel A, Gajula K, Gupta R, Rai B. In-silico screening of database for finding potential sweet molecules: A combined data and structure based modeling approach. Food Chem 2020; 343:128538. [PMID: 33183872 DOI: 10.1016/j.foodchem.2020.128538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
In this study, we present a framework comprises of several independent modules which are built upon data based (structure activity relationship and classification model) and structure (molecular docking) based for identifying possible sweeteners from a vast database of natural molecules. A large database, Universal Natural Products Database (UNPD) consisting of 213,210 compounds was screened using the developed framework. At first, 10,184 molecules structurally similar to the known sweeteners were identified in the database. Further, 1924 molecules from these screened molecules were classified as sweet molecules. The shortlisted 1354 molecules were subjected to ADMET analysis. Finally, 60 molecules were arrived at with no toxicity and acceptable oral bioavailability as potential sweetener candidates. Further, molecular docking of these molecules on sweet taste receptor performed to obtain their binding energy, binding sites and correlation with sweetness index. The developed framework offers a convenient route for fast screening of molecules prior to synthesis and testing.
Collapse
Affiliation(s)
- Anukrati Goel
- Physical Sciences Research Area, Tata Research Development and Design Centre, Tata Consultancy Services, 54 B, Hadapsar Industrial Estate, Pune 411013, India
| | - Kishore Gajula
- Physical Sciences Research Area, Tata Research Development and Design Centre, Tata Consultancy Services, 54 B, Hadapsar Industrial Estate, Pune 411013, India
| | - Rakesh Gupta
- Physical Sciences Research Area, Tata Research Development and Design Centre, Tata Consultancy Services, 54 B, Hadapsar Industrial Estate, Pune 411013, India.
| | - Beena Rai
- Physical Sciences Research Area, Tata Research Development and Design Centre, Tata Consultancy Services, 54 B, Hadapsar Industrial Estate, Pune 411013, India
| |
Collapse
|
33
|
Zhang N, Wei X, Fan Y, Zhou X, Liu Y. Recent advances in development of biosensors for taste-related analyses. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Mahalapbutr P, Lee VS, Rungrotmongkol T. Binding Hotspot and Activation Mechanism of Maltitol and Lactitol toward the Human Sweet Taste Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7974-7983. [PMID: 32551626 DOI: 10.1021/acs.jafc.0c02580] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Human sweet taste receptor (hSTR) recognizes a wide array of sweeteners, resulting in sweet taste perception. Maltitol and lactitol have been extensively used in place of sucrose due to their capability to prevent dental caries. Herein, several molecular modeling approaches were applied to investigate the structural and energetic properties of these two polyols/hSTR complexes. Triplicate 500 ns molecular dynamics (MD) simulations and molecular mechanics/generalized Born surface area (MM/GBSA)-based free energy calculations revealed that the TAS1R2 monomer is the preferential binding site for maltitol and lactitol rather than the TAS1R3 region. Several polar residues (D142, S144, Y215, D278, E302, R383, and especially N143) were involved in polyols binding through electrostatic attractions and H-bond formations. The molecular complexation process not only induced the stable form of ligands but also stimulated the conformational adaptation of the TAS1R2 monomer to become a close-packed structure through an induced-fit mechanism. Notably, the binding affinity of the maltitol/TAS1R2 complex (ΔGbind of -17.93 ± 1.49 kcal/mol) was significantly higher than that of the lactitol/TAS1R2 system (-8.53 ± 1.78 kcal/mol), in line with the experimental relative sweetness. These findings provide an in-depth understanding of the differences in the sweetness response between maltitol and lactitol, which could be helpful to design novel polyol derivatives with higher sweet taste perception.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Thanyada Rungrotmongkol
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
35
|
Current Progress in Understanding the Structure and Function of Sweet Taste Receptor. J Mol Neurosci 2020; 71:234-244. [PMID: 32607758 DOI: 10.1007/s12031-020-01642-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
The sweet taste receptor, which was identified approximately 20 years ago, mediates sweet taste recognition in humans and other vertebrates. With the development of genomics, metabonomics, structural biology, evolutionary biology, physiology, and neuroscience, as well as technical advances in these areas, our understanding of this important protein has resulted in substantial progress. This article reviews the structure, function, genetics, and evolution of the sweet taste receptor and offers meaningful insights into this G protein-coupled receptor, which may be helpful guidances for personalized feeding, diet, and medicine. Prospective directions for research on sweet taste receptors have also been proposed.
Collapse
|
36
|
Allosteric drugs and mutations: chances, challenges, and necessity. Curr Opin Struct Biol 2020; 62:149-157. [DOI: 10.1016/j.sbi.2020.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
|
37
|
Structure-Dependent Activity of Plant-Derived Sweeteners. Molecules 2020; 25:molecules25081946. [PMID: 32331403 PMCID: PMC7221985 DOI: 10.3390/molecules25081946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022] Open
Abstract
Human sensation for sweet tastes and the thus resulting over-consumption of sugar in recent decades has led to an increasing number of people suffering from caries, diabetes, and obesity. Therefore, a demand for sugar substitutes has arisen, which increasingly has turned towards natural sweeteners over the last 20 years. In the same period, thanks to advances in bioinformatics and structural biology, understanding of the sweet taste receptor and its different binding sites has made significant progress, thus explaining the various chemical structures found for sweet tasting molecules. The present review summarizes the data on natural sweeteners and their most important (semi-synthetic) derivatives until the end of 2019 and discusses their structure–activity relationships, with an emphasis on small-molecule high-intensity sweeteners.
Collapse
|
38
|
Spaggiari G, Di Pizio A, Cozzini P. Sweet, umami and bitter taste receptors: State of the art of in silico molecular modeling approaches. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Lei T, Hu Z, Ding R, Chen J, Li S, Zhang F, Pu X, Zhao N. Exploring the Activation Mechanism of a Metabotropic Glutamate Receptor Homodimer via Molecular Dynamics Simulation. ACS Chem Neurosci 2020; 11:133-145. [PMID: 31815422 DOI: 10.1021/acschemneuro.9b00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metabotropic glutamate receptors of class C GPCRs exist as constitutive dimers, which play important roles in activating excitatory synapses of the central nervous system. However, the activation mechanism induced by agonists has not been clarified in experiments. To address the problem, we used microsecond all-atom molecular dynamics (MD) simulation couple with protein structure network (PSN) to explore the glutamate-induced activation for the mGluR1 homodimer. The results indicate that glutamate binding stabilizes not only the closure of Venus flytrap domains but also the polar interaction of LB2-LB2, in turn keeping the extracelluar domain in the active state. The activation of the extracelluar domain drives transmembrane domains (TMDs) of the two protomers closer and induces asymmetric activation for the TMD domains of the two protomers. One protomer with lower binding affinity to the agonist is activated, while the other protomer with higher binding energy is still in the inactive state. The PSN analysis identifies the allosteric regulation pathway from the ligand-binding pocket in the extracellular domain to the G-protein binding site in the intracellular TMD region and further reveals that the asymmetric activation is attributed to a combination of trans-pathway and cis-pathway regulations from two glumatates, rather than a single activation pathway. These observations could provide valuable molecular information for understanding of the structure and the implications in drug efficacy for the class C GPCR dimers.
Collapse
Affiliation(s)
- Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenxin Hu
- College of Computer Science, Sichuan University, Chengdu 610064, China
| | - Ruolin Ding
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianfang Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shiqi Li
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fuhui Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
40
|
The function and allosteric control of the human sweet taste receptor. FROM STRUCTURE TO CLINICAL DEVELOPMENT: ALLOSTERIC MODULATION OF G PROTEIN-COUPLED RECEPTORS 2020; 88:59-82. [DOI: 10.1016/bs.apha.2020.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Shen L, Yuan Y, Guo Y, Li M, Li C, Pu X. Probing the Druggablility on the Interface of the Protein-Protein Interaction and Its Allosteric Regulation Mechanism on the Drug Screening for the CXCR4 Homodimer. Front Pharmacol 2019; 10:1310. [PMID: 31787895 PMCID: PMC6855241 DOI: 10.3389/fphar.2019.01310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2022] Open
Abstract
Modulating protein–protein interactions (PPIs) with small drug-like molecules targeting it exhibits great promise in modern drug discovery. G protein-coupled receptors (GPCRs) are the largest family of targeted proteins and could form dimers in living biological cells through PPIs. However, compared to drug development of the orthosteric site, there has been lack of investigations on the druggability of the PPI interface for GPCRs and its functional implication on experiments. Thus, in order to address these issues, we constructed a novel computational strategy, which involved in molecular dynamics simulation, virtual screening and protein structure network (PSN), to study one representative GPCR homodimer (CXCR4). One druggable pocket was identified in the PPI interface and one small molecule targeting it was screened, which could strengthen PPI mainly through hydrophobic interaction between the benzene rings of the PPI molecule and TM4 of the receptor. The PSN results further reveals that the PPI molecule could increase the number of the allosteric regulation pathways between the druggable pocket of the dimer interface to the orthostatic site for the subunit A but only play minor role for the other subunit B, leading to the asymmetric change in the volume of the binding pockets for the two subunits (increase for the subunit A and minor change for the subunit B). Consequently, the screening performance of the subunit A to the antagonists is enhanced while the subunit B is unchanged nearly, implying that the PPI molecule may be beneficial to enhance the drug efficacies of the antagonists. In addition, one main regulation pathway with the highest frequency was identified for the subunit A, which consists of Trp1955.34–Tyr190ECL2–Val1965.35–Gln2005.39–Asp2626.58–Cys28N-term, revealing their importance in the allosteric regulation from the PPI molecule. The observations from the work could provide valuable information for the development of the PPI drug-like molecule for GPCRs.
Collapse
Affiliation(s)
- Liting Shen
- College of Chemistry, Sichuan University, Chengdu, China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu, China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, China
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Perez-Aguilar JM, Kang SG, Zhang L, Zhou R. Modeling and Structural Characterization of the Sweet Taste Receptor Heterodimer. ACS Chem Neurosci 2019; 10:4579-4592. [PMID: 31553164 DOI: 10.1021/acschemneuro.9b00438] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Sweet taste receptor, a heterodimer belonging to the class C G-protein coupled receptor (GPCR) family and composed of the T1R2 and T1R3 subunits, is responsible for the perception of natural sugars, sweet proteins, various d-amino acids, as well as artificial sweeteners. Despite the critical importance of the sweet receptor not only in mediating gustation but also in its role in the food industry, the architecture of the T1R2-T1R3 complex and the mechanism by which extracellular stimuli induce conformational changes that are propagated to the intracellular milieu, i.e., the signal transduction pathway, remain largely unknown. Here, we constructed and characterized a full-length structural model of the T1R2-T1R3 receptor, including both the transmembrane (TM) and extracellular (EC) domains of the heterodimer, using comparative modeling and extensive all-atom molecular dynamics simulations. Several heterodimer interfaces were first examined for the TM domain, and conformational changes occurring at the intracellular side and associated with the receptor's activation were characterized. From the analysis on the simulated data, putative allosteric binding sites for ligands, ions, and cholesterol were proposed. Also, insights into the protein interface of the TM domain upon activation are provided. The EC domain of the heterodimer, including both the Venus flytrap and cysteine-rich domains, was also investigated. Several important intersubunit interactions located at regions responsible for the receptor's proper function were observed, which resemble those recently identified in other class C GPCR members. Integration of the results from the TM and EC domains facilitates the generation of a full-length T1R2-T1R3 receptor. These findings along with the full-length structural model of the T1R2-T1R3 receptor provide a structural framework that may assist in understanding the mechanistic details associated with the receptor activation process for the sweet T1R2-T1R3 receptor as well as other members of the same family.
Collapse
Affiliation(s)
- Jose Manuel Perez-Aguilar
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
- School of Chemical Sciences, Meritorious Autonomous University of Puebla (BUAP), University City, Puebla 72570, Mexico
| | - Seung-gu Kang
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Leili Zhang
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Ruhong Zhou
- IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, United States
| |
Collapse
|
43
|
Hunter SR, Reister EJ, Cheon E, Mattes RD. Low Calorie Sweeteners Differ in Their Physiological Effects in Humans. Nutrients 2019; 11:E2717. [PMID: 31717525 PMCID: PMC6893706 DOI: 10.3390/nu11112717] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Low calorie sweeteners (LCS) are prevalent in the food supply for their primary functional property of providing sweetness with little or no energy. Though tested for safety individually, there has been extremely limited work on the efficacy of each LCS. It is commonly assumed all LCS act similarly in their behavioral and physiological effects. However, each LCS has its own chemical structure that influences its metabolism, making each LCS unique in its potential effects on body weight, energy intake, and appetite. LCS may have different behavioral and physiological effects mediated at the sweet taste receptor, in brain activation, with gut hormones, at the microbiota and on appetitive responses. Further elucidation of the unique effects of the different commercially available LCS may hold important implications for recommendations about their use for different health outcomes.
Collapse
Affiliation(s)
| | | | | | - Richard D. Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA; (S.R.H.); (E.J.R.); (E.C.)
| |
Collapse
|
44
|
Mahalapbutr P, Darai N, Panman W, Opasmahakul A, Kungwan N, Hannongbua S, Rungrotmongkol T. Atomistic mechanisms underlying the activation of the G protein-coupled sweet receptor heterodimer by sugar alcohol recognition. Sci Rep 2019; 9:10205. [PMID: 31308429 PMCID: PMC6629994 DOI: 10.1038/s41598-019-46668-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/03/2019] [Indexed: 12/03/2022] Open
Abstract
The human T1R2-T1R3 sweet taste receptor (STR) plays an important role in recognizing various low-molecular-weight sweet-tasting sugars and proteins, resulting in the release of intracellular heterotrimeric G protein that in turn leads to the sweet taste perception. Xylitol and sorbitol, which are naturally occurring sugar alcohols (polyols) found in many fruits and vegetables, exhibit the potential caries-reducing effect and are widely used for diabetic patients as low-calorie sweeteners. In the present study, computational tools were applied to investigate the structural details of binary complexes formed between these two polyols and the T1R2-T1R3 heterodimeric STR. Principal component analysis revealed that the Venus flytrap domain (VFD) of T1R2 monomer was adapted by the induced-fit mechanism to accommodate the focused polyols, in which α-helical residues 233-268 moved significantly closer to stabilize ligands. This finding likely suggested that these structural transformations might be the important mechanisms underlying polyols-STR recognitions. The calculated free energies also supported the VFD of T1R2 monomer as the preferential binding site for such polyols, rather than T1R3 region, in accord with the lower number of accessible water molecules in the T1R2 pocket. The E302 amino acid residue in T1R2 was found to be the important recognition residue for polyols binding through a strongly formed hydrogen bond. Additionally, the binding affinity of xylitol toward the T1R2 monomer was significantly higher than that of sorbitol, making it a sweeter tasting molecule.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nitchakan Darai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wanwisa Panman
- Multidisciplinary Program of Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aunchan Opasmahakul
- Computational Chemistry Center of Excellent, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supot Hannongbua
- Computational Chemistry Center of Excellent, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Molecular Sensory Science Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
45
|
Chéron JB, Soohoo A, Wang Y, Golebiowski J, Antonczak S, Jiang P, Fiorucci S. Conserved Residues Control the T1R3-Specific Allosteric Signaling Pathway of the Mammalian Sweet-Taste Receptor. Chem Senses 2019; 44:303-310. [PMID: 30893427 DOI: 10.1093/chemse/bjz015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammalian sensory systems detect sweet taste through the activation of a single heteromeric T1R2/T1R3 receptor belonging to class C G-protein-coupled receptors. Allosteric ligands are known to interact within the transmembrane domain, yet a complete view of receptor activation remains elusive. By combining site-directed mutagenesis with computational modeling, we investigate the structure and dynamics of the allosteric binding pocket of the T1R3 sweet-taste receptor in its apo form, and in the presence of an allosteric ligand, cyclamate. A novel positively charged residue at the extracellular loop 2 is shown to interact with the ligand. Molecular dynamics simulations capture significant differences in the behavior of a network of conserved residues with and without cyclamate, although they do not directly interact with the allosteric ligand. Structural models show that they adopt alternate conformations, associated with a conformational change in the transmembrane region. Site-directed mutagenesis confirms that these residues are unequivocally involved in the receptor function and the allosteric signaling mechanism of the sweet-taste receptor. Similar to a large portion of the transmembrane domain, they are highly conserved among mammals, suggesting an activation mechanism that is evolutionarily conserved. This work provides a structural basis for describing the dynamics of the receptor, and for the rational design of new sweet-taste modulators.
Collapse
Affiliation(s)
| | - Amanda Soohoo
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Monell Chemical Senses Center, Philadelphia, PA, USA.,Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Serge Antonczak
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | | |
Collapse
|
46
|
Kashani-Amin E, Sakhteman A, Larijani B, Ebrahim-Habibi A. Introducing a New Model of Sweet Taste Receptor, a Class C G-protein Coupled Receptor (C GPCR). Cell Biochem Biophys 2019; 77:227-243. [PMID: 31069640 DOI: 10.1007/s12013-019-00872-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/27/2019] [Indexed: 12/31/2022]
Abstract
The structure of sweet taste receptor (STR), a heterodimer of class C G-protein coupled receptors comprising T1R2 and T1R3 molecules, is still undetermined. In this study, a new enhanced model of the receptor is introduced based on the most recent templates. The improvement, stability, and reliability of the model are discussed in details. Each domain of the protein, i.e., VFTM, CR, and TMD, were separately constructed by hybrid-model construction methods and then assembled to build whole monomers. Overall, 680 ns molecular dynamics simulation was performed for the individual domains, the whole monomers and the heterodimer form of the VFTM orthosteric binding site. The latter's structure obtained from 200 ns simulation was docked with aspartame; among various binding sites suggested by FTMAP server, the experimentally suggested binding domain in T1R2 was retrieved. Local three-dimensional structures and helices spans were evaluated and showed acceptable accordance with the template structures and secondary structure predictions. Individual domains and whole monomer structures were found stable and reliable to be used. In conclusion, several validations have shown reliability of the new and enhanced models for further molecular modeling studies on structure and function of STR and C GPCRs.
Collapse
Affiliation(s)
- Elaheh Kashani-Amin
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal Chemistry and Natural Products Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Higgins KA, Mattes RD. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am J Clin Nutr 2019; 109:1288-1301. [PMID: 30997499 DOI: 10.1093/ajcn/nqy381] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/11/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Low-calorie sweeteners (LCSs) provide sweetness with little or no energy. However, each LCS's unique chemical structure has potential to elicit different sensory, physiological, and behavioral responses that affect body weight. OBJECTIVE The purpose of this trial was to compare the effects of consumption of 4 LCSs and sucrose on body weight, ingestive behaviors, and glucose tolerance over a 12-wk intervention in adults (18-60 y old) with overweight or obesity (body mass index 25-40 kg/m2). METHODS In a parallel-arm design, 154 participants were randomly assigned to consume 1.25-1.75 L of beverage sweetened with sucrose (n = 39), aspartame (n = 30), saccharin (n = 29), sucralose (n = 28), or rebaudioside A (rebA) (n = 28) daily for 12 wk. The beverages contained 400-560 kcal/d (sucrose treatments) or <5 kcal/d (LCS treatments). Anthropometric indexes, energy intake, energy expenditure, appetite, and glucose tolerance were measured at baseline. Body weight was measured every 2 wk with energy intake, expenditure, and appetite assessed every 4 wk. Twenty-four-hour urine collections were completed every 4 wk to determine study compliance via para-aminobenzoic acid excretion. RESULTS Of the participants enrolled in the trial, 123 completed the 12-wk intervention. Sucrose and saccharin consumption led to increased body weight across the 12-wk intervention (Δweight = +1.85 ± 0.36 kg and +1.18 ± 0.36 kg, respectively; P ≤ 0.02) and did not differ from each other. There was no significant change in body weight with consumption of the other LCS treatments compared with baseline, but change in body weight for sucralose was negative and significantly lower compared with all other LCSs at week 12 (weight difference ≥ 1.37 ± 0.52 kg, P ≤ 0.008). Energy intake decreased with sucralose consumption (P = 0.02) and ingestive frequency was lower for sucralose than for saccharin (P = 0.045). Glucose tolerance was not significantly affected by any of the sweetener treatments. CONCLUSIONS Sucrose and saccharin consumption significantly increase body weight compared with aspartame, rebA, and sucralose, whereas weight change was directionally negative and lower for sucralose compared with saccharin, aspartame, and rebA consumption. LCSs should be categorized as distinct entities because of their differing effects on body weight. This trial was registered at clinicaltrials.gov as NCT02928653.
Collapse
Affiliation(s)
- Kelly A Higgins
- Departments of Food Science and Nutrition Science, Purdue University, West Lafayette, IN
| | - Richard D Mattes
- Departments of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|
48
|
Makita N, Ando T, Sato J, Manaka K, Mitani K, Kikuchi Y, Niwa T, Ootaki M, Takeba Y, Matsumoto N, Kawakami A, Ogawa T, Nangaku M, Iiri T. Cinacalcet corrects biased allosteric modulation of CaSR by AHH autoantibody. JCI Insight 2019; 4:126449. [PMID: 30996138 DOI: 10.1172/jci.insight.126449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Biased agonism is a paradigm that may explain the selective activation of a signaling pathway via a GPCR that activates multiple signals. The autoantibody-induced inactivation of the calcium-sensing receptor (CaSR) causes acquired hypocalciuric hypercalcemia (AHH). Here, we describe an instructive case of AHH in which severe hypercalcemia was accompanied by an increased CaSR antibody titer. These autoantibodies operated as biased allosteric modulators of CaSR by targeting its Venus flytrap domain near the Ca2+-binding site. A positive allosteric modulator of CaSR, cinacalcet, which targets its transmembrane domain, overcame this autoantibody effect and successfully corrected the hypercalcemia in this patient. Hence, this is the first study to our knowledge that identifies the interaction site of a disease-causing GPCR autoantibody working as its biased allosteric modulator and demonstrates that cinacalcet can correct the AHH autoantibody effects both in vitro and in our AHH patient. Our observations provide potentially new insights into how biased agonism works and how to design a biased allosteric modulator of a GPCR. Our observations also indicate that the diagnosis of AHH is important because the severity of hypercalcemia may become fatal if the autoantibody titer increases. Calcimimetics may serve as good treatment options for some patients with severe AHH.
Collapse
Affiliation(s)
- Noriko Makita
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takao Ando
- Division of Endocrinology and Metabolism, Nagasaki Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junichiro Sato
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Katsunori Manaka
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Koji Mitani
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Yasuko Kikuchi
- Department of Breast and Endocrine Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Takayoshi Niwa
- Department of Breast and Endocrine Surgery, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Atsushi Kawakami
- Division of Endocrinology and Metabolism, Nagasaki Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihisa Ogawa
- Breast Center, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Masaomi Nangaku
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan
| | - Taroh Iiri
- Department of Endocrinology and Nephrology, The University of Tokyo School of Medicine, Tokyo, Japan.,Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
49
|
Current status of multiscale simulations on GPCRs. Curr Opin Struct Biol 2019; 55:93-103. [DOI: 10.1016/j.sbi.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 01/14/2023]
|
50
|
Di Pizio A, Behrens M, Krautwurst D. Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors. Int J Mol Sci 2019; 20:E1402. [PMID: 30897734 PMCID: PMC6471708 DOI: 10.3390/ijms20061402] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules.
Collapse
Affiliation(s)
- Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany.
| |
Collapse
|