1
|
Zhao M, Zheng X, Su Z, Shen G, Xu Y, Feng Z, Li W, Zhang S, Cao G, Zhang J, Wu J. MicroRNA399s and strigolactones mediate systemic phosphate signaling between dodder-connected host plants and control association of host plants with rhizosphere microbes. THE NEW PHYTOLOGIST 2024. [PMID: 39555671 DOI: 10.1111/nph.20266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024]
Abstract
A dodder (Cuscuta) often simultaneously parasitizes two or more adjacent hosts. Phosphate (Pi) deficiency is a common stress for plants, and plants often interact with soil microbes, including arbuscular mycorrhizal fungi (AMF), to cope with Pi stress. Little is known about whether dodder transmits Pi deficiency-induced systemic signals between different hosts. In this study, dodder-connected plant clusters, each composed of two tobacco (Nicotiana tabacum) plants connected by a dodder, were established, and in each cluster, one of the two tobacco plants was treated with Pi starvation. AMF colonization efficiency, rhizosphere bacterial community, and transcriptome were analyzed in the other dodder-connected Pi-replete tobacco plant to study the functions of interplant Pi signals. We found that dodder transfers Pi starvation-induced systemic signals between host plants, resulting in enhanced AMF colonization, changes of rhizosphere bacterial communities, and alteration of transcriptomes in the roots of Pi-replete plants. Importantly, genetic analyses indicated that microRNA399s (miR399s) and strigolactones suppress the systemic Pi signals and negatively affect AMF colonization in the Pi-replete plants. These findings provide new insight into the ecological role of dodder in mediating host-host and host-microbe interactions and highlight the importance of strigolactone and miR399 pathways in systemic Pi signaling.
Collapse
Affiliation(s)
- Man Zhao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xijie Zheng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongxiang Su
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zerui Feng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenxing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuhan Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing, 100093, China
| |
Collapse
|
2
|
Fichman Y, Peláez-Vico MÁ, Mudalige AK, Lee HO, Mittler R, Park SY. Rapid plant-to-plant systemic signaling via a Cuscuta bridge. PLANT PHYSIOLOGY 2024; 196:716-721. [PMID: 38888995 PMCID: PMC11483505 DOI: 10.1093/plphys/kiae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Two plants connected via a Cuscuta bridge exchange rapid systemic calcium, electric, and reactive oxygen species signals, suggesting that Cuscuta may have beneficial effects to host plants.
Collapse
Affiliation(s)
- Yosef Fichman
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - María Ángeles Peláez-Vico
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Asha Kaluwella Mudalige
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Hyun-Oh Lee
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65201, USA
| | - So-Yon Park
- Division of Plant Science and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Savov S, Marinova B, Teofanova D, Savov M, Odjakova M, Zagorchev L. Parasitic Plants-Potential Vectors of Phytopathogens. Pathogens 2024; 13:484. [PMID: 38921782 PMCID: PMC11207070 DOI: 10.3390/pathogens13060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Parasitic plants represent a peculiar group of semi- or fully heterotrophic plants, possessing the ability to extract water, minerals, and organic compounds from other plants. All parasitic plants, either root or stem, hemi- or holoparasitic, establish a vascular connection with their host plants through a highly specialized organ called haustoria. Apart from being the organ responsible for nutrient extraction, the haustorial connection is also a highway for various macromolecules, including DNA, proteins, and, apparently, phytopathogens. At least some parasitic plants are considered significant agricultural pests, contributing to enormous yield losses worldwide. Their negative effect is mainly direct, by the exhaustion of host plant fitness and decreasing growth and seed/fruit formation. However, they may pose an additional threat to agriculture by promoting the trans-species dispersion of various pathogens. The current review aims to summarize the available information and to raise awareness of this less-explored problem. We further explore the suitability of certain phytopathogens to serve as specific and efficient methods of control of parasitic plants, as well as methods for control of the phytopathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyuben Zagorchev
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria; (S.S.); (B.M.); (D.T.); (M.S.); (M.O.)
| |
Collapse
|
4
|
Akhtar U, Khurshid Y, El-Aarag B, Syed B, Khan IA, Parang K, Ahmed A. Proteomic characterization and cytotoxic potential of proteins from Cuscuta (Cuscuta epithymum (L.) crude herbal product against MCF-7 human breast cancer cell line. BMC Complement Med Ther 2024; 24:195. [PMID: 38769554 PMCID: PMC11103822 DOI: 10.1186/s12906-024-04495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND The burden of breast cancer, the second leading cause of death worldwide, is increasing at an alarming rate. Cuscuta, used in traditional medicine for different ailments, including cancer, is known for containing phytochemicals that exhibit anticancer activity; however, the bioactivities of proteins from this plant remain unexplored. This study aimed to screen the cytotoxic potential of proteins from the crude herbal product of Cuscuta epithymum(L.) (CE) harvested from the host plants Alhagi maurorum and Medicago sativa. METHODS The proteins from CE were extracted using a salting-out method, followed by fractionation with a gel filtration chromatography column. Gel-free shotgun proteomics was subsequently performed for protein characterization. The viability assay using MTT was applied to deduce the cytotoxic potential of proteins against MCF-7 breast cancer cells, with further exploration of the effect of treatment on the expression of the apoptotic mediator BCL2-associated X protein (BAX) and B-cell lymphoma protein 2 (BCL-2) proteins, using western blotting to strengthen the findings from the in vitro viability assay. RESULTS The crude proteins (CP) of CE were separated into four protein peaks (P1, P2, P3, and P4) by gel filtration chromatography. The evaluation of potency showed a dose-dependent decline in the MCF-7 cell line after CP, P1, P2, and P3 treatment with the respective IC50 values of 33.8, 43.1, 34.5, and 28.6 µg/ml. The percent viability of the cells decreased significantly upon treatment with 50 µg/ml CP, P1, P2, and P3 (P < 0.001). Western-blot analysis revealed upregulation of proapoptotic protein BAX in the cells treated with CP, P3 (P < 0.01), and P2 (P < 0.05); however, the antiapoptotic protein, BCL-2 was downregulated in the cells treated with CP and P3 (P < 0.01), but no significant change was detected in P2 treated cells. The observed cytotoxic effects of proteins in the CP, P1, P2, and P3 from the in vitro viability assay and western blot depicted the bioactivity potential of CE proteins. The database search revealed the identities of functionally important proteins, including nonspecific lipid transfer protein, superoxide dismutase, carboxypeptidase, RNase H domain containing protein, and polyribonucleotide nucleotidyltransferase, which have been previously reported from other plants to exhibit anticancer activity. CONCLUSION This study indicated the cytotoxic activity of Cuscuta proteins against breast cancer MCF-7 cells and will be utilized for future investigations on the mechanistic effect of active proteins. The survey of CE proteins provided substantial data to encourage further exploration of biological activities exhibited by proteins in Cuscuta.
Collapse
Affiliation(s)
- Umaima Akhtar
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Yamna Khurshid
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Bishoy El-Aarag
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom, 32512, Egypt
| | - Basir Syed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Ishtiaq A Khan
- Jamil-ur-Rahman Center for Genome Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Keykavous Parang
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Aftab Ahmed
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA.
| |
Collapse
|
5
|
Gaskin T, Pavliotis GA, Girolami M. Inferring networks from time series: A neural approach. PNAS NEXUS 2024; 3:pgae063. [PMID: 38560526 PMCID: PMC10978060 DOI: 10.1093/pnasnexus/pgae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/22/2024] [Indexed: 04/04/2024]
Abstract
Network structures underlie the dynamics of many complex phenomena, from gene regulation and foodwebs to power grids and social media. Yet, as they often cannot be observed directly, their connectivities must be inferred from observations of the dynamics to which they give rise. In this work, we present a powerful computational method to infer large network adjacency matrices from time series data using a neural network, in order to provide uncertainty quantification on the prediction in a manner that reflects both the degree to which the inference problem is underdetermined as well as the noise on the data. This is a feature that other approaches have hitherto been lacking. We demonstrate our method's capabilities by inferring line failure locations in the British power grid from its response to a power cut, providing probability densities on each edge and allowing the use of hypothesis testing to make meaningful probabilistic statements about the location of the cut. Our method is significantly more accurate than both Markov-chain Monte Carlo sampling and least squares regression on noisy data and when the problem is underdetermined, while naturally extending to the case of nonlinear dynamics, which we demonstrate by learning an entire cost matrix for a nonlinear model of economic activity in Greater London. Not having been specifically engineered for network inference, this method in fact represents a general parameter estimation scheme that is applicable to any high-dimensional parameter space.
Collapse
Affiliation(s)
- Thomas Gaskin
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | | | - Mark Girolami
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
6
|
Kirschner GK, Xiao TT, Jamil M, Al-Babili S, Lube V, Blilou I. A roadmap of haustorium morphogenesis in parasitic plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7034-7044. [PMID: 37486862 PMCID: PMC10752351 DOI: 10.1093/jxb/erad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023]
Abstract
Parasitic plants invade their host through their invasive organ, the haustorium. This organ connects to the vasculature of the host roots and hijacks water and nutrients. Although parasitism has evolved independently in plants, haustoria formation follows a similar mechanism throughout different plant species, highlighting the developmental plasticity of plant tissues. Here, we compare three types of haustoria formed by the root and shoot in the plant parasites Striga and Cuscuta. We discuss mechanisms underlying the interactions with their hosts and how different approaches have contributed to major understanding of haustoria formation and host invasion. We also illustrate the role of auxin and cytokinin in controlling this process.
Collapse
Affiliation(s)
- Gwendolyn K Kirschner
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ting Ting Xiao
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Muhammad Jamil
- BESE Division, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Salim Al-Babili
- BESE Division, The BioActives Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Vinicius Lube
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- BESE Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Libertini G. Phenoptosis and the Various Types of Natural Selection. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2007-2022. [PMID: 38462458 DOI: 10.1134/s0006297923120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 03/12/2024]
Abstract
In the first description of evolution, the fundamental mechanism is the natural selection favoring the individuals best suited for survival and reproduction (selection at the individual level or classical Darwinian selection). However, this is a very reductive description of natural selection that does not consider or explain a long series of known phenomena, including those in which an individual sacrifices or jeopardizes his life on the basis of genetically determined mechanisms (i.e., phenoptosis). In fact, in addition to (i) selection at the individual level, it is essential to consider other types of natural selection such as those concerning: (ii) kin selection and some related forms of group selection; (iii) the interactions between the innumerable species that constitute a holobiont; (iv) the origin of the eukaryotic cell from prokaryotic organisms; (v) the origin of multicellular eukaryotic organisms from unicellular organisms; (vi) eusociality (e.g., in many species of ants, bees, termites); (vii) selection at the level of single genes, or groups of genes; (viii) the interactions between individuals (or more precisely their holobionts) of the innumerable species that make up an ecosystem. These forms of natural selection, which are all effects and not violations of the classical Darwinian selection, also show how concepts as life, species, individual, and phenoptosis are somewhat not entirely defined and somehow arbitrary. Furthermore, the idea of organisms selected on the basis of their survival and reproduction capabilities is intertwined with that of organisms also selected on the basis of their ability to cooperate and interact, even by losing their lives or their distinct identities.
Collapse
Affiliation(s)
- Giacinto Libertini
- Italian Society for Evolutionary Biology (ISEB), Asti, 14100, Italy.
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, 80131, Italy
| |
Collapse
|
8
|
Tong L, Wu W, Lin Y, Chen D, Zeng R, Lu L, Song Y. Insect Herbivory on Main Stem Enhances Induced Defense of Primary Tillers in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1199. [PMID: 36904060 PMCID: PMC10005496 DOI: 10.3390/plants12051199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Clonal plants are interconnected to form clonal plant networks with physiological integration, enabling the reassignment as well as sharing of resources among the members. The systemic induction of antiherbivore resistance via clonal integration may frequently operate in the networks. Here, we used an important food crop rice (Oryza sativa), and its destructive pest rice leaffolder (LF; Cnaphalocrocis medinalis) as a model to examine defense communication between the main stem and clonal tillers. LF infestation and MeJA pretreatment on the main stem for two days reduced the weight gain of LF larvae fed on the corresponding primary tillers by 44.5% and 29.0%, respectively. LF infestation and MeJA pretreatment on the main stem also enhanced antiherbivore defense responses in primary tillers: increased levels of a trypsin protease inhibitor, putative defensive enzymes, and jasmonic acid (JA), a key signaling compound involved in antiherbivore induced defenses; strong induction of genes encoding JA biosynthesis and perception; and rapid activation of JA pathway. However, in a JA perception OsCOI RNAi line, LF infestation on main stem showed no or minor effects on antiherbivore defense responses in primary tillers. Our work demonstrates that systemic antiherbivore defense operate in the clonal network of rice plants and JA signaling plays a crucial role in mediating defense communication between main stem and tillers in rice plants. Our findings provide a theoretical basis for the ecological control of pests by using the systemic resistance of cloned plants themselves.
Collapse
Affiliation(s)
- Lu Tong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wanghui Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Guangxi Zhuang Autonomous Region Forest Inventory & Planning Institute, Nanning 530022, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yibin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daoqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Long Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Genomic and Epigenomic Mechanisms of the Interaction between Parasitic and Host Plants. Int J Mol Sci 2023; 24:ijms24032647. [PMID: 36768970 PMCID: PMC9917227 DOI: 10.3390/ijms24032647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Abstract
Parasitic plants extract nutrients from the other plants to finish their life cycle and reproduce. The control of parasitic weeds is notoriously difficult due to their tight physical association and their close biological relationship to their hosts. Parasitic plants differ in their susceptible host ranges, and the host species differ in their susceptibility to parasitic plants. Current data show that adaptations of parasitic plants to various hosts are largely genetically determined. However, multiple cases of rapid adaptation in genetically homogenous parasitic weed populations to new hosts strongly suggest the involvement of epigenetic mechanisms. Recent progress in genome-wide analyses of gene expression and epigenetic features revealed many new molecular details of the parasitic plants' interactions with their host plants. The experimental data obtained in the last several years show that multiple common features have independently evolved in different lines of the parasitic plants. In this review we discuss the most interesting new details in the interaction between parasitic and host plants.
Collapse
|
10
|
Wang Y, Xu J, Hu B, Dong C, Sun J, Li Z, Ye K, Deng F, Wang L, Aslam M, Lv W, Qin Y, Cheng Y. Assembly, annotation, and comparative analysis of Ipomoea chloroplast genomes provide insights into the parasitic characteristics of Cuscuta species. FRONTIERS IN PLANT SCIENCE 2023; 13:1074697. [PMID: 36733590 PMCID: PMC9887335 DOI: 10.3389/fpls.2022.1074697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
In the Convolvulaceae family, around 1650 species belonging to 60 genera are widely distributed globally, mainly in the tropical and subtropical regions of America and Asia. Although a series of chloroplast genomes in Convolvulaceae were reported and investigated, the evolutionary and genetic relationships among the chloroplast genomes of the Convolvulaceae family have not been extensively elucidated till now. In this study, we first reported the complete chloroplast genome sequence of Ipomoea pes-caprae, a widely distributed coastal plant with medical values. The chloroplast genome of I. pes-caprae is 161667 bp in length, and the GC content is 37.56%. The chloroplastic DNA molecule of I. pes-caprae is a circular structure composed of LSC (large-single-copy), SSC (small-single-copy), and IR (inverted repeat) regions, with the size of the three regions being 88210 bp, 12117 bp, and 30670 bp, respectively. The chloroplast genome of I. pes-caprae contains 141 genes, and 35 SSRs are identified in the chloroplast genome. Our research results provide important genomic information for the molecular phylogeny of I. pes-caprae. The Phylogenetic analysis of 28 Convolvulaceae chloroplast genomes showed that the relationship of I. pes-caprae with I. involucrata or I. obscura was much closer than that with other Convolvulaccae species. Further comparative analyses between the Ipomoea species and Cuscuta species revealed the mechanism underlying the formation of parasitic characteristics of Cuscuta species from the perspective of the chloroplast genome.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Xu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Bin Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunxing Dong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixian Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kangzhuo Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Deng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lulu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, Guangxi, China
- Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Wenliang Lv
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Cheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Pingtan Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
11
|
Fan Y, Zhao Q, Duan H, Bi S, Hao X, Xu R, Bai R, Yu R, Lu W, Bao T, Wuriyanghan H. Large-scale mRNA transfer between Haloxylon ammodendron (Chenopodiaceae) and herbaceous root holoparasite Cistanche deserticola (Orobanchaceae). iScience 2022; 26:105880. [PMID: 36686392 PMCID: PMC9852350 DOI: 10.1016/j.isci.2022.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Exchanges of mRNA were shown between host and stem parasites but not root parasites. Cistanche deserticola (Orobanchaceae) is a holoparasitic herb which parasitizes on the roots of woody plant Haloxylon ammodendron (Chenopodiaceae). We used transcriptome sequencing and bioinformatic analyses to identify nearly ten thousand mobile mRNAs. Transcript abundance appears to be a driving force for transfer event and mRNA exchanges occur through haustorial junction. Mobility of selected mRNAs was confirmed in situ and in sunflower-Orobanche cumana heterologous parasitic system. Four C. deserticola →H. ammodendron mobile mRNAs appear to facilitate haustorium development. Of interest, two mobile mRNAs of putative resistance genes CdNLR1 and CdNLR2 cause root-specific hypersensitive response and retard parasite development, which might contribute to parasitic equilibrium. The present study provides evidence for the large-scale mRNA transfer event between a woody host and a root parasite, and demonstrates the functional relevance of six C. deserticola genes in host-parasite interactions.
Collapse
Affiliation(s)
- Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuxin Bi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaomin Hao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Rui Xu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenting Lu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Tiejun Bao
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China,Corresponding author
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China,Corresponding author
| |
Collapse
|
12
|
Duc NH, Vo HTN, van Doan C, Hamow KÁ, Le KH, Posta K. Volatile organic compounds shape belowground plant-fungi interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:1046685. [PMID: 36561453 PMCID: PMC9763900 DOI: 10.3389/fpls.2022.1046685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs), a bouquet of chemical compounds released by all life forms, play essential roles in trophic interactions. VOCs can facilitate a large number of interactions with different organisms belowground. VOCs-regulated plant-plant or plant-insect interaction both below and aboveground has been reported extensively. Nevertheless, there is little information about the role of VOCs derived from soilborne pathogenic fungi and beneficial fungi, particularly mycorrhizae, in influencing plant performance. In this review, we show how plant VOCs regulate plant-soilborne pathogenic fungi and beneficial fungi (mycorrhizae) interactions. How fungal VOCs mediate plant-soilborne pathogenic and beneficial fungi interactions are presented and the most common methods to collect and analyze belowground volatiles are evaluated. Furthermore, we suggest a promising method for future research on belowground VOCs.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| | - Ha T. N. Vo
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Cong van Doan
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDIV), Leipzig, Germany
| | - Kamirán Áron Hamow
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Khac Hoang Le
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Katalin Posta
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| |
Collapse
|
13
|
Li T, Deng Y, Huang J, Liang J, Zheng Y, Xu Q, Fan S, Li W, Deng X, Zheng Z. Bidirectional mRNA transfer between Cuscuta australis and its hosts. FRONTIERS IN PLANT SCIENCE 2022; 13:980033. [PMID: 36072332 PMCID: PMC9441868 DOI: 10.3389/fpls.2022.980033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The holoparasitic dodder (Cuscuta spp.) is able to transfer mRNA and certain plant pathogens (e.g., viruses and bacteria) from the host plant. "Candidatus Liberibacter asiaticus," the phloem-limited causative agent of citrus Huanglongbing, can be transferred from citrus to periwinkle (Catharanthus roseus) mediated by dodder. However, characterization of mRNA transport between dodder and citrus/periwinkle remains unclear. In this study, we sequenced transcriptomes of dodder and its parasitizing host, sweet orange (Citrus sinensis "Newhall") and periwinkle (Catharanthus roseus), to identify and characterize mRNA transfer between dodder and the host plant during parasitism. The mRNA transfer between dodder and citrus/periwinkle was bidirectional and most of the transfer events occurred in the interface tissue. Compared with the citrus-dodder system, mRNA transfer in the periwinkle-dodder system was more frequent. Function classification revealed that a large number of mRNAs transferred between dodder and citrus/periwinkle were involved in secondary metabolism and stress response. Dodder transcripts encoding proteins associated with microtubule-based processes and cell wall biogenesis were transferred to host tissues. In addition, transcripts involved in translational elongation, plasmodesmata, and the auxin-activated signaling pathway were transmitted between dodder and citrus/periwinkle. In particular, transcripts involved in shoot system development and flower development were transferred between the host and dodder in both directions. The high abundance of dodder-origin transcripts, encoding MIP aquaporin protein, and S-adenosylmethionine synthetase 1 protein, in citrus and periwinkle tissues indicated they could play an important biological role in dodder-host interaction. In addition, the uptake of host mRNAs by dodder, especially those involved in seed germination and flower development, could be beneficial for the reproduction of dodder. The results of this study provide new insights into the RNA-based interaction between dodder and host plants.
Collapse
|
14
|
Wu Y, Luo D, Fang L, Zhou Q, Liu W, Liu Z. Bidirectional lncRNA Transfer between Cuscuta Parasites and Their Host Plant. Int J Mol Sci 2022; 23:561. [PMID: 35008986 PMCID: PMC8745499 DOI: 10.3390/ijms23010561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Dodder species (Cuscuta spp.) are holoparasites that have extensive material exchange with their host plants through vascular connections. Recent studies on cross-species transfer have provided breakthrough insights, but little is known about the interaction mechanisms of the inter-plant mobile substances in parasitic systems. We sequenced the transcriptomes of dodder growing on soybean hosts to characterize the long non-coding RNA (lncRNA) transfer between the two species, and found that lncRNAs can move in high numbers (365 dodder lncRNAs and 14 soybean lncRNAs) in a bidirectional manner. Reverse transcription-polymerase chain reaction further confirmed that individual lncRNAs were trafficked in the dodder-soybean parasitic system. To reveal the potential functions of mobile transcripts, the Gene Ontology terms of mobile lncRNA target genes were predicted, and mobile dodder target genes were found to be mainly enriched in "metabolic process", "catalytic activity", "signaling", and "response to stimulus" categories, whereas mobile soybean target genes were enriched in organelle-related categories, indicating that specific mobile lncRNAs may be important in regulating dodder parasitism. Our findings reveal that lncRNAs are transferred between dodder and its host soybean plants, which may act as critical regulators to coordinate the host-dodder interaction at the whole parasitic level.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (Y.W.); (D.L.); (L.F.); (Q.Z.); (W.L.)
| |
Collapse
|
15
|
Song J, Bian J, Xue N, Xu Y, Wu J. Inter-species mRNA transfer among green peach aphids, dodder parasites, and cucumber host plants. PLANT DIVERSITY 2022; 44:1-10. [PMID: 35281124 PMCID: PMC8897176 DOI: 10.1016/j.pld.2021.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 05/28/2023]
Abstract
mRNAs are transported within a plant through phloem. Aphids are phloem feeders and dodders (Cuscuta spp.) are parasites which establish phloem connections with host plants. When aphids feed on dodders, whether there is trafficking of mRNAs among aphids, dodders, and host plants and if aphid feeding affects the mRNA transfer between dodders and hosts are unclear. We constructed a green peach aphid (GPA, Myzus persicae)-dodder (Cuscuta australis)-cucumber (Cucumis sativus) tritrophic system by infesting GPAs on C. australis, which parasitized cucumber hosts. We found that GPA feeding activated defense-related phytohormonal and transcriptomic responses in both C. australis and cucumbers and large numbers of mRNAs were found to be transferred between C. australis and cucumbers and between C. australis and GPAs; importantly, GPA feeding on C. australis greatly altered inter-species mobile mRNA profiles. Furthermore, three cucumber mRNAs and three GPA mRNAs could be respectively detected in GPAs and cucumbers. Moreover, our statistical analysis indicated that mRNAs with high abundances and long transcript lengths are likely to be mobile. This study reveals the existence of inter-species and even inter-kingdom mRNA movement among insects, parasitic plants, and parasite hosts, and suggests complex regulation of mRNA trafficking.
Collapse
Affiliation(s)
- Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinge Bian
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Xue
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Sun K, Cai JF, Zhang Y, Mu YN, A SH, Shen YL, Yang LJ, Li HL. Heterogeneous Nitrogen Supply With High Frequency and Ramet Damage Increases the Benefits of Clonal Integration in Invasive Hydrocotyle vulgaris. FRONTIERS IN PLANT SCIENCE 2022; 13:825492. [PMID: 35574144 PMCID: PMC9100825 DOI: 10.3389/fpls.2022.825492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/29/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen (N) deposition significantly affects the growth and the function of invasive clonal plants. However, the effects of heterogeneous N supply with different frequencies on the growth and the potential contribution of clonal integration in invasion plants are still unclear, especially in the complex environment considering ramet damage. To address this question, apical and basal ramets of the clonal invader Hydrocotyle vulgaris were connected or disconnected, N was added to the basal ramets with a high frequency, a low frequency, or no supply, and the total N quantity was the same for the different frequency. Furthermore, 8 aphids were placed on the apical ramets, and 30% of each leaf was cut off to cause damage. The connection between ramets significantly increased the biomass, total carbon (C), and total N of the basal and apical ramets. Higher frequency N supply significantly increased the biomass, total C, and total N of the basal ramets and the entire clonal fragment biomass. The damage had no significant effect on the growth of basal and apical ramets. Especially, under the high N frequency and ramet damage condition, the connection between ramets more significantly increased the biomass, total C, and total N of the apical ramets and the entire clonal fragment biomass. In addition, the uptake rates of 15 NH 4 + and 15 NO 3 - in H. vulgaris had no significant difference, and N supply increased the uptake rates of 15 NH 4 + and 15 NO 3 - of the basal ramets. Our results suggest that both higher frequency N supply and clonal integration are beneficial to the growth of H. vulgaris. Moreover, the heterogeneous N supply with high frequency and ramet damage increases the benefits of clonal integration in H. vulgaris. These findings improve our understanding of the response of clonal invader H. vulgaris to nitrogen deposition and ramet damage.
Collapse
|
17
|
Zhang G, Kong G, Li Y. Long-distance communication through systemic macromolecular signaling mediates stress defense responses in plants. PHYSIOLOGIA PLANTARUM 2021; 173:1926-1934. [PMID: 34431527 DOI: 10.1111/ppl.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Land plants have a unique vascular bundle system that ranges in length from a few centimeters to hundreds of meters. These systems integrate the various organs of the whole plant, perform material exchange between different plant tissues and mediate the transmission of signals between cells or over long distances. Grafting and parasitism can reshape the vascular tissues of different ecotypes or species and represent two important systems for studying plant systemic signaling. In recent years, with the advancement of genomics and sequencing technology, the transportation, identification, and function of systemic plant macromolecules have been extensively studied. Here, we review the current body of knowledge of the transport pathways and regulatory mechanisms of macromolecules in plants and assess systemic, long-distance signal trafficking that mediates stress responses, and plant-environment or plant-insect community interactions. Additionally, we propose several methods for identifying mobile mRNAs and proteins. Finally, we discuss the challenges facing systemic signaling research and put forth the most urgent questions that need to be answered to advance our understanding of plant systemic signaling.
Collapse
Affiliation(s)
- Guanghai Zhang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Guanghui Kong
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Yongping Li
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| |
Collapse
|
18
|
Lei Y, Xu Y, Zhang J, Song J, Wu J. Herbivory-induced systemic signals are likely to be evolutionarily conserved in euphyllophytes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7274-7284. [PMID: 34293107 PMCID: PMC8547156 DOI: 10.1093/jxb/erab349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Herbivory-induced systemic signaling has been demonstrated in monocots and dicots, and is essential for plant defense against insects. However, the nature and evolution of herbivory-induced systemic signals remain unclear. Grafting is widely used for studying systemic signaling; however, grafting between dicot plants from different families is difficult, and grafting is impossible for monocots. In this study, we took advantage of dodder's extraordinary capability of parasitizing various plant species. Field dodder (Cuscuta campestris) was employed to connect pairs of species that are phylogenetically very distant, ranging from fern to monocot and dicot plants, and so determine whether interplant signaling occurs after simulated herbivory. It was found that simulated herbivory-induced systemic signals can be transferred by dodder between a monocot and a dicot plant and even between a fern and a dicot plant, and the plants that received the systemic signals all exhibited elevated defenses. Thus, we inferred that the herbivory-induced systemic signals are likely to be evolutionarily well conserved among vascular plants. Importantly, we also demonstrate that the jasmonate pathway is probably an ancient regulator of the biosynthesis and/or transport of systemic signals in vascular plants. These findings provide new insight into the nature and evolution of systemic signaling.
Collapse
Affiliation(s)
- Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Beyer SF, Bel PS, Flors V, Schultheiss H, Conrath U, Langenbach CJG. Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Sci Rep 2021; 11:20600. [PMID: 34663865 PMCID: PMC8523552 DOI: 10.1038/s41598-021-00209-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Hormones orchestrate the physiology of organisms. Measuring the activity of defense hormone-responsive genes can help understanding immune signaling and facilitate breeding for plant health. However, different from model species like Arabidopsis, genes that respond to defense hormones salicylic acid (SA) and jasmonic acid (JA) have not been disclosed in the soybean crop. We performed global transcriptome analyses to fill this knowledge gap. Upon exogenous application, endogenous levels of SA and JA increased in leaves. SA predominantly activated genes linked to systemic acquired resistance and defense signaling whereas JA mainly activated wound response-associated genes. In general, SA-responsive genes were activated earlier than those responding to JA. Consistent with the paradigm of biotrophic pathogens predominantly activating SA responses, free SA and here identified most robust SA marker genes GmNIMIN1, GmNIMIN1.2 and GmWRK40 were induced upon inoculation with Phakopsora pachyrhizi, whereas JA marker genes did not respond to infection with the biotrophic fungus. Spodoptera exigua larvae caused a strong accumulation of JA-Ile and JA-specific mRNA transcripts of GmBPI1, GmKTI1 and GmAAT whereas neither free SA nor SA-marker gene transcripts accumulated upon insect feeding. Our study provides molecular tools for monitoring the dynamic accumulation of SA and JA, e.g. in a given stress condition.
Collapse
Affiliation(s)
- Sebastian F Beyer
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Paloma Sánchez Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Holger Schultheiss
- Agricultural Center, BASF Plant Science Company GmbH, 67117, Limburgerhof, Germany
| | - Uwe Conrath
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Caspar J G Langenbach
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
20
|
Zagorchev L, Stöggl W, Teofanova D, Li J, Kranner I. Plant Parasites under Pressure: Effects of Abiotic Stress on the Interactions between Parasitic Plants and Their Hosts. Int J Mol Sci 2021; 22:7418. [PMID: 34299036 PMCID: PMC8304456 DOI: 10.3390/ijms22147418] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 01/07/2023] Open
Abstract
Parasitic angiosperms, comprising a diverse group of flowering plants, are partially or fully dependent on their hosts to acquire water, mineral nutrients and organic compounds. Some have detrimental effects on agriculturally important crop plants. They are also intriguing model systems to study adaptive mechanisms required for the transition from an autotrophic to a heterotrophic metabolism. No less than any other plant, parasitic plants are affected by abiotic stress factors such as drought and changes in temperature, saline soils or contamination with metals or herbicides. These effects may be attributed to the direct influence of the stress, but also to diminished host availability and suitability. Although several studies on abiotic stress response of parasitic plants are available, still little is known about how abiotic factors affect host preferences, defense mechanisms of both hosts and parasites and the effects of combinations of abiotic and biotic stress experienced by the host plants. The latter effects are of specific interest as parasitic plants pose additional pressure on contemporary agriculture in times of climate change. This review summarizes the existing literature on abiotic stress response of parasitic plants, highlighting knowledge gaps and discussing perspectives for future research and potential agricultural applications.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China;
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Wolfgang Stöggl
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (W.S.); (I.K.)
| | - Denitsa Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China;
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (W.S.); (I.K.)
| |
Collapse
|
21
|
Yoshida S, Kee YJ. Large-scale sequencing paves the way for genomic and genetic analyses in parasitic plants. Curr Opin Biotechnol 2021; 70:248-254. [PMID: 34242992 DOI: 10.1016/j.copbio.2021.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Parasitic plants pose a serious agricultural threat, but are also precious resources for valuable metabolites. The heterotrophic nature of these plants has resulted in the development of several morphological and physiological features that are of evolutionary significance. Recent advances in large-scale sequencing technology have provided insights into the evolutionary and molecular mechanisms of plant parasitism. Genome sequencing has revealed gene losses and horizontal gene transfers in parasitic plants. Mobile signals traveling between the parasite and host may have contributed to the increased fitness of parasitic life styles. Transcriptome analyses implicate shared processes among various parasitic species and the establishment of functional analysis is beginning to reveal molecular mechanisms during host and parasite interactions.
Collapse
Affiliation(s)
- Satoko Yoshida
- Nara Institute of Science and Technology, Grad. School Sci. Tech., Ikoma, Nara, Japan; JST, PRESTO, Japan.
| | - Yee Jia Kee
- Nara Institute of Science and Technology, Grad. School Sci. Tech., Ikoma, Nara, Japan
| |
Collapse
|
22
|
Lyko P, Wicke S. Genomic reconfiguration in parasitic plants involves considerable gene losses alongside global genome size inflation and gene births. PLANT PHYSIOLOGY 2021; 186:1412-1423. [PMID: 33909907 PMCID: PMC8260112 DOI: 10.1093/plphys/kiab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/13/2021] [Indexed: 05/02/2023]
Abstract
Parasitic plant genomes and transcriptomes reveal numerous genetic innovations, the functional-evolutionary relevance and roles of which open unprecedented research avenues.
Collapse
Affiliation(s)
- Peter Lyko
- Institute for Biology, Humboldt-University of Berlin, Germany
| | - Susann Wicke
- Institute for Biology, Humboldt-University of Berlin, Germany
- Author for communication:
| |
Collapse
|
23
|
Zhang J, Xu Y, Xie J, Zhuang H, Liu H, Shen G, Wu J. Parasite dodder enables transfer of bidirectional systemic nitrogen signals between host plants. PLANT PHYSIOLOGY 2021; 185:1395-1410. [PMID: 33793912 PMCID: PMC8133666 DOI: 10.1093/plphys/kiaa004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 05/12/2023]
Abstract
Dodder (Cuscuta spp., Convolvulaceae) is a genus of parasitic plants with worldwide distribution. Dodders are able to simultaneously parasitize two or more adjacent hosts, forming dodder-connected plant clusters. Nitrogen (N) deficiency is a common challenge to plants. To date, it has been unclear whether dodder transfers N-systemic signals between hosts grown in N-heterogeneous soil. Transcriptome and methylome analyses were carried out to investigate whether dodder (Cuscuta campestris) transfers N-systemic signals between N-replete and N-depleted cucumber (Cucumis sativus) hosts, and it was found that N-systemic signals from the N-deficient cucumber plants were rapidly translocated through C. campestris to the N-replete cucumber plants. Unexpectedly, certain systemic signals were also transferred from the N-replete to N-depleted cucumber hosts. We demonstrate that these systemic signals are able to regulate large transcriptome and DNA methylome changes in the recipient hosts. Importantly, N stress also induced many long-distance mobile mRNA transfers between C. campestris and hosts, and the bilateral N-systemic signaling between N-replete and N-depleted hosts had a strong impact on the inter-plant mobile mRNAs. Our 15N labeling experiment indicated that under N-heterogeneous conditions, N-systemic signals from the N-deficient cucumber hosts did not obviously change the N-uptake activity of the N-replete cucumber hosts; however, in plant clusters comprising C. campestris-connected cucumber and soybean (Glycine max) plants, if the soybean plants were N-starved, the cucumber plants exhibited increased N-uptake activity. This study reveals that C. campestris facilitates plant-plant communications under N-stress conditions by enabling extensive bilateral N-systemic signaling between different hosts.
Collapse
Affiliation(s)
- Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Xie
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huifu Zhuang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Author for communication:
| |
Collapse
|
24
|
Těšitel J, Li AR, Knotková K, McLellan R, Bandaranayake PCG, Watson DM. The bright side of parasitic plants: what are they good for? PLANT PHYSIOLOGY 2021; 185:1309-1324. [PMID: 33793868 PMCID: PMC8133642 DOI: 10.1093/plphys/kiaa069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/09/2020] [Indexed: 06/01/2023]
Abstract
Parasitic plants are mostly viewed as pests. This is caused by several species causing serious damage to agriculture and forestry. There is however much more to parasitic plants than presumed weeds. Many parasitic plans exert even positive effects on natural ecosystems and human society, which we review in this paper. Plant parasitism generally reduces the growth and fitness of the hosts. The network created by a parasitic plant attached to multiple host plant individuals may however trigger transferring systemic signals among these. Parasitic plants have repeatedly been documented to play the role of keystone species in the ecosystems. Harmful effects on community dominants, including invasive species, may facilitate species coexistence and thus increase biodiversity. Many parasitic plants enhance nutrient cycling and provide resources to other organisms like herbivores or pollinators, which contributes to facilitation cascades in the ecosystems. There is also a long tradition of human use of parasitic plants for medicinal and cultural purposes worldwide. Few species provide edible fruits. Several parasitic plants are even cultivated by agriculture/forestry for efficient harvesting of their products. Horticultural use of some parasitic plant species has also been considered. While providing multiple benefits, parasitic plants should always be used with care. In particular, parasitic plant species should not be cultivated outside their native geographical range to avoid the risk of their uncontrolled spread and the resulting damage to ecosystems.
Collapse
Affiliation(s)
- Jakub Těšitel
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic
| | - Ai-Rong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Kateřina Knotková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic
| | - Richard McLellan
- Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, New South Wales 2640, Australia
| | - Pradeepa C G Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - David M Watson
- Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, New South Wales 2640, Australia
| |
Collapse
|
25
|
Sharifi R, Ryu C. Social networking in crop plants: Wired and wireless cross-plant communications. PLANT, CELL & ENVIRONMENT 2021; 44:1095-1110. [PMID: 33274469 PMCID: PMC8049059 DOI: 10.1111/pce.13966] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 05/03/2023]
Abstract
The plant-associated microbial community (microbiome) has an important role in plant-plant communications. Plants decipher their complex habitat situations by sensing the environmental stimuli and molecular patterns and associated with microbes, herbivores and dangers. Perception of these cues generates inter/intracellular signals that induce modifications of plant metabolism and physiology. Signals can also be transferred between plants via different mechanisms, which we classify as wired- and wireless communications. Wired communications involve direct signal transfers between plants mediated by mycorrhizal hyphae and parasitic plant stems. Wireless communications involve plant volatile emissions and root exudates elicited by microbes/insects, which enable inter-plant signalling without physical contact. These producer-plant signals induce microbiome adaptation in receiver plants via facilitative or competitive mechanisms. Receiver plants eavesdrop to anticipate responses to improve fitness against stresses. An emerging body of information in plant-plant communication can be leveraged to improve integrated crop management under field conditions.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant ProtectionCollege of Agriculture and Natural Resources, Razi UniversityKermanshahIran
| | - Choong‐Min Ryu
- Molecular Phytobacteriology LaboratoryInfectious Disease Research Center, KRIBBDaejeonSouth Korea
- Biosystem and Bioengineering ProgramUniversity of Science and Technology (UST)DaejeonSouth Korea
| |
Collapse
|
26
|
Narukawa H, Yokoyama R, Kuroha T, Nishitani K. Host-produced ethylene is required for marked cell expansion and endoreduplication in dodder search hyphae. PLANT PHYSIOLOGY 2021; 185:491-502. [PMID: 33721891 PMCID: PMC8133569 DOI: 10.1093/plphys/kiaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/28/2020] [Indexed: 05/13/2023]
Abstract
The genus Cuscuta comprises stem holoparasitic plant species with wide geographic distribution. Cuscuta spp. obtain water, nutrients, proteins, and mRNA from their host plants via a parasitic organ called the haustorium. As the haustorium penetrates into the host tissue, search hyphae elongate within the host tissue and finally connect with the host's vascular system. Invasion by Cuscuta spp. evokes various reactions within the host plant's tissues. Here, we show that, when Arabidopsis (Arabidopsis thaliana) is invaded by Cuscuta campestris, ethylene biosynthesis by the host plant promotes elongation of the parasite's search hyphae. The expression of genes encoding 1-aminocylclopropane-1-carboxylic acid (ACC) synthases, ACC SYNTHASE2 (AtACS2) and ACC SYNTHASE6 (AtACS6), was activated in the stem of Arabidopsis plants upon invasion by C. campestris. When the ethylene-deficient Arabidopsis acs octuple mutant was invaded by C. campestris, cell elongation and endoreduplication of the search hyphae were significantly reduced, and the inhibition of search hyphae growth was complemented by exogenous application of ACC. In contrast, in the C. campestris-infected Arabidopsis ethylene-insensitive mutant etr1-3, no growth inhibition of search hyphae was observed, indicating that ETHYLENE RESPONSE1-mediated ethylene signaling in the host plant is not essential for parasitism by C. campestris. Overall, our results suggest that C. campestris recognizes host-produced ethylene as a stimulatory signal for successful invasion.
Collapse
Affiliation(s)
- Hideki Narukawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryusuke Yokoyama
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takeshi Kuroha
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kazuhiko Nishitani
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
- Author for communication: (K.N.)
| |
Collapse
|
27
|
Gao FL, Alpert P, Yu FH. Parasitism induces negative effects of physiological integration in a clonal plant. THE NEW PHYTOLOGIST 2021; 229:585-592. [PMID: 32846015 DOI: 10.1111/nph.16884] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/09/2020] [Indexed: 05/26/2023]
Abstract
Clonal integration often increases fitness of clonal plants, but it may decrease it when some but not all connected plants (ramets) within a clone are parasitized. This hypothesis was synthesized in a conceptual model and tested by growing pairs of connected ramets of two congeneric clonal plants, Sphagneticola trilobata and Sphagneticola calendulacea, with and without parasitizing one ramet with Cuscuta australis and with and without severing the connection (allowing or preventing integration). Consistent with the model, integration in S. calendulacea did not affect biomass of the parasitized ramet, decreased biomass of its connected, unparasitized ramet by 60% and of the clone by 40%, and increased biomass of the parasite by 50%. By contrast, integration in S. trilobata did not affect biomass of the clone or the parasite. The parasite increased export of nitrogen-15 from the connected, unparasitized ramet seven-fold in S. calendulacea but did not affect export in S. trilobata. Parasitism can cause clonal integration to negatively affect fitness in clonal plants because parasites can import resources from connected, unparasitized ramets, possibly partly through signaling. This is the first experimental demonstration that clonal integration can decrease fitness in plants induced by parasitism and may help explain community-level effects of parasites.
Collapse
Affiliation(s)
- Fang-Lei Gao
- Institute of Wetland Ecology & Clone Ecology, Zhejiang Province Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, 256603, China
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Peter Alpert
- Biology Department, University of Massachusetts, 611 North Pleasant Street, Amherst, MA, 01003, USA
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology, Zhejiang Province Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
28
|
16S rRNA Gene Diversity of Bacterial Endophytes in Parasitic Cuscuta campestris and Its Helianthus annuus Host. Microbiol Resour Announc 2020; 9:9/43/e00968-20. [PMID: 33093045 PMCID: PMC7585843 DOI: 10.1128/mra.00968-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the results of 16S rRNA gene amplicon sequencing of bacterial endophytes from parasitized and unparasitized samples of the common sunflower (Helianthus annuus) and samples of its associated plant parasite field dodder (Cuscuta campestris), collected from one location in Fresno County, California (August 2017). Here, we report the results of 16S rRNA gene amplicon sequencing of bacterial endophytes from parasitized and unparasitized samples of the common sunflower (Helianthus annuus) and samples of its associated plant parasite field dodder (Cuscuta campestris), collected from one location in Fresno County, California (August 2017).
Collapse
|
29
|
Zhang Z, Yan C, Zhang H. Mutualism between antagonists: its ecological and evolutionary implications. Integr Zool 2020; 16:84-96. [PMID: 32930482 DOI: 10.1111/1749-4877.12487] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutualism or antagonism between species is often investigated within the framework of monotonic interactions of either mutualism or antagonism, but studies on transition from mutualism to antagonism (within the context of nonmonotonic interactions) have been largely ignored. In this paper, through a brief review and synthesis, we highlighted the role of mutualism between antagonists in regulating the ecological and evolutionary processes, as well as maintaining the stability and complexity of ecosystems. Mutualism between antagonistic species represents the density-dependent transition between mutualism and antagonism, which is beneficial to species coexistence and stability of complex ecosystems; thus, it should be favored by natural selection. Species may face selection of conflicting pressure on functional traits in co-balancing mutualism and antagonism, which may result in evolution of the dual character of species with moderate mutualistic or antagonistic traits. Coevolution and co-balance of these traits are driving forces in shaping mutualism-antagonism systems. Rewards for mutualists, punishment for exploiters, and competition of meta-communities are essential in stabilizing mutualism between antagonists. We appeal for more studies on mutualism between antagonists and its ecological and evolutionary implications by expanding the conventional ecological studies from monotonic to nonmonotonic regimes.
Collapse
Affiliation(s)
- Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chuan Yan
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology & College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hongmao Zhang
- School of Life Sciences, Institute of Evolution and Ecology, Central China Normal University, Wuhan, China
| |
Collapse
|
30
|
Shen G, Liu N, Zhang J, Xu Y, Baldwin IT, Wu J. Cuscuta australis (dodder) parasite eavesdrops on the host plants' FT signals to flower. Proc Natl Acad Sci U S A 2020; 117:23125-23130. [PMID: 32868415 PMCID: PMC7502711 DOI: 10.1073/pnas.2009445117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many plants use environmental cues, including seasonal changes of day length (photoperiod), to control their flowering time. Under inductive conditions, FLOWERING LOCUS T (FT) protein is synthesized in leaves, and FT protein is a mobile signal, which is able to travel to the shoot apex to induce flowering. Dodders (Cuscuta, Convolvulaceae) are root- and leafless plants that parasitize a large number of autotrophic plant species with varying flowering time. Remarkably, some dodder species, e.g., Cuscuta australis, are able to synchronize their flowering with the flowering of their hosts. Detailed sequence inspection and expression analysis indicated that the FT gene in dodder C. australis very likely does not function in activating flowering. Using soybean host plants cultivated under inductive and noninductive photoperiod conditions and soybean and tobacco host plants, in which FT was overexpressed and knocked out, respectively, we show that FT-induced flowering of the host is likely required for both host and parasite flowering. Biochemical analysis revealed that host-synthesized FT signals are able to move into dodder stems, where they physically interact with a dodder FD transcription factor to activate dodder flowering. This study demonstrates that FTs can function as an important interplant flowering signal in host-dodder interactions. The unique means of flowering regulation of dodder illustrates how regressive evolution, commonly found in parasites, may facilitate the physiological synchronization of parasite and host, here allowing the C. australis parasite to time reproduction exactly with that of their hosts, likely optimizing parasite fitness.
Collapse
Affiliation(s)
- Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Nian Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, China;
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
31
|
Li J, Tian B. Peppermint Essential Oil Toxicity to the Pear Psylla (Hemiptera: Psyllidae) and Potential Applications in the Field. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1307-1314. [PMID: 32010952 DOI: 10.1093/jee/toaa009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Chinese pear psylla (Cacopsylla chinensis Yang et Li) is a serious orchard pest that causes declines in fruit quality through feeding damage and the spread of pathogens. The rapid development of chemical pesticide resistance has become a severe problem in controlling pear psylla. Thus, the development of natural pesticides to replace conventional chemical pesticides is urgently needed. Here, we found that the essential oil of peppermint (Mentha haplocalyx Briq. [Lamiales: Labiatae]) is an ideal agent for controlling pear psylla based on experiments in the laboratory and the field. The major constituents of peppermint essential oil were found including menthol (49.73%), menthone (30.52%), α-pinene (3.60%), and α-terpineol (3.81%). This oil and chemicals in it performed serious contact toxicity against the winter-form adults and nymphs of pear psylla, yielding LD50 values of 2.54, 10.71, 2.77, 5.85, and 12.58 μg/adult and 1.91, 9.56, 2.18, 4.98, and 12.07 μg/nymph, respectively. Furthermore, the essential oil strongly repelled the adults of pear psylla with 78% repellence at the highest concentration tested in a Y-tube olfactometer in the laboratory. The combined effect of the two factors made peppermint essential oil a natural pesticide, which achieved a maximum reduction of round to 80.9% in winter-form adult population and round to 67.0% in nymph population at the concentration of 4.0 ml/L in the field. Additionally, it had no effect on the natural enemies of pear psylla in the field. Therefore, peppermint essential oil has potential as an alternative to chemical pesticides for pest control in integrated pest management programs in pear orchards.
Collapse
Affiliation(s)
- Jianyi Li
- School of Life Sciences, Henan University, Jin Ming Avenue, Kaifeng, Henan, China
| | - Baoliang Tian
- School of Life Sciences, Henan University, Jin Ming Avenue, Kaifeng, Henan, China
| |
Collapse
|
32
|
Mei C, Yang J, Yan P, Li N, Ma K, Mamat A, Han L, Dong Q, Mao K, Ma F, Wang J. Full-length transcriptome and targeted metabolome analyses provide insights into defense mechanisms of Malus sieversii against Agrilus mali. PeerJ 2020; 8:e8992. [PMID: 32461824 PMCID: PMC7231508 DOI: 10.7717/peerj.8992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/26/2020] [Indexed: 11/20/2022] Open
Abstract
Malus sieversii is the wild progenitor for many cultivars of domesticated apple and an important germplasm resource for breeding. However, this valuable species faces a significant threat in the areas north of the Tianshan Mountains in China, by the invasion of Agrilus mali, a destructive pest of apple trees belonging to the family Buprestidae. Our preliminary study has has shown that there may be resistance to this insect in M. sieversii plants in the field, but the corresponding molecular mechanisms remain unclear. In this study, we compared the response of insect-resistant and insect-susceptible plants of M. sieversii to insect feeding using full-length transcriptome and targeted metabolome. 112,103 non-chimeric full-length reads (FLNC) totaling 10.52 Gb of data were generating with Pacific Biosciences SingleMolecule, Real-Time (PacBio SMRT) sequencing. A total of 130.06 Gb data of long reads were acquired with an Illumina HiSeq. Function annotation indicated that the different expressed genes (DEGs) were mainly involved in signal transduction pathway of plant hormones and in the synthesis of compounds such as terpenes, quinones, flavonoids, and jasmonic acid. Through targeted metabolome analysis resistant strains showed higher levels of trans-cinnamic acid, caffeine and ferulic acid after pest infestation. This study helps to decipher the transcriptional changes and related signaling paths in M. sieversii after an insect feeding, which lays a foundation for further research on molecular mechanisms of insect resistance in apples.
Collapse
Affiliation(s)
- Chuang Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China.,Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Peng Yan
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, China
| | - Ning Li
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, China
| | - Kai Ma
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, China
| | - Aisajan Mamat
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, China
| | - Liqun Han
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, China
| | - Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling, Shaanxi, China
| | - Jixun Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences/Scientific Observing and Experimental Station of Pomology (Xinjiang), Ministry of Agriculture, Urumqi, China
| |
Collapse
|
33
|
Moriyama T, Sonoda K, Saito H, Migita M. Mind as a Behavioral Inhibition Network. Front Psychol 2020; 11:832. [PMID: 32435219 PMCID: PMC7219088 DOI: 10.3389/fpsyg.2020.00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed to propose to add a new perspective on what may create the impression of "mind" in other beings. The conventional is perspective is that when we observe mental activities in animals, this creates in us the impression that they have a mind. On the other hand, the authors' proposal is that when we observe unpredictable activities in living beings, this creates in us the impression of mind. This "unpredictability" is a characteristic product of all living things and is not limited to animals. In response to this additional perspective of mind, we assumed that the following questions would arise, "Is mind as the source of unpredictability an imaginary thing? Does it really exist?" To answer this question, a conceptual model of mind was proposed, and its validity was investigated by introducing studies on the relationship between animals' unpredictability and emergent behavior. In section "Animal Mind as a Behavioral Inhibition Network," we examined the question from the perspectives of comparative psychology, ethology, and neurophysiology. As a result, we obtained the hypothesis that every animal can have a "behavioral inhibition network" and that this corresponds with the source of unpredictability. The function of the behavioral inhibition network is to create "unpredictable behavior." It makes an observer facing the animal feel unpredictability of the animal. However, unpredictable behavior may arise from exogenous factors such as congenital malfunction in the mechanism to generate an innately acquired behavior, as well as environmental disturbances. Therefore, in the section "Innate and Emergent Behavior of Animals," we introduce studies where unpredictable behavior seems to occur endogenously. In these studies, various animal species were examined in unexperienced problem-solving tasks that could not be solved by innately acquired behaviors. As a result, each animal solved the problem by generating unpredictable behaviors with high frequency. Such biologically significant unpredictable behaviors are referred to as "emergent behaviors." In the section "Discussion," we investigate whether the behavioral inhibition network matches the mind that one experiences in their daily life. Finally, toward a science of universal mind, we introduce experimental results suggesting the possibility that plants and materials such as stones have a similar structure to a behavioral inhibition network.
Collapse
Affiliation(s)
- Toru Moriyama
- Faculty of Textile Science, Shinshu University, Ueda, Japan
| | - Kohei Sonoda
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Hanna Saito
- Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, Japan
| | - Masao Migita
- Faculty of Education, Shiga University, Otsu, Japan
| |
Collapse
|
34
|
Liu N, Shen G, Xu Y, Liu H, Zhang J, Li S, Li J, Zhang C, Qi J, Wang L, Wu J. Extensive Inter-plant Protein Transfer between Cuscuta Parasites and Their Host Plants. MOLECULAR PLANT 2020; 13:573-585. [PMID: 31812691 DOI: 10.1016/j.molp.2019.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 05/02/2023]
Abstract
Cuscuta species (dodders) are holoparasites that totally rely on host plants to survive. Although various mobile proteins have been identified to travel within a plant, whether and to what extent protein transfer between Cuscuta and host plants remain unclear. We found that hundreds to more than 1500 proteins were transferred between Cuscuta and the host plants Arabidopsis and soybean, and hundreds of inter-plant mobile proteins were even detected in the seeds of Cuscuta and the host soybean. Different hosts bridge-connected by dodder were also found to exchange hundreds of proteins. Quantitatively, the mobile proteins represent a few to more than 10% of the proteomes of foreign plants. Using Arabidopsis plants expressing different reporter proteins, we further showed that these reporter proteins could travel between plants and, importantly, retained their activity in the foreign plants. Comparative analysis between the inter-plant mobile proteins and mRNAs indicated that the majority of mobile proteins were not de novo synthesized from the translocated mRNAs, but bona fide mobile proteins. We propose that large-scale inter-plant protein translocation may play an important role in the interactions between host plants and dodder and even among the dodder bridge-connected hosts.
Collapse
Affiliation(s)
- Nian Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shalan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
35
|
Banerjee A. Inter-plant communication via parasitic bridging. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:749-750. [PMID: 31971243 DOI: 10.1093/jxb/erz507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article comments on:
Li S, Zhang J, Liu H, Liu N, Shen G, Zhuang H, Wu J. 2020. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. Journal of Experimental Botany 71, 1171–1184.
Collapse
Affiliation(s)
- Arjan Banerjee
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
- Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Li S, Zhang J, Liu H, Liu N, Shen G, Zhuang H, Wu J. Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1171-1184. [PMID: 31665509 PMCID: PMC6977188 DOI: 10.1093/jxb/erz481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/14/2019] [Indexed: 05/20/2023]
Abstract
The dodders (Cuscuta spp.) are a genus of shoot parasites. In nature, a dodder often simultaneously parasitizes two or more neighboring hosts. Salt stress is a common abiotic stress for plants. It is unclear whether dodder transmits physiologically relevant salt stress-induced systemic signals among its hosts and whether these systemic signals affect the hosts' tolerance to salt stress. Here, we simultaneously parasitized two or more cucumber plants with dodder. We found that salt treatment of one host highly primed the connected host, which showed strong decreases in the extent of leaf withering and cell death in response to subsequent salt stress. Transcriptomic analysis indicated that 24 h after salt treatment of one cucumber, the transcriptome of the other dodder-connected cucumber largely resembled that of the salt-treated one, indicating that inter-plant systemic signals primed these dodder-connected cucumbers at least partly through transcriptomic reconfiguration. Furthermore, salt treatment of one of the cucumbers induced physiological changes, including altered proline contents, stomatal conductance, and photosynthetic rates, in both of the dodder-connected cucumbers. This study reveals a role of dodder in mediating salt-induced inter-plant signaling among dodder-connected hosts and highlights the physiological function of these mobile signals in plant-plant interactions under salt stress.
Collapse
Affiliation(s)
- Shalan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
| | - Nian Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
| | - Huifu Zhuang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, China
- Correspondence:
| |
Collapse
|
37
|
Qin Y, Zhang J, Hettenhausen C, Liu H, Li S, Shen G, Cao G, Wu J. The host jasmonic acid pathway regulates the transcriptomic changes of dodder and host plant under the scenario of caterpillar feeding on dodder. BMC PLANT BIOLOGY 2019; 19:540. [PMID: 31801469 PMCID: PMC6894313 DOI: 10.1186/s12870-019-2161-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/26/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Dodder (Cuscuta spp., Convolvulaceae) species are obligate leaf- and rootless parasites that totally depend on hosts to survive. Dodders naturally graft themselves to host stems to form vascular fusion, from which they obtain nutrients and water. In addition, dodders and their hosts also exchange various other molecules, including proteins, mRNAs, and small RNAs. It is very likely that vascular fusion also allows inter-plant translocation of systemic signals between dodders and host plants and these systemic signals may have profound impacts on the physiology of dodder and host plants. Herbivory is a common biotic stress for plants. When a dodder parasite is attacked by lepidopteran insects, how dodder responds to caterpillar feeding and whether there are inter-plant communications between the host plants and the parasites is still poorly understood. RESULTS Here, wild-type (WT) tobacco and a tobacco line in which jasmonic acid (JA) biosynthesis was silenced (AOC-RNAi) were used as the hosts, and the responses of dodders and their host plants to herbivory by Spodoptera litura caterpillars on the dodders were investigated. It was found that after caterpillar attack, dodders grown on AOC-RNAi tobacco showed much a smaller number of differentially expressed genes, although the genotypes of the tobacco plants did not have an effect on the simulated S. litura feeding-induced JA accumulation in dodders. We further show that S. litura herbivory on dodder also led to large changes in transcriptome and defensive metabolites in the host tobacco, leading to enhanced resistance to S. litura, and the JA pathway of tobacco host is critical for these systemic responses. CONCLUSIONS Our findings indicate that during caterpillar attack on dodder, the JA pathway of host plant is required for the proper transcriptomic responses of both dodder and host plants. This study highlights the importance of the host JA pathway in regulating the inter-plant systemic signaling between dodder and hosts.
Collapse
Affiliation(s)
- Yan Qin
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
- Xingyi Normal University for Nationalities, No.1 Xingyi Road, Xingyi City, 562400, Guizhou, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hui Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shalan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
| | - Guoyan Cao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
38
|
Shimizu K, Aoki K. Development of Parasitic Organs of a Stem Holoparasitic Plant in Genus Cuscuta. FRONTIERS IN PLANT SCIENCE 2019; 10:1435. [PMID: 31781146 PMCID: PMC6861301 DOI: 10.3389/fpls.2019.01435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 05/18/2023]
Abstract
Parasitic plants infect a broad range of plant species including economically important crops. They survive by absorbing water, minerals, and photosynthates from their hosts. To support their way of life, parasitic plants generally establish parasitic organs that allow them to attach to their hosts and to efficiently absorb substances from the vascular system of the host. Here, we summarize the recent progress in understanding the mechanisms underlying the formation of these parasitic organs, focusing on the process depicted in the stem holoparasitic genus, Cuscuta. An attachment structure called "holdfast" on the stem surface is induced by the light and contact stimuli. Concomitantly with holdfast formation, development of an intrusive structure called haustorium initiates in the inner cortex of the Cuscuta stem, and it elongates through apoplastic space of the host tissue. When haustoria reaches to host vascular tissues, they begin to form vascular conductive elements to connect vascular tissue of Cuscuta stem to those of host. Recent studies have shown parasite-host interaction in the interfacial cell wall, and regulation of development of these parasitic structures in molecular level. We also briefly summarize the role of host receptor in the control of compatibility between Cuscuta and hosts, on which occurrence of attachment structure depends, and the role of plant-to-plant transfer of long-distance signals after the establishment of conductive structure.
Collapse
Affiliation(s)
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
39
|
Clarke CR, Timko MP, Yoder JI, Axtell MJ, Westwood JH. Molecular Dialog Between Parasitic Plants and Their Hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:279-299. [PMID: 31226021 DOI: 10.1146/annurev-phyto-082718-100043] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant-pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.
Collapse
Affiliation(s)
- Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA;
| |
Collapse
|
40
|
Malook SU, Qi J, Hettenhausen C, Xu Y, Zhang C, Zhang J, Lu C, Li J, Wang L, Wu J. The oriental armyworm ( Mythimna separata) feeding induces systemic defence responses within and between maize leaves. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180307. [PMID: 30967023 PMCID: PMC6367157 DOI: 10.1098/rstb.2018.0307] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
Maize ( Zea mays) is a staple cereal crop cultivated all over the world but that is threatened by various insects. Feeding of the lepidopteran insect Mythimna separata triggers defence signalling and increases anti-herbivore benzoxazinoids (Bxs) in the insect-damaged maize leaves. However, the herbivory-elicited within-leaf and leaf-to-leaf systemic signalling in maize remains largely unexplored. Here, we show that simulated M. separata herbivory and mechanical wounding elicited increased levels of jasmonic acid (JA), JA-Ile (JA-isoleucine conjugate) and Bxs in the damaged areas and in specific systemic regions within a leaf. Importantly, increased contents of Bxs were detected in a systemic leaf, and consistently, this leaf exhibited increased defence against M. separata. Increased JA/JA-Ile and altered transcriptome, including Bx biosynthesis genes, were detected in systemic leaves after wounding or simulated herbivory treatments, although only simulated herbivory induced increase of the contents of Bxs systemically. Promoter and co-expression analysis revealed that transcription factors bHLH57 and WRKY34 may regulate Bx biosynthesis genes in systemic leaves. Moreover, leaf ablation experiment indicated that the systemic signal rapidly exited the local leaves within 30 min after elicitation. This study provides new insight into the temporal and spatial regulation of defence responses of maize against lepidopteran insects. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Saif ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengkai Lu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
41
|
Guo L, Qiu J, Li LF, Lu B, Olsen K, Fan L. Genomic Clues for Crop-Weed Interactions and Evolution. TRENDS IN PLANT SCIENCE 2018; 23:1102-1115. [PMID: 30293809 DOI: 10.1016/j.tplants.2018.09.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/10/2018] [Accepted: 09/11/2018] [Indexed: 05/11/2023]
Abstract
Agronomically critical weeds that have evolved alongside crop species are characterized by rapid adaptation and invasiveness, which can result in an enormous reduction in annual crop yield worldwide. We discuss here recent genome-based research studies on agricultural weeds and crop-weed interactions that reveal several major evolutionary innovations such as de-domestication, interactions mediated by allelochemical secondary metabolites, and parasitic genetic elements that play crucial roles in enhancing weed invasiveness in agricultural settings. We believe that these key studies will guide future research into the evolution of crop-weed interactions, and further the development of practical applications in agricultural weed control and crop breeding.
Collapse
Affiliation(s)
- Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China; These authors contributed equally to this work
| | - Jie Qiu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA; These authors contributed equally to this work
| | - Lin-Feng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Baorong Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kenneth Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Longjiang Fan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
42
|
Schuman MC, Baldwin IT. Field studies reveal functions of chemical mediators in plant interactions. Chem Soc Rev 2018; 47:5338-5353. [PMID: 29770376 DOI: 10.1039/c7cs00749c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plants are at the trophic base of most ecosystems, embedded in a rich network of ecological interactions in which they evolved. While their limited range and speed of motion precludes animal-typical behavior, plants are accomplished chemists, producing thousands of specialized metabolites which may function to convey information, or even to manipulate the physiology of other organisms. Plants' complex interactions and their underlying mechanisms are typically dissected within the controlled environments of growth chambers and glasshouses, but doing so introduces conditions alien to plants evolved in natural environments, such as being pot-bound, and receiving artificial light with a spectrum very different from sunlight. The mechanistic understanding gained from a reductionist approach provides the tools required to query and manipulate plant interactions in real-world settings. The few tests conducted in natural ecosystems and agricultural fields have highlighted the limitations of studying plant interactions only in artificial environments. Here, we focus on three examples of known or hypothesized chemical mediators of plants' interactions: the volatile phytohormone ethylene (ET), more complex plant volatile blends, and as-yet-unknown mediators transferred by common mycorrhizal networks (CMNs). We highlight how mechanistic knowledge has advanced research in all three areas, and the critical importance of field work if we are to put our understanding of chemical ecology on rigorous experimental and theoretical footing, and demonstrate function.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | | |
Collapse
|
43
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
44
|
Zhuang H, Li J, Song J, Hettenhausen C, Schuman MC, Sun G, Zhang C, Li J, Song D, Wu J. Aphid (Myzus persicae) feeding on the parasitic plant dodder (Cuscuta australis) activates defense responses in both the parasite and soybean host. THE NEW PHYTOLOGIST 2018; 218:1586-1596. [PMID: 29575001 DOI: 10.1111/nph.15083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/05/2018] [Indexed: 05/20/2023]
Abstract
Dodders (Cuscuta spp.) are shoot holoparasites, whose haustoria penetrate host tissues to enable fusion between the parasite and host vascular systems, allowing Cuscuta to extract water, nutrients and other molecules from hosts. Aphids are piercing-sucking herbivores that use specialized stylets to feed on phloem sap. Aphids are known to feed on Cuscuta, but how Cuscuta and its host plant respond to aphids attacking the parasite was unknown. Phytohormone quantification, transcriptomic analysis and bioassays were performed to determine the responses of Cuscuta australis and its soybean (Glycine max) hosts to the feeding of green peach aphid (GPA; Myzus persicae) on C. australis. Decreased salicylic acid levels and 172 differentially expressed genes (DEGs) were found in GPA-attacked C. australis, and the soybean hosts exhibited increased jasmonic acid contents and 1015 DEGs, including > 100 transcription factor genes. Importantly, GPA feeding on C. australis increased the resistance of the soybean host to subsequent feeding by the leafworm Spodoptera litura and soybean aphid Aphis glycines, resulting in 21% decreased leafworm mass and 41% reduced aphid survival rate. These data strongly suggest that GPA feeding on Cuscuta induces a systemic signal, which is translocated to hosts and activates defense against herbivores.
Collapse
Affiliation(s)
- Huifu Zhuang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, 07745, Germany
| | - Guiling Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
45
|
Wu J. miRNAs as a Secret Weapon in the Battlefield of Haustoria, the Interface between Parasites and Host Plants. MOLECULAR PLANT 2018; 11:354-356. [PMID: 29462721 DOI: 10.1016/j.molp.2018.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
46
|
Vahabi K, Reichelt M, Scholz SS, Furch ACU, Matsuo M, Johnson JM, Sherameti I, Gershenzon J, Oelmüller R. Alternaria Brassicae Induces Systemic Jasmonate Responses in Arabidopsis Which Travel to Neighboring Plants via a Piriformsopora Indica Hyphal Network and Activate Abscisic Acid Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:626. [PMID: 29868082 PMCID: PMC5952412 DOI: 10.3389/fpls.2018.00626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/20/2018] [Indexed: 05/20/2023]
Abstract
Stress information received by a particular local plant tissue is transferred to other tissues and neighboring plants, but how the information travels is not well understood. Application of Alternaria Brassicae spores to Arabidopsis leaves or roots stimulates local accumulation of jasmonic acid (JA), the expression of JA-responsive genes, as well as of NITRATE TRANSPORTER (NRT)2.5 and REDOX RESPONSIVE TRANSCRIPTION FACTOR1 (RRTF1). Infection information is systemically spread over the entire seedling and propagates radially from infected to non-infected leaves, axially from leaves to roots, and vice versa. The local and systemic NRT2.5 responses are reduced in the jar1 mutant, and the RRTF1 response in the rbohD mutant. Information about A. brassicae infection travels slowly to uninfected neighboring plants via a Piriformospora Indica hyphal network, where NRT2.5 and RRTF1 are up-regulated. The systemic A. brassicae-induced JA response in infected plants is converted to an abscisic acid (ABA) response in the neighboring plant where ABA and ABA-responsive genes are induced. We propose that the local threat information induced by A. brassicae infection is spread over the entire plant and transferred to neighboring plants via a P. indica hyphal network. The JA-specific response is converted to a general ABA-mediated stress response in the neighboring plant.
Collapse
Affiliation(s)
- Khabat Vahabi
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Alexandra C. U. Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mitsuhiro Matsuo
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Joy M. Johnson
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Irena Sherameti
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
- *Correspondence: Ralf Oelmüller
| |
Collapse
|