1
|
Mohammadi M, Alian M, Dale B, Ubanwa B, Balan V. Multifaced application of AFEX-pretreated biomass in producing second-generation biofuels, ruminant animal feed, and value-added bioproducts. Biotechnol Adv 2024; 72:108341. [PMID: 38499256 DOI: 10.1016/j.biotechadv.2024.108341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Lignocellulosic biomass holds a crucial position in the prospective bio-based economy, serving as a sustainable and renewable source for a variety of bio-based products. These products play a vital role in displacing fossil fuels and contributing to environmental well-being. However, the inherent recalcitrance of biomass poses a significant obstacle to the efficient access of sugar polymers. Consequently, the bioconversion of lignocellulosic biomass into fermentable sugars remains a prominent challenge in biorefinery processes to produce biofuels and biochemicals. In addressing these challenges, extensive efforts have been dedicated to mitigating biomass recalcitrance through diverse pretreatment methods. One noteworthy process is Ammonia Fiber Expansion (AFEX) pretreatment, characterized by its dry-to-dry nature and minimal water usage. The volatile ammonia, acting as a catalyst in the process, is recyclable. AFEX contributes to cleaning biomass ester linkages and facilitating the opening of cell wall structures, enhancing enzyme accessibility and leading to a fivefold increase in sugar conversion compared to untreated biomass. Over the last decade, AFEX has demonstrated substantial success in augmenting the efficiency of biomass conversion processes. This success has unlocked the potential for sustainable and economically viable biorefineries. This paper offers a comprehensive review of studies focusing on the utilization of AFEX-pretreated biomass in the production of second-generation biofuels, ruminant feed, and additional value-added bioproducts like enzymes, lipids, proteins, and mushrooms. It delves into the details of the AFEX pretreatment process at both laboratory and pilot scales, elucidates the mechanism of action, and underscores the role of AFEX in the biorefinery for developing biofuels and bioproducts, and nutritious ruminant animal feed production. While highlighting the strides made, the paper also addresses current challenges in the commercialization of AFEX pretreatment within biorefineries. Furthermore, it outlines critical considerations that must be addressed to overcome these challenges, ensuring the continued progress and widespread adoption of AFEX in advancing sustainable and economically viable bio-based industries.
Collapse
Affiliation(s)
- Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Bruce Dale
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugarland, TX 77479, USA.
| |
Collapse
|
2
|
Song G, Zhao S, Wang J, Zhao K, Zhao J, Liang H, Liu R, Li YY, Hu C, Qu J. Enzyme-enhanced acidogenic fermentation of waste activated sludge: Insights from sludge structure, interfaces, and functional microflora. WATER RESEARCH 2024; 249:120889. [PMID: 38043351 DOI: 10.1016/j.watres.2023.120889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Anaerobic fermentation is widely installed to recovery valuable resources and energy as CH4 from waste activated sludge (WAS), and its implementation in developing countries is largely restricted by the slow hydrolysis, poor efficiency, and complicate inert components therein. In this study, enzyme-enhanced fermentation was conducted to improve sludge solubilization from 283 to 7728 mg COD/L and to enhance volatile fatty acids (VFAs) yield by 58.6 % as compared to the conventional fermentation. The rapid release of organic carbon species, especially for tryptophan- and tyrosine-like compounds, to outer layer of extracellular polymeric substance (EPS) occurred to reduce the structural complexity and improve the sludge biodegradability towards VFAs production. Besides, upon enzymatic pretreatment the simultaneous exposure of hydrophilic and hydrophobic groups on sludge surfaces increased the interfacial hydrophilicity. By quantitative analysis via interfacial thermodynamics and XDLVO theory, it was confirmed that the stronger hydrophilic repulsion and energy barriers in particle interface enhanced interfacial mass transfer and reactions involved in acidogenic fermentation. Meanwhile, these effects stimulate the fermentation functional microflora and predominant microorganism, and the enrichment of the hydrolytic and acid-producing bacteria in metaphase and the proliferation of acetogenic bacteria, e.g., Rubrivivax (+9.4 %), in anaphase also benefits VFAs formation. This study is practically valuable to recovery valuable VFAs as carbon sources and platform chemicals from WAS and agriculture wastes.
Collapse
Affiliation(s)
- Ge Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shunan Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaqi Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - He Liang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zhang X, Fang Z, Zhao D, Kamal R, Wang X, Jin G, Gong Z, Yang X. Biorefinery of vineyard winter prunings for production of microbial lipids by the oleaginous yeast Cryptococcus curvatus. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:221-229. [PMID: 37311389 DOI: 10.1016/j.wasman.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Spent biomass from agricultural and forestry industries are substantial low-cost carbon source for reducing the input of microbial lipid production. Herein, the components of the vineyard winter prunings (VWPs) from 40 grape cultivars were analyzed. The VWPs contained (w/w) cellulose ranged from 24.8% to 32.4%, hemicellulose 9.6% to 13.8%, lignin 23.7% to 32.4%. The VWPs from Cabernet Sauvignon was processed with the alkali-methanol pretreatment, and 95.8% of the sugars was released from the regenerated VWPs after enzymatic hydrolysis. The hydrolysates from the regenerated VWPs was suitable for lipid production without further treatment as a lipid content of 59% could be achieved with Cryptococcus curvatus. The regenerated VWPs was also used for lipid production via simultaneous saccharification and fermentation (SSF), which led to a lipid yield of 0.088 g/g raw VWPs, 0.126 g/g regenerated VWPs and 0.185 g/g from the reducing sugars. This work demonstrated that the VWPs can be explored for co-production of microbial lipids.
Collapse
Affiliation(s)
- Xueyuan Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhumei Fang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rasool Kamal
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guojie Jin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, China
| | - Xiaobing Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Yinchuan 750104, China.
| |
Collapse
|
4
|
Ashoor S, Khang TU, Lee YH, Hyung JS, Choi SY, Lim SE, Lee J, Park SJ, Na JG. Bioupgrading of the aqueous phase of pyrolysis oil from lignocellulosic biomass: a platform for renewable chemicals and fuels from the whole fraction of biomass. BIORESOUR BIOPROCESS 2023; 10:34. [PMID: 38647900 PMCID: PMC10992256 DOI: 10.1186/s40643-023-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 04/25/2024] Open
Abstract
Pyrolysis, a thermal decomposition without oxygen, is a promising technology for transportable liquids from whole fractions of lignocellulosic biomass. However, due to the hydrophilic products of pyrolysis, the liquid oils have undesirable physicochemical characteristics, thus requiring an additional upgrading process. Biological upgrading methods could address the drawbacks of pyrolysis by utilizing various hydrophilic compounds as carbon sources under mild conditions with low carbon footprints. Versatile chemicals, such as lipids, ethanol, and organic acids, could be produced through microbial assimilation of anhydrous sugars, organic acids, aldehydes, and phenolics in the hydrophilic fractions. The presence of various toxic compounds and the complex composition of the aqueous phase are the main challenges. In this review, the potential of bioconversion routes for upgrading the aqueous phase of pyrolysis oil is investigated with critical challenges and perspectives.
Collapse
Affiliation(s)
- Selim Ashoor
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo, 11241, Egypt
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Tae Uk Khang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Young Hoon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ji Sung Hyung
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seo Young Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Sang Eun Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
5
|
Khattab SMR, Okano H, Kimura C, Fujita T, Watanabe T. Efficient integrated production of bioethanol and antiviral glycerolysis lignin from sugarcane trash. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:82. [PMID: 37189175 PMCID: PMC10186800 DOI: 10.1186/s13068-023-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Sugarcane trash (SCT) represents up to 18% of the aboveground biomass of sugarcane, surpassing 28 million tons globally per year. The majority of SCT is burning in the fields. Hence, efficient use of SCT is necessary to reduce carbon dioxide emissions and global warming and establish agro-industrial biorefineries. Apart from its low costs, conversion of whole biomass with high production efficiency and titer yield is mandatory for effective biorefinery systems. Therefore, in this study, we developed a simple, integrated method involving a single step of glycerolysis pretreatment to produce antiviral glycerolysis lignin (AGL). Subsequently, we co-fermented glycerol with hydrolyzed glucose and xylose to yield high titers of bioethanol. RESULTS SCT was subjected to pretreatment with microwave acidic glycerolysis with 50% aqueous (aq.) glycerol (MAG50); this pretreatment was optimized across different temperature ranges, acid concentrations, and reaction times. The optimized MAG50 (opMAG50) of SCT at 1:15 (w/v) in 1% H2SO4, 360 µM AlK(SO4)2 at 140 °C for 30 min (opMAG50) recovered the highest amount of total sugars and the lowest amount of furfural byproducts. Following opMAG50, the soluble fraction, i.e., glycerol xylose-rich solution (GXRS), was separated by filtration. A residual pulp was then washed with acetone, recovering 7.9% of the dry weight (27% of lignin) as an AGL. AGL strongly inhibited the replication of encephalomyocarditis virus (EMCV) in L929 cells without cytotoxicity. The pulp was then saccharified in yeast peptone medium by cellulase to produce a glucose concentration similar to the theoretical yield. The total xylose and arabinose recoveries were 69% and 93%, respectively. GXRS and saccharified sugars were combined and co-fermented through mixed cultures of two metabolically engineered Saccharomyces cerevisiae strains: glycerol-fermenting yeast (SK-FGG4) and xylose-fermenting yeast (SK-N2). By co-fermenting glycerol and xylose with glucose, the ethanol titer yield increased to 78.7 g/L (10% v/v ethanol), with a 96% conversion efficiency. CONCLUSION The integration of AGL production with the co-fermentation of glycerol, hydrolyzed glucose, and xylose to produce a high titer of bioethanol paves an avenue for the use of surplus glycerol from the biodiesel industry for the efficient utilization of SCT and other lignocellulosic biomasses.
Collapse
Affiliation(s)
- Sadat Mohamed Rezk Khattab
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
- Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Hiroyuki Okano
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Chihiro Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Takashi Fujita
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin, Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
6
|
Ajayo PC, Wang Q, Huang M, Zhao L, Tian D, He J, Fang D, Hu J, Shen F. High bioethanol titer and yield from phosphoric acid plus hydrogen peroxide pretreated paper mulberry wood through optimization of simultaneous saccharification and fermentation. BIORESOURCE TECHNOLOGY 2023; 374:128759. [PMID: 36801446 DOI: 10.1016/j.biortech.2023.128759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The optimization of key simultaneous saccharification and fermentation (SSF) parameters for bioethanol production from phosphoric acid plus hydrogen peroxide pretreated paper mulberry wood was carried out under two isothermal scenarios; the yeast optimum and trade-off temperatures of 35 and 38 °C, respectively. The optimal conditions established for SSF at 35 °C (solid loading: 16%; enzyme dosage: 9.8 mg protein/g glucan; and yeast concentration: 6.5 g/L) achieved high ethanol titer and yield of 77.34 g/L and 84.60% (0.432 g/g), respectively. These corresponded to 1.2 and 1.3-folds increases, compared to the results of the optimal SSF at a relatively higher temperature of 38 °C. The information from this study would prove beneficial in reducing process energy demands to some extent, while also helping to achieve high levels of both ethanol concentration and yield that are desired in cellulosic ethanol production.
Collapse
Affiliation(s)
- Pleasure Chisom Ajayo
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Qing Wang
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Mei Huang
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Li Zhao
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dong Tian
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinsong He
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dexin Fang
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jinguang Hu
- Chemical and Petroleum Engineering, Schulich School of Engineering, The University of Calgary, Calgary T2N 4H9, Canada
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, College of Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Rural Environment Protection Engineering & Technology Center of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
7
|
Fan W, Sun X, Cui G, Li Q, Xu Y, Wang L, Li X, Hu B, Chi Z. A strategy of co-fermentation of distillers dried grains with solubles (DDGS) and lignocellulosic feedstocks as swine feed. Crit Rev Biotechnol 2023; 43:212-226. [PMID: 35658696 DOI: 10.1080/07388551.2022.2027337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To meet the sustainable development of the swine feed industry, it is essential to find alternative feed resources and develop new feed processing technologies. Distillers dried grains with solubles (DDGS) is a by-product from the ethanol industry consisting of adequate nutrients for swine and is an excellent choice for the swine farming industry. Here, a strategy of co-fermentation of DDGS and lignocellulosic feedstocks for production of swine feed was discussed. The potential of the DDGS and lignocellulosic feedstocks as feedstock for fermented pig feed and the complementary relationship between them were described. In order to facilitate the swine feed research in co-fermentation of DDGS and lignocellulosic feedstocks, the relevant studies on strain selection, fermentation conditions, targeted metabolism, product nutrition, as well as the growth and health of swine were collected and critically reviewed. This review proposed an approach for the production of easily digestible and highly nutritious swine feed via co-fermentation of DDGS and lignocellulosic feedstocks, which could provide a guide for cleaner swine farming, relieve stress on the increasing demand of high-value swine feed, and finally support the ever-increasing demand of the pork market.
Collapse
Affiliation(s)
- Weiwei Fan
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiao Sun
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, USA
| | - Guannan Cui
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bo Hu
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, USA
| | - Zhanyou Chi
- School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
8
|
Chen S, Xu Z, Ding B, Zhang Y, Liu S, Cai C, Li M, Dale BE, Jin M. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery. SCIENCE ADVANCES 2023; 9:eadd8835. [PMID: 36724227 PMCID: PMC9891696 DOI: 10.1126/sciadv.add8835] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023]
Abstract
The isomerization of xylose to xylulose is considered the most promising approach to initiate xylose bioconversion. Here, phylogeny-guided big data mining, rational modification, and ancestral sequence reconstruction strategies were implemented to explore new active xylose isomerases (XIs) for Saccharomyces cerevisiae. Significantly, 13 new active XIs for S. cerevisiae were mined or artificially created. Moreover, the importance of the amino-terminal fragment for maintaining basic XI activity was demonstrated. With the mined XIs, four efficient xylose-utilizing S. cerevisiae were constructed and evolved, among which the strain S. cerevisiae CRD5HS contributed to ethanol titers as high as 85.95 and 94.76 g/liter from pretreated corn stover and corn cob, respectively, without detoxifying or washing pretreated biomass. Potential genetic targets obtained from adaptive laboratory evolution were further analyzed by sequencing the high-performance strains. The combined XI mining methods described here provide practical references for mining other scarce and valuable enzymes.
Collapse
Affiliation(s)
- Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuangmei Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chenggu Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Centre (GLBRC), Michigan State University, East Lansing, MI, 48824 USA
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
9
|
Meng X, Wang Y, Conte AJ, Zhang S, Ryu J, Wie JJ, Pu Y, Davison BH, Yoo CG, Ragauskas AJ. Applications of biomass-derived solvents in biomass pretreatment - Strategies, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023; 368:128280. [PMID: 36368492 DOI: 10.1016/j.biortech.2022.128280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Biomass pretreatment is considered a key step in the 2nd generation biofuel production from lignocellulosic biomass. Research on conventional biomass pretreatment solvents has mainly been focused on carbohydrate conversion efficiency, while their hazardousness and/or carbon intensity were not comprehensively considered. Recent sustainability issues request further consideration for eco-friendly and sustainable alternatives like biomass-derived solvents. Carbohydrate and lignin-derived solvents have been proposed and investigated as green alternatives in many biomass processes. In this review, the applications of different types of biomass pretreatment solvents, including organic, ionic liquid, and deep eutectic solvents, are thoroughly discussed. The role of water as a co-solvent in these pretreatment processes is also reviewed. Finally, current research challenges and prospects of utilizing biomass-derived pretreatment solvents for pretreatment are discussed. Given bioethanol's market potential and increasing public awareness about environmental concerns, it will be a priority adopting sustainable and green biomass pretreatment solvents in biorefinery.
Collapse
Affiliation(s)
- Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunxuan Wang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Austin J Conte
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Shuyang Zhang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Jiae Ryu
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Jeong Jae Wie
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA; Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea; Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Brian H Davison
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee, Institute of Agriculture, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
10
|
Sun C, Meng X, Sun F, Zhang J, Tu M, Chang JS, Reungsang A, Xia A, Ragauskas AJ. Advances and perspectives on mass transfer and enzymatic hydrolysis in the enzyme-mediated lignocellulosic biorefinery: A review. Biotechnol Adv 2023; 62:108059. [PMID: 36402253 DOI: 10.1016/j.biotechadv.2022.108059] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic hydrolysis is a critical process for the cellulase-mediated lignocellulosic biorefinery to produce sugar syrups that can be converted into a whole range of biofuels and biochemicals. Such a process operating at high-solid loadings (i.e., scarcely any free water or roughly ≥ 15% solids, w/w) is considered more economically feasible, as it can generate a high sugar concentration at low operation and capital costs. However, this approach remains restricted and incurs "high-solid effects", ultimately causing the lower hydrolysis yields with increasing solid loadings. The lack of available water leads to a highly viscous system with impaired mixing that exhibits strong transfer resistance and reaction limitation imposed on enzyme action. Evidently, high-solid enzymatic hydrolysis involves multi-scale mass transfer and multi-phase enzyme reaction, and thus requires a synergistic perspective of transfer and biotransformation to assess the interactions among water, biomass components, and cellulase enzymes. Porous particle characteristics of biomass and its interface properties determine the water form and distribution state surrounding the particles, which are summarized in this review aiming to identify the water-driven multi-scale/multi-phase bioprocesses. Further aided by the cognition of rheological behavior of biomass slurry, solute transfer theories, and enzyme kinetics, the coupling effects of flow-transfer-reaction are revealed under high-solid conditions. Based on the above basic features, this review lucidly explains the causes of high-solid hydrolysis hindrances, highlights the mismatched issues between transfer and reaction, and more importantly, presents the advanced strategies for transfer and reaction enhancements from the viewpoint of process optimization, reactor design, as well as enzyme/auxiliary additive customization.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee, Knoxville, TN 37996, USA; Joint Institute of Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
11
|
Acetate-rich Cellulosic Hydrolysates and Their Bioconversion Using Yeasts. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Prospects of thermotolerant Kluyveromyces marxianus for high solids ethanol fermentation of lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:134. [PMID: 36474296 PMCID: PMC9724321 DOI: 10.1186/s13068-022-02232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
Simultaneous saccharification and fermentation (SSF) is effective for minimizing sugar inhibition during high solids fermentation of biomass solids to ethanol. However, fungal enzymes used during SSF are optimal between 50 and 60 °C, whereas most fermentative yeast, such as Saccharomyces cerevisiae, do not tolerate temperatures above 37 °C. Kluyveromyces marxianus variant CBS 6556 is a thermotolerant eukaryote that thrives at 43 °C, thus potentially serving as a promising new host for SSF operation in biorefineries. Here, we attempt to leverage the thermotolerance of the strain to demonstrate the application of CBS 6556 in a high solids (up to 20 wt% insoluble solid loading) SSF configuration to understand its capabilities and limitations as compared to a proven SSF strain, S. cerevisiae D5A. For this study, we first pretreated hardwood poplar chips using Co-Solvent Enhanced Lignocellulosic Fractionation (CELF) to remove lignin and hemicellulose and to produce cellulose-enriched pretreated solids for SSF. Our results demonstrate that although CBS 6556 could not directly outperform D5A, it demonstrated similar tolerance to high gravity sugar solutions, superior growth rates at higher temperatures and higher early stage ethanol productivity. We discovered that CBS 6556's membrane was particularly sensitive to higher ethanol concentrations causing it to suffer earlier fermentation arrest than D5A. Cross-examination of metabolite data between CBS 6556 and D5A and cell surface imaging suggests that the combined stresses of high ethanol concentrations and temperature to CBS 6556's cell membrane was a primary factor limiting its ethanol productivity. Hence, we believe K. marxianus to be an excellent host for future genetic engineering efforts to improve membrane robustness especially at high temperatures in order to achieve higher ethanol productivity and titers, serving as a viable alternative to D5A.
Collapse
|
13
|
González-Gloria K, Rodríguez-Jasso RM, Saxena R, Sindhu R, Ali SS, Singhania RR, Patel AK, Binod P, Ruiz HA. Bubble column bioreactor design and evaluation for bioethanol production using simultaneous saccharification and fermentation strategy from hydrothermally pretreated lignocellulosic biomass. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Advances and Challenges in Biocatalysts Application for High Solid-Loading of Biomass for 2nd Generation Bio-Ethanol Production. Catalysts 2022. [DOI: 10.3390/catal12060615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Growth in population and thereby increased industrialization to meet its requirement, has elevated significantly the demand for energy resources. Depletion of fossil fuel and environmental sustainability issues encouraged the exploration of alternative renewable eco-friendly fuel resources. Among major alternative fuels, bio-ethanol produced from lignocellulosic biomass is the most popular one. Lignocellulosic biomass is the most abundant renewable resource which is ubiquitous on our planet. All the plant biomass is lignocellulosic which is composed of cellulose, hemicellulose and lignin, intricately linked to each other. Filamentous fungi are known to secrete a plethora of biomass hydrolyzing enzymes. Mostly these enzymes are inducible, hence the fungi secrete them economically which causes challenges in their hyperproduction. Biomass’s complicated structure also throws challenges for which pre-treatments of biomass are necessary to make the biomass amorphous to be accessible for the enzymes to act on it. The enzymatic hydrolysis of biomass is the most sustainable way for fermentable sugar generation to convert into ethanol. To have sufficient ethanol concentration in the broth for efficient distillation, high solid loading ~<20% of biomass is desirable and is the crux of the whole technology. High solid loading offers several benefits including a high concentration of sugars in broth, low equipment sizing, saving cost on infrastructure, etc. Along with the benefits, several challenges also emerged simultaneously, like issues of mass transfer, low reaction rate due to water constrains in, high inhibitor concentration, non-productive binding of enzyme lignin, etc. This article will give an insight into the challenges for cellulase action on cellulosic biomass at a high solid loading of biomass and its probable solutions.
Collapse
|
15
|
Espinheira RP, Rocha VAL, Guimarães TM, Oliveira CA, de Souza MF, Domont GB, Nogueira FCS, Teixeira RSS, Bon EPDS, Silva ASD. Aspergillus awamori endoglucanase-rich supernatant enhances lignocellulosic biomass liquefaction in high-solids enzymatic hydrolysis. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Zhao ZM, Meng X, Scheidemantle B, Pu Y, Liu ZH, Li BZ, Wyman CE, Cai CM, Ragauskas AJ. Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion. BIORESOURCE TECHNOLOGY 2022; 347:126367. [PMID: 34801717 DOI: 10.1016/j.biortech.2021.126367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Cosolvent Enhanced Lignocellulosic Fractionation (CELF) is an emerging solvolysis pretreatment to fractionate lignocellulosic biomass. Herein, the bioconversion performance of CELF lignin was fully evaluated for the first time. Results showed that CELF lignin possessed higher content of carboxylic acid OH, lower molecular weight, and disappeared β-O-4 and β-5 linkages compared to other two technical lignins including a conventional ethanol organosolv lignin (EOL) and a kraft lignin (KL). Rhodococcus opacus PD630 cell count from CELF lignin fermentation reached the highest value of 3.9 × 107 CFU/mL, representing a 62.5% and 77.3% improvement over EOL and KL, respectively. Correspondingly, lipid yield reached 143 mg/L from CELF lignin, which was 36.2% and 26.5% higher than from EOL and KL, respectively. Principal component analysis (PCA) revealed that more carboxylic acid groups and lower molecular weight contributed to the enhanced bioconversion performance of CELF lignin. This study demonstrates that CELF lignin is a promising candidate for bioconversion.
Collapse
Affiliation(s)
- Zhi-Min Zhao
- School of Ecology and Environment, Inner Mongolia Key Laboratory of Environmental Pollution Control & Wastes Reuse, Inner Mongolia University, Hohhot 010021, China; Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States
| | - Brent Scheidemantle
- Bourns College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, United States
| | - Yunqiao Pu
- Center for Bioenergy Innovation (CBI), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Zhi-Hua Liu
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- School of Chemical Engineering and Technology, Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Charles E Wyman
- Bourns College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, United States
| | - Charles M Cai
- Bourns College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92507, United States
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, United States; Center for Bioenergy Innovation (CBI), Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, United States.
| |
Collapse
|
17
|
Ruiz HA, Galbe M, Garrote G, Ramirez-Gutierrez DM, Ximenes E, Sun SN, Lachos-Perez D, Rodríguez-Jasso RM, Sun RC, Yang B, Ladisch MR. Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion and liquid hot water) for biomass fractionation under biorefinery concept. BIORESOURCE TECHNOLOGY 2021; 342:125961. [PMID: 34852440 DOI: 10.1016/j.biortech.2021.125961] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal processes are an attractive clean technology and cost-effective engineering platform for biorefineries based in the conversion of biomass to biofuels and high-value bioproducts under the basis of sustainability and circular bioeconomy. The deep and detailed knowledge of the structural changes by the severity of biomasses hydrothermal fractionation is scientifically and technological needed in order to improve processes effectiveness, reactors designs, and industrial application of the multi-scale target compounds obtained by steam explosion and liquid hot water systems. The concept of the severity factor [log10 (Ro)] established>30 years ago, continues to be a useful index that can provide a simple descriptor of the relationship between the operational conditions for biomass fractionation in second generation of biorefineries. This review develops a deep explanation of the hydrothermal severity factor based in lignocellulosic biomass fractionation with emphasis in research advances, pretreatment operations and the applications of severity factor kinetic model.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | - Mats Galbe
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Gil Garrote
- Department of Chemical Engineering, Faculty of Science, Universidade de Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain
| | - Diana M Ramirez-Gutierrez
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Daniel Lachos-Perez
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Run-Cang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Bin Yang
- Bioproducts Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907-2022, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907-2022, USA
| |
Collapse
|
18
|
Pereira B, Marcondes WF, Carvalho W, Arantes V. High yield biorefinery products from sugarcane bagasse: Prebiotic xylooligosaccharides, cellulosic ethanol, cellulose nanofibrils and lignin nanoparticles. BIORESOURCE TECHNOLOGY 2021; 342:125970. [PMID: 34583112 DOI: 10.1016/j.biortech.2021.125970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
An integrated biorefining strategy was applied to fractionate Sugarcane bagasse (SCB) into its major constituents, enabling high-yield conversion of the fractionated materials into high-value coproducts alongside cellulosic ethanol. Pilot-scale steam explosion produced a hydrolysate rich in low molecular weight xylooligosaccharides that had a high in vitro efficacy as a prebiotic towards different bifidobacteria. Lignin recovered after alkaline treatment of the steam-exploded SCB was converted into uniform spherical lignin nanoparticles (11.3 nm in diameter) by a green mechanical method. The resulting cellulose was hydrolyzed at 17.5% (w/v) consistency and low enzyme loading (17.5 mg/g) to yield a pure glucose hydrolysate at a high concentration (100 g/L) and a cellulosic solid residue that was defibrillated by disc ultra-refining into homogeneous cellulose nanofibrils (20.5 nm in diameter). Statistical optimization of the cellulosic hydrolysate fermentation led to ethanol production of 67.1 g/L, with a conversion yield of 0.48 g/g and productivity of 1.40 g/L.h.
Collapse
Affiliation(s)
- Bárbara Pereira
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Wilian F Marcondes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Walter Carvalho
- Biochemistry Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil
| | - Valdeir Arantes
- Nanobiotechnology and Bioproducts Laboratory, Department of Biotechnology, Lorena School of Engineering, University of São Paulo - Lorena/SP, Brazil.
| |
Collapse
|
19
|
Singh R, Singh V. Integrated Biorefinery for Valorization of Engineered Bioenergy Crops—A Review. Ind Biotechnol (New Rochelle N Y) 2021. [DOI: 10.1089/ind.2021.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ramkrishna Singh
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) and Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Vijay Singh
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) and Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
20
|
Baral P, Kumar V, Agrawal D. Emerging trends in high-solids enzymatic saccharification of lignocellulosic feedstocks for developing an efficient and industrially deployable sugar platform. Crit Rev Biotechnol 2021; 42:873-891. [PMID: 34530648 DOI: 10.1080/07388551.2021.1973363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
For the techno-commercial success of any lignocellulosic biorefinery, the cost-effective production of fermentable sugars for the manufacturing of bio-based products is indispensable. High-solids enzymatic saccharification (HSES) is a straightforward approach to develop an industrially deployable sugar platform. Economic incentives such as reduced capital and operational expenditure along with environmental benefits in the form of reduced effluent discharge makes this strategy more lucrative for exploitation. However, HSES suffers from the drawback of non-linear and disproportionate sugar yields with increased substrate loadings. To overcome this bottleneck, researchers tend to perform HSES at high enzyme loadings. Nonetheless, the production costs of cellulases are one of the key contributors that impair the entire process economics. This review highlights the relentless efforts made globally to attain a high-titer of sugars and their fermentation products by performing efficient HSES at low cellulase loadings. In this context, technical innovations such as advancements in new pretreatment strategies, next-generation cellulase cocktails, additives, accessory enzymes, novel reactor concepts and enzyme recycling studies are especially showcased. This review further covers new insights, learnings and prospects in the area of lignocellulosic bioprocessing.
Collapse
Affiliation(s)
- Pratibha Baral
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, India
| |
Collapse
|
21
|
Vancov T, Palmer J, Keen B. Pilot scale demonstration of a two-stage pretreatment and bioethanol fermentation process for cotton gin trash. BIORESOURCE TECHNOLOGY 2021; 335:125224. [PMID: 33984554 DOI: 10.1016/j.biortech.2021.125224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
A two-stage dilute acid and steam explosion (SE) pretreatment process was developed and evaluated at pilot scale for ethanol production from cotton gin trash (CGT). Optimal conditions for CGT processing were defined as 1:6 solids to liquids ratio with 9% H2SO4 wt. on solids at 180 °C for 15 min. during stage 1 with ensuing pressed fibres successively exposed to SE at 200 °C for 5 min during stage 2. SE fibres were highly acquiescent to enzyme hydrolysis (76%) in the presence of PEG 6000, yielding 381 g glucose kg-1 fibre. Simultaneous saccharification and fermentation (SSF) trials validated the selected process option and additional fed-batch SSFs confirmed titres above the minimum 4% ww-1 benchmark for economically viable distillation. The practicality of converting CGT to ethanol was demonstrated at pilot scale with titres above 4% ww-1 and a conversion efficiency of 60% t-1 dry GCT.
Collapse
Affiliation(s)
- T Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, NSW, Australia.
| | - J Palmer
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, NSW, Australia
| | - B Keen
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, NSW, Australia
| |
Collapse
|
22
|
Li H, Chen X, Wang C, Chen X, Guo H, Xiong L, Zhang H, Huang C, Chen X. Factors Affecting the Catalytic Efficiency and Synergism of Xylanase and Cellulase During Enzymatic Hydrolysis of Birch Wood. Appl Biochem Biotechnol 2021; 193:3469-3482. [PMID: 34245403 DOI: 10.1007/s12010-021-03590-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/28/2021] [Indexed: 11/25/2022]
Abstract
Understanding factors that affect the catalytic efficiency and synergism of enzymes is helpful to enhance the process of bioconversion. In this study, birch wood (BW) was sequentially treated by delignification (DL), deacetylation (DA), and decrystallization (DC) treatments. The physiochemical structures of treated BW were characterized. Moreover, the influences of sequential treatments on the catalytic efficiency and synergism of xylanase and cellulase were studied. DL treatments efficiently improved the conversion of cellulose and xylan. A high degree of synergy (DS) between xylanase and cellulase was produced during hydrolysis of DL-treated BW. DA treatments enhanced xylan conversion but reduced the DS between xylanase and cellulase for xylan hydrolysis, whereas DC treatments enhanced cellulose conversion but reduced the DS between xylanase and cellulase for cellulose hydrolysis. The cellulose conversion of lithium chloride/N,N-dimethylacetamide (LiCl/DMAc)-treated BW (89.69%) was higher than the cellulose conversion of ball milling (BM)-treated BW (81.63%), whereas the xylan conversion of LiCl/DMAc-treated BW (83.77%) was lower than the xylan conversion of BM-treated BW (87.21%). This study showed that the catalytic efficiency and synergism of xylanase and cellulase are markedly affected by lignin hindrance, hemicellulose acetylation, and cellulose crystallization.
Collapse
Affiliation(s)
- Hailong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Tianhe District, Guangzhou, 510640, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi, 211700, People's Republic of China
| | - Xindong Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Tianhe District, Guangzhou, 510640, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Can Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Tianhe District, Guangzhou, 510640, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi, 211700, People's Republic of China
| | - Xuefang Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Tianhe District, Guangzhou, 510640, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi, 211700, People's Republic of China
| | - Haijun Guo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Tianhe District, Guangzhou, 510640, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi, 211700, People's Republic of China
| | - Lian Xiong
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Tianhe District, Guangzhou, 510640, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi, 211700, People's Republic of China
| | - Hairong Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Tianhe District, Guangzhou, 510640, People's Republic of China
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, People's Republic of China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi, 211700, People's Republic of China
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, People's Republic of China
| | - Xinde Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, No. 2 Energy Road, Tianhe District, Guangzhou, 510640, People's Republic of China.
- CAS Key Laboratory of Renewable Energy, Guangzhou, 510640, People's Republic of China.
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, People's Republic of China.
- R&D Center of Xuyi Attapulgite Energy and Environmental Materials, Xuyi, 211700, People's Republic of China.
| |
Collapse
|
23
|
Liu ZH, Hao N, Wang YY, Dou C, Lin F, Shen R, Bura R, Hodge DB, Dale BE, Ragauskas AJ, Yang B, Yuan JS. Transforming biorefinery designs with 'Plug-In Processes of Lignin' to enable economic waste valorization. Nat Commun 2021; 12:3912. [PMID: 34162838 PMCID: PMC8222318 DOI: 10.1038/s41467-021-23920-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
Biological lignin valorization has emerged as a major solution for sustainable and cost-effective biorefineries. However, current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs to focus on lignin could jeopardize carbohydrate efficiency and increase capital costs. We resolve the dilemma by designing 'plug-in processes of lignin' with the integration of leading pretreatment technologies. Substantial improvement of lignin bioconversion and synergistic enhancement of carbohydrate processing are achieved by solubilizing lignin via lowering molecular weight and increasing hydrophilic groups, addressing the dilemma of lignin- or carbohydrate-first scenarios. The plug-in processes of lignin could enable minimum polyhydroxyalkanoate selling price at as low as $6.18/kg. The results highlight the potential to achieve commercial production of polyhydroxyalkanoates as a co-product of cellulosic ethanol. Here, we show that the plug-in processes of lignin could transform biorefinery design toward sustainability by promoting carbon efficiency and optimizing the total capital cost.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Naijia Hao
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Yun-Yan Wang
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Chang Dou
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Furong Lin
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Rongchun Shen
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
| | - Renata Bura
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - David B Hodge
- Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, USA
| | - Bruce E Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Bin Yang
- Bioproducts, Sciences, and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA, USA
| | - Joshua S Yuan
- Synthetic and Systems Biology Innovation Hub, Texas A&M University, College Station, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
24
|
Ning P, Yang G, Hu L, Sun J, Shi L, Zhou Y, Wang Z, Yang J. Recent advances in the valorization of plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:102. [PMID: 33892780 PMCID: PMC8063360 DOI: 10.1186/s13068-021-01949-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 05/28/2023]
Abstract
Plant biomass is a highly abundant renewable resource that can be converted into several types of high-value-added products, including chemicals, biofuels and advanced materials. In the last few decades, an increasing number of biomass species and processing techniques have been developed to enhance the application of plant biomass followed by the industrial application of some of the products, during which varied technologies have been successfully developed. In this review, we summarize the different sources of plant biomass, the evolving technologies for treating it, and the various products derived from plant biomass. Moreover, the challenges inherent in the valorization of plant biomass used in high-value-added products are also discussed. Overall, with the increased use of plant biomass, the development of treatment technologies, and the solution of the challenges raised during plant biomass valorization, the value-added products derived from plant biomass will become greater in number and more valuable.
Collapse
Affiliation(s)
- Peng Ning
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lihong Hu
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Jingxin Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Lina Shi
- Agricultural Integrated Service Center of Zhuyouguan, Longkou, Yantai, China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest Products, Key Laboratory of Biomass Energy and Material, CAF, Nanjing, China
| | - Zhaobao Wang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
25
|
Zhu Y, Qi B, Liang X, Luo J, Wan Y. Comparison of Corn Stover Pretreatments with Lewis Acid Catalyzed Choline Chloride, Glycerol and Choline Chloride-Glycerol Deep Eutectic Solvent. Polymers (Basel) 2021; 13:polym13071170. [PMID: 33917314 PMCID: PMC8038657 DOI: 10.3390/polym13071170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, corn stover (CS) was pretreated by less corrosive lewis acid FeCl3 acidified solutions of neat and aqueous deep eutectic solvent (DES), aqueous ChCl and glycerol at 120 °C for 4 h with single FeCl3 pretreatment as control. It was unexpected that acidified solutions of both ChCl and glycerol were found to be more efficient at removing lignin and xylan, leading to higher enzymatic digestibility of pretreated CS than acidified DES. Comparatively, acidified ChCl solution exhibited better pretreatment performance than acidified glycerol solution. In addition, 20 wt% water in DES dramatically reduced the capability of DES for delignification and xylan removal and subsequent enzymatic cellulose saccharification of pretreated CS. Correlation analysis showed that enzymatic saccharification of pretreated CS was highly correlated to delignification and cellulose crystallinity, but lowly correlated to xylan removal. Recyclability experiments of different acidified pretreatment solutions showed progressive decrease in the pretreatment performance with increasing recycling runs. After four cycles, the smallest decrease in enzymatic cellulose conversion (22.07%) was observed from acidified neat DES pretreatment, while the largest decrease (43.80%) was from acidified ChCl pretreatment. Those findings would provide useful information for biomass processing with ChCl, glycerol and ChCl-glycerol DES.
Collapse
Affiliation(s)
- Yuan Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (Y.W.)
| | - Benkun Qi
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- Correspondence: (B.Q.); (X.L.)
| | - Xinquan Liang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (J.L.); (Y.W.)
- Correspondence: (B.Q.); (X.L.)
| | - Jianquan Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhua Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China;
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Singh R, Arora A, Singh V. Biodiesel from oil produced in vegetative tissues of biomass - A review. BIORESOURCE TECHNOLOGY 2021; 326:124772. [PMID: 33551280 DOI: 10.1016/j.biortech.2021.124772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Biodiesel is a green, renewable alternative to petroleum-derived diesel. However, using vegetable oil for biodiesel production significantly challenges the food security. Progress in metabolic engineering, understanding of lipid biosynthesis and storage have enabled engineering of vegetative tissues of plants such as sugarcane, sorghum, and tobacco for lipid production. Such sources could be cultivated on land resources, which are currently not suitable for row crops. Besides achieving significant lipid accumulation, it is imperative to maintain the fatty acid and lipid profile ideal for biodiesel production and engine performance. In this study, genetic modifications used to induce lipid accumulation in transgenic crops and the proposed strategies for efficient recovery of oil from these crops have been presented. This paper highlights that lipids sourced from vegetative biomass in their native form would pose significant challenges in biodiesel production. Therefore, different strategies have been presented for improving feedstock quality to achieve high-quality biodiesel production.
Collapse
Affiliation(s)
- Ramkrishna Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Amit Arora
- Indian Institute of Technology Bombay, Powai, Mumbai 400076, India; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W. Pennsylvania Avenue, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
27
|
Ma X, Xu Y. A Remixed-Fermentation Technique for the Simultaneous Bioconversion of Corncob C6 and C5 Sugars to Probiotic Bacillus subtilis. Appl Biochem Biotechnol 2021; 193:2580-2590. [PMID: 33783699 DOI: 10.1007/s12010-021-03560-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The probiotic strain of Bacillus subtilis presents a promising application potential for the value-added bio-utilization of lignocellulosic carbohydrates. By the combined acidolysis pretreatment and enzymatic hydrolysis, hemicellulose and cellulose constituents of corncob were efficiently converted respectively into fermentable C5 and C6 sugars, mainly including xylose and glucose. B. subtilis grew well in xylose solution while it was hindered completely in the acidolysis broth because of the bio-toxicity of degraded chemicals derived from corncob. A mixed-fermentation technique was therefore developed and performed to blend the acidolysis broth and enzymatic hydrolysis slurry together, by which C5 and C6 sugar molecules were successfully fermented and efficiently utilized for the growth of B. subtilis cells with a yield of 0.33 g cells/g sugar consumed. A net amount of 205.9 ± 9.0 g of B. subtilis powder was obtained from 1000 g of corncob that could improve the economic benefits of the process to around 5-7 times.
Collapse
Affiliation(s)
- Xutong Ma
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.,Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, 210037, People's Republic of China. .,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China. .,Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
28
|
Lyu H, Yang S, Zhang J, Feng Y, Geng Z. Impacts of utilization patterns of cellulosic C5 sugar from cassava straw on bioethanol production through life cycle assessment. BIORESOURCE TECHNOLOGY 2021; 323:124586. [PMID: 33387712 DOI: 10.1016/j.biortech.2020.124586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Integrated processes of whole plant cassava bioethanol production using full components including cellulosic C5 sugar are proposed. The impacts of different utilization patterns of cellulosic C5 sugar on bioethanol production are investigated by life cycle assessment. Results show that for cassava straw bioethanol, process using cellulosic C5 sugar performs better, and the NER, renewability and GWP (global warming potential) are 0.94, 1.09 and 2929 kg CO2 eq. The integrated process WPC-2 that the cellulosic C5 sugar mash is fermented together with the cassava starch, is a better cellulosic C5 sugar utilization pattern with NER 1.49, renewability 2.20 and GWP 1579 kg CO2 eq. The process WPC-2 shows the potential to approach cassava bioethanol in terms of energy and environmental emissions. The downstream products are investigated and the E85 fuel from WPC-2 has higher application potential.
Collapse
Affiliation(s)
- Huisheng Lyu
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shuyuan Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jia Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yongxin Feng
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhongfeng Geng
- Key Laboratory for Green Chemical Technology of Ministry of Education, R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
| |
Collapse
|
29
|
Chai Z. Light-Driven Alcohol Splitting by Heterogeneous Photocatalysis: Recent Advances, Mechanism and Prospects. Chem Asian J 2021; 16:460-473. [PMID: 33448692 PMCID: PMC7986840 DOI: 10.1002/asia.202001312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Indexed: 11/19/2022]
Abstract
Splitting of alcohols into hydrogen and corresponding carbonyl compounds, also called acceptorless alcohol dehydrogenation, is of great significance for both synthetic chemistry and hydrogen production. Light-Driven Alcohol Splitting (LDAS) by heterogeneous photocatalysis is a promising route to achieve such transformations, and it possesses advantages including high selectivity of the carbonyl compounds, extremely mild reaction conditions (room temperature and irradiation of visible light) and easy separation of the photocatalysts from the reaction mixtures. Because a variety of alcohols can be derived from biomass, LDAS can also be regarded as one of the most sustainable approaches for hydrogen production. In this Review, recent advances in the LDAS catalyzed by the heterogeneous photocatalysts are summarized, focusing on the mechanistic insights for the LDAS and aspects that influence the performance of the photocatalysts from viewpoints of metallic co-catalysts, semiconductors, and metal/semiconductor interfaces. In addition, challenges and prospects have been discussed in order to present a complete picture of this field.
Collapse
Affiliation(s)
- Zhigang Chai
- Department of Chemistry – Ångström LaboratoryUppsala University75121UppsalaSweden
| |
Collapse
|
30
|
Li G, Ma S, Ye F, Zhou L, Wang Y, Lang X, Fan S. Robust ZSM-5 Membranes for Efficient Bio-Oil Dehydration: Transport Mechanism and Its Implication on Structural Tuning. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gang Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shanhong Ma
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Feng Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Liang Zhou
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yanhong Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xuemei Lang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shuanshi Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
31
|
Wang J, Lei Z, Zhang Y, Lu W, Li S, Luo W, Song P. Saccharogenic refining of Ginkgo biloba leaf residues using a cost-effective enzyme cocktail prepared by the fungal strain A32 isolated from ancient ginkgo biloba tree. BIORESOURCE TECHNOLOGY 2020; 317:123980. [PMID: 32795881 DOI: 10.1016/j.biortech.2020.123980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
To reduce environmental pollution and waste of biomass from Ginkgo biloba leaf residues (GBLRs), we developed a cost-effective enzyme system to hydrolyze GBLRs into available reducing sugars (RS). Biomass characteristics of GBLRs were investigated, which indicated that the acid hydrolyzed fraction was 49.43% of the dry weight of GBLRs. The fraction could be effectively converted into RS by an enzyme cocktail with high polygalacturonase activity without traditionally intricate pretreatment. The strain A32 isolated from the ancient ginkgo soil was used for the production of the enzyme cocktail, and a response surface methodology was used to optimize the enzymatic production. The enzyme cocktail released 87.2% of RS from GBLRs at 35 ℃ for 72 h with 1% (m/v) of loading, and the RS concentration arrived 8.95 ± 0.39 mg/ml with 9% of GBLRs loading. The cost-effective system of self-prepared enzyme cocktail is promising for facilitating GBLRs' bio-based industry.
Collapse
Affiliation(s)
- Jiahong Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; Co-innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Zilun Lei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Zhang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenwen Lu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Su Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wen Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peipei Song
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Expeditious production of concentrated glucose-rich hydrolysate from sugarcane bagasse and its fermentation to lactic acid with high productivity. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Du C, Li Y, Zong H, Yuan T, Yuan W, Jiang Y. Production of bioethanol and xylitol from non-detoxified corn cob via a two-stage fermentation strategy. BIORESOURCE TECHNOLOGY 2020; 310:123427. [PMID: 32353769 DOI: 10.1016/j.biortech.2020.123427] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
A novel two-stage fermentation strategy was applied to produce xylitol and ethanol from the whole acid-pretreated corn cob slurry. The acid-pretreated corn cob was used without filtration and detoxification by the two-stage fermentation with the robust Kluyveromyces marxianus CICC 1727-5. In the first stage, xylose in the slurry after dilute acid pretreatment of lignocellulosic biomass was used to produce xylitol under micro-aeration conditions. In the second stage, simultaneous saccharification fermentation was carried out, and the ethanol was produced from glucose releasing from the solid. Important parameters, such as aeration rate, cellulase loading during xylose utilization and SSF fermentation were studied for best performance. The two-stage fermentation strategy removed the inhibition of glucose on xylose, and little xylose was left in the fermentation broth. Under the optimized condition, the maximum ethanol and xylitol concentration were 52 g/L and 24.2 g/L corresponding to the yield of 0.41 g/g and 0.82 g/g, respectively.
Collapse
Affiliation(s)
- Cong Du
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China
| | - Yimin Li
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China
| | - Han Zong
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China
| | - Tangguo Yuan
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalia, Liaoning 116024, PR China.
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
34
|
Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces. Proc Natl Acad Sci U S A 2020; 117:16776-16781. [PMID: 32636260 PMCID: PMC7382264 DOI: 10.1073/pnas.1922883117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The use of plant biomass for the production of fuels and chemicals is of critical economic and environmental importance, but has posed a formidable challenge, due to the recalcitrance of biomass to deconstruction. We report direct experimental and computational evidence of a simple physical chemical principle that explains the success of mixing an organic cosolvent, tetrahydrofuran, with water to overcome this recalcitrance. The hydrophilic and hydrophobic biomass surfaces are solvated by single-component nanoclusters of complementary polarity. This principle can serve as a guide for designing even more effective technologies for solubilizing and fractionating biomass. The results further highlight the role of nanoscale fluctuations of molecular solvents in driving changes in the structure of the solutes. A particularly promising approach to deconstructing and fractionating lignocellulosic biomass to produce green renewable fuels and high-value chemicals pretreats the biomass with organic solvents in aqueous solution. Here, neutron scattering and molecular-dynamics simulations reveal the temperature-dependent morphological changes in poplar wood biomass during tetrahydrofuran (THF):water pretreatment and provide a mechanism by which the solvent components drive efficient biomass breakdown. Whereas lignin dissociates over a wide temperature range (>25 °C) cellulose disruption occurs only above 150 °C. Neutron scattering with contrast variation provides direct evidence for the formation of THF-rich nanoclusters (Rg ∼ 0.5 nm) on the nonpolar cellulose surfaces and on hydrophobic lignin, and equivalent water-rich nanoclusters on polar cellulose surfaces. The disassembly of the amphiphilic biomass is thus enabled through the local demixing of highly functional cosolvents, THF and water, which preferentially solvate specific biomass surfaces so as to match the local solute polarity. A multiscale description of the efficiency of THF:water pretreatment is provided: matching polarity at the atomic scale prevents lignin aggregation and disrupts cellulose, leading to improvements in deconstruction at the macroscopic scale.
Collapse
|
35
|
Kumar M, Sun Y, Rathour R, Pandey A, Thakur IS, Tsang DCW. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137116. [PMID: 32059310 DOI: 10.1016/j.scitotenv.2020.137116] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The current review explores the potential application of algal biomass for the production of biofuels and bio-based products. The variety of processes and pathways through which bio-valorization of algal biomass can be performed are described in this review. Various lipid extraction techniques from algal biomass along with transesterification reactions for biodiesel production are briefly discussed. Processes such as the pretreatment and saccharification of algal biomass, fermentation, gasification, pyrolysis, hydrothermal liquefaction, and anaerobic digestion for the production of biohydrogen, bio-oils, biomethane, biochar (BC), and various bio-based products are reviewed in detail. The biorefinery model and its collaborative approach with various processes are highlighted for the production of eco-friendly, sustainable, and cost-effective biofuels and value-added products. The authors also discuss opportunities and challenges related to bio-valorization of algal biomass and use their own perspective regarding the processes involved in production and the feasibility to make algal research a reality for the production of biofuels and bio-based products in a sustainable manner.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rashmi Rathour
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, 31 MG Marg, Lucknow 226 001, India
| | - Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
36
|
Díaz AB, González C, Marzo C, Caro I, Blandino A. Feasibility of exhausted sugar beet pulp as raw material for lactic acid production. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3036-3045. [PMID: 32057099 DOI: 10.1002/jsfa.10334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exhausted sugar beet pulp pellets (ESBPP), a sugar industry by-product generated after sugar extraction in the sugar production process, have been used as a raw material for lactic acid (LA) production via hydrolysis and fermentation by Lactobacillus casei. To design a more cost-effective process, simultaneous saccharification and fermentation (SSF) of ESBPP is proposed in the present study. The effects of pH control, nutrient supplementation and solid addition in fed-batch SSF on lactic acid production were investigated. RESULTS The highest LA concentration (26.88 g L-1 ) was reached in fed-batch SSF at a solid/liquid loading of 0.2 g mL-1 , with pH control (by adding 30 g L-1 CaCO3 to the medium) and nutrient supplementation (by adding 20 mL of MRS medium per 100 mL of buffer). Under these conditions, a maximum productivity of 0.63 g L-1 h-1 was achieved, which is 2.7 times higher than that attained in the control experiment (SSF inoculated at time 0 h). However, a slightly lower LA yield was obtained, revealing the need of an increasing dose of enzymes at high solid loading SSF. CONCLUSION An efficient fed-batch SSF strategy with pH control and MRS supplementation is described in the present study, attaining higher LA productivity compared to separate hydrolysis and fermentation and SSF. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| | - Claudia González
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| | - Cristina Marzo
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| | - Ildefonso Caro
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| | - Ana Blandino
- Department of Chemical Engineering and Food Technology, IVAGRO Institute, Universidad de Cádiz, Puerto Real, Spain
| |
Collapse
|
37
|
|
38
|
Ethanol Production from High Solid Loading of Rice Straw by Simultaneous Saccharification and Fermentation in a Non-Conventional Reactor. ENERGIES 2020. [DOI: 10.3390/en13082090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Simultaneous saccharification and fermentation (SSF) at high solid loading is a potential approach to improve the economic feasibility of cellulosic ethanol. In this study, SSF using high loading of rice straw was assessed using a vertical ball mill reactor. First, the conditions of temperature and number of glass spheres were optimized at 8% (w/v) initial solids (41.5 °C, 18 spheres). Then, assays were carried out at higher solid loadings (16% and 24% w/v). At 8% or 16% solids, the fermentation efficiency was similar (ηF~75%), but the ethanol volumetric productivity (QP) reduced from 1.50 to 1.14 g/L.h. By increasing the solids to 24%, the process was strongly affected (ηF = 40% and QP = 0.7 g/L.h). To overcome this drawback, three different feeding profiles of 24% pre-treated rice straw were investigated. Gradual feeding of the substrate (initial load of 16% with additions of 4% at 10 and 24 h) and an inoculum level of 3 g/L resulted in a high ethanol titer (52.3 g/L) with QP of 1.1 g/L.h and ηF of 67%. These findings demonstrated that using a suitable fed-batch feeding strategy helps to overcome the limitations of SSF in batch mode caused by the use of high solid content.
Collapse
|
39
|
Yoo CG, Meng X, Pu Y, Ragauskas AJ. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. BIORESOURCE TECHNOLOGY 2020; 301:122784. [PMID: 31980318 DOI: 10.1016/j.biortech.2020.122784] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 05/19/2023]
Abstract
Heterogeneity and rigidity of lignocellulose causing resistance to its deconstruction have provided technical and economic challenges in the current biomass conversion processes. Lignin has been considered as a crucial recalcitrance component in biomass utilization. An in-depth understanding of lignin properties and their influences on biomass conversion can provide clues to improve biomass utilization. Also, utilization of lignin can significantly increase the economic viability of biorefinery. Recent lignin-targeting pretreatments have aimed not only to overcome recalcitrance for biomass conversion but also to selectively fractionate lignin for lignin valorization. Numerous studies have been conducted in biomass characteristics and conversion technologies, and the role of lignin is critical for lignin valorization and biomass pretreatment development. This review provides a comprehensive review of lignin-related biomass characteristics, the impact of lignin on the biological conversion of biomass, and recent lignin-targeting pretreatment strategies. The desired lignin properties in biorefinery and future pretreatment directions are also discussed.
Collapse
Affiliation(s)
- Chang Geun Yoo
- Department of Paper and Bioprocess Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Center for Bioenergy Innovation (CBI), Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee, Institute of Agriculture, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
40
|
Dornau A, Robson JF, Thomas GH, McQueen-Mason SJ. Robust microorganisms for biofuel and chemical production from municipal solid waste. Microb Cell Fact 2020; 19:68. [PMID: 32178677 PMCID: PMC7077162 DOI: 10.1186/s12934-020-01325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background Worldwide 3.4 billion tonnes of municipal solid waste (MSW) will be produced annually by 2050, however, current approaches to MSW management predominantly involve unsustainable practices like landfilling and incineration. The organic fraction of MSW (OMSW) typically comprises ~ 50% lignocellulose-rich material but is underexplored as a biomanufacturing feedstock due to its highly inconsistent and heterogeneous composition. This study sought to overcome the limitations associated with studying MSW-derived feedstocks by using OMSW produced from a realistic and reproducible MSW mixture on a commercial autoclave system. The resulting OMSW fibre was enzymatically hydrolysed and used to screen diverse microorganisms of biotechnological interest to identify robust species capable of fermenting this complex feedstock. Results The autoclave pre-treated OMSW fibre contained a polysaccharide fraction comprising 38% cellulose and 4% hemicellulose. Enzymatic hydrolysate of OMSW fibre was high in d-glucose (5.5% w/v) and d-xylose (1.8%w/v) but deficient in nitrogen and phosphate. Although relatively low levels of levulinic acid (30 mM) and vanillin (2 mM) were detected and furfural and 5-hydroxymethylfurfural were absent, the hydrolysate contained an abundance of potentially toxic metals (0.6% w/v). Hydrolysate supplemented with 1% yeast extract to alleviate nutrient limitation was used in a substrate-oriented shake-flask screen with eight biotechnologically useful microorganisms (Clostridium saccharoperbutylacetonicum, Escherichia coli, Geobacillus thermoglucosidasius, Pseudomonas putida, Rhodococcus opacus, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Zymomonas mobilis). Each species’ growth and productivity were characterised and three species were identified that robustly and efficiently fermented OMSW fibre hydrolysate without significant substrate inhibition: Z. mobilis, S. cerevisiae and R. opacus, respectively produced product to 69%, 70% and 72% of the maximum theoretical fermentation yield and could theoretically produce 136 kg and 139 kg of ethanol and 91 kg of triacylglycerol (TAG) per tonne of OMSW. Conclusions Developing an integrated biorefinery around MSW has the potential to significantly alleviate the environmental burden of current waste management practices. Substrate-oriented screening of a representative and reproducible OMSW-derived fibre identified microorganisms intrinsically suited to growth on OMSW hydrolysates. These species are promising candidates for developing an MSW biorefining platform and provide a foundation for future studies aiming to valorise this underexplored feedstock.
Collapse
Affiliation(s)
- Aritha Dornau
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, YO10 5DD, York, UK
| | - James F Robson
- Department of Biology, University of York, Heslington, YO10 5DD, York, UK
| | - Gavin H Thomas
- Department of Biology, University of York, Heslington, YO10 5DD, York, UK
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, YO10 5DD, York, UK.
| |
Collapse
|
41
|
Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Patel AK, Pant D, Rajesh Banu J, Rao CV, Kim YG, Yang YH. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. BIORESOURCE TECHNOLOGY 2020; 300:122724. [PMID: 31926792 DOI: 10.1016/j.biortech.2019.122724] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/27/2019] [Accepted: 12/30/2019] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass is an inexpensive renewable source that can be used to produce biofuels and bioproducts. The recalcitrance nature of biomass hampers polysaccharide accessibility for enzymes and microbes. Several pretreatment methods have been developed for the conversion of lignocellulosic biomass into value-added products. However, these pretreatment methods also produce a wide range of secondary compounds, which are inhibitory to enzymes and microorganisms. The selection of an effective and efficient pretreatment method discussed in the review and its process optimization can significantly reduce the production of inhibitory compounds and may lead to enhanced production of fermentable sugars and biochemicals. Moreover, evolutionary and genetic engineering approaches are being used for the improvement of microbial tolerance towards inhibitors. Advancements in pretreatment and detoxification technologies may help to increase the productivity of lignocellulose-based biorefinery. In this review, we discuss the recent advancements in lignocellulosic biomass pretreatment technologies and strategies for the removal of inhibitors.
Collapse
Affiliation(s)
- Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill-171005 (H.P), India
| | - Anil Kumar Patel
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Deepak Pant
- Department of Chemistry, Central University of Haryana, Mahendragarh, Haryana 123031, India
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL 61801, USA
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, 06978 Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
42
|
Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Appl Microbiol Biotechnol 2020; 104:3245-3252. [DOI: 10.1007/s00253-020-10427-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
|
43
|
Wang J, Chae M, Bressler DC, Sauvageau D. Improved bioethanol productivity through gas flow rate-driven self-cycling fermentation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:14. [PMID: 31998407 PMCID: PMC6979077 DOI: 10.1186/s13068-020-1658-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/16/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND The growth of the cellulosic ethanol industry is currently impeded by high production costs. One possible solution is to improve the performance of fermentation itself, which has great potential to improve the economics of the entire production process. Here, we demonstrated significantly improved productivity through application of an advanced fermentation approach, named self-cycling fermentation (SCF), for cellulosic ethanol production. RESULTS The flow rate of outlet gas from the fermenter was used as a real-time monitoring parameter to drive the cycling of the ethanol fermentation process. Then, long-term operation of SCF under anaerobic conditions was improved by the addition of ergosterol and fatty acids, which stabilized operation and reduced fermentation time. Finally, an automated SCF system was successfully operated for 21 cycles, with robust behavior and stable ethanol production. SCF maintained similar ethanol titers to batch operation while significantly reducing fermentation and down times. This led to significant improvements in ethanol volumetric productivity (the amount of ethanol produced by a cycle per working volume per cycle time)-ranging from 37.5 to 75.3%, depending on the cycle number, and in annual ethanol productivity (the amount of ethanol that can be produced each year at large scale)-reaching 75.8 ± 2.9%. Improved flocculation, with potential advantages for biomass removal and reduction in downstream costs, was also observed. CONCLUSION Our successful demonstration of SCF could help reduce production costs for the cellulosic ethanol industry through improved productivity and automated operation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| | - Michael Chae
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| | - David C. Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, T6G 2P5 Canada
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, T6G 1H9 Canada
| |
Collapse
|
44
|
Gopalakrishnan RM, Manavalan T, Ramesh J, Thangavelu KP, Heese K. Improvement of Saccharification and Delignification Efficiency of Trichoderma reesei Rut-C30 by Genetic Bioengineering. Microorganisms 2020; 8:microorganisms8020159. [PMID: 31979278 PMCID: PMC7074786 DOI: 10.3390/microorganisms8020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Trichoderma reesei produces various saccharification enzymes required for biomass degradation. However, the lack of an effective lignin-degrading enzyme system reduces the species’ efficiency in producing fermentable sugars and increases the pre-treatment costs for biofuel production. In this study, we heterologously expressed the Ganoderma lucidum RMK1 versatile peroxidase gene (vp1) in the Rut-C30 strain of T. reesei. The expression of purified 6×His-tag–containing recombinant G. lucidum-derived protein (rVP1) was confirmed through western blot, which exhibited a single band with a relative molecular weight of 39 kDa. In saccharification and delignification studies using rice straw, the transformant (tVP7, T. reesei Rut-C30 expressing G. lucidum-derived rVP1) showed significant improvement in the yield of total reducing sugar and delignification, compared with that of the parent T. reesei Rut-C30 strain. Scanning electron microscopy (SEM) of tVP7-treated paddy straw showed extensive degradation of several layers of its surface compared with the parent strain due to the presence of G. lucidum-derived rVP1. Our results suggest that the expression of ligninolytic enzymes in cellulase hyperproducing systems helps to integrate the pre-treatment and saccharification steps that may ultimately reduce the costs of bioethanol production.
Collapse
Affiliation(s)
- Raja Mohan Gopalakrishnan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
| | - Tamilvendan Manavalan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
| | - Janani Ramesh
- Department of Medical Biochemistry, Dr ALM Postgraduate Institute of Biomedical Sciences, University of Madras, Chennai, Tamil Nadu 600 113, India;
| | - Kalaichelvan Puthupalayam Thangavelu
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025, India; (R.M.G.); (T.M.)
- Correspondence: (K.P.T.); (K.H.)
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
- Correspondence: (K.P.T.); (K.H.)
| |
Collapse
|
45
|
Gong Z, Wang X, Yuan W, Wang Y, Zhou W, Wang G, Liu Y. Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:13. [PMID: 31993091 PMCID: PMC6977323 DOI: 10.1186/s13068-019-1639-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/17/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND Lignocellulosic biomass has been commonly regarded as a potential feedstock for the production of biofuels and biochemicals. High sugar yields and the complete bioconversion of all the lignocellulosic sugars into valuable products are attractive for the utilization of lignocelluloses. It is essential to pretreat and hydrolyze lignocelluloses at high solids loadings during industrial processes, which is more economical and environmentally friendly as capital cost, energy consumption, and water usage can be reduced. However, oligosaccharides are inevitably released during the high solids loading enzymatic hydrolysis and they are more recalcitrant than monosaccharides for microorganisms. RESULTS A fed-batch enzymatic hydrolysis of corn stover pretreated by the sodium hydroxide-methanol solution (SMs) at high solids loading was demonstrated to reach the high concentrations and yields of fermentable sugars. Glucose, xylose, cello-oligosaccharides, and xylo-oligosaccharides achieved 146.7 g/L, 58.7 g/L, 15.6 g/L, and 24.7 g/L, respectively, when the fed-batch hydrolysis was started at 12% (w/v) solids loading, and 7% fresh substrate and a standardized blend of cellulase, β-glucosidase, and hemicellulase were fed consecutively at 3, 6, 24, and 48 h to achieve a final solids loading of 40% (w/v). The total conversion of glucan and xylan reached 89.5% and 88.5%, respectively, when the oligosaccharides were taken into account. Then, a fed-batch culture on the hydrolysates was investigated for lipid production by Cutaneotrichosporon oleaginosum. Biomass, lipid content, and lipid yield were 50.7 g/L, 61.7%, and 0.18 g/g, respectively. The overall consumptions of cello-oligosaccharides and xylo-oligosaccharides reached 74.1% and 68.2%, respectively. CONCLUSIONS High sugars concentrations and yields were achieved when the enzyme blend was supplemented simultaneously with the substrate at each time point of feeding during the fed-batch enzymatic hydrolysis. Oligosaccharides were co-utilized with monosaccharides during the fed-batch culture of C. oleaginosum. These results provide a promising strategy to hydrolyze alkaline organosolv-pretreated corn stover into fermentable sugars with high concentrations and yields for microbial lipid production.
Collapse
Affiliation(s)
- Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Xuemin Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Wei Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yanan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 People’s Republic of China
| | - Wenting Zhou
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- HuBei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081 People’s Republic of China
| | - Guanghui Wang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, 430081 People’s Republic of China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
46
|
Genetic Engineering for Enhancement of Biofuel Production in Microalgae. CLEAN ENERGY PRODUCTION TECHNOLOGIES 2020. [DOI: 10.1007/978-981-15-9593-6_21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Lu M, Li J, Han L, Xiao W. High-solids enzymatic hydrolysis of ball-milled corn stover with reduced slurry viscosity and improved sugar yields. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:77. [PMID: 32336988 PMCID: PMC7171840 DOI: 10.1186/s13068-020-01717-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/13/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND High-solids enzymatic hydrolysis has attracted increasing attentions for the production of bioethanol from lignocellulosic biomass with its advantages of high product concentration, water saving, and low energy and capital costs. However, the increase of solids content would worsen the rheological properties, resulting in heat/mass transfer limitation and higher mixing energy. To address these issues, ball milling was applied to corn stover prior to enzymatic hydrolysis, and the rheological behaviors and digestibility of ball-milled corn stover under high-solids loading were investigated. RESULTS Ball milling significantly modified the physicochemical properties of corn stover. The apparent viscosity of slurries at 30% solid loading decreased by a factor of 500 after milling for 60 min, and the yield stress was less than 10 Pa. The dramatic decrease of viscosity and yield stress enabled the hydrolysis process to be conducted in shake flask, and remained good mixing. Meanwhile, the estimated energy consumption for mixing during saccharification decreased by 400-fold compared to the untreated one. The resultant hydrolysate using 10 FPU g-1 solids was determined to contain 130.5 g L-1 fermentable sugar, and no fermentation inhibitors were detected. CONCLUSIONS The proposed ball milling pretreatment improved rheological behavior and sugar yield of high-solids corn stover slurry. Ball milling enables high-solids slurry to maintain low viscosity and yield stress while obtaining a non-toxic high-concentration fermentable syrup, which is undoubtedly of great significance for inter-unit processing, mixing and downstream process. In addition, the energy input for ball milling could be balanced by the reduced mixing energy. Our study indicates ball milling a promising pretreatment process for industrial bioethanol production.
Collapse
Affiliation(s)
- Minsheng Lu
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Junbao Li
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Lujia Han
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| | - Weihua Xiao
- College of Engineering, China Agricultural University (East Campus), P.O. Box 191, 17 Qing-Hua-Dong-Lu, Hai-Dian District, Beijing, 100083 People’s Republic of China
| |
Collapse
|
48
|
Chew AK, Walker TW, Shen Z, Demir B, Witteman L, Euclide J, Huber GW, Dumesic JA, Van Lehn RC. Effect of Mixed-Solvent Environments on the Selectivity of Acid-Catalyzed Dehydration Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03460] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Affiliation(s)
- Gengnan Li
- Center for Interfacial Reaction Engineering and School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- Center for Interfacial Reaction Engineering and School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Daniel E. Resasco
- Center for Interfacial Reaction Engineering and School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
50
|
Pascal K, Ren H, Sun FF, Guo S, Hu J, He J. Mild Acid-Catalyzed Atmospheric Glycerol Organosolv Pretreatment Effectively Improves Enzymatic Hydrolyzability of Lignocellulosic Biomass. ACS OMEGA 2019; 4:20015-20023. [PMID: 31788636 PMCID: PMC6882100 DOI: 10.1021/acsomega.9b02993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/29/2019] [Indexed: 06/05/2023]
Abstract
Conventional atmospheric glycerol organosolv pretreatment is energy-intensive with the requirement of long time and/or high temperature. Herein, acid-catalyzed atmospheric glycerol organosolv (ac-AGO) pretreatment was developed under a mild condition to modify the sugarcane bagasse structure for improving enzymatic hydrolyzability. Using single factor and central composite design experiments, ac-AGO pretreatment was optimized at 200 °C for 15 min with 0.06% H2SO4 addition, wherein the hemicellulose and lignin removal rates were 82 and 52%, respectively, with extremely high cellulose retention of 98%. The ac-AGO-pretreated substrate exhibited good enzymatic hydrolyzability at a modest cellulase loading, affording a 70% glucose yield after 72 h. Multiple analysis tools were used to correlate the hydrolyzability of the substrate with its structural features. The results indicated that the mild ac-AGO pretreatment can modify the lignocellulosic biomass structure to achieve good hydrolyzability, mainly resulting in significant hemicellulose removal.
Collapse
Affiliation(s)
- Kaneza Pascal
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Hongyan Ren
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fubao Fuelbiol Sun
- Key
Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry
of Education, School of Biotechnology and Jiangsu Key Laboratory of Anaerobic
Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuxian Guo
- Henan
Key Laboratory of Industrial Microbial Resources and Fermentation
Technology, School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Jinguang Hu
- Department
of Chemical and Petroleum Engineering, University
of Calgary, Calgary T2N 1N4, Canada
| | - Jing He
- Key
Laboratory of Development and Application of Rural Renewable Energy,
National Agricultural Science & Technology Center, Biogas Institute of Ministry of Agriculture, Chengdu 610041, China
| |
Collapse
|