1
|
Silva‐Arias GA, Gagnon E, Hembrom S, Fastner A, Khan MR, Stam R, Tellier A. Patterns of presence-absence variation of NLRs across populations of Solanum chilense are clade-dependent and mainly shaped by past demographic history. THE NEW PHYTOLOGIST 2025; 245:1718-1732. [PMID: 39582196 PMCID: PMC11754929 DOI: 10.1111/nph.20293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
Understanding the evolution of pathogen resistance genes (nucleotide-binding site-leucine-rich repeats, NLRs) within a species requires a comprehensive examination of factors that affect gene loss and gain. We present a new reference genome of Solanum chilense, which leads to an increased number and more accurate annotation of NLRs. Using a target capture approach, we quantify the presence-absence variation (PAV) of NLR loci across 20 populations from different habitats. We build a rigorous pipeline to validate the identification of PAV of NLRs and then show that PAV is larger within populations than between populations, suggesting that maintenance of NLR diversity is linked to population dynamics. The amount of PAV appears not to be correlated with the NLR presence in gene clusters in the genome, but rather with the past demographic history of the species, with loss of NLRs in diverging (smaller) populations at the distribution edges. Finally, using a redundancy analysis, we find limited evidence of PAV being linked to environmental gradients. Our results suggest that random processes (genetic drift and demography) and weak positive selection for local adaptation shape the evolution of NLRs at the single nucleotide polymorphism and PAV levels in an outcrossing plant with high nucleotide diversity.
Collapse
Affiliation(s)
- Gustavo A. Silva‐Arias
- Professorship for Population Genetics, TUM School of Life SciencesTechnical University of MunichLiesel‐Beckmann Strasse 2Freising85354Germany
- Facultad de Ciencias, Instituto de Ciencias NaturalesUniversidad Nacional de Colombia ‐ Sede Bogotá, Ciudad UniversitariaBogotá111321Colombia
| | - Edeline Gagnon
- Department of Integrative Biology, College of Biological ScienceUniversity of Guelph50 Stone Road EastGuelphONN1G 2W1Canada
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichEmil‐Ramman‐St. 2Freising85354Germany
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityHermann Rodewald Str 9Kiel24118Germany
| | - Surya Hembrom
- Professorship for Population Genetics, TUM School of Life SciencesTechnical University of MunichLiesel‐Beckmann Strasse 2Freising85354Germany
| | - Alexander Fastner
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityHermann Rodewald Str 9Kiel24118Germany
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced BiotechnologyNational Agricultural Research CentrePark Rd, Islamabad Capital TerritoryIslamabadPakistan
- PARC Institute for Advanced Studies in AgricultureNARCPark Rd, Islamabad Capital TerritoryIslamabadPakistan
| | - Remco Stam
- Chair of Phytopathology, TUM School of Life SciencesTechnical University of MunichEmil‐Ramman‐St. 2Freising85354Germany
- Faculty of Agricultural and Nutritional Sciences, Department of Phytopathology and Crop Protection, Institute of PhytopathologyChristian Albrechts UniversityHermann Rodewald Str 9Kiel24118Germany
| | - Aurélien Tellier
- Professorship for Population Genetics, TUM School of Life SciencesTechnical University of MunichLiesel‐Beckmann Strasse 2Freising85354Germany
| |
Collapse
|
2
|
Lin RC, Rausher MD. Absence of long-term balancing selection on variation in EuMYB3, an R2R3-MYB gene responsible for the anther-color polymorphism in Erythronium umbilicatum. Sci Rep 2024; 14:5364. [PMID: 38438787 PMCID: PMC10912454 DOI: 10.1038/s41598-024-56117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Balancing selection has been shown to be common in plants for several different types of traits, such as self-incompatibility and heterostyly. Generally, for these traits balancing selection is generated by interactions among individuals or between individuals and other species (e.g., pathogens or pollinators). However, there are phenotypic polymorphisms in plants that do not obviously involve types of interactions that generate balancing selection. Little is known about the extent to which balancing selection also acts to preserve these polymorphisms. Here we ask whether balancing selection preserves an anther-color polymorphism in Erythronium umbilicatum (Liliaceae). We identified a major gene underlying this polymorphism. We then attempted to detect signatures of balancing selection on that gene by developing a new coalescence test for balancing selection. We found that variation in anther color is in large part caused by variation in a paralog of EuMYB3, an anthocyanin-regulating R2R3-MYB transcription factor. However, we found little evidence for balancing selection having acted historically on EuMYB3. Our results thus suggest that plant polymorphisms, especially those not involved in interactions that are likely to generate negative frequency-dependent selection, may reflect a transient state in which one morph will eventually be fixed by either genetic drift or directional selection. Our results also suggest that regulation of the anthocyanin pathway is more evolutionarily labile than is generally believed.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
3
|
Poulicard N, Pagán I, González-Jara P, Mora MÁ, Hily JM, Fraile A, Piñero D, García-Arenal F. Repeated loss of the ability of a wild pepper disease resistance gene to function at high temperatures suggests that thermoresistance is a costly trait. THE NEW PHYTOLOGIST 2024; 241:845-860. [PMID: 37920100 DOI: 10.1111/nph.19371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Specificity in plant-pathogen gene-for-gene (GFG) interactions is determined by the recognition of pathogen proteins by the products of plant resistance (R) genes. The evolutionary dynamics of R genes in plant-virus systems is poorly understood. We analyse the evolution of the L resistance locus to tobamoviruses in the wild pepper Capsicum annuum var. glabriusculum (chiltepin), a crop relative undergoing incipient domestication. The frequency, and the genetic and phenotypic diversity, of the L locus was analysed in 41 chiltepin populations under different levels of human management over its distribution range in Mexico. The frequency of resistance was lower in Cultivated than in Wild populations. L-locus genetic diversity showed a strong spatial structure with no isolation-by-distance pattern, suggesting environment-specific selection, possibly associated with infection by the highly virulent tobamoviruses found in the surveyed regions. L alleles differed in recognition specificity and in the expression of resistance at different temperatures, broad-spectrum recognition of P0 + P1 pathotypes and expression above 32°C being ancestral traits that were repeatedly lost along L-locus evolution. Overall, loss of resistance co-occurs with incipient domestication and broad-spectrum resistance expressed at high temperatures has apparent fitness costs. These findings contribute to understand the role of fitness trade-offs in plant-virus coevolution.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Pablo González-Jara
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Miguel Ángel Mora
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Jean-Michel Hily
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
4
|
Liu LL, Meng J, Ma HY, Cao H, Liu WJ. Candidate genes for litter size in Xinjiang sheep identified by Specific Locus Amplified Fragment (SLAF) sequencing. Anim Biotechnol 2023; 34:3053-3062. [PMID: 36244020 DOI: 10.1080/10495398.2022.2131561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of this study was to investigate the selection signatures at a genome-wide level in 'Pishan' sheep using Specific Locus Amplified Fragment (SLAF)-seq. Blood samples from 126 ewes were sequenced using SLAF tags, and the ovarian tissues from 8 ewes (Bashbay sheep, a single litter size group (SG group); 'Pishan' sheep, double litter size group (DG group)) were collected to detect expression levels by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Selection signature analysis was performed using global fixation index (Fst) and nucleotide diversity (π) ratio. A total of 1,192,168 high-quality SLAFs were identified. Notably, 2380 candidate regions under selection using two approaches were identified. A total of 2069 genes were identified, which were involved in dopaminergic synapses, thyroid hormone synthesis, ovarian steroidogenesis and thyroid hormone signalling pathways. Furthermore, Growth Differentiation Factor 9 (GDF9), Period Circadian Regulator 2 (PER2), Thyroid Stimulating Hormone Receptor (TSHR), and Nuclear Receptor Coactivator 1 (NCOA1) reside within these regions and pathways. The expression levels of GDF9 and PER2 genes in sheep tissue of the DG group were significantly higher than those in the SG group. These genes are interesting candidates for litter size and provide a starting point for further identification of conservation strategies for 'Pishan' sheep.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jun Meng
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hai-Yu Ma
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hang Cao
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Wu-Jun Liu
- Department of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
5
|
Wang X, Ingvarsson PK. Quantifying adaptive evolution and the effects of natural selection across the Norway spruce genome. Mol Ecol 2023; 32:5288-5304. [PMID: 37622583 DOI: 10.1111/mec.17106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Detecting natural selection is one of the major goals of evolutionary genomics. Here, we sequenced the whole genome of 25 Picea abies individuals and quantified the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we showed that both negative selection and the rate of positively selected substitutions are very limited in coding regions. We found a positive correlation between the rate of adaptive substitutions and recombination rate and a negative correlation between the rate of adaptive substitutions and gene density, suggesting a widespread influence from Hill-Robertson interference on the efficiency of protein adaptation in P. abies. Finally, the distinct population statistics between genomic regions under either positive or balancing selection with that under neutral regions indicated the impact of natural selection on the genomic architecture of Norway spruce. Further gene ontology enrichment analysis for genes located in regions identified as undergoing either positive or long-term balancing selection also highlighted the specific molecular functions and biological processes that appear to be targets of selection in Norway spruce.
Collapse
Affiliation(s)
- Xi Wang
- Umeå Plant Science Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Profile of Joy M. Bergelson. Proc Natl Acad Sci U S A 2022; 119:e2212768119. [PMID: 35994635 PMCID: PMC9436368 DOI: 10.1073/pnas.2212768119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Songsomboon K, Crawford R, Crawford J, Hansen J, Cummings J, Mattson N, Bergstrom GC, Viands DR. Genome-Wide Associations with Resistance to Bipolaris Leaf Spot (Bipolaris oryzae (Breda de Haan) Shoemaker) in a Northern Switchgrass Population (Panicum virgatum L.). PLANTS 2022; 11:plants11101362. [PMID: 35631787 PMCID: PMC9144872 DOI: 10.3390/plants11101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Switchgrass (Panicum virgatum L.), a northern native perennial grass, suffers from yield reduction from Bipolaris leaf spot caused by Bipolaris oryzae (Breda de Haan) Shoemaker. This study aimed to determine the resistant populations via multiple phenotyping approaches and identify potential resistance genes from genome-wide association studies (GWAS) in the switchgrass northern association panel. The disease resistance was evaluated from both natural (field evaluations in Ithaca, New York and Phillipsburg, Philadelphia) and artificial inoculations (detached leaf and leaf disk assays). The most resistant populations based on a combination of three phenotyping approaches—detached leaf, leaf disk, and mean from two locations—were ‘SW788’, ‘SW806’, ‘SW802’, ‘SW793’, ‘SW781’, ‘SW797’, ‘SW798’, ‘SW803’, ‘SW795’, ‘SW805’. The GWAS from the association panel showed 27 significant SNPs on 12 chromosomes: 1K, 2K, 2N, 3K, 3N, 4N, 5K, 5N, 6N, 7K, 7N, and 9N. These markers accumulatively explained the phenotypic variance of the resistance ranging from 3.28 to 26.52%. Within linkage disequilibrium of 20 kb, these SNP markers linked with the potential resistance genes included the genes encoding for NBS-LRR, PPR, cell-wall related proteins, homeostatic proteins, anti-apoptotic proteins, and ABC transporter.
Collapse
Affiliation(s)
- Kittikun Songsomboon
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
- Correspondence:
| | - Ryan Crawford
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | - Jamie Crawford
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | - Julie Hansen
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| | | | - Neil Mattson
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Gary C. Bergstrom
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA;
| | - Donald R. Viands
- Section of Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (R.C.); (J.C.); (J.H.); (D.R.V.)
| |
Collapse
|
8
|
Abstract
Understanding the genetic architecture of complex traits is a major objective in biology. The standard approach for doing so is genome-wide association studies (GWAS), which aim to identify genetic polymorphisms responsible for variation in traits of interest. In human genetics, consistency across studies is commonly used as an indicator of reliability. However, if traits are involved in adaptation to the local environment, we do not necessarily expect reproducibility. On the contrary, results may depend on where you sample, and sampling across a wide range of environments may decrease the power of GWAS because of increased genetic heterogeneity. In this study, we examine how sampling affects GWAS in the model plant species Arabidopsis thaliana. We show that traits like flowering time are indeed influenced by distinct genetic effects in local populations. Furthermore, using gene expression as a molecular phenotype, we show that some genes are globally affected by shared variants, whereas others are affected by variants specific to subpopulations. Remarkably, the former are essentially all cis-regulated, whereas the latter are predominately affected by trans-acting variants. Our result illustrate that conclusions about genetic architecture can be extremely sensitive to sampling and population structure.
Collapse
Affiliation(s)
| | - Stephan Reinert
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Arthur Korte
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Cho CH, Jang S, Choi BY, Hong D, Choi DS, Choi S, Kim H, Han SK, Kim S, Kim M, Palmgren M, Sohn KH, Yoon HS, Lee Y. Phylogenetic analysis of ABCG subfamily proteins in plants: functional clustering and coevolution with ABCGs of pathogens. PHYSIOLOGIA PLANTARUM 2021; 172:1422-1438. [PMID: 31828796 PMCID: PMC8359288 DOI: 10.1111/ppl.13052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 05/02/2023]
Abstract
ABCG subfamily proteins are highly enriched in terrestrial plants. Many of these proteins secrete secondary metabolites that repel or inhibit pathogens. To establish why the ABCG subfamily proteins proliferated extensively during evolution, we constructed phylogenetic trees from a broad range of eukaryotic organisms. ABCG proteins were massively duplicated in land plants and in oomycetes, a group of agronomically important plant pathogens, which prompted us to hypothesize that plant and pathogen ABCGs coevolved. Supporting this hypothesis, full-size ABCGs in host plants (Arabidopsis thaliana and Glycine max) and their pathogens (Hyaloperonospora arabidopsidis and Phytophthora sojae, respectively) had similar divergence times and patterns. Furthermore, generalist pathogens with broad ranges of host plants have diversified more ABCGs than their specialist counterparts. The hypothesis was further tested using an example pair of ABCGs that first diverged during multiplication in a host plant and its pathogen: AtABCG31 of A. thaliana and HpaP802307 of H. arabidopsidis. AtABCG31 expression was activated following infection with H. arabidopsidis, and disrupting AtABCG31 led to increased susceptibility to H. arabidopsidis. Together, our results suggest that ABCG genes in plants and their oomycete pathogens coevolved in an arms race, to extrude secondary metabolites involved in the plant's defense response against pathogens.
Collapse
Affiliation(s)
- Chung Hyun Cho
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
| | - Sunghoon Jang
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Bae Young Choi
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Daewoong Hong
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Du Seok Choi
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Present address:
GreenBio Center, Corporate R&D, LG Chem, LtdSeoul07796Korea
| | - Sera Choi
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Haseong Kim
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Seong Kyu Han
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
| | - Sanguk Kim
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Min‐Sung Kim
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Michael Palmgren
- Department of Plant and Environmental ScienceUniversity of CopenhagenDK‐1871FrederiksbergDenmark
| | - Kee Hoon Sohn
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| | - Hwan Su Yoon
- Department of Biological SciencesSungkyunkwan UniversitySuwonKorea
| | - Youngsook Lee
- Department of Life SciencePohang University of Science and Technology (POSTECH)Pohang37673Korea
- Division of Integrative Bioscience and BiotechnologyPOSTECHPohang37673Korea
| |
Collapse
|
10
|
Barragan AC, Weigel D. Plant NLR diversity: the known unknowns of pan-NLRomes. THE PLANT CELL 2021; 33:814-831. [PMID: 33793812 PMCID: PMC8226294 DOI: 10.1093/plcell/koaa002] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
Plants and pathogens constantly adapt to each other. As a consequence, many members of the plant immune system, and especially the intracellular nucleotide-binding site leucine-rich repeat receptors, also known as NOD-like receptors (NLRs), are highly diversified, both among family members in the same genome, and between individuals in the same species. While this diversity has long been appreciated, its true extent has remained unknown. With pan-genome and pan-NLRome studies becoming more and more comprehensive, our knowledge of NLR sequence diversity is growing rapidly, and pan-NLRomes provide powerful platforms for assigning function to NLRs. These efforts are an important step toward the goal of comprehensively predicting from sequence alone whether an NLR provides disease resistance, and if so, to which pathogens.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
11
|
Göktay M, Fulgione A, Hancock AM. A New Catalog of Structural Variants in 1,301 A. thaliana Lines from Africa, Eurasia, and North America Reveals a Signature of Balancing Selection at Defense Response Genes. Mol Biol Evol 2021; 38:1498-1511. [PMID: 33247723 PMCID: PMC8042739 DOI: 10.1093/molbev/msaa309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genomic variation in the model plant Arabidopsis thaliana has been extensively used to understand evolutionary processes in natural populations, mainly focusing on single-nucleotide polymorphisms. Conversely, structural variation has been largely ignored in spite of its potential to dramatically affect phenotype. Here, we identify 155,440 indels and structural variants ranging in size from 1 bp to 10 kb, including presence/absence variants (PAVs), inversions, and tandem duplications in 1,301 A. thaliana natural accessions from Morocco, Madeira, Europe, Asia, and North America. We show evidence for strong purifying selection on PAVs in genes, in particular for housekeeping genes and homeobox genes, and we find that PAVs are concentrated in defense-related genes (R-genes, secondary metabolites) and F-box genes. This implies the presence of a "core" genome underlying basic cellular processes and a "flexible" genome that includes genes that may be important in spatially or temporally varying selection. Further, we find an excess of intermediate frequency PAVs in defense response genes in nearly all populations studied, consistent with a history of balancing selection on this class of genes. Finally, we find that PAVs in genes involved in the cold requirement for flowering (vernalization) and drought response are strongly associated with temperature at the sites of origin.
Collapse
Affiliation(s)
- Mehmet Göktay
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Fulgione
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
12
|
Calvo-Baltanás V, Wang J, Chae E. Hybrid Incompatibility of the Plant Immune System: An Opposite Force to Heterosis Equilibrating Hybrid Performances. FRONTIERS IN PLANT SCIENCE 2021; 11:576796. [PMID: 33717206 PMCID: PMC7953517 DOI: 10.3389/fpls.2020.576796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Hybridization is a core element in modern rice breeding as beneficial combinations of two parental genomes often result in the expression of heterosis. On the contrary, genetic incompatibility between parents can manifest as hybrid necrosis, which leads to tissue necrosis accompanied by compromised growth and/or reduced reproductive success. Genetic and molecular studies of hybrid necrosis in numerous plant species revealed that such self-destructing symptoms in most cases are attributed to autoimmunity: plant immune responses are inadvertently activated in the absence of pathogenic invasion. Autoimmunity in hybrids predominantly occurs due to a conflict involving a member of the major plant immune receptor family, the nucleotide-binding domain and leucine-rich repeat containing protein (NLR; formerly known as NBS-LRR). NLR genes are associated with disease resistance traits, and recent population datasets reveal tremendous diversity in this class of immune receptors. Cases of hybrid necrosis involving highly polymorphic NLRs as major causes suggest that diversified R gene repertoires found in different lineages would require a compatible immune match for hybridization, which is a prerequisite to ensure increased fitness in the resulting hybrids. In this review, we overview recent genetic and molecular findings on hybrid necrosis in multiple plant species to provide an insight on how the trade-off between growth and immunity is equilibrated to affect hybrid performances. We also revisit the cases of hybrid weakness in which immune system components are found or implicated to play a causative role. Based on our understanding on the trade-off, we propose that the immune system incompatibility in plants might play an opposite force to restrict the expression of heterosis in hybrids. The antagonism is illustrated under the plant fitness equilibrium, in which the two extremes lead to either hybrid necrosis or heterosis. Practical proposition from the equilibrium model is that breeding efforts for combining enhanced disease resistance and high yield shall be achieved by balancing the two forces. Reverse breeding toward utilizing genomic data centered on immune components is proposed as a strategy to generate elite hybrids with balanced immunity and growth.
Collapse
|
13
|
Wang Y, Niu Z, Zeng Z, Jiang Y, Jiang Y, Ding Y, Tang S, Shi H, Ding X. Using High-Density SNP Array to Reveal Selection Signatures Related to Prolificacy in Chinese and Kazakhstan Sheep Breeds. Animals (Basel) 2020; 10:ani10091633. [PMID: 32932878 PMCID: PMC7552267 DOI: 10.3390/ani10091633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Selection signature provides an efficient tool to explore genes related to traits of interest. In this study, 176 ewes from one Chinese uniparous breed and three Kazakhstan multiparous breeds are genotyped using Affymetrix 600K HD single nucleotide polymorphism (SNP) arrays, F-statistics (Fst), and a Cross Population Extend Haplotype Homozygosity Test (XPEHH). These are conducted to identify genomic regions that might be under selection in three population pairs comprised the one multiparous breed and the uniparous breed. A total of 177 and 3072 common selective signatures were identified by Fst and XPEHH test, respectively. Nearly half of the common signatures detected by Fst were also captured by XPEHH test. In addition, 1337 positive and 1735 common negative signatures were observed by XPEHH in three Kazakhstan multiparous breeds. In total, 242 and 798 genes were identified in selective regions and positive selective regions identified by Fst and XPEHH, respectively. These genes were further clustered in 50 gene ontology (GO) functional terms and 66 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in enrichment analysis. The GO terms and pathways were relevant with reproductive processes, e.g., oxytocin signaling pathway, thyroid hormone synthesis and GnRH signaling pathway, vascular smooth muscle contraction and lipid metabolism (alpha-Linolenic acid metabolism and Linoleic acid metabolism), etc. Based on the findings, six potential candidate genes ESR1, OXTR, MAPK1, RYR1, PDIA4, and CYP19A1, under positive selection related to characteristics of multiparous sheep breeds were revealed. Our results improve our understanding of the mechanisms of selection that underlies the prolificacy trait in sheep, and provide essential references for future sheep breeding.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (Z.Z.); (Y.J.); (Y.J.)
| | - Zhigang Niu
- Key Lab of Reproduction & Breeding Biotechnology of Grass Feeding Livestock of MOA, P.R.C. Xinjiang Academy of Animal Science, Urumqi 830000, China; (Z.N.); (Y.D.); (S.T.)
| | - Zhengcheng Zeng
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (Z.Z.); (Y.J.); (Y.J.)
| | - Yao Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (Z.Z.); (Y.J.); (Y.J.)
| | - Yifan Jiang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (Z.Z.); (Y.J.); (Y.J.)
| | - Yugong Ding
- Key Lab of Reproduction & Breeding Biotechnology of Grass Feeding Livestock of MOA, P.R.C. Xinjiang Academy of Animal Science, Urumqi 830000, China; (Z.N.); (Y.D.); (S.T.)
| | - Sen Tang
- Key Lab of Reproduction & Breeding Biotechnology of Grass Feeding Livestock of MOA, P.R.C. Xinjiang Academy of Animal Science, Urumqi 830000, China; (Z.N.); (Y.D.); (S.T.)
| | - Hongcai Shi
- Key Lab of Reproduction & Breeding Biotechnology of Grass Feeding Livestock of MOA, P.R.C. Xinjiang Academy of Animal Science, Urumqi 830000, China; (Z.N.); (Y.D.); (S.T.)
- Correspondence: (H.S.); (X.D.); Tel.: +86-991-3075275 (H.S.); +86-1581-110-4301 (X.D.)
| | - Xiangdong Ding
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.W.); (Z.Z.); (Y.J.); (Y.J.)
- Correspondence: (H.S.); (X.D.); Tel.: +86-991-3075275 (H.S.); +86-1581-110-4301 (X.D.)
| |
Collapse
|
14
|
Karasov TL, Shirsekar G, Schwab R, Weigel D. What natural variation can teach us about resistance durability. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:89-98. [PMID: 32535454 DOI: 10.1016/j.pbi.2020.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/08/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Breeding a crop variety to be resistant to a pathogen usually takes years. This is problematic because pathogens, with short generation times and fluid genomes, adapt quickly to overcome resistance. The triumph of the pathogen is not inevitable, however, as there are numerous examples of durable resistance, particularly in wild plants. Which factors then contribute to such resistance stability over millennia? We review current knowledge of wild and agricultural pathosystems, detailing the importance of genetic, species and spatial heterogeneity in the prevention of pathogen outbreaks. We also highlight challenges associated with increasing resistance diversity in crops, both in light of pathogen (co-)evolution and breeding practices. Historically it has been difficult to incorporate heterogeneity into agriculture due to reduced efficiency in harvesting. Recent advances implementing computer vision and automation in agricultural production may improve our ability to harvest mixed genotype and mixed species plantings, thereby increasing resistance durability.
Collapse
Affiliation(s)
- Talia L Karasov
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gautam Shirsekar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Pidon H, Chéron S, Ghesquière A, Albar L. Allele mining unlocks the identification of RYMV resistance genes and alleles in African cultivated rice. BMC PLANT BIOLOGY 2020; 20:222. [PMID: 32429875 PMCID: PMC7236528 DOI: 10.1186/s12870-020-02433-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/07/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Rice yellow mottle virus (RYMV) is a major rice pathogen in Africa. Three resistance genes, i.e. RYMV1, RYMV2 and RYMV3, have been previously described. RYMV1 encodes the translation initiation factor eIF(iso)4G1 and the best candidate genes for RYMV2 and RYMV3 encode a homolog of an Arabidopsis nucleoporin (CPR5) and a nucleotide-binding domain and leucine-rich repeat containing domain (NLR) protein, respectively. High resistance is very uncommon in Asian cultivated rice (Oryza sativa), with only two highly resistant accessions identified so far, but it is more frequent in African cultivated rice (Oryza glaberrima). RESULTS Here we report the findings of a resistance survey in a reference collection of 268 O. glaberrima accessions. A total of 40 resistant accessions were found, thus confirming the high frequency of resistance to RYMV in this species. We analysed the variability of resistance genes or candidate genes in this collection based on high-depth Illumina data or Sanger sequencing. Alleles previously shown to be associated with resistance were observed in 31 resistant accessions but not in any susceptible ones. Five original alleles with a frameshift or untimely stop codon in the candidate gene for RYMV2 were also identified in resistant accessions. A genetic analysis revealed that these alleles, as well as T-DNA insertions in the candidate gene, were responsible of RYMV resistance. All 40 resistant accessions were ultimately linked to a validated or candidate resistance allele at one of the three resistance genes to RYMV. CONCLUSION This study demonstrated that the RYMV2 resistance gene is homologous to the Arabidopsis CPR5 gene and revealed five new resistance alleles at this locus. It also confirmed the close association between resistance and an amino-acid substitution in the leucine-rich repeat of the NLR candidate for RYMV3. We also provide an extensive overview of the genetic diversity of resistance to RYMV in the O. glaberrima species, while underlining the contrasted pattern of diversity between O. glaberrima and O. sativa for this trait. The different resistance genes and alleles will be instrumental in breeding varieties with sustainable field resistance to RYMV.
Collapse
Affiliation(s)
- Hélène Pidon
- DIADE, Univ. Montpellier, IRD, Montpellier, France
- Present Address: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | | | | | | |
Collapse
|
16
|
Hoseinzadeh P, Ruge-Wehling B, Schweizer P, Stein N, Pidon H. High Resolution Mapping of a Hordeum bulbosum-Derived Powdery Mildew Resistance Locus in Barley Using Distinct Homologous Introgression Lines. FRONTIERS IN PLANT SCIENCE 2020; 11:225. [PMID: 32194602 PMCID: PMC7063055 DOI: 10.3389/fpls.2020.00225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/13/2020] [Indexed: 05/17/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. hordei (Bgh) is one of the main foliar diseases in barley (Hordeum vulgare L.; Hv). Naturally occurring resistance genes used in barley breeding are a cost effective and environmentally sustainable strategy to minimize the impact of pathogens, however, the primary gene pool of H. vulgare contains limited diversity owing to recent domestication bottlenecks. To ensure durable resistance against this pathogen, more genes are required that could be unraveled by investigation of secondary barley gene-pool. A large set of Hordeum bulbosum (Hb) introgression lines (ILs) harboring a diverse set of desirable resistance traits have been developed and are being routinely used as source of novel diversity in gene mapping studies. Nevertheless, this strategy is often compromised by a lack of recombination between the introgressed fragment and the orthologous chromosome of the barley genome. In this study, we fine-mapped a Hb gene conferring resistance to barley powdery mildew. The initial genotyping of two Hb ILs mapping populations with differently sized 2HS introgressions revealed severely reduced interspecific recombination in the region of the introgressed segment, preventing precise localization of the gene. To overcome this difficulty, we developed an alternative strategy, exploiting intraspecific recombination by crossing two Hv/Hb ILs with collinear Hb introgressions, one of which carries a powdery mildew resistance gene, while the other doesn't. The intraspecific recombination rate in the Hb-introgressed fragment of 2HS was approximately 20 times higher than it was in the initial simple ILs mapping populations. Using high-throughput genotyping-by-sequencing (GBS), we allocated the resistance gene to a 1.4 Mb interval, based on an estimate using the Hv genome as reference, in populations of only 103 and 146 individuals, respectively, similar to what is expected at this locus in barley. The most likely candidate resistance gene within this interval is part of the coiled-coil nucleotide-binding-site leucine-rich-repeat (CC-NBS-LLR) gene family, which is over-represented among genes conferring strong dominant resistance to pathogens. The reported strategy can be applied as a general strategic approach for identifying genes underlying traits of interest in crop wild relatives.
Collapse
Affiliation(s)
- Parastoo Hoseinzadeh
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Brigitte Ruge-Wehling
- Institute for Breeding Research on Agricultural Crops, Julius Kühn Institute (JKI), Sanitz, Germany
| | - Patrick Schweizer
- Pathogen-Stress Genomics, Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nils Stein
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Hélène Pidon
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
17
|
Hämälä T, Guiltinan MJ, Marden JH, Maximova SN, dePamphilis CW, Tiffin P. Gene Expression Modularity Reveals Footprints of Polygenic Adaptation in Theobroma cacao. Mol Biol Evol 2020; 37:110-123. [PMID: 31501906 DOI: 10.1093/molbev/msz206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Separating footprints of adaptation from demography is challenging. When selection has acted on a single locus with major effect, this issue can be alleviated through signatures left by selective sweeps. However, as adaptation is often driven by small allele frequency shifts at many loci, studies focusing on single genes are able to identify only a small portion of genomic variants responsible for adaptation. In face of this challenge, we utilize coexpression information to search for signals of polygenetic adaptation in Theobroma cacao, a tropical tree species that is the source of chocolate. Using transcriptomics and a weighted correlation network analysis, we group genes with similar expression patterns into functional modules. We then ask whether modules enriched for specific biological processes exhibit cumulative effects of differential selection in the form of high FST and dXY between populations. Indeed, modules putatively involved in protein modification, flowering, and water transport show signs of polygenic adaptation even though individual genes that are members of those groups do not bear strong signatures of selection. Modeling of demography, background selection, and the effects of genomic features reveal that these patterns are unlikely to arise by chance. We also find that specific modules are enriched for signals of strong or relaxed purifying selection, with one module bearing signs of adaptive differentiation and an excess of deleterious mutations. Our results provide insight into polygenic adaptation and contribute to understanding of population structure, demographic history, and genome evolution in T. cacao.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - Mark J Guiltinan
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - James H Marden
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| | - Siela N Maximova
- Department of Plant Sciences, The Pennsylvania State University, University Park, PA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Claude W dePamphilis
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| |
Collapse
|
18
|
Goldberg JK, Lively CM, Sternlieb SR, Pintel G, Hare JD, Morrissey MB, Delph LF. Herbivore-mediated negative frequency-dependent selection underlies a trichome dimorphism in nature. Evol Lett 2020; 4:83-90. [PMID: 32055414 PMCID: PMC7006469 DOI: 10.1002/evl3.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Negative frequency-dependent selection (NFDS) has been shown to maintain polymorphism in a diverse array of traits. The action of NFDS has been confirmed through modeling, experimental approaches, and genetic analyses. In this study, we investigated NFDS in the wild using morph-frequency changes spanning a 20-year period from over 30 dimorphic populations of Datura wrightii. In these populations, plants either possess glandular (sticky) or non-glandular (velvety) trichomes, and the ratio of these morphs varies substantially among populations. Our method provided evidence that NFDS, rather than drift or migration, is the primary force maintaining this dimorphism. Most populations that were initially dimorphic remained dimorphic, and the overall mean and variance in morph frequency did not change over time. Furthermore, morph-frequency differences were not related to geographic distances. Together, these results indicate that neither directional selection, drift, or migration played a substantial role in determining morph frequencies. However, as predicted by negative frequency-dependent selection, we found that the rare morph tended to increase in frequency, leading to a negative relationship between the change in the frequency of the sticky morph and its initial frequency. In addition, we found that morph-frequency change over time was significantly correlated with the damage inflicted by two herbivores: Lema daturaphila and Tupiochoris notatus. The latter is a specialist on the sticky morph and damage by this herbivore was greatest when the sticky morph was common. The reverse was true for L. daturaphila, such that damage increased with the frequency of the velvety morph. These findings suggest that these herbivores contribute to balancing selection on the observed trichome dimorphism.
Collapse
Affiliation(s)
- Jay K. Goldberg
- Department of BiologyIndiana UniversityBloomingtonIndiana47405
| | | | | | | | - J. Daniel Hare
- Department of EntomologyUniversity of CaliforniaRiversideCalifornia92521
| | | | - Lynda F. Delph
- Department of BiologyIndiana UniversityBloomingtonIndiana47405
| |
Collapse
|
19
|
Mizuno H, Katagiri S, Kanamori H, Mukai Y, Sasaki T, Matsumoto T, Wu J. Evolutionary dynamics and impacts of chromosome regions carrying R-gene clusters in rice. Sci Rep 2020; 10:872. [PMID: 31964985 PMCID: PMC6972905 DOI: 10.1038/s41598-020-57729-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022] Open
Abstract
To elucidate R-gene evolution, we compared the genomic compositions and structures of chromosome regions carrying R-gene clusters among cultivated and wild rice species. Map-based sequencing and gene annotation of orthologous genomic regions (1.2 to 1.9 Mb) close to the terminal end of the long arm of rice chromosome 11 revealed R-gene clusters within six cultivated and ancestral wild rice accessions. NBS-LRR R-genes were much more abundant in Asian cultivated rice (O. sativa L.) than in its ancestors, indicating that homologs of functional genes involved in the same pathway likely increase in number because of tandem duplication of chromosomal segments and were selected during cultivation. Phylogenetic analysis using amino acid sequences indicated that homologs of paired Pikm1–Pikm2 (NBS-LRR) genes conferring rice-blast resistance were likely conserved among all cultivated and wild rice species we examined, and the homolog of Xa3/Xa26 (LRR-RLK) conferring bacterial blight resistance was lacking only in Kasalath.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Satoshi Katagiri
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Hiroyuki Kanamori
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Yoshiyuki Mukai
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Takuji Sasaki
- Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-0054, Japan
| | - Takashi Matsumoto
- Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-0054, Japan
| | - Jianzhong Wu
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization, 1-2, Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|
20
|
Martel A, Laflamme B, Seto D, Bastedo DP, Dillon MM, Almeida RND, Guttman DS, Desveaux D. Immunodiversity of the Arabidopsis ZAR1 NLR Is Conveyed by Receptor-Like Cytoplasmic Kinase Sensors. FRONTIERS IN PLANT SCIENCE 2020; 11:1290. [PMID: 32983191 PMCID: PMC7475706 DOI: 10.3389/fpls.2020.01290] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 05/06/2023]
Abstract
The Arabidopsis nucleotide-binding leucine-rich repeat protein ZAR1 can recognize at least six distinct families of pathogenic effector proteins to mount an effector-triggered immune response. This remarkable immunodiversity appears to be conveyed by receptor-like cytoplasmic kinase (RLCK) complexes, which associate with ZAR1 to sense several effector-induced kinase perturbations. Here we show that the recently identified ZAR1-mediated immune responses against the HopX1, HopO1, and HopBA1 effector families of Pseudomonas syringae rely on an expanded diversity of RLCK sensors. We show that individual sensors can recognize distinct effector families, thereby contributing to the expanded surveillance potential of ZAR1 and supporting its role as a guardian of the plant kinome.
Collapse
Affiliation(s)
- Alexandre Martel
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Bradley Laflamme
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Derek Seto
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - D. Patrick Bastedo
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Marcus M. Dillon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Renan N. D. Almeida
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
- *Correspondence: David S. Guttman, ; Darrell Desveaux,
| | - Darrell Desveaux
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, ON, Canada
- *Correspondence: David S. Guttman, ; Darrell Desveaux,
| |
Collapse
|
21
|
Diao S, Huang S, Chen Z, Teng J, Ma Y, Yuan X, Chen Z, Zhang H, Li J, Zhang Z. Genome-Wide Signatures of Selection Detection in Three South China Indigenous Pigs. Genes (Basel) 2019; 10:genes10050346. [PMID: 31067806 PMCID: PMC6563113 DOI: 10.3390/genes10050346] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/28/2019] [Accepted: 05/02/2019] [Indexed: 01/11/2023] Open
Abstract
South China indigenous pigs are famous for their superior meat quality and crude feed tolerance. Saba and Baoshan pigs without saddleback were located in the high-altitude area of Yunnan Province, while Tunchang and Ding’an pigs with saddleback were located in the low-altitude area of Hainan Province. Although these pigs are different in appearance, the underlying genetic differences have not been investigated. In this study, based on the single-nucleotide polymorphism (SNP) genotypes of 124 samples, both the cross-population extended haplotype homozygosity (XP-EHH) and the fixation index (FST) statistic were used to identify potential signatures of selection in these pig breeds. We found nine potential signatures of selection detected simultaneously by two methods, annotated 22 genes in Hainan pigs, when Baoshan pigs were used as the reference group. In addition, eleven potential signatures of selection detected simultaneously by two methods, annotated 24 genes in Hainan pigs compared with Saba pigs. These candidate genes were most enriched in GO: 0048015~phosphatidylinositol-mediated signaling and ssc00604: Glycosphingolipid biosynthesis—ganglio series. These selection signatures were likely to overlap with quantitative trait loci associated with meat quality traits. Furthermore, one potential selection signature, which was associated with different coat color, was detected in Hainan pigs. These results contribute to a better understanding of the underlying genetic architecture of South China indigenous pigs.
Collapse
Affiliation(s)
- Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Shuwen Huang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zitao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jinyan Teng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yunlong Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zanmou Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding/National Engineering Research Centre for Breeding Swine Industry/College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
22
|
Carter ME, Helm M, Chapman AVE, Wan E, Restrepo Sierra AM, Innes RW, Bogdanove AJ, Wise RP. Convergent Evolution of Effector Protease Recognition by Arabidopsis and Barley. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:550-565. [PMID: 30480480 DOI: 10.1094/mpmi-07-18-0202-fi] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Pseudomonas syringae cysteine protease AvrPphB activates the Arabidopsis resistance protein RPS5 by cleaving a second host protein, PBS1. AvrPphB induces defense responses in other plant species, but the genes and mechanisms mediating AvrPphB recognition in those species have not been defined. Here, we show that AvrPphB induces defense responses in diverse barley cultivars. We also show that barley contains two PBS1 orthologs, that their products are cleaved by AvrPphB, and that the barley AvrPphB response maps to a single locus containing a nucleotide-binding leucine-rich repeat (NLR) gene, which we termed AvrPphB Response 1 (Pbr1). Transient coexpression of PBR1 with wild-type AvrPphB but not with a protease inactive mutant triggered defense responses, indicating that PBR1 detects AvrPphB protease activity. Additionally, PBR1 coimmunoprecipitated with barley and Nicotiana benthamiana PBS1 proteins, suggesting mechanistic similarity to detection by RPS5. Lastly, we determined that wheat cultivars also recognize AvrPphB protease activity and contain two putative Pbr1 orthologs. Phylogenetic analyses showed, however, that Pbr1 is not orthologous to RPS5. Our results indicate that the ability to recognize AvrPphB evolved convergently and imply that selection to guard PBS1-like proteins occurs across species. Also, these results suggest that PBS1-based decoys may be used to engineer protease effector recognition-based resistance in barley and wheat.
Collapse
Affiliation(s)
- Morgan E Carter
- 1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Matthew Helm
- 2 Department of Biology, Indiana University, Bloomington, IN, U.S.A
| | - Antony V E Chapman
- 3 Interdepartmental Genetics & Genomics Graduate Program and
- 4 Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Emily Wan
- 1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Ana Maria Restrepo Sierra
- 1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
- 5 Facultad de Ciencias, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia; and
| | - Roger W Innes
- 2 Department of Biology, Indiana University, Bloomington, IN, U.S.A
| | - Adam J Bogdanove
- 1 Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, U.S.A
| | - Roger P Wise
- 3 Interdepartmental Genetics & Genomics Graduate Program and
- 4 Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA, U.S.A
- 6 Corn Insects and Crop Genetics Research, USDA-Agricultural Research Service, Ames, IA, U.S.A
| |
Collapse
|
23
|
Han GZ. Origin and evolution of the plant immune system. THE NEW PHYTOLOGIST 2019; 222:70-83. [PMID: 30575972 DOI: 10.1111/nph.15596] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/02/2018] [Indexed: 05/11/2023]
Abstract
Contents Summary 70 I. Introduction 70 II. Ancient associations between plants and microbes 72 III. Evolutionary dynamics of plant-pathogen interactions 74 IV. Evolutionary signature of plant-pathogen interactions 74 V. Origin and evolution of RLK proteins 75 VI. Origin and evolution of NLR proteins 77 VII. Origin and evolution of SA signaling 78 VIII. Origin and evolution of RNA-based defense 79 IX. Perspectives 79 Acknowledgements 80 References 80 SUMMARY: Microbes have engaged in antagonistic associations with plants for hundreds of millions of years. Plants, in turn, have evolved diverse immune strategies to combat microbial pathogens. The conflicts between plants and pathogens result in everchanging coevolutionary cycles known as 'Red Queen' dynamics. These ancient and ongoing plant-pathogen interactions have shaped the evolution of both plant and pathogen genomes. With the recent explosion of plant genome-scale data, comparative analyses provide novel insights into the coevolutionary dynamics of plants and pathogens. Here, we discuss the ancient associations between plants and microbes as well as the evolutionary principles underlying plant-pathogen interactions. We synthesize and review the current knowledge on the origin and evolution of key components of the plant immune system. We also highlight the importance of studying algae and nonflowering land plants in understanding the evolution of the plant immune system.
Collapse
Affiliation(s)
- Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
24
|
Koenig D, Hagmann J, Li R, Bemm F, Slotte T, Neuffer B, Wright SI, Weigel D. Long-term balancing selection drives evolution of immunity genes in Capsella. eLife 2019; 8:e43606. [PMID: 30806624 PMCID: PMC6426441 DOI: 10.7554/elife.43606] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic drift is expected to remove polymorphism from populations over long periods of time, with the rate of polymorphism loss being accelerated when species experience strong reductions in population size. Adaptive forces that maintain genetic variation in populations, or balancing selection, might counteract this process. To understand the extent to which natural selection can drive the retention of genetic diversity, we document genomic variability after two parallel species-wide bottlenecks in the genus Capsella. We find that ancestral variation preferentially persists at immunity related loci, and that the same collection of alleles has been maintained in different lineages that have been separated for several million years. By reconstructing the evolution of the disease-related locus MLO2b, we find that divergence between ancient haplotypes can be obscured by referenced based re-sequencing methods, and that trans-specific alleles can encode substantially diverged protein sequences. Our data point to long-term balancing selection as an important factor shaping the genetics of immune systems in plants and as the predominant driver of genomic variability after a population bottleneck.
Collapse
Affiliation(s)
- Daniel Koenig
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Jörg Hagmann
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Rachel Li
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Felix Bemm
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Tanja Slotte
- Department of Ecology,Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Barbara Neuffer
- Department of BiologyUniversity of OsnabrückOsnabrückGermany
| | - Stephen I Wright
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| |
Collapse
|
25
|
Im JH, Lazzaro BP. Population genetic analysis of autophagy and phagocytosis genes in Drosophila melanogaster and D. simulans. PLoS One 2018; 13:e0205024. [PMID: 30281656 PMCID: PMC6169979 DOI: 10.1371/journal.pone.0205024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/18/2018] [Indexed: 12/03/2022] Open
Abstract
Autophagy and phagocytosis are cellular immune mechanisms for internalization and elimination of intracellular and extracellular pathogens. Some pathogens have evolved the ability to inhibit or manipulate these processes, raising the prospect of adaptive reciprocal co-evolution by the host. We performed population genetic analyses on phagocytosis and autophagy genes in Drosophila melanogaster and D. simulans to test for molecular evolutionary signatures of immune adaptation. We found that phagocytosis and autophagy genes as a whole exhibited an elevated level of haplotype homozygosity in both species. In addition, we detected signatures of recent selection, notably in the Atg14 and Ykt6 genes in D. melanogaster and a pattern of elevated sequence divergence in the genderblind (gb) gene on the D. simulans lineage. These results suggest that the evolution of the host cellular immune system as a whole may be shaped by a dynamic conflict between Drosophila and its pathogens even without pervasive evidence of strong adaptive evolution at the individual gene level.
Collapse
Affiliation(s)
- Joo Hyun Im
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States of America.,Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY, United States of America.,Department of Entomology, Cornell University, Ithaca, NY, United States of America
| | - Brian P Lazzaro
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States of America.,Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY, United States of America.,Department of Entomology, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
26
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
27
|
Monteiro F, Nishimura MT. Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:243-267. [PMID: 29949721 DOI: 10.1146/annurev-phyto-080417-045817] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants employ a diverse intracellular system of NLR (nucleotide binding-leucine-rich repeat) innate immune receptors to detect pathogens of all types. These receptors represent valuable agronomic traits that plant breeders rely on to maximize yield in the face of devastating pathogens. Despite their importance, the mechanistic underpinnings of NLR-based disease resistance remain obscure. The rapidly increasing numbers of plant genomes are revealing a diverse array of NLR-type immune receptors. In parallel, mechanistic studies are describing diverse functions for NLR immune receptors. In this review, we intend to broadly describe how the structural, functional, and genomic diversity of plant immune receptors can provide a valuable resource for rational engineering of plant immunity.
Collapse
Affiliation(s)
- Freddy Monteiro
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Marc T Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870;
| |
Collapse
|
28
|
|
29
|
Press MO, McCoy RC, Hall AN, Akey JM, Queitsch C. Massive variation of short tandem repeats with functional consequences across strains of Arabidopsis thaliana. Genome Res 2018; 28:1169-1178. [PMID: 29970452 PMCID: PMC6071631 DOI: 10.1101/gr.231753.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Short tandem repeat (STR) mutations may comprise more than half of the mutations in eukaryotic coding DNA, yet STR variation is rarely examined as a contributor to complex traits. We assessed this contribution across a collection of 96 strains of Arabidopsis thaliana, genotyping 2046 STR loci each, using highly parallel STR sequencing with molecular inversion probes. We found that 95% of examined STRs are polymorphic, with a median of six alleles per STR across these strains. STR expansions (large copy number increases) are found in most strains, several of which have evident functional effects. These include three of six intronic STR expansions we found to be associated with intron retention. Coding STRs were depleted of variation relative to noncoding STRs, and we detected a total of 56 coding STRs (11%) showing low variation consistent with the action of purifying selection. In contrast, some STRs show hypervariable patterns consistent with diversifying selection. Finally, we detected 133 novel STR-phenotype associations under stringent criteria, most of which could not be detected with SNPs alone, and validated some with follow-up experiments. Our results support the conclusion that STRs constitute a large, unascertained reservoir of functionally relevant genomic variation.
Collapse
Affiliation(s)
- Maximilian O Press
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Rajiv C McCoy
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
30
|
Buckley J, Holub EB, Koch MA, Vergeer P, Mable BK. Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection. BMC Genomics 2018; 19:496. [PMID: 29945543 PMCID: PMC6020377 DOI: 10.1186/s12864-018-4806-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 11/22/2022] Open
Abstract
Background Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts. Electronic supplementary material The online version of this article (10.1186/s12864-018-4806-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. .,Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, D69120, Heidelberg, Germany
| | - Philippine Vergeer
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O.Box 47, 6700, AA, Wageningen, The Netherlands
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
31
|
Li Y, Colleoni C, Zhang J, Liang Q, Hu Y, Ruess H, Simon R, Liu Y, Liu H, Yu G, Schmitt E, Ponitzki C, Liu G, Huang H, Zhan F, Chen L, Huang Y, Spooner D, Huang B. Genomic Analyses Yield Markers for Identifying Agronomically Important Genes in Potato. MOLECULAR PLANT 2018; 11:473-484. [PMID: 29421339 DOI: 10.1016/j.molp.2018.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 05/24/2023]
Abstract
Wild potato species have substantial phenotypic and physiological diversity. Here, we report a comprehensive assessment of wild and cultivated potato species based on genomic analyses of 201 accessions of Solanum section Petota. We sequenced the genomes of these 201 accessions and identified 6 487 006 high-quality single nucleotide polymorphisms (SNPs) from 167 accessions in clade 4 of Solanum section Petota, including 146 wild and 21 cultivated diploid potato accessions with a broad geographic distribution. Genome-wide genetic variation analysis showed that the diversity of wild potatoes is higher than that of cultivated potatoes, and much higher genetic diversity in the agronomically important disease resistance genes was observed in wild potatoes. Furthermore, by exploiting information about known quantitative trait loci (QTL), we identified 609 genes under selection, including those correlated with the loss of bitterness in tubers and those involved in tuberization, two major domesticated traits of potato. Phylogenetic analyses revealed a north-south division of all species in clade 4, not just those in the S. brevicaule complex, and further supported S. candolleanum as the progenitor of cultivated potato and the monophyletic origin of cultivated potato in southern Peru. In addition, we analyzed the genome of S. candolleanum and identified 529 genes lost in cultivated potato. Collectively, the molecular markers generated in this study provide a valuable resource for the identification of agronomically important genes useful for potato breeding.
Collapse
Affiliation(s)
- Yangping Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | | | - Junjie Zhang
- Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China; College of Life Science, Sichuan Agricultural University, Chengdu, China
| | - Qiqi Liang
- Novogene Bioinformatics Institute, Beijing, China
| | - Yufeng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Holly Ruess
- Vegetable Crops Research Unit, USDA-Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, WI, USA
| | - Reinhard Simon
- Integrated IT and Computational Research Unit, International Potato Center, Lima, Peru
| | - Yinghong Liu
- Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hanmei Liu
- Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China; College of Life Science, Sichuan Agricultural University, Chengdu, China
| | - Guowu Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Eric Schmitt
- University of Lille, CNRS, UMR 8198 Evo Eco-Paleo, Lille, France
| | - Chloé Ponitzki
- University of Lille, CNRS, UMR 8198 Evo Eco-Paleo, Lille, France
| | | | - Huanhuan Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Feilong Zhan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lin Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yubi Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - David Spooner
- Vegetable Crops Research Unit, USDA-Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, WI, USA.
| | - Binquan Huang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China; Joint International Research Laboratory of Crop Resources and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Chengdu, China; Department of Plant Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Li D, Lei Z, Xue J, Zhou G, Hang Y, Sun X. Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella. PLANTA 2017; 246:763-778. [PMID: 28674753 DOI: 10.1007/s00425-017-2731-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The contribution of variations in coding regions or promoters to the changes in FAE1 expression levels have be quantified and compared in parallel by specifically designed swapping constructs. FATTY ACID ELONGATION1 (FAE1) is a key gene in control of erucic acid synthesis in plant seeds. The expression of FAE1 genes in Brassica oleracea and Capsella rubella, representatives of high and low erucic acid species, respectively, was characterized to provide insight into the regulation of very long-chain fatty-acid biosynthesis in seeds. Virtually, no methylation was detected either in B. oleracea or in C. rubella, suggesting that modification of promoter methylation might not be a predominant mechanism. Swapping constructs were specifically designed to quantify and compare the contribution of variations in coding regions or promoters to the changes in FAE1 expression levels in parallel. A significantly higher fold change in erucic acid content was observed when swapping coding regions rather than when swapping promoters, indicating that the coding region is a major determinant of the catalytic power of β-ketoacyl-CoA synthase proteins. Common motifs have been proposed as essential for the preservation of basic gene expression patterns, such as seed-specific expression. However, the occurrence of variation in common cis-elements or the presence of species-specific cis-elements might be plausible mechanisms for changes in the expression levels in different organisms. In addition, conflicting observations in previous reports associated with FAE1 expression are discussed, and we suggest that caution should be taken when selecting a plant transformation vector and in interpreting the results obtained from vectors carrying the CaMV 35S promoter.
Collapse
Affiliation(s)
- Dinghong Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu, China
| | - Zhao Lei
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu, China
| | - Jiayu Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu, China
| | - Guangcan Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu, China
| | - Yueyu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
33
|
Meireles JE, Beulke A, Borkowski DS, Romero-Severson J, Cavender-Bares J. Balancing selection maintains diversity in a cold tolerance gene in broadly distributed live oaks. Genome 2017; 60:762-769. [DOI: 10.1139/gen-2016-0208] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cold poses major physiological challenges to plants, especially long-lived trees. In trees occurring along variable temperature clines, the expected direction and consequences of selection on cold acclimation ability and freezing tolerance are not straightforward. Here we estimated selection in cold acclimation genes at two evolutionary timescales in all seven species of the American live oaks (Quercus subsection Virentes). Two cold response candidate genes were chosen: ICE1, a key gene in the cold acclimation pathway, and HOS1, which modulates cold response by negatively regulating ICE1. Two housekeeping genes, GAPDB and CHR11, were also analyzed. At the shallow evolutionary timescale, we demonstrate that HOS1 experienced recent balancing selection in the two most broadly distributed species, Q. virginiana and Q. oleoides. At a deeper evolutionary scale, a codon-based model of evolution revealed the signature of negative selection in ICE1. In contrast, three positively selected codons have been identified in HOS1, possibly a signature of the diversification of Virentes into warmer climates from a freezing adapted lineage of oaks. Our findings indicate that evolution has favored diversity in cold tolerance modulation through balancing selection in HOS1 while maintaining core cold acclimation ability, as evidenced by purifying selection in ICE1.
Collapse
Affiliation(s)
- Jose Eduardo Meireles
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anne Beulke
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Daniel S. Borkowski
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
34
|
Croze M, Wollstein A, Božičević V, Živković D, Stephan W, Hutter S. A genome-wide scan for genes under balancing selection in Drosophila melanogaster. BMC Evol Biol 2017; 17:15. [PMID: 28086750 PMCID: PMC5237213 DOI: 10.1186/s12862-016-0857-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/17/2016] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND In the history of population genetics balancing selection has been considered as an important evolutionary force, yet until today little is known about its abundance and its effect on patterns of genetic diversity. Several well-known examples of balancing selection have been reported from humans, mice, plants, and parasites. However, only very few systematic studies have been carried out to detect genes under balancing selection. We performed a genome scan in Drosophila melanogaster to find signatures of balancing selection in a derived (European) and an ancestral (African) population. We screened a total of 34 genomes searching for regions of high genetic diversity and an excess of SNPs with intermediate frequency. RESULTS In total, we found 183 candidate genes: 141 in the European population and 45 in the African one, with only three genes shared between both populations. Most differences between both populations were observed on the X chromosome, though this might be partly due to false positives. Functionally, we find an overrepresentation of genes involved in neuronal development and circadian rhythm. Furthermore, some of the top genes we identified are involved in innate immunity. CONCLUSION Our results revealed evidence of genes under balancing selection in European and African populations. More candidate genes have been found in the European population. They are involved in several different functions.
Collapse
Affiliation(s)
- Myriam Croze
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.
| | - Andreas Wollstein
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Vedran Božičević
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Daniel Živković
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.,Center of Food and Life Sciences Weihenstephan, Technische Universität München, 85354, Freising, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany.,Natural History Museum Berlin, 10115, Berlin, Germany
| | - Stephan Hutter
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
35
|
Huang BH, Chen YW, Huang CL, Gao J, Liao PC. Imbalanced positive selection maintains the functional divergence of duplicated DIHYDROKAEMPFEROL 4-REDUCTASE genes. Sci Rep 2016; 6:39031. [PMID: 27966614 PMCID: PMC5155217 DOI: 10.1038/srep39031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023] Open
Abstract
Gene duplication could be beneficial by functional division but might increase the risk of genetic load. The dynamics of duplicated paralogs number could involve recombination, positive selection, and functional divergence. Duplication of DIHYDROFLAVONOL 4-REDUCTASE (DFR) has been reported in several organisms and may have been retained by escape from adaptive conflict (EAC). In this study, we screened the angiosperm DFR gene focusing on a diversified genus Scutellaria to investigate how these duplicated genes are retained. We deduced that gene duplication involved multiple independent events in angiosperms, but the duplication of DFR was before the divergence of Scutellaria. Asymmetric positive selective pressures resulted in different evolutionary rates between the duplicates. Different numbers of regulatory elements, differential codon usages, radical amino acid changes, and differential gene expressions provide evidences of functional divergence between the two DFR duplicates in Scutellaria, implying adaptive subfunctionalization between duplicates. The discovery of pseudogenes accompanying a reduced replacement rate in one DFR paralogous gene suggested possibly leading to “loss of function” due to dosage imbalance after the transient adaptive subfunctionalization in the early stage of duplication. Notwithstanding, episodic gene duplication and functional divergence may be relevant to the diversification of ecological function of DFR gene in Scutellaria.
Collapse
Affiliation(s)
- Bing-Hong Huang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Wen Chen
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chia-Lung Huang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jian Gao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
36
|
Guo C, Du J, Wang L, Yang S, Mauricio R, Tian D, Gu T. Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1792. [PMID: 27965694 PMCID: PMC5127803 DOI: 10.3389/fpls.2016.01792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Although high levels of within-species variation are commonly observed, a general mechanism for the origin of such variation is still lacking. Insertions and deletions (indels) are a widespread feature of genomes and we hypothesize that there might be an association between indels and patterns of nucleotide polymorphism. Here, we investigate flanking sequences around 18 indels (>100 bp) among a large number of accessions of the plant, Arabidopsis thaliana. We found two distinct haplotypes, i.e., a nucleotide dimorphism, present around each of these indels and dimorphic haplotypes always corresponded to the indel-present/-absent patterns. In addition, the peaks of nucleotide diversity between the two divergent alleles were closely associated with these indels. Thus, there exists a close association between indels and dimorphisms. Further analysis suggests that indel-associated substitutions could be an important component of genetic variation shaping nucleotide polymorphism in Arabidopsis. Finally, we suggest a mechanism by which indels might generate these highly divergent haplotypes. This study provides evidence that nucleotide dimorphisms, which are frequently regarded as evidence of frequency-dependent selection, could be explained simply by structural variation in the genome.
Collapse
Affiliation(s)
- Changjiang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Rodney Mauricio
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Tingting Gu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
37
|
Emergence and evolution of inter-specific segregating retrocopies in cynomolgus monkey (Macaca fascicularis) and rhesus macaque (Macaca mulatta). Sci Rep 2016; 6:32598. [PMID: 27600022 PMCID: PMC5013489 DOI: 10.1038/srep32598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/10/2016] [Indexed: 11/13/2022] Open
Abstract
Retroposition is an RNA-mediated mechanism to generate gene duplication, and is believed to play an important role in genome evolution and phenotypic adaptation in various species including primates. Previous studies suggested an elevated rate of recent retroposition in the rhesus macaque genome. To better understand the impact of retroposition on macaque species which have undergone an adaptive radiation approximately 3–6 million years ago, we developed a bioinformatics pipeline to identify recently derived retrocopies in cynomolgus monkeys. As a result, we identified seven experimentally validated young retrocopies, all of which are polymorphic in cynomolgus monkeys. Unexpectedly, five of them are also present in rhesus monkeys and are still segregating. Molecular evolutionary analysis indicates that the observed inter-specific polymorphism is attribute to ancestral polymorphism. Further population genetics analysis provided strong evidence of balancing selection on at least one case (Crab-eating monkey retrocopy 6, or CER6) in both species. CER6 is in adjacent with an immunoglobulin related gene and may be involved in host-pathogen interaction, a well-known target of balancing selection. Altogether, our data support that retroposition is an important force to shape genome evolution and species adaptation.
Collapse
|
38
|
Poulicard N, Pacios LF, Gallois JL, Piñero D, García-Arenal F. Human Management of a Wild Plant Modulates the Evolutionary Dynamics of a Gene Determining Recessive Resistance to Virus Infection. PLoS Genet 2016; 12:e1006214. [PMID: 27490800 PMCID: PMC4973933 DOI: 10.1371/journal.pgen.1006214] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/01/2016] [Indexed: 02/07/2023] Open
Abstract
This work analyses the genetic variation and evolutionary patterns of recessive resistance loci involved in matching-allele (MA) host-pathogen interactions, focusing on the pvr2 resistance gene to potyviruses of the wild pepper Capsicum annuum glabriusculum (chiltepin). Chiltepin grows in a variety of wild habitats in Mexico, and its cultivation in home gardens started about 25 years ago. Potyvirus infection of Capsicum plants requires the physical interaction of the viral VPg with the pvr2 product, the translation initiation factor eIF4E1. Mutations impairing this interaction result in resistance, according to the MA model. The diversity of pvr2/eIF4E1 in wild and cultivated chiltepin populations from six biogeographical provinces in Mexico was analysed in 109 full-length coding sequences from 97 plants. Eleven alleles were found, and their interaction with potyvirus VPg in yeast-two-hybrid assays, plus infection assays of plants, identified six resistance alleles. Mapping resistance mutations on a pvr2/eIF4E1 model structure showed that most were around the cap-binding pocket and strongly altered its surface electrostatic potential, suggesting resistance-associated costs due to functional constraints. The pvr2/eIF4E1 phylogeny established that susceptibility was ancestral and resistance was derived. The spatial structure of pvr2/eIF4E1 diversity differed from that of neutral markers, but no evidence of selection for resistance was found in wild populations. In contrast, the resistance alleles were much more frequent, and positive selection stronger, in cultivated chiltepin populations, where diversification of pvr2/eIF4E1 was higher. This analysis of the genetic variation of a recessive resistance gene involved in MA host-pathogen interactions in populations of a wild plant show that evolutionary patterns differ according to the plant habitat, wild or cultivated. It also demonstrates that human management of the plant population has profound effects on the diversity and the evolution of the resistance gene, resulting in the selection of resistance alleles.
Collapse
Affiliation(s)
- Nils Poulicard
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Luis Fernández Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Pozuelo de Alarcón (Madrid) and Departamento de Sistemas y Recursos Naturales, E.T.S.I. Montes, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jean-Luc Gallois
- Institut National de Recherche Agronomique (INRA), UR1052, Génétique et Amélioration des Fruits et Légumes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143, Montfavet, France
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México, D.F., México
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
39
|
MacQueen A, Sun X, Bergelson J. Genetic architecture and pleiotropy shape costs of Rps2-mediated resistance in Arabidopsis thaliana. NATURE PLANTS 2016; 2:16110. [PMID: 27428524 PMCID: PMC4968571 DOI: 10.1038/nplants.2016.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/20/2016] [Indexed: 05/03/2023]
Abstract
The mounting evidence that R genes incur large fitness costs raises a question: how can there be a 5-10% fitness reduction for all 149 R genes in the Arabidopsis thaliana genome? The R genes tested to date segregate for insertion-deletion (indel) polymorphisms where susceptible alleles are complete deletions. Since costs of resistance are measured as the differential fitness of isolines carrying resistant and susceptible alleles, indels reveal costs that may be masked when susceptible alleles are expressed. Rps2 segregates for two expressed clades of alleles, one resistant and one susceptible. Plants with resistant Rps2 are not less fit than those with a susceptible Rps2 allele in the absence of disease. Instead, all alleles provide a fitness benefit relative to an artificial deletion because of the role of RPS2 as a negative regulator of defence. Our results highlight the interplay between genomic architecture and the magnitude of costs of resistance.
Collapse
Affiliation(s)
- Alice MacQueen
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Xiaoqin Sun
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
- To whom correspondence should be addressed.
| |
Collapse
|
40
|
Choi K, Reinhard C, Serra H, Ziolkowski PA, Underwood CJ, Zhao X, Hardcastle TJ, Yelina NE, Griffin C, Jackson M, Mézard C, McVean G, Copenhaver GP, Henderson IR. Recombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes. PLoS Genet 2016; 12:e1006179. [PMID: 27415776 PMCID: PMC4945094 DOI: 10.1371/journal.pgen.1006179] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/15/2016] [Indexed: 12/31/2022] Open
Abstract
Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Therefore, we sought to test whether NBS-LRR genes would overlap with meiotic crossover hotspots using experimental genetics in Arabidopsis thaliana. NBS-LRR genes tend to physically cluster in plant genomes; for example, in Arabidopsis most are located in large clusters on the south arms of chromosomes 1 and 5. We experimentally mapped 1,439 crossovers within these clusters and observed NBS-LRR gene associated hotspots, which were also detected as historical hotspots via analysis of linkage disequilibrium. However, we also observed NBS-LRR gene coldspots, which in some cases correlate with structural heterozygosity. To study recombination at the fine-scale we used high-throughput sequencing to analyze ~1,000 crossovers within the RESISTANCE TO ALBUGO CANDIDA1 (RAC1) R gene hotspot. This revealed elevated intragenic crossovers, overlapping nucleosome-occupied exons that encode the TIR, NBS and LRR domains. The highest RAC1 recombination frequency was promoter-proximal and overlapped CTT-repeat DNA sequence motifs, which have previously been associated with plant crossover hotspots. Additionally, we show a significant influence of natural genetic variation on NBS-LRR cluster recombination rates, using crosses between Arabidopsis ecotypes. In conclusion, we show that a subset of NBS-LRR genes are strong hotspots, whereas others are coldspots. This reveals a complex recombination landscape in Arabidopsis NBS-LRR genes, which we propose results from varying coevolutionary pressures exerted by host-pathogen relationships, and is influenced by structural heterozygosity.
Collapse
Affiliation(s)
- Kyuha Choi
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Carsten Reinhard
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Heïdi Serra
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Piotr A. Ziolkowski
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Department of Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Charles J. Underwood
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Xiaohui Zhao
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Thomas J. Hardcastle
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Nataliya E. Yelina
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Griffin
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Matthew Jackson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, Versailles, France
| | - Gil McVean
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ian R. Henderson
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
41
|
Jia Y, Zhou E, Lee S, Bianco T. Coevolutionary Dynamics of Rice Blast Resistance Gene Pi-ta and Magnaporthe oryzae Avirulence Gene AVR-Pita 1. PHYTOPATHOLOGY 2016; 106:676-83. [PMID: 27070427 DOI: 10.1094/phyto-02-16-0057-rvw] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Pi-ta gene in rice is effective in preventing infections by Magnaporthe oryzae strains that contain the corresponding avirulence gene, AVR-Pita1. Diverse haplotypes of AVR-Pita1 have been identified from isolates of M. oryzae from rice production areas in the United States and worldwide. DNA sequencing and mapping studies have revealed that AVR-Pita1 is highly unstable, while expression analysis and quantitative resistance loci mapping of the Pi-ta locus revealed complex evolutionary mechanisms of Pi-ta-mediated resistance. Among these studies, several Pi-ta transcripts were identified, most of which are probably derived from alternative splicing and exon skipping, which could produce functional resistance proteins that support a new concept of coevolution of Pi-ta and AVR-Pita1. User-friendly DNA markers for Pi-ta have been developed to support marker-assisted selection, and development of new rice varieties with the Pi-ta markers. Genome-wide association studies revealed a link between Pi-ta-mediated resistance and yield components suggesting that rice has evolved a complicated defense mechanism against the blast fungus. In this review, we detail the current understanding of Pi-ta allelic variation, its linkage with rice productivity, AVR-Pita allelic variation, and the coevolution of Pi-ta and AVR-Pita in Oryza species and M. oryzae populations, respectively. We also review the genetic and molecular basis of Pi-ta and AVR-Pita interaction, and its value in marker-assisted selection and engineering resistance.
Collapse
Affiliation(s)
- Yulin Jia
- First and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160; second author: Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; and third author: Department of Horticultural Science, Gulf Coast Research & Education Center, Institute of Food & Agricultural Science, University of Florida, Wimauma 33598
| | - Erxun Zhou
- First and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160; second author: Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; and third author: Department of Horticultural Science, Gulf Coast Research & Education Center, Institute of Food & Agricultural Science, University of Florida, Wimauma 33598
| | - Seonghee Lee
- First and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160; second author: Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; and third author: Department of Horticultural Science, Gulf Coast Research & Education Center, Institute of Food & Agricultural Science, University of Florida, Wimauma 33598
| | - Tracy Bianco
- First and fourth authors: U.S. Department of Agriculture-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160; second author: Department of Plant Pathology, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China; and third author: Department of Horticultural Science, Gulf Coast Research & Education Center, Institute of Food & Agricultural Science, University of Florida, Wimauma 33598
| |
Collapse
|
42
|
Andersen EJ, Ali S, Reese RN, Yen Y, Neupane S, Nepal MP. Diversity and Evolution of Disease Resistance Genes in Barley (Hordeum vulgare L.). Evol Bioinform Online 2016; 12:99-108. [PMID: 27168720 PMCID: PMC4857794 DOI: 10.4137/ebo.s38085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 11/05/2022] Open
Abstract
Plant disease resistance genes (R-genes) play a critical role in the defense response to pathogens. Barley is one of the most important cereal crops, having a genome recently made available, for which the diversity and evolution of R-genes are not well understood. The main objectives of this research were to conduct a genome-wide identification of barley Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) genes and elucidate their evolutionary history. We employed a Hidden Markov Model using 52 Arabidopsis thaliana CNL reference sequences and analyzed for phylogenetic relationships, structural variation, and gene clustering. We identified 175 barley CNL genes nested into three clades, showing (a) evidence of an expansion of the CNL-C clade, primarily due to tandem duplications; (b) very few members of clade CNL-A and CNL-B; and (c) a complete absence of clade CNL-D. Our results also showed that several of the previously identified mildew locus A (MLA) genes may be allelic variants of two barley CNL genes, MLOC_66581 and MLOC_10425, which respond to powdery mildew. Approximately 23% of the barley CNL genes formed 15 gene clusters located in the extra-pericentromeric regions on six of the seven chromosomes; more than half of the clustered genes were located on chromosomes 1H and 7H. Higher average numbers of exons and multiple splice variants in barley relative to those in Arabidopsis and rice may have contributed to a diversification of the CNL-C members. These results will help us understand the evolution of R-genes with potential implications for developing durable resistance in barley cultivars.
Collapse
Affiliation(s)
- Ethan J. Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Shaukat Ali
- Department of Plant Science, South Dakota State University, Brookings, SD, USA
| | - R. Neil Reese
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Madhav P. Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
43
|
Roux F, Bergelson J. The Genetics Underlying Natural Variation in the Biotic Interactions of Arabidopsis thaliana: The Challenges of Linking Evolutionary Genetics and Community Ecology. Curr Top Dev Biol 2016; 119:111-56. [PMID: 27282025 DOI: 10.1016/bs.ctdb.2016.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the context of global change, predicting the responses of plant communities in an ever-changing biotic environment calls for a multipronged approach at the interface of evolutionary genetics and community ecology. However, our understanding of the genetic basis of natural variation involved in mediating biotic interactions, and associated adaptive dynamics of focal plants in their natural communities, is still in its infancy. Here, we review the genetic and molecular bases of natural variation in the response to biotic interactions (viruses, bacteria, fungi, oomycetes, herbivores, and plants) in the model plant Arabidopsis thaliana as well as the adaptive value of these bases. Among the 60 identified genes are a number that encode nucleotide-binding site leucine-rich repeat (NBS-LRR)-type proteins, consistent with early examples of plant defense genes. However, recent studies have revealed an extensive diversity in the molecular mechanisms of defense. Many types of genetic variants associate with phenotypic variation in biotic interactions, even among the genes of large effect that tend to be identified. In general, we found that (i) balancing selection rather than directional selection explains the observed patterns of genetic diversity within A. thaliana and (ii) the cost/benefit tradeoffs of adaptive alleles can be strongly dependent on both genomic and environmental contexts. Finally, because A. thaliana rarely interacts with only one biotic partner in nature, we highlight the benefit of exploring diffuse biotic interactions rather than tightly associated host-enemy pairs. This challenge would help to improve our understanding of coevolutionary quantitative genetics within the context of realistic community complexity.
Collapse
Affiliation(s)
- F Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France.
| | - J Bergelson
- University of Chicago, Chicago, IL, United States
| |
Collapse
|
44
|
Memon S, Jia X, Gu L, Zhang X. Genomic variations and distinct evolutionary rate of rare alleles in Arabidopsis thaliana. BMC Evol Biol 2016; 16:25. [PMID: 26817829 PMCID: PMC4728917 DOI: 10.1186/s12862-016-0590-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/12/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The variation rate in genomic regions associated with different alleles, impacts to distinct evolutionary patterns involving rare alleles. The rare alleles bias towards genome-wide association studies (GWASs), aim to detect different variants at genomic loci associated with single-nucleotide polymorphisms (SNPs) inclined to produce different haplotypes. Here, we sequenced Arabidopsis thaliana and compared its coding and non-coding genomic regions with its closest outgroup relative, Arabidopsis lyrta, which accounted for the ancestral misinference. The use of genome-wide SNPs interpret the genetic architecture of rare alleles in Arabidopsis thaliana, elucidating a significant departure from a neutral evolutionary model and the pattern of polymorphisms around a selected locus will exclusively influence natural selection. RESULTS We found 23.4% of the rare alleles existing randomly in the genome. Notably, in our results significant differences (P < 0.01) were estimated in the relative rates between rare versus intermediate alleles, between fixed versus non-fixed mutations, and between type I versus type II rare-mutations by using the χ (2)-test. However, the rare alleles generating negative values of Tajima's D suggest that they generated under selective sweeps. Relative to polymorphic sites including SNPs, 67.5% of the fixed mutations were attributed, indicating major contributors to speciation. Substantially, an evolution occurred in the rare allele that was 1.42-times faster than that in a major haplotype. CONCLUSION Our results interpret that rare alleles fits a random occurrence model, indicating that rare alleles occur at any locus in a genome and in any accession in a species. Based on the higher relative rate of derived to ancient mutations and higher average D xy, we conclude that rare alleles evolve faster than the higher frequency alleles. The rapid evolution of rare alleles indicates that they must have been newly generated with fixed mutations, compared with the other alleles. Eventually, PCR and sequencing results, in the flanking regions of rare allele loci confirm that they are of short extension, indicating the absence of a genome-wide pattern for a rare haplotype. The indel-associated model for rare alleles assumes that indel-associated mutations only occur in an indel heterozygote.
Collapse
Affiliation(s)
- Shabana Memon
- School of life Sciences, Nanjing University, Nanjing, 210093, China. .,Lecturer, Department of Plant Breeding and Genetics, Sindh Agriculture University, Tando Jam, Hyderabad, 70060, Pakistan.
| | - Xianqing Jia
- School of life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Longjiang Gu
- School of life Sciences, Nanjing University, Nanjing, 210093, China.
| | - Xiaohui Zhang
- School of life Sciences, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
45
|
Culumber ZW, Tobler M. Spatiotemporal environmental heterogeneity and the maintenance of the tailspot polymorphism in the variable platyfish (Xiphophorus variatus). Evolution 2016; 70:408-19. [PMID: 26748941 DOI: 10.1111/evo.12852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 11/28/2022]
Abstract
Genetic variation is critical for adaptive evolution. Despite its importance, there is still limited evidence in support of some prominent theoretical models explaining the maintenance of genetic polymorphism within populations. We examined 84 populations of Xiphophorus variatus, a livebearing fish with a genetic polymorphism associated with physiological performance, to test: (1) whether niche differentiation explains broad-scale maintenance of polymorphism, (2) whether polymorphism is maintained among populations by local adaptation and migration, or (3) whether heterogeneity in explicit environmental variables could be linked to levels of polymorphism within populations. We found no evidence of climatic niche differentiation that could generate or maintain broad geographic variation in polymorphism. Subsequently, hierarchical partitioning of genetic richness and partial mantel tests revealed that 76% of the observed genetic richness was partitioned within populations with no effect of geographic distance on polymorphism. These results strongly suggest a lack of migration-selection balance in the maintenance of polymorphism, and model selection confirmed a significant relationship between environmental heterogeneity and genetic richness within populations. Few studies have demonstrated such effects at this scale, and additional studies in other taxa should examine the generality of gene-by-environment interactions across populations to better understand the dynamics and scale of balancing selection.
Collapse
Affiliation(s)
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, Kansas, 66506
| |
Collapse
|
46
|
Llinares-López F, Grimm DG, Bodenham DA, Gieraths U, Sugiyama M, Rowan B, Borgwardt K. Genome-wide detection of intervals of genetic heterogeneity associated with complex traits. Bioinformatics 2015; 31:i240-9. [PMID: 26072488 PMCID: PMC4559912 DOI: 10.1093/bioinformatics/btv263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Motivation: Genetic heterogeneity, the fact that several sequence variants give rise to the same phenotype, is a phenomenon that is of the utmost interest in the analysis of complex phenotypes. Current approaches for finding regions in the genome that exhibit genetic heterogeneity suffer from at least one of two shortcomings: (i) they require the definition of an exact interval in the genome that is to be tested for genetic heterogeneity, potentially missing intervals of high relevance, or (ii) they suffer from an enormous multiple hypothesis testing problem due to the large number of potential candidate intervals being tested, which results in either many false positives or a lack of power to detect true intervals. Results: Here, we present an approach that overcomes both problems: it allows one to automatically find all contiguous sequences of single nucleotide polymorphisms in the genome that are jointly associated with the phenotype. It also solves both the inherent computational efficiency problem and the statistical problem of multiple hypothesis testing, which are both caused by the huge number of candidate intervals. We demonstrate on Arabidopsis thaliana genome-wide association study data that our approach can discover regions that exhibit genetic heterogeneity and would be missed by single-locus mapping. Conclusions: Our novel approach can contribute to the genome-wide discovery of intervals that are involved in the genetic heterogeneity underlying complex phenotypes. Availability and implementation: The code can be obtained at: http://www.bsse.ethz.ch/mlcb/research/bioinformatics-and-computational-biology/sis.html. Contact:felipe.llinares@bsse.ethz.ch Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Felipe Llinares-López
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan, JST, PRESTO, Japan and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dominik G Grimm
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan, JST, PRESTO, Japan and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Dean A Bodenham
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan, JST, PRESTO, Japan and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Udo Gieraths
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan, JST, PRESTO, Japan and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Mahito Sugiyama
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan, JST, PRESTO, Japan and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan, JST, PRESTO, Japan and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Beth Rowan
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan, JST, PRESTO, Japan and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Karsten Borgwardt
- Machine Learning and Computational Biology Lab, Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland, The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan, JST, PRESTO, Japan and Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
47
|
Hazzouri KM, Flowers JM, Visser HJ, Khierallah HSM, Rosas U, Pham GM, Meyer RS, Johansen CK, Fresquez ZA, Masmoudi K, Haider N, El Kadri N, Idaghdour Y, Malek JA, Thirkhill D, Markhand GS, Krueger RR, Zaid A, Purugganan MD. Whole genome re-sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Commun 2015; 6:8824. [PMID: 26549859 PMCID: PMC4667612 DOI: 10.1038/ncomms9824] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 10/07/2015] [Indexed: 12/13/2022] Open
Abstract
Date palms (Phoenix dactylifera) are the most significant perennial crop in arid regions of the Middle East and North Africa. Here, we present a comprehensive catalogue of approximately seven million single nucleotide polymorphisms in date palms based on whole genome re-sequencing of a collection of 62 cultivars. Population structure analysis indicates a major genetic divide between North Africa and the Middle East/South Asian date palms, with evidence of admixture in cultivars from Egypt and Sudan. Genome-wide scans for selection suggest at least 56 genomic regions associated with selective sweeps that may underlie geographic adaptation. We report candidate mutations for trait variation, including nonsense polymorphisms and presence/absence variation in gene content in pathways for key agronomic traits. We also identify a copia-like retrotransposon insertion polymorphism in the R2R3 myb-like orthologue of the oil palm virescens gene associated with fruit colour variation. This analysis documents patterns of post-domestication diversification and provides a genomic resource for this economically important perennial tree crop.
Collapse
Affiliation(s)
- Khaled M Hazzouri
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Jonathan M Flowers
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates.,Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, New York 10003, USA
| | - Hendrik J Visser
- Date Palm Research and Development Unit, United Arab Emirates University, Al-Ain, PO Box 15551, Abu Dhabi, United Arab Emirates
| | - Hussam S M Khierallah
- Date Palm Research Unit, College of Agriculture, PO Box 47054, University of Baghdad, Baghdad, Iraq
| | - Ulises Rosas
- Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, New York 10003, USA
| | - Gina M Pham
- Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, New York 10003, USA
| | - Rachel S Meyer
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates.,Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, New York 10003, USA
| | - Caryn K Johansen
- Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, New York 10003, USA
| | - Zoë A Fresquez
- Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, New York 10003, USA
| | - Khaled Masmoudi
- International Center for Biosaline Agriculture, Academic City, Al Ruwayyah 2, PO Box 14660, Dubai, United Arab Emirates
| | - Nadia Haider
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, PO Box 6091, Damascus, Syria
| | - Nabila El Kadri
- Technical Center of Dates, Ministry of Agriculture, Kebili, Tunisia
| | - Youssef Idaghdour
- Division of Science and Mathematics, New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Joel A Malek
- Genomics Core Laboratory, Weill Cornell Medical College in Qatar, Doha 24144, Qatar
| | - Deborah Thirkhill
- Arizona State University Date Palm Collection, Arizona State University Tempe, Arizona, Arizona 85281, USA
| | - Ghulam S Markhand
- Date Palm Research Institute (DPRI), Shah Abdul Latif University, Khairpur, Sindh, Pakistan
| | - Robert R Krueger
- United States Department of Agriculture, Riverside, California 92507, USA
| | - Abdelouahhab Zaid
- Date Palm Research and Development Unit, United Arab Emirates University, Al-Ain, PO Box 15551, Abu Dhabi, United Arab Emirates
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates.,Department of Biology, Center for Genomics and Systems Biology, 12 Waverly Place, New York University, New York, New York 10003, USA
| |
Collapse
|
48
|
Abstract
Darwin's theory of evolution by natural selection is the foundation of modern biology. However, it has proven remarkably difficult to demonstrate at the genetic, genomic, and population level exactly how wild species adapt to their natural environments. We discuss how one can use large sets of multiple genome sequences from wild populations to understand adaptation, with an emphasis on the small herbaceous plant Arabidopsis thaliana. We present motivation for such studies; summarize progress in describing whole-genome, species-wide sequence variation; and then discuss what insights have emerged from these resources, either based on sequence information alone or in combination with phenotypic data. We conclude with thoughts on opportunities with other plant species and the impact of expected progress in sequencing technology and genome engineering for studying adaptation in nature.
Collapse
Affiliation(s)
- Detlef Weigel
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter, 1030 Vienna, Austria;
| |
Collapse
|
49
|
Bush SJ, Kover PX, Urrutia AO. Lineage-specific sequence evolution and exon edge conservation partially explain the relationship between evolutionary rate and expression level in A. thaliana. Mol Ecol 2015; 24:3093-106. [PMID: 25930165 PMCID: PMC4480654 DOI: 10.1111/mec.13221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023]
Abstract
Rapidly evolving proteins can aid the identification of genes underlying phenotypic adaptation across taxa, but functional and structural elements of genes can also affect evolutionary rates. In plants, the ‘edges’ of exons, flanking intron junctions, are known to contain splice enhancers and to have a higher degree of conservation compared to the remainder of the coding region. However, the extent to which these regions may be masking indicators of positive selection or account for the relationship between dN/dS and other genomic parameters is unclear. We investigate the effects of exon edge conservation on the relationship of dN/dS to various sequence characteristics and gene expression parameters in the model plant Arabidopsis thaliana. We also obtain lineage-specific dN/dS estimates, making use of the recently sequenced genome of Thellungiella parvula, the second closest sequenced relative after the sister species Arabidopsis lyrata. Overall, we find that the effect of exon edge conservation, as well as the use of lineage-specific substitution estimates, upon dN/dS ratios partly explains the relationship between the rates of protein evolution and expression level. Furthermore, the removal of exon edges shifts dN/dS estimates upwards, increasing the proportion of genes potentially under adaptive selection. We conclude that lineage-specific substitutions and exon edge conservation have an important effect on dN/dS ratios and should be considered when assessing their relationship with other genomic parameters.
Collapse
Affiliation(s)
- Stephen J Bush
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Paula X Kover
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Araxi O Urrutia
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
50
|
Olsen KM, Kooyers NJ, Small LL. Adaptive gains through repeated gene loss: parallel evolution of cyanogenesis polymorphisms in the genus Trifolium (Fabaceae). Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0347. [PMID: 24958921 DOI: 10.1098/rstb.2013.0347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variation in cyanogenesis (hydrogen cyanide release following tissue damage) was first noted in populations of white clover more than a century ago, and subsequent decades of research have established this system as a classic example of an adaptive chemical defence polymorphism. Here, we document polymorphisms for cyanogenic components in several relatives of white clover, and we determine the molecular basis of this trans-specific adaptive variation. One hundred and thirty-nine plants, representing 13 of the 14 species within Trifolium section Trifoliastrum, plus additional species across the genus, were assayed for cyanogenic components (cyanogenic glucosides and their hydrolysing enzyme, linamarase) and for the presence of underlying cyanogenesis genes (CYP79D15 and Li, respectively). One or both cyanogenic components were detected in seven species, all within section Trifoliastrum; polymorphisms for the presence/absence (PA) of components were detected in six species. In a pattern that parallels our previous findings for white clover, all observed biochemical polymorphisms correspond to gene PA polymorphisms at CYP79D15 and Li. Relationships of DNA sequence haplotypes at the cyanogenesis loci and flanking genomic regions suggest independent evolution of gene deletions within species. This study thus provides evidence for the parallel evolution of adaptive biochemical polymorphisms through recurrent gene deletions in multiple species.
Collapse
Affiliation(s)
- Kenneth M Olsen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | - Linda L Small
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|