1
|
Larsen PB, He S, Meyer TJ, Szurman-Zubrzycka M, Alfs C, Kwasniewska J, Pervis A, Gajecka M, Veerabahu A, Beaulieu TR, Bolaris SC, Eekhout T, De Veylder L, Abel S, Szarejko I, Murn J. The stem cell niche transcription factor ETHYLENE RESPONSE FACTOR 115 participates in aluminum-induced terminal differentiation in Arabidopsis roots. PLANT, CELL & ENVIRONMENT 2024; 47:4432-4448. [PMID: 39007549 DOI: 10.1111/pce.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Aluminum-dependent stoppage of root growth requires the DNA damage response (DDR) pathway including the p53-like transcription factor SUPPRESSOR OF GAMMA RADIATION 1 (SOG1), which promotes terminal differentiation of the root tip in response to Al dependent cell death. Transcriptomic analyses identified Al-induced SOG1-regulated targets as candidate mediators of this growth arrest. Analysis of these factors either as loss-of-function mutants or by overexpression in the als3-1 background shows ERF115, which is a key transcription factor that in other scenarios is rate-limiting for damaged stem cell replenishment, instead participates in transition from an actively growing root to one that has terminally differentiated in response to Al toxicity. This is supported by a loss-of-function erf115 mutant raising the threshold of Al required to promote terminal differentiation of Al hypersensitive als3-1. Consistent with its key role in stoppage of root growth, a putative ERF115 barley ortholog is also upregulated following Al exposure, suggesting a conserved role for this ATR-dependent pathway in Al response. In contrast to other DNA damage agents, these results show that ERF115 and likely related family members are important determinants of terminal differentiation of the root tip following Al exposure and central outputs of the SOG1-mediated pathway in Al response.
Collapse
Affiliation(s)
- Paul B Larsen
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Shiyang He
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Taylor J Meyer
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Carolin Alfs
- Leibniz Institute for Plant Biochemistry, Department of Molecular Signal Processing, Halle, Germany
| | - Jolanta Kwasniewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Alexandra Pervis
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Monika Gajecka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Aishwarya Veerabahu
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Taylor R Beaulieu
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Stephen C Bolaris
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Steffen Abel
- Leibniz Institute for Plant Biochemistry, Department of Molecular Signal Processing, Halle, Germany
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jernej Murn
- Department of Biochemistry, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
2
|
Chen L, Liu M, Li Y, Guan Y, Ruan J, Mao Z, Wang W, Yang HQ, Guo T. Arabidopsis cryptochromes interact with SOG1 to promote the repair of DNA double-strand breaks. Biochem Biophys Res Commun 2024; 724:150233. [PMID: 38865814 DOI: 10.1016/j.bbrc.2024.150233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Cryptochromes (CRYs) are blue light (BL) photoreceptors to regulate a variety of physiological processes including DNA double-strand break (DSB) repair. SUPPRESSOR OF GAMMA RADIATION 1 (SOG1) acts as the central transcription factor of DNA damage response (DDR) to induce the transcription of downstream genes, including DSB repair-related genes BRCA1 and RAD51. Whether CRYs regulate DSB repair by directly modulating SOG1 is unknown. Here, we demonstrate that CRYs physically interact with SOG1. Disruption of CRYs and SOG1 leads to increased sensitivity to DSBs and reduced DSB repair-related genes' expression under BL. Moreover, we found that CRY1 enhances SOG1's transcription activation of DSB repair-related gene BRCA1. These results suggest that the mechanism by which CRYs promote DSB repair involves positive regulation of SOG1's transcription of its target genes, which is likely mediated by CRYs-SOG1 interaction.
Collapse
Affiliation(s)
- Li Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Minqing Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yupeng Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan Guan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaqi Ruan
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhilei Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenxiu Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Hong-Quan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Tongtong Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
3
|
Pagano P, Bertoncini A, Pagano A, Nisa MU, Raynaud C, Balestrazzi A, Macovei A. Exposure of Arabidopsis thaliana Mutants to Genotoxic Stress Provides New Insights for the Involvement of TDP1α and TDP1β genes in DNA-Damage Response. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39219547 DOI: 10.1111/pce.15128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Genotoxic stress activates the DNA-damage response (DDR) signalling cascades responsible for maintaining genome integrity. Downstream DNA repair pathways include the tyrosyl-DNA phosphodiesterase 1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine of topoisomerase I (TopI) and 3'-phosphate of DNA. The plant TDP1 subfamily contains the canonical TDP1α gene and the TDP1β gene whose functions are not fully elucidated. The current study proposes to investigate the involvement of TDP1 genes in DDR-related processes by using Arabidopsis thaliana mutants treated with genotoxic agents. The phenotypic and molecular characterization of tdp1α, tdp1β and tdp1α/β mutants treated with cisplatin (CIS), curcumin (CUR), NSC120686 (NSC), zeocin (ZEO), and camptothecin (CPT), evidenced that while tdp1β was highly sensitive to CIS and CPT, tdp1α was more sensitive to NSC. Gene expression analyses showing upregulation of the TDP2 gene in the double mutant indicate the presence of compensatory mechanisms. The downregulation of POL2A gene in the tdp1β mutant along with the upregulation of the TDP1β gene in pol2a mutants, together with its sensitivity to replication inhibitors (CIS, CTP), point towards a function of this gene in the response to replication stress. Therefore, this study brings novel information relative to the activity of TDP1 genes in plants.
Collapse
Affiliation(s)
- Paola Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anna Bertoncini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maher-Un Nisa
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Paris, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Paris, France
| | - Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
4
|
Humphreys JL, Beveridge CA, Tanurdžić M. Strigolactone induces D14-dependent large-scale changes in gene expression requiring SWI/SNF chromatin remodellers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858857 DOI: 10.1111/tpj.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Strigolactones (SL) function as plant hormones in control of multiple aspects of plant development, mostly via the regulation of gene expression. Immediate early-gene regulation by SL remains unexplored due to difficulty in dissecting early from late gene expression responses to SL. We used synthetic SL, rac-GR24 treatment of protoplasts and RNA-seq to explore early SL-induced changes in gene expression over time (5-180 minutes) and discovered rapid, dynamic and SL receptor D14-dependent regulation of gene expression in response to rac-GR24. Importantly, we discovered a significant dependence of SL signalling on chromatin remodelling processes, as the induction of a key SL-induced transcription factor BRANCHED1 requires the SWI/SNF chromatin remodelling ATPase SPLAYED (SYD) and leads to upregulation of a homologue SWI/SNF ATPase BRAHMA. ATAC-seq profiling of genome-wide changes in chromatin accessibility in response to rac-GR24 identified large-scale changes, with over 1400 differentially accessible regions. These changes in chromatin accessibility often precede transcriptional changes and are likely to harbour SL cis-regulatory elements. Importantly, we discovered that this early and extensive modification of the chromatin landscape also requires SYD. This study, therefore, provides evidence that SL signalling requires regulation of chromatin accessibility, and it identifies genomic locations harbouring likely SL cis-regulatory sequences.
Collapse
Affiliation(s)
- Jazmine L Humphreys
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
5
|
Mahapatra K, Roy S. SOG1 and BRCA1 Interdependently Regulate RAD54 Expression for Repairing Salinity-Induced DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:708-728. [PMID: 38242160 DOI: 10.1093/pcp/pcae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
As sessile organisms, land plants experience various forms of environmental stresses throughout their life span. Therefore, plants have developed extensive and complicated defense mechanisms, including a robust DNA damage response (DDR) and DNA repair systems for maintaining genome integrity. In Arabidopsis, the NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) plays an important role in regulating DDR. Here, we show that SOG1 plays a key role in regulating the repair of salinity-induced DNA double-strand breaks (DSBs) via the homologous recombination (HR) pathway in Arabidopsis. The sog1-1 mutant seedlings display a considerably slower rate of repair of salinity-induced DSBs. Accumulation of SOG1 protein increases in wild-type Arabidopsis under salinity stress, and it enhances the expression of HR pathway-related genes, including RAD51, RAD54 and BReast CAncer gene 1 (BRCA1), respectively, as found in SOG1 overexpression lines. SOG1 binds specifically to the AtRAD54 promoter at the 5'-(N)4GTCAA(N)3C-3' consensus sequence and positively regulates its expression under salinity stress. The phenotypic responses of sog1-1/atrad54 double mutants suggest that SOG1 functions upstream of RAD54, and both these genes are essential in regulating DDR under salinity stress. Furthermore, SOG1 interacts directly with BRCA1, an important component of the HR-mediated DSB repair pathway in plants, where BRCA1 appears to facilitate the binding of SOG1 to the RAD54 promoter. At the genetic level, SOG1 and BRCA1 function interdependently in modulating RAD54 expression under salinity-induced DNA damage. Together, our results suggest that SOG1 regulates the repair of salinity-induced DSBs via the HR-mediated pathway through genetic interactions with RAD54 and BRCA1 in Arabidopsis.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, 713 104 West Bengal, India
| |
Collapse
|
6
|
Rolland SGM, Memar N, Gartner A. Tardigrades: Trained to be hardy in the face of DNA damage. Curr Biol 2024; 34:R504-R507. [PMID: 38772339 DOI: 10.1016/j.cub.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Tardigrades withstand ionizing irradiation levels ∼500 times higher than humans can tolerate. Two recent papers shed light on how this might be achieved - via the transcriptional induction of DNA repair genes, the induction of a radioprotective DNA-binding protein, and possibly also the heightened capacity of repair proteins.
Collapse
Affiliation(s)
- Stéphane G M Rolland
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Nadin Memar
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Anton Gartner
- Center for Genomic Integrity, Institute for Basic Science, UNIST-gil 50, Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Graduate School for Health Sciences and Technology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Zaragoza JZ, Klap K, Heidstra R, Zhou W, Scheres B. The dual role of the RETINOBLASTOMA-RELATED protein in the DNA damage response is coordinated by the interaction with LXCXE-containing proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1194-1206. [PMID: 38321589 DOI: 10.1111/tpj.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Living organisms possess mechanisms to safeguard genome integrity. To avoid spreading mutations, DNA lesions are detected and cell division is temporarily arrested to allow repair mechanisms. Afterward, cells either resume division or respond to unsuccessful repair by undergoing programmed cell death (PCD). How the success rate of DNA repair connects to later cell fate decisions remains incompletely known, particularly in plants. The Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein and its partner E2FA, play both structural and transcriptional functions in the DNA damage response (DDR). Here we provide evidence that distinct RBR protein interactions with LXCXE motif-containing proteins guide these processes. Using the N849F substitution in the RBR B-pocket domain, which specifically disrupts binding to the LXCXE motif, we show that these interactions are dispensable in unchallenging conditions. However, N849F substitution abolishes RBR nuclear foci and promotes PCD and growth arrest upon genotoxic stress. NAC044, which promotes growth arrest and PCD, accumulates after the initial recruitment of RBR to foci and can bind non-focalized RBR through the LXCXE motif in a phosphorylation-independent manner, allowing interaction at different cell cycle phases. Disrupting NAC044-RBR interaction impairs PCD, but their genetic interaction points to opposite independent roles in the regulation of PCD. The LXCXE-binding dependency of the roles of RBR in the DDR suggests a coordinating mechanism to translate DNA repair success to cell survival. We propose that RBR and NAC044 act in two distinct DDR pathways, but interact to integrate input from both DDR pathways to decide upon an irreversible cell fate decision.
Collapse
Affiliation(s)
- Jorge Zamora Zaragoza
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Wenkun Zhou
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ben Scheres
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| |
Collapse
|
8
|
Herbst J, Li QQ, De Veylder L. Mechanistic insights into DNA damage recognition and checkpoint control in plants. NATURE PLANTS 2024; 10:539-550. [PMID: 38503962 DOI: 10.1038/s41477-024-01652-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024]
Abstract
The plant DNA damage response (DDR) pathway safeguards genomic integrity by rapid recognition and repair of DNA lesions that, if unrepaired, may cause genome instability. Most frequently, DNA repair goes hand in hand with a transient cell cycle arrest, which allows cells to repair the DNA lesions before engaging in a mitotic event, but consequently also affects plant growth and yield. Through the identification of DDR proteins and cell cycle regulators that react to DNA double-strand breaks or replication defects, it has become clear that these proteins and regulators form highly interconnected networks. These networks operate at both the transcriptional and post-transcriptional levels and include liquid-liquid phase separation and epigenetic mechanisms. Strikingly, whereas the upstream DDR sensors and signalling components are well conserved across eukaryotes, some of the more downstream effectors are diverged in plants, probably to suit unique lifestyle features. Additionally, DDR components display functional diversity across ancient plant species, dicots and monocots. The observed resistance of DDR mutants towards aluminium toxicity, phosphate limitation and seed ageing indicates that gaining knowledge about the plant DDR may offer solutions to combat the effects of climate change and the associated risk for food security.
Collapse
Affiliation(s)
- Josephine Herbst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Qian-Qian Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
9
|
Mahapatra K. Unveiling the structure and interactions of SOG1, a NAC domain transcription factor: An in-silico perspective. J Genet Eng Biotechnol 2024; 22:100333. [PMID: 38494249 PMCID: PMC10980851 DOI: 10.1016/j.jgeb.2023.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
SOG1 is a crucial plant-specific NAC domain family transcription factor and functions as the central regulator of DNA damage response, acting downstream of ATM and ATR kinases. In this study, various in-silico approaches have been employed for the characterization of SOG1 transcription factor in a comparative manner with its orthologues from various plant species. Amino acid sequences of more than a hundred SOG1 or SOG1-like proteins were retrieved and their relationship was determined through phylogenetic and motif analyses. Various physiochemical properties and secondary structural components of SOG1 orthologues were determined in selective plant species including Arabidopsis thaliana, Oryza sativa, Amborella trichopoda, and Physcomitrella patens. Furthermore, fold recognition or threading and homology-based three-dimensional models of SOG1 were constructed followed by subsequent evaluation of quality and accuracy of the generated protein models. Finally, extensive DNA-Protein and Protein-Protein interaction studies were performed using the HADDOCK server to give an insight into the mechanism of how SOG1 binds with the promoter region of its target genes or interacts with other proteins to regulate the DNA damage responses in plants. Our docking analysis data have shown the molecular mechanism of SOG1's binding with 5'-CTT(N)7AAG-3' and 5'-(N)4GTCAA(N)4-3' consensus sequences present in the promoter region of its target genes. Moreover, SOG1 physically interacts and forms a thermodynamically stable complex with NAC103 and BRCA1 proteins, which possibly serve as coactivators or mediators in the transcription regulatory network of SOG1. Overall, our in-silico study will provide meaningful information regarding the structural and functional characterization of the SOG1 transcription factor.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan - 713 104, West Bengal, India.
| |
Collapse
|
10
|
Waterworth W, Balobaid A, West C. Seed longevity and genome damage. Biosci Rep 2024; 44:BSR20230809. [PMID: 38324350 PMCID: PMC11111285 DOI: 10.1042/bsr20230809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
Seeds are the mode of propagation for most plant species and form the basis of both agriculture and ecosystems. Desiccation tolerant seeds, representative of most crop species, can survive maturation drying to become metabolically quiescent. The desiccated state prolongs embryo viability and provides protection from adverse environmental conditions, including seasonal periods of drought and freezing often encountered in temperate regions. However, the capacity of the seed to germinate declines over time and culminates in the loss of seed viability. The relationship between environmental conditions (temperature and humidity) and the rate of seed deterioration (ageing) is well defined, but less is known about the biochemical and genetic factors that determine seed longevity. This review will highlight recent advances in our knowledge that provide insight into the cellular stresses and protective mechanisms that promote seed survival, with a focus on the roles of DNA repair and response mechanisms. Collectively, these pathways function to maintain the germination potential of seeds. Understanding the molecular basis of seed longevity provides important new genetic targets for the production of crops with enhanced resilience to changing climates and knowledge important for the preservation of plant germplasm in seedbanks.
Collapse
Affiliation(s)
- Wanda Waterworth
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Atheer Balobaid
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| | - Chris West
- Centre for Plant Sciences, University of Leeds, Woodhouse Lane, Leeds LS2
9JT, U.K
| |
Collapse
|
11
|
Heyman J, De Veylder L. Waking up Sleeping Beauty: DNA damage activates dormant stem cell division by enhancing brassinosteroid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1205-1209. [PMID: 38416206 PMCID: PMC10901202 DOI: 10.1093/jxb/erae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
This article comments on:
Takahashi N, Suita K, Koike T, Ogita N, Zhang Y, Umeda M. 2024. DNA double-strand breaks enhance brassinosteroid signaling to activate quiescent center cell division in Arabidopsis. Journal of Experimental Botany 75, 1364–1375.
Collapse
Affiliation(s)
- Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
12
|
Takahashi N, Suita K, Koike T, Ogita N, Zhang Y, Umeda M. DNA double-strand breaks enhance brassinosteroid signaling to activate quiescent center cell division in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1364-1375. [PMID: 37882240 DOI: 10.1093/jxb/erad424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
In Arabidopsis roots, the quiescent center (QC), a group of slowly dividing cells located at the center of the stem cell niche, functions as an organizing center to maintain the stemness of neighboring cells. Recent studies have shown that they also act as a reservoir for backup cells, which replenish DNA-damaged stem cells by activating cell division. The latter function is essential for maintaining stem cells under stressful conditions, thereby guaranteeing post-embryonic root development in fluctuating environments. In this study, we show that one of the brassinosteroid receptors in Arabidopsis, BRASSINOSTEROID INSENSITIVE1-LIKE3 (BRL3), plays a major role in activating QC division in response to DNA double-strand breaks. SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor governing DNA damage response, directly induces BRL3. DNA damage-induced QC division was completely suppressed in brl3 mutants, whereas QC-specific overexpression of BRL3 activated QC division. Our data also showed that BRL3 is required to induce the AP2-type transcription factor ETHYLENE RESPONSE FACTOR 115, which triggers regenerative cell division. We propose that BRL3-dependent brassinosteroid signaling plays a unique role in activating QC division and replenishing dead stem cells, thereby enabling roots to restart growing after recovery from genotoxic stress.
Collapse
Affiliation(s)
| | - Kazuki Suita
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Toshiya Koike
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Nobuo Ogita
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Ye Zhang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Takayama 8916-5, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
13
|
Vladejić J, Kovacik M, Zwyrtková J, Szurman-Zubrzycka M, Doležel J, Pecinka A. Zeocin-induced DNA damage response in barley and its dependence on ATR. Sci Rep 2024; 14:3119. [PMID: 38326519 PMCID: PMC10850495 DOI: 10.1038/s41598-024-53264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
DNA damage response (DDR) is an essential mechanism by which living organisms maintain their genomic stability. In plants, DDR is important also for normal growth and yield. Here, we explored the DDR of a temperate model crop barley (Hordeum vulgare) at the phenotypic, physiological, and transcriptomic levels. By a series of in vitro DNA damage assays using the DNA strand break (DNA-SB) inducing agent zeocin, we showed reduced root growth and expansion of the differentiated zone to the root tip. Genome-wide transcriptional profiling of barley wild-type and plants mutated in DDR signaling kinase ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED (hvatr.g) revealed zeocin-dependent, ATR-dependent, and zeocin-dependent/ATR-independent transcriptional responses. Transcriptional changes were scored also using the newly developed catalog of 421 barley DDR genes with the phylogenetically-resolved relationships of barley SUPRESSOR OF GAMMA 1 (SOG1) and SOG1-LIKE (SGL) genes. Zeocin caused up-regulation of specific DDR factors and down-regulation of cell cycle and histone genes, mostly in an ATR-independent manner. The ATR dependency was obvious for some factors associated with DDR during DNA replication and for many genes without an obvious connection to DDR. This provided molecular insight into the response to DNA-SB induction in the large and complex barley genome.
Collapse
Affiliation(s)
- Jovanka Vladejić
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Martin Kovacik
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jana Zwyrtková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Miriam Szurman-Zubrzycka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Jaroslav Doležel
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czechia.
| |
Collapse
|
14
|
Godwin J, Govindasamy M, Nedounsejian K, March E, Halton R, Bourbousse C, Wolff L, Fort A, Krzyszton M, López Corrales J, Swiezewski S, Barneche F, Schubert D, Farrona S. The UBP5 histone H2A deubiquitinase counteracts PRCs-mediated repression to regulate Arabidopsis development. Nat Commun 2024; 15:667. [PMID: 38253560 PMCID: PMC10803359 DOI: 10.1038/s41467-023-44546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Polycomb Repressive Complexes (PRCs) control gene expression through the incorporation of H2Aub and H3K27me3. In recent years, there is increasing evidence of the complexity of PRCs' interaction networks and the interplay of these interactors with PRCs in epigenome reshaping, which is fundamental to understand gene regulatory mechanisms. Here, we identified UBIQUITIN SPECIFIC PROTEASE 5 (UBP5) as a chromatin player able to counteract the deposition of the two PRCs' epigenetic hallmarks in Arabidopsis thaliana. We demonstrated that UBP5 is a plant developmental regulator based on functional analyses of ubp5-CRISPR Cas9 mutant plants. UBP5 promotes H2A monoubiquitination erasure, leading to transcriptional de-repression. Furthermore, preferential association of UBP5 at PRC2 recruiting motifs and local H3K27me3 gaining in ubp5 mutant plants suggest the existence of functional interplays between UBP5 and PRC2 in regulating epigenome dynamics. In summary, acting as an antagonist of the pivotal epigenetic repressive marks H2Aub and H3K27me3, UBP5 provides novel insights to disentangle the complex regulation of PRCs' activities.
Collapse
Affiliation(s)
- James Godwin
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Mohan Govindasamy
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
| | - Kiruba Nedounsejian
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
| | - Eduardo March
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
| | - Ronan Halton
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland
| | - Clara Bourbousse
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Léa Wolff
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Antoine Fort
- Dept. of Veterinary and Microbial Sciences, Technological University of The Shannon: Midlands, Athlone, Co., Roscommon, Ireland
| | - Michal Krzyszton
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, Warsaw, 02-106, Poland
| | - Jesús López Corrales
- Molecular Parasitology Laboratory (MPL), Centre for One Health and Ryan Institute, School of Natural Sciences, University of Galway, Galway, H91 DK59, Ireland
| | - Szymon Swiezewski
- Laboratory of Seeds Molecular Biology, Institute of Biochemistry and Biophysics, PAS, Warsaw, 02-106, Poland
| | - Fredy Barneche
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Sara Farrona
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK33, Galway, Ireland.
| |
Collapse
|
15
|
Wang Z, Castillo-González CM, Zhao C, Tong CY, Li C, Zhong S, Liu Z, Xie K, Zhu J, Wu Z, Peng X, Jacob Y, Michaels SD, Jacobsen SE, Zhang X. H3.1K27me1 loss confers Arabidopsis resistance to Geminivirus by sequestering DNA repair proteins onto host genome. Nat Commun 2023; 14:7484. [PMID: 37980416 PMCID: PMC10657422 DOI: 10.1038/s41467-023-43311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Changjiang Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Chun-Yip Tong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Zhiyang Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kaili Xie
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Zhongshou Wu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xu Peng
- Department of Molecular Physiology, College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Yannick Jacob
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Scott D Michaels
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
16
|
Jeong HW, Ryu TH, Lee HJ, Kim KH, Jeong RD. DNA Damage Triggers the Activation of Immune Response to Viral Pathogens via Salicylic Acid in Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:449-465. [PMID: 37817492 PMCID: PMC10580055 DOI: 10.5423/ppj.oa.08.2023.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023]
Abstract
Plants are challenged by various pathogens throughout their lives, such as bacteria, viruses, fungi, and insects; consequently, they have evolved several defense mechanisms. In addition, plants have developed localized and systematic immune responses due to biotic and abiotic stress exposure. Animals are known to activate DNA damage responses (DDRs) and DNA damage sensor immune signals in response to stress, and the process is well studied in animal systems. However, the links between stress perception and immune response through DDRs remain largely unknown in plants. To determine whether DDRs induce plant resistance to pathogens, Arabidopsis plants were treated with bleomycin, a DNA damage-inducing agent, and the replication levels of viral pathogens and growth of bacterial pathogens were determined. We observed that DDR-mediated resistance was specifically activated against viral pathogens, including turnip crinkle virus (TCV). DDR increased the expression level of pathogenesis-related (PR) genes and the total salicylic acid (SA) content and promoted mitogen-activated protein kinase signaling cascades, including the WRKY signaling pathway in Arabidopsis. Transcriptome analysis further revealed that defense- and SA-related genes were upregulated by DDR. The atm-2atr-2 double mutants were susceptible to TCV, indicating that the main DDR signaling pathway sensors play an important role in plant immune responses. In conclusion, DDRs activated basal immune responses to viral pathogens.
Collapse
Affiliation(s)
- Hwi-Won Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Tae Ho Ryu
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Hyo-Jeong Lee
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Chonnam National University, Gwangju 61185, Korea
| |
Collapse
|
17
|
Casati P. E2F transcription factors and their complementary roles during DNA damage responses. MOLECULAR PLANT 2023; 16:1373-1375. [PMID: 37592750 DOI: 10.1016/j.molp.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina.
| |
Collapse
|
18
|
Nisa M, Eekhout T, Bergis C, Pedroza-Garcia JA, He X, Mazubert C, Vercauteren I, Cools T, Brik-Chaouche R, Drouin-Wahbi J, Chmaiss L, Latrasse D, Bergounioux C, Vandepoele K, Benhamed M, De Veylder L, Raynaud C. Distinctive and complementary roles of E2F transcription factors during plant replication stress responses. MOLECULAR PLANT 2023; 16:1269-1282. [PMID: 37415334 DOI: 10.1016/j.molp.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Survival of living organisms is fully dependent on their maintenance of genome integrity, being permanently threatened by replication stress in proliferating cells. Although the plant DNA damage response (DDR) regulator SOG1 has been demonstrated to cope with replication defects, accumulating evidence points to other pathways functioning independent of SOG1. Here, we report the roles of the Arabidopsis E2FA and EF2B transcription factors, two well-characterized regulators of DNA replication, in plant response to replication stress. Through a combination of reverse genetics and chromatin immunoprecipitation approaches, we show that E2FA and E2FB share many target genes with SOG1, providing evidence for their involvement in the DDR. Analysis of double- and triple-mutant combinations revealed that E2FB, rather than E2FA, plays the most prominent role in sustaining plant growth in the presence of replication defects, either operating antagonistically or synergistically with SOG1. Conversely, SOG1 aids in overcoming the replication defects of E2FA/E2FB-deficient plants. Collectively, our data reveal a complex transcriptional network controlling the replication stress response in which E2Fs and SOG1 act as key regulatory factors.
Collapse
Affiliation(s)
- Maherun Nisa
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Clara Bergis
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jose-Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Xiaoning He
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Christelle Mazubert
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Toon Cools
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Rim Brik-Chaouche
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jeannine Drouin-Wahbi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Layla Chmaiss
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France; Université de Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Chen H, Pan T, Zheng X, Huang Y, Wu C, Yang T, Gao S, Wang L, Yan S. The ATR-WEE1 kinase module promotes SUPPRESSOR OF GAMMA RESPONSE 1 translation to activate replication stress responses. THE PLANT CELL 2023; 35:3021-3034. [PMID: 37159556 PMCID: PMC10396359 DOI: 10.1093/plcell/koad126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
DNA replication stress threatens genome stability and is a hallmark of cancer in humans. The evolutionarily conserved kinases ATR (ATM and RAD3-related) and WEE1 are essential for the activation of replication stress responses. Translational control is an important mechanism that regulates gene expression, but its role in replication stress responses is largely unknown. Here we show that ATR-WEE1 control the translation of SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a master transcription factor required for replication stress responses in Arabidopsis thaliana. Through genetic screening, we found that the loss of GENERAL CONTROL NONDEREPRESSIBLE 20 (GCN20) or GCN1, which function together to inhibit protein translation, suppressed the hypersensitivity of the atr or wee1 mutant to replication stress. Biochemically, WEE1 inhibits GCN20 by phosphorylating it; phosphorylated GCN20 is subsequently polyubiquitinated and degraded. Ribosome profiling experiments revealed that that loss of GCN20 enhanced the translation efficiency of SOG1, while overexpressing GCN20 had the opposite effect. The loss of SOG1 reduced the resistance of wee1 gcn20 to replication stress, whereas overexpressing SOG1 enhanced the resistance to atr or wee1 to replication stress. These results suggest that ATR-WEE1 inhibits GCN20-GCN1 activity to promote the translation of SOG1 during replication stress. These findings link translational control to replication stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Hanchen Chen
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ting Pan
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xueao Zheng
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yongchi Huang
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Chong Wu
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Tongbin Yang
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shan Gao
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Lili Wang
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
20
|
Li J, Qian W. Translational control of SOG1 expression in response to replication stress in Arabidopsis. STRESS BIOLOGY 2023; 3:28. [PMID: 37676617 PMCID: PMC10442038 DOI: 10.1007/s44154-023-00112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/19/2023] [Indexed: 09/08/2023]
Abstract
DNA damage, which may arise from cellular activities or be induced by genotoxic stresses, can cause genome instability and significantly affect plant growth and productivity. In response to genotoxic stresses, plants activate the cellular DNA damage response (DDR) to sense the stresses and activate downstream processes. The transcription factor SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), a functional counterpart of mammalian p53, is a master regulator of the DDR in plants. It is activated by various types of DNA lesions and can activate the transcription of hundreds of genes to trigger downstream processes, including cell cycle arrest, DNA repair, endoreplication, and apoptosis. Since SOG1 plays a crucial role in DDR, the activity of SOG1 must be tightly regulated. A recent study published in Plant Cell (Chen et al., Plant Cell koad126, 2023) reports a novel mechanism by which the ATR-WEE1 kinase module promotes SOG1 translation to fine-tune replication stress response.
Collapse
Affiliation(s)
- Jinchao Li
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Weiqiang Qian
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Méteignier LV. Translational regulation of replication stress. THE PLANT CELL 2023; 35:koad150. [PMID: 37221408 PMCID: PMC10396356 DOI: 10.1093/plcell/koad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Affiliation(s)
- Louis-Valentin Méteignier
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier 34398, 7 France
| |
Collapse
|
22
|
González-García MP, Conesa CM, Lozano-Enguita A, Baca-González V, Simancas B, Navarro-Neila S, Sánchez-Bermúdez M, Salas-González I, Caro E, Castrillo G, Del Pozo JC. Temperature changes in the root ecosystem affect plant functionality. PLANT COMMUNICATIONS 2023; 4:100514. [PMID: 36585788 DOI: 10.1016/j.xplc.2022.100514] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 05/11/2023]
Abstract
Climate change is increasing the frequency of extreme heat events that aggravate its negative impact on plant development and agricultural yield. Most experiments designed to study plant adaption to heat stress apply homogeneous high temperatures to both shoot and root. However, this treatment does not mimic the conditions in natural fields, where roots grow in a dark environment with a descending temperature gradient. Excessively high temperatures severely decrease cell division in the root meristem, compromising root growth, while increasing the division of quiescent center cells, likely in an attempt to maintain the stem cell niche under such harsh conditions. Here, we engineered the TGRooZ, a device that generates a temperature gradient for in vitro or greenhouse growth assays. The root systems of plants exposed to high shoot temperatures but cultivated in the TGRooZ grow efficiently and maintain their functionality to sustain proper shoot growth and development. Furthermore, gene expression and rhizosphere or root microbiome composition are significantly less affected in TGRooZ-grown roots than in high-temperature-grown roots, correlating with higher root functionality. Our data indicate that use of the TGRooZ in heat-stress studies can improve our knowledge of plant response to high temperatures, demonstrating its applicability from laboratory studies to the field.
Collapse
Affiliation(s)
- Mary Paz González-García
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Alberto Lozano-Enguita
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Victoria Baca-González
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Bárbara Simancas
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Sara Navarro-Neila
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - María Sánchez-Bermúdez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Isai Salas-González
- Undergraduate Program in Genomic Sciences, Center for Genomics Sciences, Universidad Nacional Autonóma de México, Av. Universidad s/n. Col. Chamilpa, Cuernavaca 62210, Morelos, México
| | - Elena Caro
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Gabriel Castrillo
- Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA/CSIC), Campus Montegancedo, 28223 Pozuelo de Alarcón (Madrid), Spain.
| |
Collapse
|
23
|
Yu C, Hou L, Huang Y, Cui X, Xu S, Wang L, Yan S. The multi-BRCT domain protein DDRM2 promotes the recruitment of RAD51 to DNA damage sites to facilitate homologous recombination. THE NEW PHYTOLOGIST 2023; 238:1073-1084. [PMID: 36727295 DOI: 10.1111/nph.18787] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
DNA double-strand breaks (DSBs) are the most toxic form of DNA damage in cells. Homologous recombination (HR) is an error-free repair mechanism for DSBs as well as a basis for gene targeting using genome-editing techniques. Despite the importance of HR, the HR mechanism in plants is poorly understood. Through genetic screens for DNA damage response mutants (DDRMs), we find that the Arabidopsis ddrm2 mutant is hypersensitive to DSB-inducing reagents. DDRM2 encodes a protein with four BRCA1 C-terminal (BRCT) domains and is highly conserved in plants including bryophytes, the earliest land plant lineage. The plant-specific transcription factor SOG1 binds to the promoter of DDRM2 and activates its expression. In consistence, the expression of DDRM2 is induced by DSBs in a SOG1-dependent manner. In support, genetic analysis suggests that DDRM2 functions downstream of SOG1. Similar to the sog1 mutant, the ddrm2 mutant shows dramatically reduced HR efficiency. Mechanistically, DDRM2 interacts with the core HR protein RAD51 and is required for the recruitment of RAD51 to DSB sites. Our study reveals that SOG1-DDRM2-RAD51 is a novel module for HR, providing a potential target for improving the efficiency of gene targeting.
Collapse
Affiliation(s)
- Chen Yu
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Longhui Hou
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Yongchi Huang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiaoyu Cui
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Shijun Xu
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Lili Wang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518000, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
24
|
Pagano P, Pagano A, Paternolli S, Balestrazzi A, Macovei A. Integrative Transcriptomics Data Mining to Explore the Functions of TDP1α and TDP1β Genes in the Arabidopsis thaliana Model Plant. Genes (Basel) 2023; 14:genes14040884. [PMID: 37107642 PMCID: PMC10137840 DOI: 10.3390/genes14040884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The tyrosyl-DNA phosphodiesterase 1 (TDP1) enzyme hydrolyzes the phosphodiester bond between a tyrosine residue and the 3'-phosphate of DNA in the DNA-topoisomerase I (TopI) complex, being involved in different DNA repair pathways. A small TDP1 gene subfamily is present in plants, where TDP1α has been linked to genome stability maintenance, while TDP1β has unknown functions. This work aimed to comparatively investigate the function of the TDP1 genes by taking advantage of the rich transcriptomics databases available for the Arabidopsis thaliana model plant. A data mining approach was carried out to collect information regarding gene expression in different tissues, genetic backgrounds, and stress conditions, using platforms where RNA-seq and microarray data are deposited. The gathered data allowed us to distinguish between common and divergent functions of the two genes. Namely, TDP1β seems to be involved in root development and associated with gibberellin and brassinosteroid phytohormones, whereas TDP1α is more responsive to light and abscisic acid. During stress conditions, both genes are highly responsive to biotic and abiotic treatments in a time- and stress-dependent manner. Data validation using gamma-ray treatments applied to Arabidopsis seedlings indicated the accumulation of DNA damage and extensive cell death associated with the observed changes in the TDP1 genes expression profiles.
Collapse
Affiliation(s)
- Paola Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Andrea Pagano
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Stefano Paternolli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Alma Balestrazzi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
25
|
Goldy C, Barrera V, Taylor I, Buchensky C, Vena R, Benfey PN, De Veylder L, Rodriguez RE. SCARECROW-LIKE28 modulates organ growth in Arabidopsis by controlling mitotic cell cycle exit, endoreplication, and cell expansion dynamics. THE NEW PHYTOLOGIST 2023; 237:1652-1666. [PMID: 36451535 DOI: 10.1111/nph.18650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The processes that contribute to plant organ morphogenesis are spatial-temporally organized. Within the meristem, mitosis produces new cells that subsequently engage in cell expansion and differentiation programs. The latter is frequently accompanied by endoreplication, being an alternative cell cycle that replicates the DNA without nuclear division, causing a stepwise increase in somatic ploidy. Here, we show that the Arabidopsis SCL28 transcription factor promotes organ growth by modulating cell expansion dynamics in both root and leaf cells. Gene expression studies indicated that SCL28 regulates members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) family, encoding cyclin-dependent kinase inhibitors with a role in promoting mitotic cell cycle (MCC) exit and endoreplication, both in response to developmental and environmental cues. Consistent with this role, mutants in SCL28 displayed reduced endoreplication, both in roots and leaves. We also found evidence indicating that SCL28 co-expresses with and regulates genes related to the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall. Our results suggest that SCL28 controls, not only cell proliferation as reported previously but also cell expansion and differentiation by promoting MCC exit and endoreplication and by modulating aspects of the biogenesis, assembly, and remodeling of the cytoskeleton and cell wall.
Collapse
Affiliation(s)
- Camila Goldy
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Virginia Barrera
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Isaiah Taylor
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Celeste Buchensky
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Rodrigo Vena
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, 9052, Belgium
| | - Ramiro E Rodriguez
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| |
Collapse
|
26
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
27
|
Hu Y, Rosado D, Lindbäck LN, Micko J, Pedmale UV. Cryptochromes and UBP12/13 deubiquitinases antagonistically regulate DNA damage response in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.15.524001. [PMID: 36712126 PMCID: PMC9882212 DOI: 10.1101/2023.01.15.524001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cryptochromes (CRYs) are evolutionarily conserved blue-light receptors that evolved from bacterial photolyases that repair damaged DNA. Today, CRYs have lost their ability to repair damaged DNA; however, prior reports suggest that human CRYs can respond to DNA damage. Currently, the role of CRYs in the DNA damage response (DDR) is lacking, especially in plants. Therefore, we evaluated the role of plant CRYs in DDR along with UBP12/13 deubiquitinases, which interact with and regulate the CRY2 protein. We found that cry1cry2 was hypersensitive, while ubp12ubp13 was hyposensitive to UVC-induced DNA damage. Elevated UV-induced cyclobutane pyrimidine dimers (CPDs) and the lack of DNA repair protein RAD51 accumulation in cry1cry2 plants indicate that CRYs are required for DNA repair. On the contrary, CPD levels diminished and RAD51 protein levels elevated in plants lacking UBP12 and UBP13, indicating their role in DDR repression. Temporal transcriptomic analysis revealed that DDR-induced transcriptional responses were subdued in cry1cry2, but elevated in ubp12ubp13 compared to WT. Through transcriptional modeling of the time-course transcriptome, we found that genes quickly induced by UVC (15 min) are targets of CAMTA 1-3 transcription factors, which we found are required for DDR. This transcriptional regulation seems, however, diminished in the cry1cry2 mutant, indicating that CAMTAs are required for CRY2-mediated DDR. Furthermore, we observed enhanced CRY2-UBP13 interaction and formation of CRY2 nuclear speckles under UVC, suggesting that UVC activates CRY2 similarly to blue light. Together, our data reveal the temporal dynamics of the transcriptional events underlying UVC-induced genotoxicity and expand our knowledge of the role of CRY and UBP12/13 in DDR.
Collapse
Affiliation(s)
- Yuzhao Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Daniele Rosado
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Louise N. Lindbäck
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Julie Micko
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| | - Ullas V. Pedmale
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724
| |
Collapse
|
28
|
Meng X, Wang Q, Hao R, Li X, Li M, Hu R, Du H, Hu Z, Yu B, Li S. RNA-binding protein MAC5A interacts with the 26S proteasome to regulate DNA damage response in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:446-462. [PMID: 36331331 PMCID: PMC9806599 DOI: 10.1093/plphys/kiac510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
DNA damage response (DDR) in eukaryotes is essential for the maintenance of genome integrity in challenging environments. The regulatory mechanisms of DDR have been well-established in yeast and humans. However, increasing evidence supports the idea that plants seem to employ different signaling pathways that remain largely unknown. Here, we report the role of MODIFIER OF SNC1, 4-ASSOCIATED COMPLEX SUBUNIT 5A (MAC5A) in DDR in Arabidopsis (Arabidopsis thaliana). Lack of MAC5A in mac5a mutants causes hypersensitive phenotypes to methyl methanesulfonate (MMS), a DNA damage inducer. Consistent with this observation, MAC5A can regulate alternative splicing of DDR genes to maintain the proper response to genotoxic stress. Interestingly, MAC5A interacts with the 26S proteasome (26SP) and is required for its proteasome activity. MAC core subunits are also involved in MMS-induced DDR. Moreover, we find that MAC5A, the MAC core subunits, and 26SP may act collaboratively to mediate high-boron-induced growth repression through DDR. Collectively, our findings uncover the crucial role of MAC in MMS-induced DDR in orchestrating growth and stress adaptation in plants.
Collapse
Affiliation(s)
- Xiangxiang Meng
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Quanhui Wang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Ruili Hao
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xudong Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mu Li
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Ruibo Hu
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Bin Yu
- School of Biological Sciences & Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0666, USA
| | - Shengjun Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
29
|
Gouesbet G. Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. Methods Mol Biol 2023; 2642:257-294. [PMID: 36944884 DOI: 10.1007/978-1-0716-3044-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plant functioning and responses to abiotic stresses largely involve regulations at the transcriptomic level via complex interactions of signal molecules, signaling cascades, and regulators. Nevertheless, all the signaling networks involved in responses to abiotic stresses have not yet been fully established. The in-depth analysis of transcriptomes in stressed plants has become a relevant state-of-the-art methodology to study these regulations and signaling pathways that allow plants to cope with or attempt to survive abiotic stresses. The plant science and molecular biology community has developed databases about genes, proteins, protein-protein interactions, protein-DNA interactions and ontologies, which are valuable sources of knowledge for deciphering such regulatory and signaling networks. The use of these data and the development of bioinformatics tools help to make sense of transcriptomic data in specific contexts, such as that of abiotic stress signaling, using functional biological approaches. The aim of this chapter is to present and assess some of the essential online tools and resources that will allow novices in bioinformatics to decipher transcriptomic data in order to characterize the cellular processes and functions involved in abiotic stress responses and signaling. The analysis of case studies further describes how these tools can be used to conceive signaling networks on the basis of transcriptomic data. In these case studies, particular attention was paid to the characterization of abiotic stress responses and signaling related to chemical and xenobiotic stressors.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)] - UMR 6553, Rennes, France.
| |
Collapse
|
30
|
Zhang A, Xiong Y, Fang J, Liu K, Peng H, Zhang X. Genome-wide identification and expression analysis of peach multiple organellar RNA editing factors reveals the roles of RNA editing in plant immunity. BMC PLANT BIOLOGY 2022; 22:583. [PMID: 36513981 PMCID: PMC9746024 DOI: 10.1186/s12870-022-03982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Multiple organellar RNA editing factor (MORF) genes play key roles in chloroplast developmental processes by mediating RNA editing of Cytosine-to-Uracil conversion. However, the function of MORF genes in peach (Prunus persica), a perennial horticultural crop species of Rosaceae, is still not well known, particularly the resistance to biotic and abiotic stresses that threaten peach yield seriously. RESULTS In this study, to reveal the regulatory roles of RNA editing in plant immunity, we implemented genome-wide analysis of peach MORF (PpMORF) genes in response to biotic and abiotic stresses. The chromosomal and subcellular location analysis showed that the identified seven PpMORF genes distributed on three peach chromosomes were mainly localized in the mitochondria and chloroplast. All the PpMORF genes were classified into six groups and one pair of PpMORF genes was tandemly duplicated. Based on the meta-analysis of two types of public RNA-seq data under different treatments (biotic and abiotic stresses), we observed down-regulated expression of PpMORF genes and reduced chloroplast RNA editing, especially the different response of PpMORF2 and PpMORF9 to pathogens infection between resistant and susceptible peach varieties, indicating the roles of MORF genes in stress response by modulating the RNA editing extent in plant immunity. Three upstream transcription factors (MYB3R-1, ZAT10, HSFB3) were identified under both stresses, they may regulate resistance adaption by modulating the PpMORF gene expression. CONCLUSION These results provided the foundation for further analyses of the functions of MORF genes, in particular the roles of RNA editing in plant immunity. In addition, our findings will be conducive to clarifying the resistance mechanisms in peaches and open up avenues for breeding new cultivars with high resistance.
Collapse
Affiliation(s)
- Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuhong Xiong
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kangchen Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huixiang Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
31
|
Vladejić J, Yang F, Dvořák Tomaštíková E, Doležel J, Palecek JJ, Pecinka A. Analysis of BRCT5 domain-containing proteins reveals a new component of DNA damage repair in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1023358. [PMID: 36578335 PMCID: PMC9791218 DOI: 10.3389/fpls.2022.1023358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The integrity of plant genetic information is constantly challenged by various internal and external factors. Therefore, plants use a sophisticated molecular network to identify, signal and repair damaged DNA. Here, we report on the identification and analysis of four uncharacterized Arabidopsis BRCT5 DOMAIN CONTAINING PROTEINs (BCPs). Proteins with the BRCT5 domain are frequently involved in the maintenance of genome stability across eukaryotes. The screening for sensitivity to induced DNA damage identified BCP1 as the most interesting candidate. We show that BCP1 loss of function mutants are hypersensitive to various types of DNA damage and accumulate an increased number of dead cells in root apical meristems upon DNA damage. Analysis of publicly available sog1 transcriptomic and SOG1 genome-wide DNA binding data revealed that BCP1 is inducible by gamma radiation and is a direct target of this key DNA damage signaling transcription factor. Importantly, bcp1 plants showed a reduced frequency of somatic homologous recombination in response to both endogenous and induced DNA damage. Altogether, we identified a novel plant-specific DNA repair factor that acts downstream of SOG1 in homology-based repair.
Collapse
Affiliation(s)
- Jovanka Vladejić
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czechia
| | - Fen Yang
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Eva Dvořák Tomaštíková
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czechia
| | - Jaroslav Doležel
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czechia
| | - Jan J. Palecek
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc, Czechia
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
32
|
Podlutskii M, Babina D, Podobed M, Bondarenko E, Bitarishvili S, Blinova Y, Shesterikova E, Prazyan A, Turchin L, Garbaruk D, Kudin M, Duarte GT, Volkova P. Arabidopsis thaliana Accessions from the Chernobyl Exclusion Zone Show Decreased Sensitivity to Additional Acute Irradiation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3142. [PMID: 36432872 PMCID: PMC9697804 DOI: 10.3390/plants11223142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Chronic ionising radiation exposure is a main consequence of radioactive pollution of the environment. The development of functional genomics approaches coupled with morphological and physiological studies allows new insights into plant adaptation to life under chronic irradiation. Using morphological, reproductive, physiological, and transcriptomic experiments, we evaluated the way in which Arabidopsis thaliana natural accessions from the Chernobyl exclusion zone recover from chronic low-dose and acute high-dose γ-irradiation of seeds. Plants from radioactively contaminated areas were characterized by lower germination efficiency, suppressed growth, decreased chlorophyll fluorescence, and phytohormonal changes. The transcriptomes of plants chronically exposed to low-dose radiation indicated the repression of mobile genetic elements and deregulation of genes related to abiotic stress tolerance. Furthermore, these chronically irradiated natural accessions showed higher tolerance to acute 150 Gy γ-irradiation of seeds, according to transcriptome and phytohormonal profiles. Overall, the lower sensitivity of the accessions from radioactively contaminated areas to acute high-dose irradiation may come at the cost of their growth performance under normal conditions.
Collapse
Affiliation(s)
| | - Darya Babina
- Russian Institute of Radiology and Agroecology, 249032 Obninsk, Russia
| | - Marina Podobed
- Russian Institute of Radiology and Agroecology, 249032 Obninsk, Russia
| | | | | | - Yana Blinova
- Russian Institute of Radiology and Agroecology, 249032 Obninsk, Russia
| | | | - Alexander Prazyan
- Russian Institute of Radiology and Agroecology, 249032 Obninsk, Russia
| | - Larisa Turchin
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Dmitrii Garbaruk
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Maxim Kudin
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Gustavo T. Duarte
- Belgian Nuclear Research Centre (SCK CEN), Unit for Biosphere Impact Studies, 2400 Mol, Belgium
| | | |
Collapse
|
33
|
Meschichi A, Zhao L, Reeck S, White C, Da Ines O, Sicard A, Pontvianne F, Rosa S. The plant-specific DDR factor SOG1 increases chromatin mobility in response to DNA damage. EMBO Rep 2022; 23:e54736. [PMID: 36278395 PMCID: PMC9724665 DOI: 10.15252/embr.202254736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
Homologous recombination (HR) is a conservative DNA repair pathway in which intact homologous sequences are used as a template for repair. How the homology search happens in the crowded space of the cell nucleus is, however, still poorly understood. Here, we measure chromosome and double-strand break (DSB) site mobility in Arabidopsis thaliana, using lacO/LacI lines and two GFP-tagged HR reporters. We observe an increase in chromatin mobility upon the induction of DNA damage, specifically at the S/G2 phases of the cell cycle. This increase in mobility is lost in the sog1-1 mutant, a central transcription factor of the DNA damage response in plants. Also, DSB sites show particularly high mobility levels and their enhanced mobility requires the HR factor RAD54. Our data suggest that repair mechanisms promote chromatin mobility upon DNA damage, implying a role of this process in the early steps of the DNA damage response.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Lihua Zhao
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Svenja Reeck
- John Innes Centre, Norwich Research ParkNorwichUK
| | - Charles White
- Institut Génétique Reproduction et Développement (iGReD)Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERMClermont‐FerrandFrance
| | - Olivier Da Ines
- Institut Génétique Reproduction et Développement (iGReD)Université Clermont Auvergne, UMR 6293, CNRS, U1103 INSERMClermont‐FerrandFrance
| | - Adrien Sicard
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| | - Frédéric Pontvianne
- CNRS, Laboratoire Génome et Développement des Plantes (LGDP)Université de Perpignan Via DomitiaPerpignanFrance
| | - Stefanie Rosa
- Plant Biology DepartmentSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
34
|
de Luxán-Hernández C, Lohmann J, Tranque E, Chumova J, Binarova P, Salinas J, Weingartner M. MDF is a conserved splicing factor and modulates cell division and stress response in Arabidopsis. Life Sci Alliance 2022; 6:6/1/e202201507. [PMID: 36265897 PMCID: PMC9585968 DOI: 10.26508/lsa.202201507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
The coordination of cell division with stress response is essential for maintaining genome stability in plant meristems. Proteins involved in pre-mRNA splicing are important for these processes in animal and human cells. Based on its homology to the splicing factor SART1, which is implicated in the control of cell division and genome stability in human cells, we analyzed if MDF has similar functions in plants. We found that MDF associates with U4/U6.U5 tri-snRNP proteins and is essential for correct splicing of 2,037 transcripts. Loss of MDF function leads to cell division defects and cell death in meristems and was associated with up-regulation of stress-induced genes and down-regulation of mitotic regulators. In addition, the mdf-1 mutant is hypersensitive to DNA damage treatment supporting its role in coordinating stress response with cell division. Our analysis of a dephosphomutant of MDF suggested how its protein activity might be controlled. Our work uncovers the conserved function of a plant splicing factor and provides novel insight into the interplay of pre-mRNA processing and genome stability in plants.
Collapse
Affiliation(s)
| | - Julia Lohmann
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Eduardo Tranque
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Jana Chumova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavla Binarova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas “Margarita Salas” (CSIC), Madrid, Spain
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
35
|
A combination of plasma membrane sterol biosynthesis and autophagy is required for shade-induced hypocotyl elongation. Nat Commun 2022; 13:5659. [PMID: 36216814 PMCID: PMC9550796 DOI: 10.1038/s41467-022-33384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 09/15/2022] [Indexed: 12/04/2022] Open
Abstract
Plant growth ultimately depends on fixed carbon, thus the available light for photosynthesis. Due to canopy light absorption properties, vegetative shade combines low blue (LB) light and a low red to far-red ratio (LRFR). In shade-avoiding plants, these two conditions independently trigger growth adaptations to enhance light access. However, how these conditions, differing in light quality and quantity, similarly promote hypocotyl growth remains unknown. Using RNA sequencing we show that these two features of shade trigger different transcriptional reprogramming. LB induces starvation responses, suggesting a switch to a catabolic state. Accordingly, LB promotes autophagy. In contrast, LRFR induced anabolism including expression of sterol biosynthesis genes in hypocotyls in a manner dependent on PHYTOCHROME-INTERACTING FACTORs (PIFs). Genetic analyses show that the combination of sterol biosynthesis and autophagy is essential for hypocotyl growth promotion in vegetative shade. We propose that vegetative shade enhances hypocotyl growth by combining autophagy-mediated recycling and promotion of specific lipid biosynthetic processes. Plants subject to vegetative shade receive a low quantity of blue light (LB) and a low ratio of red to far-red light (LFLR). Here the authors show that while LB induces autophagy, LFLR leads to changes in lipid metabolism, and propose that these processes may contribute to shade avoidance responses.
Collapse
|
36
|
DMC1 attenuates RAD51-mediated recombination in Arabidopsis. PLoS Genet 2022; 18:e1010322. [PMID: 36007010 PMCID: PMC9451096 DOI: 10.1371/journal.pgen.1010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/07/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Ensuring balanced distribution of chromosomes in gametes, meiotic recombination is essential for fertility in most sexually reproducing organisms. The repair of the programmed DNA double strand breaks that initiate meiotic recombination requires two DNA strand-exchange proteins, RAD51 and DMC1, to search for and invade an intact DNA molecule on the homologous chromosome. DMC1 is meiosis-specific, while RAD51 is essential for both mitotic and meiotic homologous recombination. DMC1 is the main catalytically active strand-exchange protein during meiosis, while this activity of RAD51 is downregulated. RAD51 is however an essential cofactor in meiosis, supporting the function of DMC1. This work presents a study of the mechanism(s) involved in this and our results point to DMC1 being, at least, a major actor in the meiotic suppression of the RAD51 strand-exchange activity in plants. Ectopic expression of DMC1 in somatic cells renders plants hypersensitive to DNA damage and specifically impairs RAD51-dependent homologous recombination. DNA damage-induced RAD51 focus formation in somatic cells is not however suppressed by ectopic expression of DMC1. Interestingly, DMC1 also forms damage-induced foci in these cells and we further show that the ability of DMC1 to prevent RAD51-mediated recombination is associated with local assembly of DMC1 at DNA breaks. In support of our hypothesis, expression of a dominant negative DMC1 protein in meiosis impairs RAD51-mediated DSB repair. We propose that DMC1 acts to prevent RAD51-mediated recombination in Arabidopsis and that this down-regulation requires local assembly of DMC1 nucleofilaments. Essential for fertility and responsible for a major part of genetic variation in sexually reproducing species, meiotic recombination establishes the physical linkages between homologous chromosomes which ensure their balanced segregation in the production of gametes. These linkages, or chiasmata, result from DNA strand exchange catalyzed by the RAD51 and DMC1 recombinases and their numbers and distribution are tightly regulated. Essential for maintaining chromosomal integrity in mitotic cells, the strand-exchange activity of RAD51 is downregulated in meiosis, where it plays a supporting role to the activity of DMC1. Notwithstanding considerable attention from the genetics community, precisely why this is done and the mechanisms involved are far from being fully understood. We show here in the plant Arabidopsis that DMC1 can downregulate RAD51 strand-exchange activity and propose that this may be a general mechanism for suppression of RAD51-mediated recombination in meiosis.
Collapse
|
37
|
Abstract
The desiccated, quiescent state of seeds confers extended survival of the embryonic plant. However, accumulation of striking levels of genome damage in quiescence impairs germination and threatens plant survival. The mechanisms by which seeds mitigate this damage remain unclear. Here, we reveal that imbibed Arabidopsis seeds display high resistance to DNA damage, which is lost as seeds advance to germination, coincident with increasing cell cycle activity. In contrast to seedlings, we show that seeds minimize the impact of DNA damage by reducing meristem disruption and delaying SOG1-dependent programmed cell death. This promotes root growth early postgermination. In response to naturally accumulated DNA damage in aging seeds, SOG1 activates cell death postgermination. SOG1 activities are also important for promoting successful seedling establishment. These distinct cellular responses of seeds and seedlings are reflected by different DNA damage transcriptional profiles. Comparative analysis of DNA repair mutants identifies roles of the major genome maintenance pathways in germination but that the repair of cytotoxic chromosomal breaks is the most important for seed longevity. Collectively, these results indicate that high levels of DNA damage incurred in seeds are countered by low cell cycle activity, cell cycle checkpoints, and DNA repair, promoting successful seedling establishment. Our findings reveal insight into both the physiological significance of plant DNA damage responses and the mechanisms which maintain seed longevity, important for survival of plant populations in the natural environment and sustainable crop production under changing climates.
Collapse
|
38
|
Kong J, Garcia V, Zehraoui E, Stammitti L, Hilbert G, Renaud C, Maury S, Delaunay A, Cluzet S, Lecourieux F, Lecourieux D, Teyssier E, Gallusci P. Zebularine, a DNA Methylation Inhibitor, Activates Anthocyanin Accumulation in Grapevine Cells. Genes (Basel) 2022; 13:genes13071256. [PMID: 35886036 PMCID: PMC9316115 DOI: 10.3390/genes13071256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Through its role in the regulation of gene expression, DNA methylation can participate in the control of specialized metabolite production. We have investigated the link between DNA methylation and anthocyanin accumulation in grapevine using the hypomethylating drug, zebularine and Gamay Teinturier cell suspensions. In this model, zebularine increased anthocyanin accumulation in the light, and induced its production in the dark. To unravel the underlying mechanisms, cell transcriptome, metabolic content, and DNA methylation were analyzed. The up-regulation of stress-related genes, as well as a decrease in cell viability, revealed that zebularine affected cell integrity. Concomitantly, the global DNA methylation level was only slightly decreased in the light and not modified in the dark. However, locus-specific analyses demonstrated a decrease in DNA methylation at a few selected loci, including a CACTA DNA transposon and a small region upstream from the UFGT gene, coding for the UDP glucose:flavonoid-3-O-glucosyltransferase, known to be critical for anthocyanin biosynthesis. Moreover, this decrease was correlated with an increase in UFGT expression and in anthocyanin content. In conclusion, our data suggest that UFGT expression could be regulated through DNA methylation in Gamay Teinturier, although the functional link between changes in DNA methylation and UFGT transcription still needs to be demonstrated.
Collapse
Affiliation(s)
- Junhua Kong
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Virginie Garcia
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Enric Zehraoui
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Linda Stammitti
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Ghislaine Hilbert
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Christel Renaud
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Stéphane Maury
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France; (S.M.); (A.D.)
| | - Alain Delaunay
- INRAe, EA1207 USC1328 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’Orléans, 45067 Orléans, France; (S.M.); (A.D.)
| | - Stéphanie Cluzet
- Unité de Recherche Oenologie, Faculté des Sciences Pharmaceutiques, University Bordeaux, EA4577, USC 1366 INRA, Equipe Molécules d’Intérêt Biologique (GESVAB), ISVV, CEDEX, 33882 Villenave d’Ornon, France;
| | - Fatma Lecourieux
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - David Lecourieux
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| | - Emeline Teyssier
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
- Correspondence: ; Tel.: +33-5-5757-5928
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, Université de Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leysotte—33140 Villenave d’Ornon, France; (J.K.); (V.G.); (E.Z.); (L.S.); (G.H.); (C.R.); (F.L.); (D.L.); (P.G.)
| |
Collapse
|
39
|
Siqueira JA, Silva MF, Wakin T, Nunes-Nesi A, Araújo WL. Metabolic and DNA checkpoints for the enhancement of Al tolerance. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128366. [PMID: 35168102 DOI: 10.1016/j.jhazmat.2022.128366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acidic soils are a major limiting factor for food production in many developing countries. High concentrations of soluble Al cations, particularly Al3+, inhibit cell division and root elongation in plants. Al3+ damages several biomolecules, including DNA, impairing gene expression and cell cycle progression. Notably, the loss-of-function mutants of DNA checkpoints may mediate Al tolerance. Furthermore, mitochondrial organic acids play key roles in neutralizing Al3+ within the cell and around the rhizosphere. Here, we provide knowledge synthesis on interactions between checkpoints related to mitochondrial organic acid homeostasis and DNA integrity mediating Al tolerance in land plants. These interactions, coupled with remarkable advances in tools related to metabolism and cell cycle, may facilitate the development of next-generation productive crops under Al toxicity.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Marcelle Ferreira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
40
|
Pagano A, Gualtieri C, Mutti G, Raveane A, Sincinelli F, Semino O, Balestrazzi A, Macovei A. Identification and Characterization of SOG1 (Suppressor of Gamma Response 1) Homologues in Plants Using Data Mining Resources and Gene Expression Profiling. Genes (Basel) 2022; 13:667. [PMID: 35456473 PMCID: PMC9026448 DOI: 10.3390/genes13040667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/10/2022] Open
Abstract
SOG1 (Suppressor of the Gamma response 1) is the master-regulator of plant DNA damage response (DDR), a highly coordinated network of DNA damage sensors, transducers, mediators, and effectors, with highly coordinated activities. SOG1 transcription factor belongs to the NAC/NAM protein family, containing the well-conserved NAC domain and five serine-glutamine (SQ) motifs, preferential targets for phosphorylation by ATM and ATR. So far, the information gathered for the SOG1 function comes from studies on the model plant Arabidopsis thaliana. To expand the knowledge on plant-specific DDR, it is opportune to gather information on other SOG1 orthologues. The current study identified plants where multiple SOG1 homologues are present and evaluated their functions by leveraging the information contained in publicly available transcriptomics databases. This analysis revealed the presence of multiple SOG1 sequences in thirteen plant species, and four (Medicago truncatula, Glycine max, Kalankoe fedtschenkoi, Populus trichocarpa) were selected for gene expression data mining based on database availability. Additionally, M. truncatula seeds and seedlings exposed to treatments known to activate DDR pathways were used to evaluate the expression profiles of MtSOG1a and MtSOG1b. The experimental workflow confirmed the data retrieved from transcriptomics datasets, suggesting that the SOG1 homologues have redundant functions in different plant species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anca Macovei
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (A.P.); (C.G.); (G.M.); (A.R.); (F.S.); (O.S.); (A.B.)
| |
Collapse
|
41
|
Gómez MS, Sheridan ML, Casati P. E2Fb and E2Fa transcription factors independently regulate the DNA damage response after ultraviolet B exposure in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1098-1115. [PMID: 34859915 DOI: 10.1111/tpj.15616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet (UV)B radiation affects plant growth inhibiting cell proliferation. This inhibition is in part controlled by the activity of transcription factors from the E2F family. In particular, the participation of E2Fc and E2Fe in UV-B responses in Arabidopsis plants was previously reported. However, the E2Fa and E2Fb contribution to these processes has still not been investigated. Thus, in this work, we provide evidence that, in Arabidopsis, both E2Fa and E2Fb control leaf size under UV-B conditions without participating in the repair of cyclobutane pyrimidine dimers in the DNA. Nevertheless, in UV-B-exposed seedlings, E2Fa, but not E2Fb, regulates primary root elongation, cell proliferation, and programmed cell death in the meristematic zone. Using e2fa mutants that overexpress E2Fb, we showed that the role of E2Fa in the roots could not be replaced by E2Fb. Finally, our results show that E2Fa and E2Fb differentially regulate the expression of genes that activate the DNA damage response and cell cycle progression, both under conditions without UV-B and after exposure. Overall, we showed that both E2Fa and E2Fb have different and non-redundant roles in developmental and DNA damage responses in Arabidopsis plants exposed to UV-B.
Collapse
Affiliation(s)
- María Sol Gómez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| | - María Luján Sheridan
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, 2000, Argentina
| |
Collapse
|
42
|
DNA Double-Strand Break Repairs and Their Application in Plant DNA Integration. Genes (Basel) 2022; 13:genes13020322. [PMID: 35205367 PMCID: PMC8871565 DOI: 10.3390/genes13020322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 01/25/2023] Open
Abstract
Double-strand breaks (DSBs) are considered to be one of the most harmful and mutagenic forms of DNA damage. They are highly toxic if unrepaired, and can cause genome rearrangements and even cell death. Cells employ two major pathways to repair DSBs: homologous recombination (HR) and non-homologous end-joining (NHEJ). In plants, most applications of genome modification techniques depend on the development of DSB repair pathways, such as Agrobacterium-mediated transformation (AMT) and gene targeting (GT). In this paper, we review the achieved knowledge and recent advances on the DNA DSB response and its main repair pathways; discuss how these pathways affect Agrobacterium-mediated T-DNA integration and gene targeting in plants; and describe promising strategies for producing DSBs artificially, at definite sites in the genome.
Collapse
|
43
|
Li J, Liang W, Liu Y, Ren Z, Ci D, Chang J, Qian W. The Arabidopsis ATR-SOG1 signaling module regulates pleiotropic developmental adjustments in response to 3'-blocked DNA repair intermediates. THE PLANT CELL 2022; 34:852-866. [PMID: 34791445 PMCID: PMC8824664 DOI: 10.1093/plcell/koab282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/08/2021] [Indexed: 06/01/2023]
Abstract
Base excision repair and active DNA demethylation produce repair intermediates with DNA molecules blocked at the 3'-OH end by an aldehyde or phosphate group. However, both the physiological consequences of these accumulated single-strand DNAs break with 3'-blocked ends (DNA 3'-blocks) and the signaling pathways responding to unrepaired DNA 3'-blocks remain unclear in plants. Here, we investigated the effects of DNA 3'-blocks on plant development using the zinc finger DNA 3'-phosphoesterase (zdp) AP endonuclease2 (ape2) double mutant, in which 3'-blocking residues are poorly repaired. The accumulation of DNA 3'-blocked triggered diverse developmental defects that were dependent on the ATM and RAD3-related (ATR)-suppressor of gamma response 1 (SOG1) signaling module. SOG1 mutation rescued the developmental defects of zdp ape2 leaves by preventing cell endoreplication and promoting cell proliferation. However, SOG1 mutation caused intensive meristematic cell death in the radicle of zdp ape2 following germination, resulting in rapid termination of radicle growth. Notably, mutating FORMAMIDOPYRIMIDINE DNA GLYCOSYLASE (FPG) in zdp ape2 sog1 partially recovered its radicle growth, demonstrating that DNA 3'-blocks generated by FPG caused the meristematic defects. Surprisingly, despite lacking a functional radicle, zdp ape2 sog1 mutants compensated the lack of root growth by generating anchor roots having low levels of DNA damage response. Our results reveal dual roles of SOG1 in regulating root establishment when seeds germinate with excess DNA 3'-blocks.
Collapse
Affiliation(s)
- Jinchao Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenjie Liang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Liu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhitong Ren
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Dong Ci
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jinjie Chang
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Wang Y, Wang J, Lv Q, He YK. ADH2/GSNOR1 is a key player in limiting genotoxic damage mediated by formaldehyde and UV-B in Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:378-391. [PMID: 34919280 DOI: 10.1111/pce.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Maintenance of genome stability is an essential requirement for all living organisms. Formaldehyde and UV-B irradiation cause DNA damage and affect genome stability, growth and development, but the interplay between these two genotoxic factors is poorly understood in plants. We show that Arabidopsis adh2/gsnor1 mutant, which lacks alcohol dehydrogenase 2/S-nitrosoglutathione reductase 1 (ADH2/GSNOR1), are hypersensitive to low fluence UV-B irradiation or UV-B irradiation-mimetic chemicals. Although the ADH2/GSNOR1 enzyme can act on different substrates, notably on S-hydroxymethylglutathione (HMG) and S-nitrosoglutathione (GSNO), our study provides several lines of evidence that the sensitivity of gsnor1 to UV-B is caused mainly by UV-B-induced formaldehyde accumulation rather than other factors such as alteration of the GSNO concentration. Our results demonstrate an interplay between formaldehyde and UV-B that exacerbates genome instability, leading to severe DNA damage and impaired growth and development in Arabidopsis, and show that ADH2/GSNOR1 is a key player in combating these effects.
Collapse
Affiliation(s)
- Yu Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Botany and Plant Sciences, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yi-Kun He
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
45
|
Pedroza-Garcia JA, Xiang Y, De Veylder L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:490-507. [PMID: 34741364 DOI: 10.1111/tpj.15567] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Being sessile organisms, plants are ubiquitously exposed to stresses that can affect the DNA replication process or cause DNA damage. To cope with these problems, plants utilize DNA damage response (DDR) pathways, consisting of both highly conserved and plant-specific elements. As a part of this DDR, cell cycle checkpoint control mechanisms either pause the cell cycle, to allow DNA repair, or lead cells into differentiation or programmed cell death, to prevent the transmission of DNA errors in the organism through mitosis or to its offspring via meiosis. The two major DDR cell cycle checkpoints control either the replication process or the G2/M transition. The latter is largely overseen by the plant-specific SOG1 transcription factor, which drives the activity of cyclin-dependent kinase inhibitors and MYB3R proteins, which are rate limiting for the G2/M transition. By contrast, the replication checkpoint is controlled by different players, including the conserved kinase WEE1 and likely the transcriptional repressor RBR1. These checkpoint mechanisms are called upon during developmental processes, in retrograde signaling pathways, and in response to biotic and abiotic stresses, including metal toxicity, cold, salinity, and phosphate deficiency. Additionally, the recent expansion of research from Arabidopsis to other model plants has revealed species-specific aspects of the DDR. Overall, it is becoming evidently clear that the DNA damage checkpoint mechanisms represent an important aspect of the adaptation of plants to a changing environment, hence gaining more knowledge about this topic might be helpful to increase the resilience of plants to climate change.
Collapse
Affiliation(s)
- José Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| |
Collapse
|
46
|
Wang Q, La Y, Xia H, Zhou S, Zhai Z, La H. Roles of MEM1 in safeguarding Arabidopsis genome against DNA damage, inhibiting ATM/SOG1-mediated DNA damage response, and antagonizing global DNA hypermethylation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:87-104. [PMID: 34859586 DOI: 10.1111/jipb.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis methylation elevated mutant 1 (mem1) mutants have elevated levels of global DNA methylation. In this study, such mutant alleles showed increased sensitivity to methyl methanesulfonate (MMS). In mem1 mutants, an assortment of genes engaged in DNA damage response (DDR), especially DNA-repair-associated genes, were largely upregulated without MMS treatment, suggestive of activation of the DDR pathway in them. Following MMS treatment, expression levels of multiple DNA-repair-associated genes in mem1 mutants were generally lower than in Col-0 plants, which accounted for the MMS-sensitive phenotype of the mem1 mutants. A group of DNA methylation pathway genes were upregulated in mem1 mutants under non-MMS-treated conditions, causing elevated global DNA methylation, especially in RNA-directed DNA methylation (RdDM)-targeted regions. Moreover, MEM1 seemed to help ATAXIA-TELANGIECTASIA MUTATED (ATM) and/or SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1) to fully activate/suppress transcription of a subset of genes regulated simultaneously by MEM1 and ATM and/or SOG1, because expression of such genes decreased/increased consistently in mem1 and atm and/or sog1 mutants, but the decreases/increases in the mem1 mutants were not as dramatic as in the atm and/or sog1 mutants. Thus, our studies reveals roles of MEM1 in safeguarding genome, and interrelationships among DNA damage, activation of DDR, DNA methylation/demethylation, and DNA repair.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yumei La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huihui Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoxia Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoyu Zhai
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
47
|
Sheridan ML, Simonelli L, Giustozzi M, Casati P. Ultraviolet-B Radiation Represses Primary Root Elongation by Inhibiting Cell Proliferation in the Meristematic Zone of Arabidopsis Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:829336. [PMID: 35401611 PMCID: PMC8988989 DOI: 10.3389/fpls.2022.829336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/28/2022] [Indexed: 05/13/2023]
Abstract
In Arabidopsis thaliana plants, exposure to UV-B induces an inhibition of primary root elongation. Different mutants have been isolated that are deficient in this response; however, little is known about the cellular and molecular mechanisms that regulate inhibition of root elongation in seedlings exposed to UV-B. In this work, we investigated the effect UV-B irradiation of different organs on primary root elongation. Our results demonstrate that irradiation of the leaves and shoots only induce a partial inhibition of primary root elongation, while when only roots are exposed to this radiation, primary root inhibition is similar as that measured when the complete seedling is irradiated. The consequences of exposure at different root developmental stages and times after the end of the treatment was also studied. We here show that inhibition of primary root elongation is a consequence of a decrease in cell proliferation in the meristematic zone of the primary roots, while the elongation zone size is not affected by the treatment. The decrease in cell number after UV-B exposure is partially compensated by an increase in cell length in the root meristem; however, this compensation is not enough to maintain the meristem size. We also here demonstrate that, similarly as what occurs in developing leaves, GROWTH REGULATING FACTOR 3 (GRF3) transcription factor regulates cell proliferation in UV-B irradiated roots; however, and in contrast to what occurs in the leaves, this response does not depend on the presence of MITOGEN ACTIVATED PROTEIN KINASE 3 (MPK3). Inhibition of primary root elongation by UV-B under our experimental conditions is also independent of the UV-B photoreceptor UV RESISTANT LOCUS 8 (UVR8) or ATAXIA TELANGIECTASIA MUTATED (ATM); but a deficiency in ATM AND RAD3-RELATED (ATR) expression increases UV-B sensitivity in the roots. Finally, our data demonstrate that UV-B affects primary root growth in various Arabidopsis accessions, showing different sensitivities to this radiation.
Collapse
|
48
|
Sakamoto AN, Sakamoto T, Yokota Y, Teranishi M, Yoshiyama KO, Kimura S. SOG1, a plant-specific master regulator of DNA damage responses, originated from nonvascular land plants. PLANT DIRECT 2021; 5:e370. [PMID: 34988354 PMCID: PMC8711748 DOI: 10.1002/pld3.370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 05/03/2023]
Abstract
The suppressor of gamma response 1 (SOG1), a NAM, ATAF1, 2, and CUC2 (NAC)-type transcription factor found in seed plants, is a master regulator of DNA damage responses (DDRs). Upon DNA damage, SOG1 regulates the expression of downstream DDR genes. To know the origin of the DDR network in land plants, we searched for a homolog(s) of SOG1 in a moss Physcomitrium (Physcomitrella) patens and identified PpSOG1a and PpSOG1b. To assess if either or both of them function(s) in DDR, we knocked out the PpSOG1s using CRISPR/Cas9-mediated gene editing and analyzed the responses to DNA-damaging treatments. The double-knockout (KO) sog1a sog1b plants showed resistance to γ-rays, bleomycin, and ultraviolet B (UVB) treatments similarly seen in Arabidopsis sog1 plants. Next, we irradiated wild-type (WT) and KO plants with γ-rays and analyzed the whole transcriptome to examine the effect on the expression of DDR genes. The results revealed that many P. patens genes involved in the checkpoint, DNA repair, replication, and cell cycle-related genes were upregulated after γ-irradiation, which was not seen in sog1a sog1b plant. These results suggest that PpSOG1a and PpSOG1b work redundantly on DDR response in P. patens; in addition, plant-specific DDR systems had been established before the emergence of vascular plants.
Collapse
Affiliation(s)
- Ayako N. Sakamoto
- Department of Radiation‐Applied Biology ResearchNational Institutes for Quantum Science and TechnologyTakasakiGummaJapan
| | - Tomoaki Sakamoto
- Faculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
- Center for Plant SciencesKyoto Sangyo UniversityKyotoJapan
| | - Yuichiro Yokota
- Department of Radiation‐Applied Biology ResearchNational Institutes for Quantum Science and TechnologyTakasakiGummaJapan
| | - Mika Teranishi
- Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | | | - Seisuke Kimura
- Faculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
- Center for Plant SciencesKyoto Sangyo UniversityKyotoJapan
| |
Collapse
|
49
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
50
|
Kumimoto RW, Ellison CT, Toruño TY, Bak A, Zhang H, Casteel CL, Coaker G, Harmer SL. XAP5 CIRCADIAN TIMEKEEPER Affects Both DNA Damage Responses and Immune Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:707923. [PMID: 34659282 PMCID: PMC8517334 DOI: 10.3389/fpls.2021.707923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
Numerous links have been reported between immune response and DNA damage repair pathways in both plants and animals but the precise nature of the relationship between these fundamental processes is not entirely clear. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT), a protein highly conserved across eukaryotes, acts as a negative regulator of immunity in Arabidopsis thaliana and plays a positive role in responses to DNA damaging radiation. We find xct mutants have enhanced resistance to infection by a virulent bacterial pathogen, Pseudomonas syringae pv. tomato DC3000, and are hyper-responsive to the defense-activating hormone salicylic acid (SA) when compared to wild-type. Unlike most mutants with constitutive effector-triggered immunity (ETI), xct plants do not have increased levels of SA and retain enhanced immunity at elevated temperatures. Genetic analysis indicates XCT acts independently of NONEXPRESSOR OF PATHOGENESIS RELATED GENES1 (NPR1), which encodes a known SA receptor. Since DNA damage has been reported to potentiate immune responses, we next investigated the DNA damage response in our mutants. We found xct seedlings to be hypersensitive to UV-C and γ radiation and deficient in phosphorylation of the histone variant H2A.X, one of the earliest known responses to DNA damage. These data demonstrate that loss of XCT causes a defect in an early step of the DNA damage response pathway. Together, our data suggest that alterations in DNA damage response pathways may underlie the enhanced immunity seen in xct mutants.
Collapse
Affiliation(s)
- Roderick W. Kumimoto
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Cory T. Ellison
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Tania Y. Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Aurélie Bak
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Hongtao Zhang
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| | - Clare L. Casteel
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, United States
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Stacey L. Harmer
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|