1
|
Lai Y, Huang C, Wu J, Yang K, Yang L. Ferroptosis in Cancer: A new perspective on T cells. Int Immunopharmacol 2024; 143:113539. [PMID: 39488034 DOI: 10.1016/j.intimp.2024.113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
T cells occupy a pivotal position in the immune response against cancer by recognizing and eliminating cancer cells. However, the tumor microenvironment often suppresses the function of T cells, leading to immune evasion and cancer progression. Recent research has unveiled novel connections among T cells, ferroptosis, and cancer. Ferroptosis is a type of regulated cell death that relies iron and reactive oxygen species and is distinguished by the proliferation of lipid peroxides. Emerging scientific findings underscore the potential of ferroptosis to modulate the function and survival of T cells in the tumor microenvironment. Moreover, T cells or immunotherapy can also affect cancer by modulating ferroptosis in cancer cells. This review delved into the intricate crosstalk between T cells and ferroptosis in the context of cancer, highlighting the molecular mechanisms involved. We also explored the therapeutic potential of targeting ferroptosis to enhance the anticancer immune response mediated by T cells. Understanding the interplay among T cells, ferroptosis, and cancer may provide new insights into developing innovative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuping Lai
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Huankui academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunxia Huang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiaqiang Wu
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kangping Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Liang Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Jin Y, Cai S, Zhou Y, Guo D, Zeng Y, Xu W, Sun Y, Shi Y, Xu Z, Liu Z, Luo P, Huang Z, Tang B. Targeting SLC7A11/xCT improves radiofrequency ablation efficacy of HCC by dendritic cells mediated anti-tumor immune response. IMETA 2024; 3:e248. [PMID: 39742309 PMCID: PMC11683471 DOI: 10.1002/imt2.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 01/03/2025]
Abstract
After RFA treatment in patients with liver cancer, the expression of SLC7A11/xCT and the proportion of DCs in the TME were significantly increased. SLC7A11/xCT is a poor prognostic marker for liver cancer and is mainly expressed in DCs in the TME. Targeting xCT in DCs combined with RFA significantly enhances anti-tumor immunity, suppressing tumor growth and offering a promising strategy for improved therapeutic outcomes in liver cancer.
Collapse
Affiliation(s)
- Yuzhao Jin
- Postgraduate Training BaseWenzhou Medical UniversityWenzhouChina
| | - Songhua Cai
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Yang Zhou
- Department of Gynecologic OncologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Dandan Guo
- Department of OncologyFirst Affiliated Hospital, Dalian Medical UniversityDalianChina
| | - Yuzhen Zeng
- Department of Radiation OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiChina
| | - Wangting Xu
- Department of Respiratory MedicineSir Run Run Shaw Hospital, Zhejiang UniversityHangzhouChina
| | - Yiting Sun
- Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Yueli Shi
- Department of Respiratory and Critical MedicineCenter for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, International Institutes of Medicine, Zhejiang UniversityYiwu CityChina
| | - Zhiyong Xu
- Department of Respiratory and Critical MedicineCenter for Oncology Medicine, The Fourth Affiliated Hospital of School of Medicine, International Institutes of Medicine, Zhejiang UniversityYiwu CityChina
| | - Zaoqu Liu
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peng Luo
- Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Zhao Huang
- Hepatic Surgery CenterTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary DiseasesTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bufu Tang
- Department of OncologyFirst Affiliated Hospital, Dalian Medical UniversityDalianChina
- Department of Radiation OncologyZhongshan Hospital Affiliated to Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Fan T, Shah R, Wang R. Metabolic footprint and logic through the T cell life cycle. Curr Opin Immunol 2024; 91:102487. [PMID: 39307123 PMCID: PMC11609023 DOI: 10.1016/j.coi.2024.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 12/02/2024]
Abstract
A simple definition of life is a system that can self-replicate (proliferation) and self-sustain (metabolism). At the cellular level, metabolism has evolved to drive proliferation, which requires energy and building blocks to duplicate cellular biomass before division. T lymphocytes (or T cells) are required for adaptive immune responses, protecting us against invading and malignant agents capable of hyper-replication. To gain a competitive advantage over these agents, activated T cells can duplicate their biomass and divide into two daughter cells in as short as 2-6 hours, considered the fastest cell division among all cell types in vertebrates. Thus, the primary task of cellular metabolism has evolved to commit available resources to drive T cell hyperproliferation. Beyond that, the T cell life cycle involves an ordered series of fate-determining events that drive cells to transition between discrete cell states. At the life stages not involved in hyperproliferation, T cells engage metabolic programs that are more flexible to sustain viability and maintenance and sometimes are fine-tuned to support specific cellular activities. Here, we focus on the central carbon metabolism, which is most relevant to cell proliferation. We provide examples of how the changes in the central carbon metabolism may or may not change the fate of T cells and further explore a few conceptual frameworks, such as metabolic flexibility, the Goldilocks Principle, overflow metabolism, and effector-signaling metabolites, in the context of T cell fate transitions.
Collapse
Affiliation(s)
- Tingting Fan
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at the Ohio State University, Columbus, OH, USA
| | - Rushil Shah
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at the Ohio State University, Columbus, OH, USA
| | - Ruoning Wang
- Center for Childhood Cancer Research, Hematology/Oncology & BMT, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics at the Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Wu H, Zou L, Jin Y, Wang G, Cho WC, Li W, Cai Y, Song G. Rituximab induces ferroptosis and RSL3 overcomes rituximab resistance in diffuse large B-cell lymphoma cells. Arch Biochem Biophys 2024; 761:110188. [PMID: 39490616 DOI: 10.1016/j.abb.2024.110188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/07/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common malignant lymphoma in adults, and the use of rituximab has greatly improved the survival of DLBCL patients. Currently, the first-line treatment regimen for DLBCL is still rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP), which significantly improves outcomes for DLBCL patients. However, a percentage of patients still experience refractory or relapsed disease. Since Dr. Brent R Stockwell proposed ferroptosis in 2012, Roudkenar, M. H. Roushandeh, A. M. Valashedi, M. R. and others proved the importance of ferroptosis in cancer drug resistance. The purpose of this study was to elucidate whether rituximab could exert anticancer effects on DLBCL cells by promoting ferroptosis. Cell viability was assessed using the Cell Counting Kit-8. The results showed that rituximab exposure induced ferroptosis in OCI-LY1 cells. However, combination with ferroptosis inhibitor ferrostatin (Fer-1) rescued ferroptosis-induced injury, indicating that ferroptosis plays a key role in rituximab-induced cell death. Western blotting was performed to detect the levels of specific ferroptosis-associated proteins in DLBCL. Moreover, GSH depletion and MDA upregulation was assessed using GSH assays and MDA assay kits in rituximab-treated OCI-LY1 cells. In addition, rituximab failed to induce ferroptosis in rituximab-resistant cell lines. Treatment with RSL3 enhanced the effects of rituximab on DLBCL cells by inhibiting cell viability. In conclusion, we report for the first time that rituximab induces ferroptosis in lymphoma cells, at least partially through the SLC7A11/GPX4 axis. We also identify targeting ferroptosis as a promising therapeutic option for both sensitive cells and resistant cells in the treatment of DLBCL.
Collapse
Affiliation(s)
- Haiyi Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Linqing Zou
- Department of Human Anatomy, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Ying Jin
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Guishuan Wang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, PR China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China
| | - Wenqing Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Yifeng Cai
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Guoqi Song
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, 226001, PR China.
| |
Collapse
|
5
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Ham S, Choi BH, Kwak MK. NRF2 signaling and amino acid metabolism in cancer. Free Radic Res 2024; 58:648-661. [PMID: 39540796 DOI: 10.1080/10715762.2024.2423690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Alterations in amino acid metabolism have emerged as a critical component in cancer biology, influencing various aspects of tumor initiation, progression, and metastasis. This review explores how amino acids, beyond their role as protein building blocks, are essential for redox balance, cell proliferation, metastasis, signaling/epigenetic regulation, and tumor microenvironment modulation in cancer. We particularly focus on the intricate relationship between amino acid metabolism and nuclear factor erythroid 2-related factor 2 (NRF2) signaling, a master regulator of oxidative stress response that frequently hyperactivated in cancer. Increasing evidence indicates that NRF2 is a key player in amino acid metabolism, orchestrating metabolism of cysteine, glutamine, and serine/glycine to promote cancer cell survival and growth. This comprehensive analysis provides insights into potential therapeutic strategies targeting the NRF2-amino acid metabolism axis, offering new avenues for cancer treatment that address multiple aspects of tumor biology.
Collapse
Affiliation(s)
- Suji Ham
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
7
|
Chu J, Jiang J, Fan X, Liu J, Gao K, Jiang Y, Li M, Xi W, Zhang L, Bian K, Yang A, Zhang R. A novel MYC-ZNF706-SLC7A11 regulatory circuit contributes to cancer progression and redox balance in human hepatocellular carcinoma. Cell Death Differ 2024; 31:1333-1348. [PMID: 38862581 PMCID: PMC11445280 DOI: 10.1038/s41418-024-01324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
The oncogenic potential of chromosome 8q22 copy number gain in liver cancer remains to be depicted. Here, we report that ZNF706, encoded by a gene mapped to chromosome 8q22, is a C2H2-type zinc finger protein. However, the biological function and mechanism of ZNF706 have been poorly investigated. Clinically, ZNF706 expression was elevated in hepatocellular carcinoma (HCC), and high ZNF706 expression was associated with unfavorable survival in HCC patients. Functional experiments revealed that ZNF706 knockdown inhibited HCC progression both in vitro and in vivo. RNA sequencing (RNA-seq) and chromatin immunoprecipitation-based deep sequencing (ChIP-seq) revealed that mechanistically, ZNF706 is a crucial ferroptosis regulator and that SLC7A11 is a critical target of ZNF706. In addition, ZNF706 knockdown inhibited SLC7A11 expression, increased lipid peroxidation, and promoted ferroptosis. Further analysis revealed that ZNF706 is a novel direct target transcriptionally activated by MYC in HCC cells. Importantly, MYC depletion reduced SLC7A11-mediated redox homeostasis, and this effect was reversed by ZNF706 reexpression. Collectively, our data demonstrate that ZNF706 is a potential oncogene in liver cancer and functions as a ferroptosis regulator by modulating SLC7A11 expression, constituting a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Chu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jun Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Health Service, Base of Health Service, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xin Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Jun Liu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ke Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Urology, Xi'an People's Hospital (Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, 710199, China
| | - Yu Jiang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mengxuan Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Wenjin Xi
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Lu Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| | - Angang Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Rui Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
8
|
Chen Y, Pan G, Wu F, Zhang Y, Li Y, Luo D. Ferroptosis in thyroid cancer: Potential mechanisms, effective therapeutic targets and predictive biomarker. Biomed Pharmacother 2024; 177:116971. [PMID: 38901201 DOI: 10.1016/j.biopha.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/28/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
Thyroid cancer is a prevalent endocrine malignancy whose global incidence has risen over the past several decades. Ferroptosis, a regulated form of cell death distinguished by the excessive buildup of iron-dependent lipid peroxidates, stands out from other programmed cell death pathways in terms of morphological and molecular characteristics. Increasing evidence suggests a close association between thyroid cancer and ferroptosis, that is, inducing ferroptosis effectively suppresses the proliferation of thyroid cancer cells and impede tumor advancement. Therefore, ferroptosis represents a promising therapeutic target for the clinical management of thyroid cancer in clinical settings. Alterations in ferroptosis-related genes hold potential for prognostic prediction in thyroid cancer. This review summarizes current studies on the role of ferroptosis in thyroid cancer, elucidating its mechanisms, therapeutic targets, and predictive biomarkers. The findings underscore the significance of ferroptosis in thyroid cancer and offer valuable insights into the development of innovative treatment strategies and accurate predictors for the thyroid cancer.
Collapse
Affiliation(s)
- Yuying Chen
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Gang Pan
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Fan Wu
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yu Zhang
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yuanhui Li
- Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| | - Dingcun Luo
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Department of Surgical Oncology, Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
9
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Martí-Andrés P, Finamor I, Torres-Cuevas I, Pérez S, Rius-Pérez S, Colino-Lage H, Guerrero-Gómez D, Morato E, Marina A, Michalska P, León R, Cheng Q, Jurányi EP, Borbényi-Galambos K, Millán I, Nagy P, Miranda-Vizuete A, Schmidt EE, Martínez-Ruiz A, Arnér ES, Sastre J. TRP14 is the rate-limiting enzyme for intracellular cystine reduction and regulates proteome cysteinylation. EMBO J 2024; 43:2789-2812. [PMID: 38811853 PMCID: PMC11217419 DOI: 10.1038/s44318-024-00117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
It has remained unknown how cells reduce cystine taken up from the extracellular space, which is a required step for further utilization of cysteine in key processes such as protein or glutathione synthesis. Here, we show that the thioredoxin-related protein of 14 kDa (TRP14, encoded by TXNDC17) is the rate-limiting enzyme for intracellular cystine reduction. When TRP14 is genetically knocked out, cysteine synthesis through the transsulfuration pathway becomes the major source of cysteine in human cells, and knockout of both pathways becomes lethal in C. elegans subjected to proteotoxic stress. TRP14 can also reduce cysteinyl moieties on proteins, rescuing their activities as here shown with cysteinylated peroxiredoxin 2. Txndc17 knockout mice were, surprisingly, protected in an acute pancreatitis model, concomitant with activation of Nrf2-driven antioxidant pathways and upregulation of transsulfuration. We conclude that TRP14 is the evolutionarily conserved enzyme principally responsible for intracellular cystine reduction in C. elegans, mice, and humans.
Collapse
Affiliation(s)
- Pablo Martí-Andrés
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia, Spain
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm, Sweden
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia, Spain
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Isabel Torres-Cuevas
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia, Spain
| | - Hildegard Colino-Lage
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - David Guerrero-Gómez
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Esperanza Morato
- Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain
| | - Anabel Marina
- Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM, Madrid, Spain
- Unidad de Técnicas Bioanalíticas (BAT), Instituto de Investigación de Ciencias de la Alimentación (CIAL), CSIC-UAM, Madrid, Spain
| | - Patrycja Michalska
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Rafael León
- Institute of Medical Chemistry, CSIC, Madrid, Spain
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm, Sweden
| | - Eszter Petra Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Molecular Medicine Division, Semmelweis University Doctoral College, Budapest, Hungary
| | - Klaudia Borbényi-Galambos
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Iván Millán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, Paterna, Valencia, Spain
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary
- Chemistry Institute, University of Debrecen, Debrecen, Hungary
| | - Antonio Miranda-Vizuete
- Redox Homeostasis Group, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Edward E Schmidt
- Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS_IP), Madrid, Spain
| | - Elias Sj Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77, Stockholm, Sweden.
- Department of Selenoprotein Research and the National Tumor Biology Laboratory, National Insitute of Oncology, Budapest, Hungary.
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, Valencia, Spain.
| |
Collapse
|
11
|
Escuder-Rodríguez JJ, Liang D, Jiang X, Sinicrope FA. Ferroptosis: Biology and Role in Gastrointestinal Disease. Gastroenterology 2024; 167:231-249. [PMID: 38431204 PMCID: PMC11193643 DOI: 10.1053/j.gastro.2024.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Ferroptosis is a form of nonapoptotic cell death that involves iron-dependent phospholipid peroxidation induced by accumulation of reactive oxygen species, and results in plasma membrane damage and the release of damage-associated molecular patterns. Ferroptosis has been implicated in aging and immunity, as well as disease states including intestinal and liver conditions and cancer. To date, several ferroptosis-associated genes and pathways have been implicated in liver disease. Although ferroptotic cell death is associated with dysfunction of the intestinal epithelium, the underlying molecular basis is poorly understood. As the mechanisms regulating ferroptosis become further elucidated, there is clear potential to use ferroptosis to achieve therapeutic benefit.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota
| | - Deguang Liang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Frank A Sinicrope
- Department of Medicine, Gastrointestinal Research Unit, Mayo Clinic Alix School of Medicine, Rochester, Minnesota.
| |
Collapse
|
12
|
Yapici FI, Bebber CM, von Karstedt S. A guide to ferroptosis in cancer. Mol Oncol 2024; 18:1378-1396. [PMID: 38590214 PMCID: PMC11161738 DOI: 10.1002/1878-0261.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Ferroptosis is a newly identified iron-dependent type of regulated cell death that can also be regarded as death caused by the specific collapse of the lipid antioxidant defence machinery. Ferroptosis has gained increasing attention as a potential therapeutic strategy for therapy-resistant cancer types. However, many ferroptosis-inducing small molecules do not reach the pharmacokinetic requirements for their effective clinical use yet. Nevertheless, their clinical optimization is under development. In this review, we summarize the current understanding of molecular pathways regulating ferroptosis, how cells protect themselves from the induction of ferroptotic cell death, and how a better understanding of cancer cell metabolism can represent vulnerabilities for ferroptosis-based therapies. Lastly, we discuss the context-dependent effect of ferroptosis on various cell types within the tumor microenvironment and address controversies on how tissue ferroptosis might impact systemic cancer immunity in a paracrine manner.
Collapse
Affiliation(s)
- Fatma Isil Yapici
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
| | - Christina M. Bebber
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
- CECAD Cluster of ExcellenceUniversity of CologneGermany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneGermany
| |
Collapse
|
13
|
Ye J, Bao X, Wei J, Zhang Y, Liu Y, Xin L. Role of dietary nutrients and metabolism in colorectal cancer. Asia Pac J Clin Nutr 2024; 33:153-161. [PMID: 38794975 PMCID: PMC11170022 DOI: 10.6133/apjcn.202406_33(2).0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 01/23/2024] [Indexed: 05/27/2024]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies and the leading causes of cancer related deaths worldwide. The development of CRC is driven by a combination of genetic and environmental factors. There is growing evidence that changes in dietary nutrition may modulate the CRC risk, and protective effects on the risk of developing CRC have been advocated for specific nutrients such as glucose, amino acids, lipid, vitamins, micronutrients and prebiotics. Metabolic crosstalk between tumor cells, tumor microenvironment components and intestinal flora further promote proliferation, invasion and metastasis of CRC cells and leads to treatment resistance. This review summarizes the research progress on CRC prevention, pathogenesis, and treatment by dietary supplementation or deficiency of glucose, amino acids, lipids, vitamins, micronutri-ents, and prebiotics, respectively. The roles played by different nutrients and dietary crosstalk in the tumor microenvironment and metabolism are discussed, and nutritional modulation is inspired to be beneficial in the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jinjun Ye
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Xing Bao
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Jiufeng Wei
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Yuanpeng Zhang
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Yu Liu
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China
| | - Le Xin
- Department of General Surgery, Longgang Central Hospital of Shenzhen, Longgang District, Shenzhen, Guangdong, China.
| |
Collapse
|
14
|
Dhas N, Kudarha R, Tiwari R, Tiwari G, Garg N, Kumar P, Kulkarni S, Kulkarni J, Soman S, Hegde AR, Patel J, Garkal A, Sami A, Datta D, Colaco V, Mehta T, Vora L, Mutalik S. Recent advancements in nanomaterial-mediated ferroptosis-induced cancer therapy: Importance of molecular dynamics and novel strategies. Life Sci 2024; 346:122629. [PMID: 38631667 DOI: 10.1016/j.lfs.2024.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Ferroptosis is a novel type of controlled cell death resulting from an imbalance between oxidative harm and protective mechanisms, demonstrating significant potential in combating cancer. It differs from other forms of cell death, such as apoptosis and necrosis. Molecular therapeutics have hard time playing the long-acting role of ferroptosis induction due to their limited water solubility, low cell targeting capacity, and quick metabolism in vivo. To this end, small molecule inducers based on biological factors have long been used as strategy to induce cell death. Research into ferroptosis and advancements in nanotechnology have led to the discovery that nanomaterials are superior to biological medications in triggering ferroptosis. Nanomaterials derived from iron can enhance ferroptosis induction by directly releasing large quantities of iron and increasing cell ROS levels. Moreover, utilizing nanomaterials to promote programmed cell death minimizes the probability of unfavorable effects induced by mutations in cancer-associated genes such as RAS and TP53. Taken together, this review summarizes the molecular mechanisms involved in ferroptosis along with the classification of ferroptosis induction. It also emphasized the importance of cell organelles in the control of ferroptosis in cancer therapy. The nanomaterials that trigger ferroptosis are categorized and explained. Iron-based and noniron-based nanomaterials with their characterization at the molecular and cellular levels have been explored, which will be useful for inducing ferroptosis that leads to reduced tumor growth. Within this framework, we offer a synopsis, which traverses the well-established mechanism of ferroptosis and offers practical suggestions for the design and therapeutic use of nanomaterials.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Ruchi Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi road, Bhauti, Kanpur 208020, Uttar Pradesh, India
| | - Gaurav Tiwari
- Pranveer Singh Institute of Technology (Pharmacy), Kalpi road, Bhauti, Kanpur 208020, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Jahnavi Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Aswathi R Hegde
- Faculty of Pharmacy, M S Ramaiah University of Applied Sciences, New BEL Road, MSR Nagar, Bangalore 560054, Karnataka, India
| | | | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India.
| |
Collapse
|
15
|
Yao H, Liu P, Yao L, Li X. Establishment of disulfidptosis-related LncRNA signature as biomarkers in colon adenocarcinoma. Cancer Cell Int 2024; 24:183. [PMID: 38802854 PMCID: PMC11131243 DOI: 10.1186/s12935-024-03374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
PURPOSE Metabolic reprogramming is a hallmark of cancer and plays a key role in precision oncology treatment. Long non-coding RNAs (lncRNAs) regulate cancer cell behavior, including metabolism. Disulfidptosis, a newly identified form of regulated cell death triggered by glucose starvation, has yet to be fully understood in colon adenocarcinoma (COAD). This study aimed to confirm the existence and role of disulfidptosis in COAD and identify disulfidptosis-related lncRNAs that may be targeted to induce disulfidptosis in COAD. METHODS PI and F-actin staining were used to observe disulfidptosis in COAD cell lines. Disulfidptosis-related lncRNAs were identified based on the expression of disulfidptosis-associated genes in the TCGA-COAD database. A four-lncRNA signature for disulfidptosis was established. Subsequently, loss-of-function assays explored the roles of AC013652.1 and MCM3AP-AS1 in disulfidptosis. RESULTS Disulfidptosis was observed in COAD cells under glucose starvation and could be reversed by agents that prevent disulfide stress, such as dithiothreitol (DTT) and tris-(2-carboxyethyl)-phosphine (TCEP). The prognostic value of disulfidptosis-associated genes in COAD patients was confirmed, with higher expression indicating longer survival. A disulfidptosis-related lncRNA signature comprising four lncRNAs was established based on the expression of these genes. Among these, AC013652.1 and MCM3AP-AS1 predicted worse prognoses. Furthermore, inhibiting AC013652.1 or MCM3AP-AS1 increased disulfidptosis-associated gene expression and cellular death, which could be reversed by DTT and TCEP. CONCLUSIONS This study provides hitherto undocumented evidence of the existence of disulfidptosis and the prognostic value of disulfidptosis-associated genes in COAD. Importantly, we identified lncRNAs AC013652.1 and MCM3AP-AS1, which suppress disulfidptosis and may serve as potential therapeutic targets for COAD.
Collapse
Affiliation(s)
- Hongfei Yao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Peng Liu
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Linli Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| | - Xiao Li
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
16
|
Bell HN, Stockwell BR, Zou W. Ironing out the role of ferroptosis in immunity. Immunity 2024; 57:941-956. [PMID: 38749397 PMCID: PMC11101142 DOI: 10.1016/j.immuni.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 05/19/2024]
Abstract
Ferroptosis is a type of regulated cell death that drives the pathophysiology of many diseases. Oxidative stress is detectable in many types of regulated cell death, but only ferroptosis involves lipid peroxidation and iron dependency. Ferroptosis originates and propagates from several organelles, including the mitochondria, endoplasmic reticulum, Golgi, and lysosomes. Recent data have revealed that immune cells can both induce and undergo ferroptosis. A mechanistic understanding of how ferroptosis regulates immunity is critical to understanding how ferroptosis controls immune responses and how this is dysregulated in disease. Translationally, more work is needed to produce ferroptosis-modulating immunotherapeutics. This review focuses on the role of ferroptosis in immune-related diseases, including infection, autoimmune diseases, and cancer. We discuss how ferroptosis is regulated in immunity, how this regulation contributes to disease pathogenesis, and how targeting ferroptosis may lead to novel therapies.
Collapse
Affiliation(s)
- Hannah N Bell
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan School of Medicine, Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan School of Medicine, Rogel Cancer Center, Ann Arbor, MI, USA; Graduate Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
17
|
Lara O, Janssen P, Mambretti M, De Pauw L, Ates G, Mackens L, De Munck J, Walckiers J, Pan Z, Beckers P, Espinet E, Sato H, De Ridder M, Marks DL, Barbé K, Aerts JL, Hermans E, Rooman I, Massie A. Compartmentalized role of xCT in supporting pancreatic tumor growth, inflammation and mood disturbance in mice. Brain Behav Immun 2024; 118:275-286. [PMID: 38447884 DOI: 10.1016/j.bbi.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024] Open
Abstract
xCT (Slc7a11), the specific subunit of the cystine/glutamate antiporter system xc-, is present in the brain and on immune cells, where it is known to modulate behavior and inflammatory responses. In a variety of cancers -including pancreatic ductal adenocarcinoma (PDAC)-, xCT is upregulated by tumor cells to support their growth and spread. Therefore, we studied the impact of xCT deletion in pancreatic tumor cells (Panc02) and/or the host (xCT-/- mice) on tumor burden, inflammation, cachexia and mood disturbances. Deletion of xCT in the tumor strongly reduced tumor growth. Targeting xCT in the host and not the tumor resulted only in a partial reduction of tumor burden, while it did attenuate tumor-related systemic inflammation and prevented an increase in immunosuppressive regulatory T cells. The latter effect could be replicated by specific xCT deletion in immune cells. xCT deletion in the host or the tumor differentially modulated neuroinflammation. When mice were grafted with xCT-deleted tumor cells, hypothalamic inflammation was reduced and, accordingly, food intake improved. Tumor bearing xCT-/- mice showed a trend of reduced hippocampal neuroinflammation with less anxiety- and depressive-like behavior. Taken together, targeting xCT may have beneficial effects on pancreatic cancer-related comorbidities, beyond reducing tumor burden. The search for novel and specific xCT inhibitors is warranted as they may represent a holistic therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Olaya Lara
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium; Laboratory for Medical and Molecular Oncology, Translational Oncology Research Center (TORC), VUB, Brussels 1090, Belgium
| | - Pauline Janssen
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium; Laboratory for Medical and Molecular Oncology, Translational Oncology Research Center (TORC), VUB, Brussels 1090, Belgium
| | - Marco Mambretti
- Laboratory for Medical and Molecular Oncology, Translational Oncology Research Center (TORC), VUB, Brussels 1090, Belgium
| | - Laura De Pauw
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Gamze Ates
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Liselotte Mackens
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Jolien De Munck
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Jarne Walckiers
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Zhaolong Pan
- Laboratory for Medical and Molecular Oncology, Translational Oncology Research Center (TORC), VUB, Brussels 1090, Belgium
| | - Pauline Beckers
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Elisa Espinet
- Pancreatic Cancer Lab, Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona, L'Hospitalet de Llobregat, Barcelona 08907, Spain; Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona 08907, Spain
| | - Hideyo Sato
- Department of Medical Technology, Niigata University, Niigata 950-3198, Japan
| | - Mark De Ridder
- Department of Radiotherapy, UZ Brussels, VUB, Brussels 1090, Belgium
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kurt Barbé
- The Biostatistics and Medical Informatics Department, VUB, Brussels 1090, Belgium
| | - Joeri L Aerts
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Université catholique de Louvain, Brussels 1200, Belgium
| | - Ilse Rooman
- Laboratory for Medical and Molecular Oncology, Translational Oncology Research Center (TORC), VUB, Brussels 1090, Belgium.
| | - Ann Massie
- Laboratory of Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels 1090, Belgium.
| |
Collapse
|
18
|
Li H, Sun Y, Yao Y, Ke S, Zhang N, Xiong W, Shi J, He C, Xiao X, Yu H, Dai P, Xiang B, Xing X, Xu G, Song W, Song J, Zhang J. USP8-governed GPX4 homeostasis orchestrates ferroptosis and cancer immunotherapy. Proc Natl Acad Sci U S A 2024; 121:e2315541121. [PMID: 38598341 PMCID: PMC11032464 DOI: 10.1073/pnas.2315541121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Haiou Li
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Yishuang Sun
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Yingmeng Yao
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Shanwen Ke
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Nannan Zhang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou450008, China
| | - Wenjun Xiong
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Jie Shi
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Chuan He
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Xiangling Xiao
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Haisheng Yu
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Panpan Dai
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Bolin Xiang
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Xixin Xing
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Gaoshan Xu
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
| | - Wenjing Song
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| | - Jiquan Song
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
| | - Jinfang Zhang
- Department of Dermatology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan430071, China
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan430071, China
| |
Collapse
|
19
|
Zou J, Mai C, Lin Z, Zhou J, Lai G. Targeting metabolism of breast cancer and its implications in T cell immunotherapy. Front Immunol 2024; 15:1381970. [PMID: 38680483 PMCID: PMC11045902 DOI: 10.3389/fimmu.2024.1381970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Breast cancer is a prominent health issue amongst women around the world. Immunotherapies including tumor targeted antibodies, adoptive T cell therapy, vaccines, and immune checkpoint blockers have rejuvenated the clinical management of breast cancer, but the prognosis of patients remains dismal. Metabolic reprogramming and immune escape are two important mechanisms supporting the progression of breast cancer. The deprivation uptake of nutrients (such as glucose, amino acid, and lipid) by breast cancer cells has a significant impact on tumor growth and microenvironment remodeling. In recent years, in-depth researches on the mechanism of metabolic reprogramming and immune escape have been extensively conducted, and targeting metabolic reprogramming has been proposed as a new therapeutic strategy for breast cancer. This article reviews the abnormal metabolism of breast cancer cells and its impact on the anti-tumor activity of T cells, and further explores the possibility of targeting metabolism as a therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Jialuo Zou
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cunjun Mai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiqin Lin
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jian Zhou
- Department of Immunology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Guie Lai
- Department of Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
20
|
Lei G, Zhuang L, Gan B. The roles of ferroptosis in cancer: Tumor suppression, tumor microenvironment, and therapeutic interventions. Cancer Cell 2024; 42:513-534. [PMID: 38593779 DOI: 10.1016/j.ccell.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
In cancer treatment, the recurrent challenge of inducing apoptosis through conventional therapeutic modalities, often thwarted by therapy resistance, emphasizes the critical need to explore alternative cell death pathways. Ferroptosis, an iron-dependent form of regulated cell death triggered by the lethal accumulation of lipid peroxides on cellular membranes, has emerged as one such promising frontier in oncology. Induction of ferroptosis not only suppresses tumor growth but also holds potential for augmenting immunotherapy responses and surmounting resistance to existing cancer therapies. This review navigates the role of ferroptosis in tumor suppression. Furthermore, we delve into the complex role of ferroptosis within the tumor microenvironment and its interplay with antitumor immunity, offering insights into the prospect of targeting ferroptosis as a strategic approach in cancer therapy.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
21
|
Meinert M, Jessen C, Hufnagel A, Kreß JKC, Burnworth M, Däubler T, Gallasch T, Xavier da Silva TN, Dos Santos AF, Ade CP, Schmitz W, Kneitz S, Friedmann Angeli JP, Meierjohann S. Thiol starvation triggers melanoma state switching in an ATF4 and NRF2-dependent manner. Redox Biol 2024; 70:103011. [PMID: 38219574 PMCID: PMC10825660 DOI: 10.1016/j.redox.2023.103011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024] Open
Abstract
The cystine/glutamate antiporter xCT is an important source of cysteine for cancer cells. Once taken up, cystine is reduced to cysteine and serves as a building block for the synthesis of glutathione, which efficiently protects cells from oxidative damage and prevents ferroptosis. As melanomas are particularly exposed to several sources of oxidative stress, we investigated the biological role of cysteine and glutathione supply by xCT in melanoma. xCT activity was abolished by genetic depletion in the Tyr::CreER; BrafCA; Ptenlox/+ melanoma model and by acute cystine withdrawal in melanoma cell lines. Both interventions profoundly impacted melanoma glutathione levels, but they were surprisingly well tolerated by murine melanomas in vivo and by most human melanoma cell lines in vitro. RNA sequencing of human melanoma cells revealed a strong adaptive upregulation of NRF2 and ATF4 pathways, which orchestrated the compensatory upregulation of genes involved in antioxidant defence and de novo cysteine biosynthesis. In addition, the joint activation of ATF4 and NRF2 triggered a phenotypic switch characterized by a reduction of differentiation genes and induction of pro-invasive features, which was also observed after erastin treatment or the inhibition of glutathione synthesis. NRF2 alone was capable of inducing the phenotypic switch in a transient manner. Together, our data show that cystine or glutathione levels regulate the phenotypic plasticity of melanoma cells by elevating ATF4 and NRF2.
Collapse
Affiliation(s)
- Madlen Meinert
- Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany
| | - Christina Jessen
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Anita Hufnagel
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Mychal Burnworth
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Theo Däubler
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Till Gallasch
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | | | - Ancély Ferreira Dos Santos
- Rudolf-Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Carsten Patrick Ade
- Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | - Werner Schmitz
- Department of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | - Susanne Kneitz
- Department of Biochemistry and Cell Biology, University of Würzburg, Würzburg, Germany
| | - José Pedro Friedmann Angeli
- Rudolf-Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Svenja Meierjohann
- Department of Physiological Chemistry, University of Würzburg, Würzburg, Germany; Institute of Pathology, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
22
|
Feng F, He S, Li X, He J, Luo L. Mitochondria-mediated Ferroptosis in Diseases Therapy: From Molecular Mechanisms to Implications. Aging Dis 2024; 15:714-738. [PMID: 37548939 PMCID: PMC10917537 DOI: 10.14336/ad.2023.0717] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023] Open
Abstract
Ferroptosis, a type of cell death involving iron and lipid peroxidation, has been found to be closely associated with the development of many diseases. Mitochondria are vital components of eukaryotic cells, serving important functions in energy production, cellular metabolism, and apoptosis regulation. Presently, the precise relationship between mitochondria and ferroptosis remains unclear. In this study, we aim to systematically elucidate the mechanisms via which mitochondria regulate ferroptosis from multiple perspectives to provide novel insights into mitochondrial functions in ferroptosis. Additionally, we present a comprehensive overview of how mitochondria contribute to ferroptosis in different conditions, including cancer, cardiovascular disease, inflammatory disease, mitochondrial DNA depletion syndrome, and novel coronavirus pneumonia. Gaining a comprehensive understanding of the involvement of mitochondria in ferroptosis could lead to more effective approaches for both basic cell biology studies and medical treatments.
Collapse
Affiliation(s)
- Fuhai Feng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
| | - Xiaoling Li
- Animal Experiment Center, Guangdong Medical University, Zhanjiang, China.
| | - Jiake He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China.
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China.
| |
Collapse
|
23
|
Peleman C, Francque S, Berghe TV. Emerging role of ferroptosis in metabolic dysfunction-associated steatotic liver disease: revisiting hepatic lipid peroxidation. EBioMedicine 2024; 102:105088. [PMID: 38537604 PMCID: PMC11026979 DOI: 10.1016/j.ebiom.2024.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/22/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterised by cell death of parenchymal liver cells which interact with their microenvironment to drive disease activity and liver fibrosis. The identification of the major death type could pave the way towards pharmacotherapy for MASH. To date, increasing evidence suggest a type of regulated cell death, named ferroptosis, which occurs through iron-catalysed peroxidation of polyunsaturated fatty acids (PUFA) in membrane phospholipids. Lipid peroxidation enjoys renewed interest in the light of ferroptosis, as druggable target in MASH. This review recapitulates the molecular mechanisms of ferroptosis in liver physiology, evidence for ferroptosis in human MASH and critically appraises the results of ferroptosis targeting in preclinical MASH models. Rewiring of redox, iron and PUFA metabolism in MASH creates a proferroptotic environment involved in MASH-related hepatocellular carcinoma (HCC) development. Ferroptosis induction might be a promising novel approach to eradicate HCC, while its inhibition might ameliorate MASH disease progression.
Collapse
Affiliation(s)
- Cédric Peleman
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Paediatrics, Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium.
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
24
|
Xu Y, Li M, Lin M, Cui D, Xie J. Glutaminolysis of CD4 + T Cells: A Potential Therapeutic Target in Viral Diseases. J Inflamm Res 2024; 17:603-616. [PMID: 38318243 PMCID: PMC10840576 DOI: 10.2147/jir.s443482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/13/2024] [Indexed: 02/07/2024] Open
Abstract
CD4+ T cells play a critical role in the pathogenesis of viral diseases, which are activated by the internal metabolic pathways encountering with viral antigens. Glutaminolysis converts glutamine into tricarboxylic acid (TCA) circulating metabolites by α-ketoglutaric acid, which is essential for the proliferation and differentiation of CD4+ T cells and plays a central role in providing the energy and structural components needed for viral replication after the virus hijacks the host cell. Changes in glutaminolysis in CD4+ T cells are accompanied by changes in the viral status of the host cell due to competition for glutamine between immune cells and host cells. More recently, attempts have been made to treat tumours, autoimmune diseases, and viral diseases by altering the breakdown of glutamine in T cells. In this review, we will discuss the current knowledge of glutaminolysis in the CD4+ T cell subsets from viral diseases, not only increasing our understanding of immunometabolism but also providing a new perspective for therapeutic target in viral diseases.
Collapse
Affiliation(s)
- Yushan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Miaomiao Li
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Mengjiao Lin
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People’s Republic of China
| |
Collapse
|
25
|
Wang H, Liu Y, Che S, Li X, Tang D, Lv S, Zhao H. Deciphering the link: ferroptosis and its role in glioma. Front Immunol 2024; 15:1346585. [PMID: 38322268 PMCID: PMC10844450 DOI: 10.3389/fimmu.2024.1346585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
Glioma, as the most frequently occurring primary malignancy in the central nervous system, significantly impacts patients' quality of life and cognitive abilities. Ferroptosis, a newly discovered form of cell death, is characterized by significant iron accumulation and lipid peroxidation. This process is fundamentally dependent on iron. Various factors inducing ferroptosis can either directly or indirectly influence glutathione peroxidase, leading to reduced antioxidant capabilities and an increase in lipid reactive oxygen species (ROS) within cells, culminating in oxidative cell death. Recent research indicates a strong connection between ferroptosis and a range of pathophysiological conditions, including tumors, neurological disorders, ischemia-reperfusion injuries, kidney damage, and hematological diseases. The regulation of ferroptosis to intervene in the progression of these diseases has emerged as a major area of interest in etiological research and therapy. However, the exact functional alterations and molecular mechanisms underlying ferroptosis remain to be extensively studied. The review firstly explores the intricate relationship between ferroptosis and glioma, highlighting how ferroptosis contributes to glioma pathogenesis and how glioma cells may resist this form of cell death. Then, we discuss recent studies that have identified potential ferroptosis inducers and inhibitors, which could serve as novel therapeutic strategies for glioma. We also examine the current challenges in targeting ferroptosis in glioma treatment, including the complexity of its regulation and the need for precise delivery methods. This review aims to provide a comprehensive overview of the current state of research on ferroptosis in glioma, offering insights into future therapeutic strategies and the broader implications of this novel cell death pathway in cancer biology.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yingfeng Liu
- Department of Neurosurgery, Tianshui First People's Hospital, Tianshui, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiangjun Li
- Department of Breast Surgery, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Dongxue Tang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shaojing Lv
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
26
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
27
|
Sharkey AR, Witney TH, Cook GJR. Is System x c- a Suitable Target for Tumour Detection and Response Assessment with Imaging? Cancers (Basel) 2023; 15:5573. [PMID: 38067277 PMCID: PMC10705217 DOI: 10.3390/cancers15235573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 02/12/2024] Open
Abstract
System xc- is upregulated in cancer cells and can be imaged using novel radiotracers, most commonly with (4S)-4-(3-[18F]fluoropropyl)-L-glutamic acid (18F-FSPG). The aim of this review was to summarise the use of 18F-FSPG in humans, explore the benefits and limitations of 18F-FSPG, and assess the potential for further use of 18F-FSPG in cancer patients. To date, ten papers have described the use of 18F-FSPG in human cancers. These studies involved small numbers of patients (range 1-26) and assessed the use of 18F-FSPG as a general oncological diagnostic agent across different cancer types. These clinical trials were contrasting in their findings, limiting the scope of 18F-FSPG PET/CT as a purely diagnostic agent, primarily due to heterogeneity of 18F-FSPG retention both between cancer types and patients. Despite these limitations, a potential further application for 18F-FSPG is in the assessment of early treatment response and prediction of treatment resistance. Animal models of cancer have shown that changes in 18F-FSPG retention following effective therapy precede glycolytic changes, as indicated by 18F-FDG, and changes in tumour volume, as measured by CT. If these results could be replicated in human clinical trials, imaging with 18F-FSPG PET/CT would offer an exciting route towards addressing the currently unmet clinical needs of treatment resistance prediction and early imaging assessment of therapy response.
Collapse
Affiliation(s)
- Amy R. Sharkey
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Timothy H. Witney
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
| | - Gary J. R. Cook
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK
- King’s College London and Guy’s and St. Thomas’ PET Centre, St. Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
28
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
29
|
Zhou LL, Guan Q, Zhou W, Kan JL, Teng K, Hu M, Dong YB. A Multifunctional Covalent Organic Framework Nanozyme for Promoting Ferroptotic Radiotherapy against Esophageal Cancer. ACS NANO 2023; 17:20445-20461. [PMID: 37801392 DOI: 10.1021/acsnano.3c06967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Radiotherapy is inevitably accompanied by some degree of radiation resistance, which leads to local recurrence and even therapeutic failure. To overcome this limitation, herein, we report the room-temperature synthesis of an iodine- and ferrocene-loaded covalent organic framework (COF) nanozyme, termed TADI-COF-Fc, for the enhancement of radiotherapeutic efficacy in the treatment of radioresistant esophageal cancer. The iodine atoms on the COF framework not only exerted a direct effect on radiotherapy, increasing its efficacy by increasing X-ray absorption, but also promoted the radiolysis of water, which increased the production of reactive oxygen species (ROS). In addition, the ferrocene surface decoration disrupted redox homeostasis by increasing the levels of hydroxyl and lipid peroxide radicals and depleting intracellular antioxidants. Both in vitro and in vivo experiments substantiated the excellent radiotherapeutic response of TADI-COF-Fc. This study demonstrates the potential of COF-based multinanozymes as radiosensitizers and suggests a possible treatment integration strategy for combination oncotherapy.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Wei Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Kai Teng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Man Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
30
|
de Baat A, Meier DT, Fontana A, Böni-Schnetzler M, Donath MY. Cystine/Glutamate antiporter system xc- deficiency impairs macrophage glutathione metabolism and cytokine production. PLoS One 2023; 18:e0291950. [PMID: 37792774 PMCID: PMC10550110 DOI: 10.1371/journal.pone.0291950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/09/2023] [Indexed: 10/06/2023] Open
Abstract
System xc-, encoded by Slc7a11, is an antiporter responsible for exporting glutamate while importing cystine, which is essential for protein synthesis and the formation of thiol peptides, such as glutathione. Glutathione acts as a co-factor for enzymes responsible for scavenging reactive oxygen species. Upon exposure to bacterial products, macrophages exhibit a rapid upregulation of system xc-. This study investigates the impact of Slc7a11 deficiency on the functionality of peritoneal and bone marrow-derived macrophages. Our findings reveal that the absence of Slc7a11 results in significantly reduced glutathione levels, compromised mitochondrial flexibility, and hindered cytokine production in bone marrow-derived macrophages. Conversely, system xc- has a lesser impact on peritoneal macrophages in vivo. These results indicate that system xc- is essential for maintaining glutathione levels, mitochondrial functionality, and cytokine production, with a heightened importance under atmospheric oxygen tension.
Collapse
Affiliation(s)
- Axel de Baat
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel T. Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Adriano Fontana
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y. Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Zhao Y, Liu Z, Liu G, Zhang Y, Liu S, Gan D, Chang W, Peng X, Sung ES, Gilbert K, Zhu Y, Wang X, Zeng Z, Baldwin H, Ren G, Weaver J, Huron A, Mayberry T, Wang Q, Wang Y, Diaz-Rubio ME, Su X, Stack MS, Zhang S, Lu X, Sheldon RD, Li J, Zhang C, Wan J, Lu X. Neutrophils resist ferroptosis and promote breast cancer metastasis through aconitate decarboxylase 1. Cell Metab 2023; 35:1688-1703.e10. [PMID: 37793345 PMCID: PMC10558089 DOI: 10.1016/j.cmet.2023.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/26/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Metastasis causes breast cancer-related mortality. Tumor-infiltrating neutrophils (TINs) inflict immunosuppression and promote metastasis. Therapeutic debilitation of TINs may enhance immunotherapy, yet it remains a challenge to identify therapeutic targets highly expressed and functionally essential in TINs but under-expressed in extra-tumoral neutrophils. Here, using single-cell RNA sequencing to compare TINs and circulating neutrophils in murine mammary tumor models, we identified aconitate decarboxylase 1 (Acod1) as the most upregulated metabolic enzyme in mouse TINs and validated high Acod1 expression in human TINs. Activated through the GM-CSF-JAK/STAT5-C/EBPβ pathway, Acod1 produces itaconate, which mediates Nrf2-dependent defense against ferroptosis and upholds the persistence of TINs. Acod1 ablation abates TIN infiltration, constrains metastasis (but not primary tumors), bolsters antitumor T cell immunity, and boosts the efficacy of immune checkpoint blockade. Our findings reveal how TINs escape from ferroptosis through the Acod1-dependent immunometabolism switch and establish Acod1 as a target to offset immunosuppression and improve immunotherapy against metastasis.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Zhongshun Liu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guoqiang Liu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yuting Zhang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dailin Gan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Wennan Chang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Xiaoxia Peng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eun Suh Sung
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Keegan Gilbert
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yini Zhu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Xuechun Wang
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ziyu Zeng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hope Baldwin
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Guanzhu Ren
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica Weaver
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anna Huron
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Toni Mayberry
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Qingfei Wang
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yujue Wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | | | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - M Sharon Stack
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Siyuan Zhang
- Department of Pathology, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Xuemin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; School of Informatics and Computing, Indiana University - Purdue University at Indianapolis, Indianapolis, IN 46202, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
32
|
Zheng Y, Sun L, Guo J, Ma J. The crosstalk between ferroptosis and anti-tumor immunity in the tumor microenvironment: molecular mechanisms and therapeutic controversy. Cancer Commun (Lond) 2023; 43:1071-1096. [PMID: 37718480 PMCID: PMC10565387 DOI: 10.1002/cac2.12487] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023] Open
Abstract
The advent of immunotherapy has significantly reshaped the landscape of cancer treatment, greatly enhancing therapeutic outcomes for multiple types of cancer. However, only a small subset of individuals respond to it, underscoring the urgent need for new methods to improve its response rate. Ferroptosis, a recently discovered form of programmed cell death, has emerged as a promising approach for anti-tumor therapy, with targeting ferroptosis to kill tumors seen as a potentially effective strategy. Numerous studies suggest that inducing ferroptosis can synergistically enhance the effects of immunotherapy, paving the way for a promising combined treatment method in the future. Nevertheless, recent research has raised concerns about the potential negative impacts on anti-tumor immunity as a consequence of inducing ferroptosis, leading to conflicting views within the scientific community about the interplay between ferroptosis and anti-tumor immunity, thereby underscoring the necessity of a comprehensive review of the existing literature on this relationship. Previous reviews on ferroptosis have touched on related content, many focusing primarily on the promoting role of ferroptosis on anti-tumor immunity while overlooking recent evidence on the inhibitory effects of ferroptosis on immunity. Others have concentrated solely on discussing related content either from the perspective of cancer cells and ferroptosis or from immune cells and ferroptosis. Given that both cancer cells and immune cells exist in the tumor microenvironment, a one-sided discussion cannot comprehensively summarize this topic. Therefore, from the perspectives of both tumor cells and tumor-infiltrating immune cells, we systematically summarize the current conflicting views on the interplay between ferroptosis and anti-tumor immunity, intending to provide potential explanations and identify the work needed to establish a translational basis for combined ferroptosis-targeted therapy and immunotherapy in treating tumors.
Collapse
Affiliation(s)
- Yichen Zheng
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Lingqi Sun
- Department of NeurologyAir Force Hospital of the Western Theater of the Chinese People's Liberation ArmyChengduSichuanP. R. China
| | - Jiamin Guo
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ji Ma
- Division of Abdominal Tumor Multimodality TreatmentCancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
33
|
Liao L, Xu H, Zhao Y, Zheng X. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies. Front Med 2023; 17:805-822. [PMID: 37897562 DOI: 10.1007/s11684-023-1025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 10/30/2023]
Abstract
Immunotherapies based on immune checkpoint blockade (ICB) have significantly improved patient outcomes and offered new approaches to cancer therapy over the past decade. To date, immune checkpoint inhibitors (ICIs) of CTLA-4 and PD-1/PD-L1 represent the main class of immunotherapy. Blockade of CTLA-4 and PD-1/PD-L1 has shown remarkable efficacy in several specific types of cancers, however, a large subset of refractory patients presents poor responsiveness to ICB therapy; and the underlying mechanism remains elusive. Recently, numerous studies have revealed that metabolic reprogramming of tumor cells restrains immune responses by remodeling the tumor microenvironment (TME) with various products of metabolism, and combination therapies involving metabolic inhibitors and ICIs provide new approaches to cancer therapy. Nevertheless, a systematic summary is lacking regarding the manner by which different targetable metabolic pathways regulate immune checkpoints to overcome ICI resistance. Here, we demonstrate the generalized mechanism of targeting cancer metabolism at three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1) to influence ICB therapy and propose potential combined immunotherapeutic strategies co-targeting tumor metabolic pathways and immune checkpoints.
Collapse
Affiliation(s)
- Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Huilin Xu
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuhan Zhao
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
Ruiu R, Cossu C, Iacoviello A, Conti L, Bolli E, Ponzone L, Magri J, Rumandla A, Calautti E, Cavallo F. Cystine/glutamate antiporter xCT deficiency reduces metastasis without impairing immune system function in breast cancer mouse models. J Exp Clin Cancer Res 2023; 42:254. [PMID: 37770957 PMCID: PMC10540318 DOI: 10.1186/s13046-023-02830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND The upregulation of antioxidant mechanisms is a common occurrence in cancer cells, as they strive to maintain balanced redox state and prevent oxidative damage. This includes the upregulation of the cystine/glutamate antiporter xCT, which plays a crucial role in protecting cancer cells from oxidative stress. Consequently, targeting xCT has become an attractive strategy for cancer treatment. However, xCT is also expressed by several types of immune cells where it has a role in proliferation and effector functions. In light of these observations, a comprehensive understanding of the specific role of xCT in the initiation and progression of cancer, as well as its potential impact on the immune system within the tumor microenvironment and the anti-tumor response, require further investigation. METHODS We generated xCTnull BALB/c mice to investigate the role of xCT in the immune system and xCTnull/Erbb2-transgenic BALB-neuT mice to study the role of xCT in a mammary cancer-prone model. We also used mammary cancer cells derived from BALB-neuT/xCTnull mice and xCTKO 4T1 cells to test the contribution of xCT to malignant properties in vitro and in vivo. RESULTS xCT depletion in BALB-neuT/xCTnull mice does not alter autochthonous tumor initiation, but tumor cells isolated from these mice display proliferation and redox balance defects in vitro. Although xCT disruption sensitizes 4T1 cells to oxidative stress, it does not prevent transplantable tumor growth, but reduces cell migration in vitro and lung metastasis in vivo. This is accompanied by an altered immune cell recruitment in the pre-metastatic niche. Finally, systemic depletion of xCT in host mice does not affect transplantable tumor growth and metastasis nor impair the proper mounting of both humoral and cellular immune responses in vivo. CONCLUSIONS xCT is dispensable for proper immune system function, thus supporting the safety of xCT targeting in oncology. Nevertheless, xCT is involved in several processes required for the metastatic seeding of mammary cancer cells, thus broadening the scope of xCT-targeting approaches.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Chiara Cossu
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Antonella Iacoviello
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Luca Ponzone
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Epithelial Stem Cell Biology and Signaling, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Jolanda Magri
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
- Laboratory of Immunotherapy, IIGM - Italian Institute for Genomic Medicine, c/o IRCCS, Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Alekya Rumandla
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
- Biocon Bristol Myers Squibb R&D Center, Bommasandra Jigani Link Road, Bommasandra Industrial Area, Bangalore, Karnataka, 560099, India
| | - Enzo Calautti
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Epithelial Stem Cell Biology and Signaling, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Laboratory of Oncoimmunology, Molecular Biotechnology Center "Guido Tarone", University of Turin, Via Nizza 52, Turin, 10126, Italy.
| |
Collapse
|
35
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR, Jiang X. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 2023; 186:2748-2764.e22. [PMID: 37267948 PMCID: PMC10330611 DOI: 10.1016/j.cell.2023.05.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/04/2023]
Abstract
Ferroptosis, a cell death process driven by iron-dependent phospholipid peroxidation, has been implicated in various diseases. There are two major surveillance mechanisms to suppress ferroptosis: one mediated by glutathione peroxidase 4 (GPX4) that catalyzes the reduction of phospholipid peroxides and the other mediated by enzymes, such as FSP1, that produce metabolites with free radical-trapping antioxidant activity. In this study, through a whole-genome CRISPR activation screen, followed by mechanistic investigation, we identified phospholipid-modifying enzymes MBOAT1 and MBOAT2 as ferroptosis suppressors. MBOAT1/2 inhibit ferroptosis by remodeling the cellular phospholipid profile, and strikingly, their ferroptosis surveillance function is independent of GPX4 or FSP1. MBOAT1 and MBOAT2 are transcriptionally upregulated by sex hormone receptors, i.e., estrogen receptor (ER) and androgen receptor (AR), respectively. A combination of ER or AR antagonist with ferroptosis induction significantly inhibited the growth of ER+ breast cancer and AR+ prostate cancer, even when tumors were resistant to single-agent hormonal therapies.
Collapse
Affiliation(s)
- Deguang Liang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yan Feng
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Hua Wang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zeda Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jinnie Kim
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yanyan Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wei Gu
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
37
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
38
|
Qi D, Peng M. Ferroptosis-mediated immune responses in cancer. Front Immunol 2023; 14:1188365. [PMID: 37325669 PMCID: PMC10264078 DOI: 10.3389/fimmu.2023.1188365] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023] Open
Abstract
Cell death is a universal biological process in almost every physiological and pathological condition, including development, degeneration, inflammation, and cancer. In addition to apoptosis, increasing numbers of cell death types have been discovered in recent years. The biological significance of cell death has long been a subject of interest and exploration and meaningful discoveries continue to be made. Ferroptosis is a newfound form of programmed cell death and has been implicated intensively in various pathological conditions and cancer therapy. A few studies show that ferroptosis has the direct capacity to kill cancer cells and has a potential antitumor effect. As the rising role of immune cells function in the tumor microenvironment (TME), ferroptosis may have additional impact on the immune cells, though this remains unclear. In this study we focus on the ferroptosis molecular network and the ferroptosis-mediated immune response, mainly in the TME, and put forward novel insights and directions for cancer research in the near future.
Collapse
Affiliation(s)
- Desheng Qi
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
| | - Milin Peng
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, China
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Chen MS, Wang JX, Zhang H, Cui JG, Zhao Y, Li JL. Novel Role of Hemeoxygenase-1 in Phthalate-Induced Renal Proximal Tubule Cell Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2579-2589. [PMID: 36696656 DOI: 10.1021/acs.jafc.2c07762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Phthalates are widely used to improve the flexibility of poly(vinyl chloride) (PVC) polymer agriculture products. Di(2-ethylhexyl) phthalate (DEHP) is a type of addition to plastic and can lead to many health problems. Hemeoxygenase-1 (HO-1) is an extremely important molecule that releases enzymatic products to promote ferroptosis. This research aimed to explore the function of HO-1 in DEHP-induced renal proximal tubule cell ferroptosis. In the experiment, ICR male mice are exposed to (0, 50, 200, and 500 mg/kg BW/day) DEHP for 28 days. Here, we observed that DEHP induced glomeruli atrophy and the tubules swell. Furthermore, DEHP exposure could increase ferrous iron content and decrease antioxidant activity. We also found that DEHP exposure increased the expression of nuclear factor-erythroid 2 p45-related factor 2 (NFE2L2) in the nucleus. In particular, the expression of (HO-1) is significantly increased both in protein and mRNA levels. Glutathione peroxidase 4 (GPX4) as an endogenous control of ferroptosis was downregulated, which proved the occurrence of ferroptosis. In the study, exposure to DEHP activated the NFE2L2/HO-1 signaling pathway and resulted in ferroptosis of the proximal tubule. This research connects ferroptosis with HO-1, providing new insights into the potential roles of phthalates in nephrotoxicity.
Collapse
|
41
|
Valvo V, Parietti E, Deans K, Ahn SW, Park NR, Ferland B, Thompson D, Dominas C, Bhagavatula SK, Davidson S, Jonas O. High-throughput in situ perturbation of metabolite levels in the tumor micro-environment reveals favorable metabolic condition for increased fitness of infiltrated T-cells. Front Cell Dev Biol 2022; 10:1032360. [PMID: 36619865 PMCID: PMC9815512 DOI: 10.3389/fcell.2022.1032360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Tumor-infiltrating immune cells experience significant metabolic reprogramming in the tumor microenvironment (TME), and they share similar metabolic pathways and nutrient needs with malignant cells. This positions these cell types in direct nutrient competition in the TME. We currently lack a complete understanding of the similarities, differences, and functional consequences of the metabolic pathways utilized by activated immune cells from different lineages versus neoplastic cells. This study applies a novel in situ approach using implantable microdevices to expose the tumor to 27 controlled and localized metabolic perturbations in order to perform a systematic investigation into the metabolic regulation of the cellular fitness and persistence between immune and tumor cells directly within the native TME. Our findings identify the most potent metabolites, notably glutamine and arginine, that induce a favorable metabolic immune response in a mammary carcinoma model, and reveal novel insights on less characterized pathways, such as cysteine and glutathione. We then examine clinical samples from cancer patients to confirm the elevation of these pathways in tumor regions that are enriched in activated T cells. Overall, this work provides the first instance of a highly multiplexed in situ competition assay between malignant and immune cells within tumors using a range of localized microdose metabolic perturbations. The approach and findings may be used to potentiate the effects of T cell stimulating immunotherapies on a tumor-specific or personalized basis through targeted enrichment or depletion of specific metabolites.
Collapse
Affiliation(s)
- Veronica Valvo
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Parietti
- Department of Infectious Diseases and Hospital of Epidemiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Kyle Deans
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sebastian W. Ahn
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Noel Ruth Park
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Benjamin Ferland
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Devon Thompson
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Sharath K. Bhagavatula
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Shawn Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Oliver Jonas
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Feyissa AM, Rosenfeld SS, Quiñones-Hinojosa A. Altered glutamatergic and inflammatory pathways promote glioblastoma growth, invasion, and seizures: An overview. J Neurol Sci 2022; 443:120488. [PMID: 36368135 DOI: 10.1016/j.jns.2022.120488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/03/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain cancer. Drug-resistant seizures and cognitive impairments often accompany the invasion of the neocortex by the GBM cells. Recent studies suggest that seizures and glioma share common pathogenic mechanisms and may influence each other. One explanation for the close link between the two conditions is elevated glutamate in the tumor microenvironment (TME) due to an increased expression of the cystine-glutamate transporter with ensuing overactivity of glutamatergic signaling. Excess glutamate in the TME also encourages the polarization of pro-inflammatory tumor-associated macrophages to an anti-inflammatory state causing TME immunosuppression and facilitating tumor invasion. Besides, the recently discovered glutamatergic neurogliomal synapses, partially via their influence on calcium communication in microtube-connected tumor cell networks, drive the progression of GBM by stimulating glioma invasion and growth. Moreover, neuroinflammatory pathways have been shown to have several points of intersection with glutamatergic signaling in the TME, further promoting both epileptogenesis and oncogenesis. Future studies identifying pharmacotherapeutics targeting these elements is an extremely attractive therapeutic strategy for GBM, for which very little therapeutic progress has been made in the past two decades.
Collapse
Affiliation(s)
| | - Steven S Rosenfeld
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
43
|
Ishii T, Mimura I, Nagaoka K, Naito A, Sugasawa T, Kuroda R, Yamada D, Kanki Y, Kume H, Ushiku T, Kakimi K, Tanaka T, Nangaku M. Effect of M2-like macrophages of the injured-kidney cortex on kidney cancer progression. Cell Death Dis 2022; 8:480. [PMID: 36470862 PMCID: PMC9722672 DOI: 10.1038/s41420-022-01255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) affects kidney cancer patients' mortality. However, the underlying mechanism remains unknown. M2-like macrophages have pro-tumor functions, also exist in injured kidney, and promote kidney fibrosis. Thus, it is suspected that M2-like macrophages in injured kidney induce the pro-tumor microenvironment leading to kidney cancer progression. We found that M2-like macrophages present in the injured kidney promoted kidney cancer progression and induced resistance to anti-PD1 antibody through its pro-tumor function and inhibition of CD8+ T cell infiltration. RNA-seq revealed Slc7a11 was upregulated in M2-like macrophages. Inhibition of Slc7a11 with sulfasalazine inhibited the pro-tumor function of M2-like macrophages and synergized with anti-PD1 antibody. Moreover, SLC7A11-positive macrophages were associated with poor prognosis among kidney cancer patients. Collectively, this study dissects the characteristic microenvironment in the injured kidney that contributed to kidney cancer progression and anti-PD1 antibody resistance. This insight offers promising combination therapy with anti-PD1 antibody and macrophage targeted therapy.
Collapse
Affiliation(s)
- Taisuke Ishii
- grid.26999.3d0000 0001 2151 536XDivision of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Imari Mimura
- grid.26999.3d0000 0001 2151 536XDivision of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Koji Nagaoka
- grid.412708.80000 0004 1764 7572Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Akihiro Naito
- grid.26999.3d0000 0001 2151 536XDivision of Urology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Takehito Sugasawa
- grid.20515.330000 0001 2369 4728Laboratory of Clinical Examination/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577 Japan
| | - Ryohei Kuroda
- grid.26999.3d0000 0001 2151 536XDepartment of Pathology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Daisuke Yamada
- grid.26999.3d0000 0001 2151 536XDivision of Urology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Yasuharu Kanki
- grid.20515.330000 0001 2369 4728Laboratory of Clinical Examination/Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577 Japan
| | - Haruki Kume
- grid.26999.3d0000 0001 2151 536XDivision of Urology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Tetsuo Ushiku
- grid.26999.3d0000 0001 2151 536XDepartment of Pathology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Kazuhiro Kakimi
- grid.412708.80000 0004 1764 7572Department of Immunotherapeutics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| | - Tetsuhiro Tanaka
- grid.26999.3d0000 0001 2151 536XDivision of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan ,grid.69566.3a0000 0001 2248 6943Department of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 9808574 Japan
| | - Masaomi Nangaku
- grid.26999.3d0000 0001 2151 536XDivision of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1138655 Japan
| |
Collapse
|
44
|
Nguyen HD, Do LH. Taming glutathione potentiates metallodrug action. Curr Opin Chem Biol 2022; 71:102213. [PMID: 36206677 PMCID: PMC9759795 DOI: 10.1016/j.cbpa.2022.102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/27/2023]
Abstract
Metallodrugs that are redox sensitive or have labile coordination sites are particularly susceptible to inhibition by glutathione (GSH) and other endogenous thiols. Because GSH is an essential antioxidant, strategies to prevent thiol deactivation must consider their potential effects on normal cellular functions. In this short review, we describe general approaches for taming glutathione in metallodrug therapy and discuss their strengths and limitations. We also offer our perspectives on developing practical solutions that are effective and clinically relevant.
Collapse
|
45
|
Wang D, Wan X. Progress in research on the role of amino acid metabolic reprogramming in tumour therapy: A review. Biomed Pharmacother 2022; 156:113923. [DOI: 10.1016/j.biopha.2022.113923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2022] Open
|
46
|
Barutello G, Di Lorenzo A, Gasparetto A, Galiazzi C, Bolli E, Conti L, Cavallo F. Immunotherapy against the Cystine/Glutamate Antiporter xCT Improves the Efficacy of APR-246 in Preclinical Breast Cancer Models. Biomedicines 2022; 10:2843. [PMID: 36359363 PMCID: PMC9688020 DOI: 10.3390/biomedicines10112843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 08/19/2023] Open
Abstract
Breast cancer is the most frequent cancer in women. Despite recent clinical advances, new therapeutic approaches are still required. The cystine-glutamate antiporter xCT, encoded by the SLC7A11 gene, which imports cystine in exchange with glutamate, is a potentially new target for breast cancer therapy, being involved in tumor cell redox balance and resistance to therapies. xCT expression is regulated by the oncosuppressor p53, which is mutated in many breast cancers. Indeed, mutant p53 (mut-p53) can induce xCT post-transcriptional down modulation, rendering mut-p53 tumors susceptible to oxidative damage. Interestingly, the drug APR-246, developed to restore the wild-type function of p53 in tumors harboring its mutation, alters the cell redox balance in a p53-independent way, possibly rendering the cells more sensitive to xCT inhibition. Here, we propose a combinatorial treatment based on xCT immunetargeting and APR-246 treatment as a strategy for tackling breast cancer. We demonstrate that combining the inhibition of xCT with the APR-246 drug significantly decreased breast cancer cell viability in vitro and induced apoptosis and affected cancer stem cells' self-renewal compared to the single treatments. Moreover, the immunetargeting of xCT through DNA vaccination in combination with APR-246 treatment synergistically hinders tumor progression and prevents lung metastasis formation in vivo. These effects can be mediated by the production of anti-xCT antibodies that are able to induce the antibody dependent cellular cytotoxicity of tumor cells. Overall, we demonstrate that DNA vaccination against xCT can synergize with APR-246 treatment and enhance its therapeutic effect. Thus, APR-246 treatment in combination with xCT immunetargeting may open new perspectives in the management of breast cancer.
Collapse
|
47
|
The amino acid transporter SLC7A11-mediated crosstalk implicated in cancer therapy and the tumor microenvironment. Biochem Pharmacol 2022; 205:115241. [PMID: 36084707 DOI: 10.1016/j.bcp.2022.115241] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 01/17/2023]
Abstract
The solute carrier family 7 member 11 (SLC7A11), an amino acid transporter protein is frequently overexpressed in human malignancies. The expression and activity of SLC7A11 is finely regulated by oncogenes and tumor suppressors in tumor cells through various mechanisms and is highly specific for cystine and glutamate. Cystine is mainly transported intracellularly by SLC7A11 in the tumor microenvironment (TME) and is involved in GSH synthesis, which leads to ferroptosis resistance in tumor cells and promotes tumorigenesis and progression. The downregulation of SLC7A11 presents a unique drug discovery opportunity for ferroptosis-related diseases. Experimental work has shown that the combination of targeting SLC7A11 and tumor immunotherapy triggers ferroptosis more potently. Moreover, immunotargeting of SLC7A11 increases the chemosensitivity of cancer stem cells to doxorubicin, suggesting that it may act as an adjuvant to chemotherapy. Thus, SLC7A11 could be a promising target to overcome resistance mechanisms in conventional cancer treatments. This review provides an overview of the regulatory network of SLC7A11 in the TME and progress in the development of SLC7A11 inhibitors. In addition, we summarize the cytotoxic effects of blocking SLC7A11 in cancer cells, cancer stem cells and immune cells.
Collapse
|
48
|
Lv L, Huang RH, Li J, Xu J, Gao W. Impact of NSCLC metabolic remodeling on immunotherapy effectiveness. Biomark Res 2022; 10:66. [PMID: 36038935 PMCID: PMC9425942 DOI: 10.1186/s40364-022-00412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
It is known that metabolic reprogramming (MR) contributes to tumorigenesis through the activation of processes that support survival of cells, proliferation, and grow in the tumor microenvironment. In order to keep the tumor proliferating at a high rate, metabolic pathways must be upregulated, and tumor metabolism must be adapted to meet this requirement. Additionally, immune cells engage in metabolic remodeling to maintain body and self-health. With the advent of immunotherapy, the fate of individuals suffering from non-small cell lung cancer (NSCLC) has been transformed dramatically. MR may have a profound influence on their prognosis. The aim of this review is to summarize current research advancements in metabolic reprogramming and their impact on immunotherapy in NSCLC. Moreover, we talk about promising approaches targeting and manipulating metabolic pathways to improve cancer immunotherapy’s effectiveness in NSCLC.
Collapse
Affiliation(s)
- Lulu Lv
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ruo Han Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiale Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
49
|
Jiménez-Alonso JJ, Guillén-Mancina E, Calderón-Montaño JM, Jiménez-González V, Díaz-Ortega P, Burgos-Morón E, López-Lázaro M. Artificial Diets Based on Selective Amino Acid Restriction versus Capecitabine in Mice with Metastatic Colon Cancer. Nutrients 2022; 14:nu14163378. [PMID: 36014884 PMCID: PMC9412877 DOI: 10.3390/nu14163378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022] Open
Abstract
New therapies are needed to improve the low survival rates of patients with metastatic colon cancer. Evidence suggests that amino acid (AA) restriction can be used to target the altered metabolism of cancer cells. In this work, we evaluated the therapeutic potential of selective AA restriction in colon cancer. After observing anticancer activity in vitro, we prepared several artificial diets and evaluated their anticancer activity in two challenging animal models of metastatic colon cancer. These models were established by injecting CT26.WT murine colon cancer cells in the peritoneum (peritoneal dissemination) or in the tail vein (pulmonary metastases) of immunocompetent BALB/cAnNRj mice. Capecitabine, which is a first-line treatment for patients with metastatic colon cancer, was also evaluated in these models. Mice fed diet TC1 (a diet lacking 10 AAs) and diet TC5 (a diet with 6% casein, 5% glutamine, and 2.5% leucine) lived longer than untreated mice in both models; several mice survived the treatment. Diet TC5 was better than several cycles of capecitabine in both cancer models. Cysteine supplementation blocked the activity of diets TC1 and TC5, but cysteine restriction was not sufficient for activity. Our results indicated that artificial diets based on selective AA restriction have therapeutic potential for colon cancer.
Collapse
Affiliation(s)
| | - Emilio Guillén-Mancina
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | | | - Víctor Jiménez-González
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Patricia Díaz-Ortega
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Estefanía Burgos-Morón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| | - Miguel López-Lázaro
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Sevilla, Spain
| |
Collapse
|
50
|
Abstract
Ferroptosis is an iron-dependent form of regulated cell death that is triggered by the toxic build-up of lipid peroxides on cellular membranes. In recent years, ferroptosis has garnered enormous interest in cancer research communities, partly because it is a unique cell death modality that is mechanistically and morphologically different from other forms of cell death, such as apoptosis, and therefore holds great potential for cancer therapy. In this Review, we summarize the current understanding of ferroptosis-inducing and ferroptosis defence mechanisms, dissect the roles and mechanisms of ferroptosis in tumour suppression and tumour immunity, conceptualize the diverse vulnerabilities of cancer cells to ferroptosis, and explore therapeutic strategies for targeting ferroptosis in cancer.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|