1
|
Mei L, Wang J, Hao Y, Zeng X, Yang Y, Wu Z, Ji Y. A comprehensive update on the immunoregulatory mechanisms of Akkermansia muciniphila: insights into active ingredients, metabolites, and nutrient-driven modulation. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39413040 DOI: 10.1080/10408398.2024.2416481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Akkermansia muciniphila (A. muciniphila) has gained recognition as a pioneering probiotic, exhibiting considerable potential to enhance immune conditions across both humans and animals. The health benefits of A. muciniphila are attributed to its various components, including outer membrane proteins (PilQ and Amuc_1100), secreted proteins (P9 and AmTARS), extracellular vesicles, and metabolites such as SCFAs, ornithine lipids, γ-aminobutyric acid, cobalamin, and inosine. The dynamic control of the mucus layer by A. muciniphila plays a crucial role in regulating intestinal mucosal immunity. Furthermore, A. muciniphila modulates immune function by interacting with macrophages, dendritic cells, T lymphocytes, and Paneth cells. Increasing the abundance of A. muciniphila in the gut through nutritional strategies represents a safe and effective means to augment immune function. Various polyphenols, oligosaccharides, and polysaccharides have been shown to elevate the levels of this bacterium, thereby contributing to favorable immunoregulatory outcomes. This paper delves into the latest research advancements related to the probiotic mechanisms of A. muciniphila and provides an overview of the current understanding of how its abundance responds to nutrients. These insights offer a theoretical foundation for the utilization of A. muciniphila in immunoregulation.
Collapse
Affiliation(s)
- Lihua Mei
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Tang X, Shang Y, Yang H, Song Y, Li S, Qin Y, Song J, Chen K, Liu Y, Zhang D, Chen L. Targeted delivery of Fc-fused PD-L1 for effective management of acute and chronic colitis. Nat Commun 2024; 15:1673. [PMID: 38396052 PMCID: PMC10891058 DOI: 10.1038/s41467-024-46025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The PD-1/PD-L1 pathway in mucosal immunity is currently actively explored and considered as a target for inflammatory bowel disease (IBD) treatment. However, systemic PD-L1 administration may cause unpredictable adverse effects due to immunosuppression. Here we show that reactive oxygen species (ROS)-responsive nanoparticles enhance the efficacy and safety of PD-L1 in a mouse colitis model. The nanoparticles control the accumulation and release of PD-L1 fused to Fc (PD-L1-Fc) at inflammatory sites in the colon. The nanotherapeutics shows superiority in alleviating inflammatory symptoms over systemic PD-L1-Fc administration and mitigates the adverse effects of PD-L1-Fc administration. The nanoparticles-formulated PD-L1-Fc affects production of proinflammatory and anti-inflammatory cytokines, attenuates the infiltration of macrophages, neutrophils, and dendritic cells, increases the frequencies of Treg, Th1 and Tfh cells, reshapes the gut microbiota composition; and increases short-chain fatty acid production. In summary, PD-L1-Fc-decorated nanoparticles may provide an effective and safe strategy for the targeted treatment of IBD.
Collapse
Affiliation(s)
- Xudong Tang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangyang Shang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Hong Yang
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yalan Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Shan Li
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yusi Qin
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jingyi Song
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kang Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Liu
- Department of Laboratory Animal Science, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Lei Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
3
|
Biswas M, So K, Bertolini TB, Krishnan P, Rana J, Muñoz-Melero M, Syed F, Kumar SRP, Gao H, Xuei X, Terhorst C, Daniell H, Cao S, Herzog RW. Distinct functions and transcriptional signatures in orally induced regulatory T cell populations. Front Immunol 2023; 14:1278184. [PMID: 37954612 PMCID: PMC10637621 DOI: 10.3389/fimmu.2023.1278184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Oral administration of antigen induces regulatory T cells (Treg) that can not only control local immune responses in the small intestine, but also traffic to the central immune system to deliver systemic suppression. Employing murine models of the inherited bleeding disorder hemophilia, we find that oral antigen administration induces three CD4+ Treg subsets, namely FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+. These T cells act in concert to suppress systemic antibody production induced by therapeutic protein administration. Whilst both FoxP3+LAP+ and FoxP3-LAP+ CD4+ T cells express membrane-bound TGF-β (latency associated peptide, LAP), phenotypic, functional, and single cell transcriptomic analyses reveal distinct characteristics in the two subsets. As judged by an increase in IL-2Rα and TCR signaling, elevated expression of co-inhibitory receptor molecules and upregulation of the TGFβ and IL-10 signaling pathways, FoxP3+LAP+ cells are an activated form of FoxP3+LAP- Treg. Whereas FoxP3-LAP+ cells express low levels of genes involved in TCR signaling or co-stimulation, engagement of the AP-1 complex members Jun/Fos and Atf3 is most prominent, consistent with potent IL-10 production. Single cell transcriptomic analysis further reveals that engagement of the Jun/Fos transcription factors is requisite for mediating TGFβ expression. This can occur via an Il2ra dependent or independent process in FoxP3+LAP+ or FoxP3-LAP+ cells respectively. Surprisingly, both FoxP3+LAP+ and FoxP3-LAP+ cells potently suppress and induce FoxP3 expression in CD4+ conventional T cells. In this process, FoxP3-LAP+ cells may themselves convert to FoxP3+ Treg. We conclude that orally induced suppression is dependent on multiple regulatory cell types with complementary and interconnected roles.
Collapse
Affiliation(s)
- Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaman So
- Department of Biostatistics and Health Data Science and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Thais B. Bertolini
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Preethi Krishnan
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jyoti Rana
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Farooq Syed
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sandeep R. P. Kumar
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hongyu Gao
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiaoling Xuei
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, United States
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sha Cao
- Department of Biostatistics and Health Data Science and Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Abo H, Muraki A, Harusato A, Imura T, Suzuki M, Takahashi K, Denning TL, Kawashima H. N-acetylglucosamine-6-O sulfation on intestinal mucins prevents obesity and intestinal inflammation by regulating gut microbiota. JCI Insight 2023; 8:e165944. [PMID: 37463055 PMCID: PMC10543739 DOI: 10.1172/jci.insight.165944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
Intestinal mucins play an essential role in the defense against bacterial invasion and the maintenance of gut microbiota, which is instrumental in the regulation of host immune systems; hence, its dysregulation is a hallmark of metabolic disease and intestinal inflammation. However, the mechanism by which intestinal mucins control the gut microbiota as well as disease phenotypes remains nebulous. Herein, we report that N-acetylglucosamine (GlcNAc)-6-O sulfation of O-glycans on intestinal mucins performs a protective role against obesity and intestinal inflammation. Chst4-/- mice, lacking GlcNAc-6-O sulfation of the mucin O-glycans, showed significant weight gain and increased susceptibility to dextran sodium sulfate-induced colitis as well as colitis-associated cancer accompanied by significantly reduced immunoglobulin A (IgA) production caused by an impaired T follicular helper cell-mediated IgA response. Interestingly, the protective effects of GlcNAc-6-O sulfation against obesity and intestinal inflammation depend on the gut microbiota, evidenced by the modulation of the gut microbiota by cohousing or microbiota transplantation reversing disease phenotypes and IgA production. Collectively, our findings provide insight into the significance of host glycosylation, more specifically GlcNAc-6-O sulfation on intestinal mucins, in protecting against obesity and intestinal inflammation via regulation of the gut microbiota.
Collapse
Affiliation(s)
- Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Aoi Muraki
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | | | - Tetsuya Imura
- Department of Surgical Pathology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Maki Suzuki
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Kohta Takahashi
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| | - Timothy L. Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Science, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Cao Y, Li Y, Wang X, Liu S, Zhang Y, Liu G, Ye S, Zheng Y, Zhao J, Zhu X, Chen Y, Xu H, Feng D, Chen D, Chen L, Liu W, Zhou W, Zhang Z, Zhou P, Deng K, Ye L, Yu Y, Yao Z, Liu Q, Xu H, Zhou J. Dopamine inhibits group 2 innate lymphoid cell-driven allergic lung inflammation by dampening mitochondrial activity. Immunity 2023; 56:320-335.e9. [PMID: 36693372 DOI: 10.1016/j.immuni.2022.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/26/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023]
Abstract
Neuronal signals have emerged as pivotal regulators of group 2 innate lymphoid cells (ILC2s) that regulate tissue homeostasis and allergic inflammation. The molecular pathways underlying the neuronal regulation of ILC2 responses in lungs remain to be fully elucidated. Here, we found that the abundance of neurotransmitter dopamine was negatively correlated with circulating ILC2 numbers and positively associated with pulmonary function in humans. Dopamine potently suppressed lung ILC2 responses in a DRD1-receptor-dependent manner. Genetic deletion of Drd1 or local ablation of dopaminergic neurons augmented ILC2 responses and allergic lung inflammation. Transcriptome and metabolic analyses revealed that dopamine impaired the mitochondrial oxidative phosphorylation (OXPHOS) pathway in ILC2s. Augmentation of OXPHOS activity with oltipraz antagonized the inhibitory effect of dopamine. Local administration of dopamine alleviated allergen-induced ILC2 responses and airway inflammation. These findings demonstrate that dopamine represents an inhibitory regulator of ILC2 responses in allergic airway inflammation.
Collapse
Affiliation(s)
- Yingjiao Cao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yu Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Xiangyang Wang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Shaorui Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Yongmei Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Gaoyu Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Shusen Ye
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Yuhao Zheng
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiacong Zhao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Chen
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Haixu Xu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Dubo Chen
- Department of Laboratory Medicine, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Ling Chen
- Department of Neurology, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Wangkai Liu
- Department of Pediatrics, First Affiliated Hospital of Sun Yet-san University, Guangzhou 510080, China
| | - Wenjie Zhou
- Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230026, China
| | - Zhi Zhang
- Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230026, China
| | - Pan Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Liu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China.
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
6
|
Verstockt B, Verstockt S, Cremer J, Sabino J, Ferrante M, Vermeire S, Sudhakar P. Distinct transcriptional signatures in purified circulating immune cells drive heterogeneity in disease location in IBD. BMJ Open Gastroenterol 2023; 10:bmjgast-2022-001003. [PMID: 36746519 PMCID: PMC9906185 DOI: 10.1136/bmjgast-2022-001003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To infer potential mechanisms driving disease subtypes among patients with inflammatory bowel disease (IBD), we profiled the transcriptome of purified circulating monocytes and CD4 T-cells. DESIGN RNA extracted from purified monocytes and CD4 T-cells derived from the peripheral blood of 125 endoscopically active patients with IBD was sequenced using Illumina HiSeq 4000NGS. We used complementary supervised and unsupervised analytical methods to infer gene expression signatures associated with demographic/clinical features. Expression differences and specificity were validated by comparison with publicly available single cell datasets, tissue-specific expression and meta-analyses. Drug target information, druggability and adverse reaction records were used to prioritise disease subtype-specific therapeutic targets. RESULTS Unsupervised/supervised methods identified significant differences in the expression profiles of CD4 T-cells between patients with ileal Crohn's disease (CD) and ulcerative colitis (UC). Following a pathway-based classification (Area Under Receiver Operating Characteristic - AUROC=86%) between ileal-CD and UC patients, we identified MAPK and FOXO pathways to be downregulated in UC. Coexpression module/regulatory network analysis using systems-biology approaches revealed mediatory core transcription factors. We independently confirmed that a subset of the disease location-associated signature is characterised by T-cell-specific and location-specific expression. Integration of drug-target information resulted in the discovery of several new (BCL6, GPR183, TNFAIP3) and repurposable drug targets (TUBB2A, PRKCQ) for ileal CD as well as novel targets (NAPEPLD, SLC35A1) for UC. CONCLUSIONS Transcriptomic profiling of circulating CD4 T-cells in patients with IBD demonstrated marked molecular differences between the IBD-spectrum extremities (UC and predominantly ileal CD, sandwiching colonic CD), which could help in prioritising particular drug targets for IBD subtypes.
Collapse
Affiliation(s)
- Bram Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Sare Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| | - João Sabino
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Severine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Padhmanand Sudhakar
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun 2023; 134:102976. [PMID: 36525939 DOI: 10.1016/j.jaut.2022.102976] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells with the phenotype of mainly expressing surface molecules C-X-C motif chemokine receptor type 5 (CXCR5), inducible co-stimulator (ICOS), secreting cytokine interleukin-21 (IL-21) and requiring the transcription factor B cell lymphoma 6 (BCL-6) have been recently defined as a new subset of CD4+ T cells. They exist in germinal centers (GCs) of lymphoid organs and in peripheral blood. With the ability to promote B cell development, GC formation and antibody production, Tfh cells play critical roles in the pathogenesis of many autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), etc. The aberrant proliferation and function of Tfh cells will cause the pathological process like autoantibody production and tissue injury. In this paper, we review the recent advances in Tfh cell biology and their roles in autoimmune diseases, with a mention of their use as therapeutic targets, which will shed more light on the pathogenesis and treatment of certain autoimmune diseases.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China.
| |
Collapse
|
8
|
Zhong Y, Xiao Q, Kang Z, Huang J, Ge W, Wan Q, Wang H, Zhou W, Zhao H, Liu D. Astragalus polysaccharide alleviates ulcerative colitis by regulating the balance of Tfh/Treg cells. Int Immunopharmacol 2022; 111:109108. [PMID: 35926271 DOI: 10.1016/j.intimp.2022.109108] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022]
Abstract
The immunomodulatory function of natural active ingredients has long been a focus of scientific research, with recent hotspots reporting targeted modulation of the follicular helper T cells (Tfh)/regulatory T cells (Treg) balance as an emerging strategy for the treatment of ulcerative colitis (UC). Here, dextran sodium sulfate induced mice UC and Astragalus polysaccharide (APS, 200 mg/kg/day) was administered simultaneously. In this study, APS effectively alleviated colitis in mice by improving survival rate, disease activity index (DAI), the change rate of body weight, colonic length and weight, and histopathological injury of the colon. Moreover, APS regulated the expression of inflammatory cytokines interleukin (IL)-2, IL-6, IL-12p70, IL-23, Tumour necrosis factor (TNF)-ɑ, and transforming growth factor (TGF)-β1 in colonic tissues of colitis mice. Importantly, APS significantly downregulated Tfh cell and the expression of its related nuclear transcription factors Blimp-1 and Bcl-6, and cytokine IL-21. Meanwhile, APS regulated the differentiation of Tfh subpopulations in colitis mice, with Tfh10 and Tfr significantly upregulated while Tfh1, Tfh17, and Tfh21 significantly downregulated. In addition, APS significantly upregulated Treg cells and the levels of its associated nuclear transcription factor Foxp3, and cytokine IL-10 in colitis mice. In conclusion, APS effectively alleviated UC by reshaping the balance of Tfh/Treg cells.
Collapse
Affiliation(s)
- Youbao Zhong
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Qiuping Xiao
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang 330004, Jiangxi Province, China
| | - Zengping Kang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wei Ge
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Qi Wan
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Haiyan Wang
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Wen Zhou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; Nanchang Medical College, Nanchang 330004, Jiangxi Province, China
| | - Haimei Zhao
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China; College of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi Province, China.
| |
Collapse
|
9
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
10
|
Sæterstad S, Østvik AE, Røyset ES, Bakke I, Sandvik AK, Granlund AVB. Profound gene expression changes in the epithelial monolayer of active ulcerative colitis and Crohn's disease. PLoS One 2022; 17:e0265189. [PMID: 35275975 PMCID: PMC8916644 DOI: 10.1371/journal.pone.0265189] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years it has become apparent that the epithelium is highly involved in inflammatory bowel disease (IBD) pathophysiology. The majority of gene expression studies of IBD are generated from heterogeneous biopsies, providing no distinction between immune cells, the epithelium and other mucosal cells. By using laser capture microdissection (LCM) coupled with RNA sequencing, we aimed to characterize the expressional changes of the isolated colonic epithelial monolayer from ulcerative colitis (UC) and Crohn’s disease (CD) patients compared to healthy controls (HC). The analysis identified 3706 genes as differentially expressed between active IBD epithelium and HC. Weighted gene co-expression network analysis was used to stratify genes into modules, which were subsequently characterized using enrichment analysis. Our data show a distinct upregulation of the antigen presentation machinery during inflammation, including major histocompatibility complex class II molecules (e.g. HLA-DPA1, HLA-DPB1, HLA-DRA) and key transcription factors/activators (STAT1, IRF1, CIITA). We also see an epithelial downregulation of retinoic acid-responsive nuclear receptors (RARA, RARB, RXRA), but upregulation of retinoid-metabolizing enzymes (RDH11, ALDH1A2, ALDH1A3), which together suggest a perturbation of epithelial vitamin A signaling during active IBD. Lastly, we identified a cluster of stress-related genes, including activator protein 1 components JUNB and ATF3, as significantly upregulated in active UC but not in CD, revealing an interesting aspect of IBD heterogeneity. The results represent a unique resource for enhanced understanding of epithelial involvement in IBD inflammation and is a valuable tool for further studies on these processes.
Collapse
Affiliation(s)
- Siri Sæterstad
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Elin Synnøve Røyset
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Pathology, St. Olav’s University Hospital, Trondheim, Norway
| | - Ingunn Bakke
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Medicine, St Olav’s University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Medicine, St Olav’s University Hospital, Trondheim, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- * E-mail:
| |
Collapse
|
11
|
Chuang DJ, Pethaperumal S, Siwakoti B, Chien HJ, Cheng CF, Hung SC, Lien TS, Sun DS, Chang HH. Activating Transcription Factor 3 Protects against Restraint Stress-Induced Gastrointestinal Injury in Mice. Cells 2021; 10:3530. [PMID: 34944038 PMCID: PMC8700235 DOI: 10.3390/cells10123530] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/11/2022] Open
Abstract
Psychological stress increases the risk of gastrointestinal (GI) tract diseases, which involve bidirectional communication of the GI and nerves systems. Acute stress leads to GI ulcers; however, the mechanism of the native cellular protection pathway, which safeguards tissue integrality and maintains GI homeostasis, remains to be investigated. In a mouse model of this study, restraint stress induced GI leakage, abnormal tight junction protein expression, and cell death of gut epithelial cells. The expression of activating transcription factor 3 (ATF3), a stress-responsive transcription factor, is upregulated in the GI tissues of stressed animals. ATF3-deficient mice displayed an exacerbated phenotype of GI injuries. These results suggested that, in response to stress, ATF3 is part of the native cellular protective pathway in the GI system, which could be a molecular target for managing psychological stress-induced GI tract diseases.
Collapse
Affiliation(s)
- Dun-Jie Chuang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Subhashree Pethaperumal
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Bijaya Siwakoti
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Hung-Jen Chien
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (D.-J.C.); (S.P.); (B.S.); (T.-S.L.); (D.-S.S.)
- Institute of Medical Sciences, Tzu-Chi University, Hualien 970, Taiwan;
| |
Collapse
|
12
|
Overacre-Delgoffe AE, Bumgarner HJ, Cillo AR, Burr AHP, Tometich JT, Bhattacharjee A, Bruno TC, Vignali DAA, Hand TW. Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against colorectal cancer. Immunity 2021; 54:2812-2824.e4. [PMID: 34861182 PMCID: PMC8865366 DOI: 10.1016/j.immuni.2021.11.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/19/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
The composition of the intestinal microbiota is associated with both the development of tumors and the efficacy of anti-tumor immunity. Here, we examined the impact of microbiota-specific T cells in anti-colorectal cancer (CRC) immunity. Introduction of Helicobacter hepaticus (Hhep) in a mouse model of CRC did not alter the microbial landscape but increased tumor infiltration by cytotoxic lymphocytes and inhibited tumor growth. Anti-tumor immunity was independent of CD8+ T cells but dependent upon CD4+ T cells, B cells, and natural killer (NK) cells. Hhep colonization induced Hhep-specific T follicular helper (Tfh) cells, increased the number of colon Tfh cells, and supported the maturation of Hhep+ tumor-adjacent tertiary lymphoid structures. Tfh cells were necessary for Hhep-mediated tumor control and immune infiltration, and adoptive transfer of Hhep-specific CD4+ T cells to Tfh cell-deficient Bcl6fl/flCd4Cre mice restored anti-tumor immunity. Thus, introduction of immunogenic intestinal bacteria can promote Tfh-associated anti-tumor immunity in the colon, suggesting therapeutic approaches for the treatment of CRC.
Collapse
Affiliation(s)
- Abigail E Overacre-Delgoffe
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Hannah J Bumgarner
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA; Graduate Program of Microbiology and Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Ansen H P Burr
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA; Graduate Program of Microbiology and Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | - Justin T Tometich
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Amrita Bhattacharjee
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Timothy W Hand
- R.K. Mellon Institute for Pediatric Research, Pediatrics Department, Infectious Disease Section, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA; Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
3D collagen matrices modulate the transcriptional trajectory of bone marrow hematopoietic progenitors into macrophage lineage commitment. Bioact Mater 2021; 10:255-268. [PMID: 34901544 PMCID: PMC8636680 DOI: 10.1016/j.bioactmat.2021.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/23/2022] Open
Abstract
Physical signals provided by the extracellular matrix (ECM) are key microenvironmental parameters for the fate decision of hematopoietic stem and progenitor cells (HSPC) in bone marrow. Insights into cell-ECM interactions are critical for advancing HSC-based tissue engineering. Herein, we employed collagen hydrogels and collagen-alginate hydrogels of defined stiffness to study the behaviors of hematopoietic progenitor cells (HPCs). Three-dimensional (3D) collagen hydrogels with a stiffness of 45 Pa were found to promote HPC maintenance and colony formation of monocyte/macrophage progenitors. Using single-cell RNA sequencing (scRNA-seq), we also characterized the comprehensive transcriptional profiles of cells randomly selected from two-dimensional (2D) and 3D hydrogels. A distinct maturation trajectory from HPCs into macrophages within the 3D microenvironment was revealed by these results. 3D-derived macrophages expressed high levels of various cytokines and chemokines, such as Saa3, Cxcl2, Socs3 and Tnf. Furthermore, enhanced communication between 3D-macrophages and other hematopoietic clusters based on ligand-repair interactions was demonstrated through bioinformatic analyses. Our research underlines the regulatory role of matrix-dimensionality in HPC differentiation and therefore probably be applied to the generation of specialized macrophages. 3D collagen hydrogels influenced the maintenance of hematopoietic progenitor cells. 3D matrices modulated the lineage specification of hematopoietic progenitors and promoted the formation of CFU-M colonies. Single-cell RNA sequencing identified a cluster of specialized macrophages within a 3D microenvironment.
Collapse
|
14
|
Xie G, Dong P, Chen H, Xu L, Liu Y, Ma Y, Zheng Y, Yang J, Zhou Y, Chen L, Shen L. Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP. Exp Mol Med 2021; 53:1706-1722. [PMID: 34728784 PMCID: PMC8639750 DOI: 10.1038/s12276-021-00694-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients. New treatments for gastric cancer could involve controlling the activity of a regulatory gene and associated signaling pathway. Over-activation of the Wnt signaling pathway, which regulates many cellular functions, occurs in around half of gastric cancers. Further, the activating transcription factor 3 gene (ATF3) is thought to influence tumorigenesis, although its role in gastric cancer is unclear. Guohua Xie and co-workers at Shanghai Jiao Tong University, China, explored the function of ATF3 in human gastric cancer tissues. Patients with low ATF3 expression had poorer prognosis and shorter life expectancy. The team discovered that reduced expression of ATF3 triggered the increased expression of two of its target genes, which then altered Wnt signaling. Reduced ATF3 expression also boosted the invasiveness of gastric cancer cells. Initial results suggest that overexpression of ATF3 could suppress gastric cancer progression.
Collapse
Affiliation(s)
- Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Faculty of Medical Laboratory Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Critical regulation of follicular helper T cell differentiation and function by Gα 13 signaling. Proc Natl Acad Sci U S A 2021; 118:2108376118. [PMID: 34663730 PMCID: PMC8639339 DOI: 10.1073/pnas.2108376118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 12/27/2022] Open
Abstract
Optimal follicular helper T (Tfh) cell differentiation and function are required for effective humoral immunity against infection, while improper Tfh cell responses are associated with autoimmunity and allergy. We demonstrate that Gα13—a Gα protein subunit known to be involved in mediating signals related to cytoskeletal integrity, chemotaxis, and migration—acts as an essential positive regulator in Tfh cell development and function. The deletion of Gα13 in T cells results in dampened germinal center reactions in immunization and viral infection models. Mechanistically, Gα13-RhoA-ROCK2 axis is responsible for the Tfh cell differentiation from naïve precursors, and Rho agonists recuperate hampered Tfh cell function in Gα13-deficient mice. Such mechanistic insight underscores the possibility of targeting Gα13-mediated signaling to maneuver Tfh cell responses. GPCR-Gα protein–mediated signal transduction contributes to spatiotemporal interactions between immune cells to fine-tune and facilitate the process of inflammation and host protection. Beyond this, however, how Gα proteins contribute to the helper T cell subset differentiation and adaptive response have been underappreciated. Here, we found that Gα13 signaling in T cells plays a crucial role in inducing follicular helper T (Tfh) cell differentiation in vivo. T cell–specific Gα13-deficient mice have diminished Tfh cell responses in a cell-intrinsic manner in response to immunization, lymphocytic choriomeningitis virus infection, and allergen challenges. Moreover, Gα13-deficient Tfh cells express reduced levels of Bcl-6 and CXCR5 and are functionally impaired in their ability to adhere to and stimulate B cells. Mechanistically, Gα13-deficient Tfh cells harbor defective Rho-ROCK2 activation, and Rho agonist treatment recuperates Tfh cell differentiation and expression of Bcl-6 and CXCR5 in Tfh cells of T cell–specific Gα13-deficient mice. Conversely, ROCK inhibitor treatment hampers Tfh cell differentiation in wild-type mice. These findings unveil a crucial regulatory role of Gα13-Rho-ROCK axis in optimal Tfh cell differentiation and function, which might be a promising target for pharmacologic intervention in vaccine development as well as antibody-mediated immune disorders.
Collapse
|
16
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
17
|
Schroeder AR, Zhu F, Hu H. Stepwise Tfh cell differentiation revisited: new advances and long-standing questions. Fac Rev 2021; 10. [PMID: 33644779 PMCID: PMC7894273 DOI: 10.12703/r/10-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells play an essential role in germinal center formation and the generation of high-affinity antibodies. Studies have proposed that Tfh cell differentiation is a multi-step process. However, it is still not fully understood how a subset of activated CD4+ T cells begin to express CXCR5 during the early stage of the response and, shortly after, how some CXCR5+ precursor Tfh (pre-Tfh) cells enter B cell follicles and differentiate further into germinal center Tfh (GC-Tfh) cells while others have a different fate. In this mini-review, we summarize the recent advances surrounding these two aspects of Tfh cell differentiation and discuss related long-standing questions, including Tfh memory.
Collapse
Affiliation(s)
- Andrew R Schroeder
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fangming Zhu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hui Hu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
18
|
Ge CY, Wei LY, Tian Y, Wang HH. A Seven-NF-κB-Related Gene Signature May Distinguish Patients with Ulcerative Colitis-Associated Colorectal Carcinoma. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:707-718. [PMID: 33299340 PMCID: PMC7719442 DOI: 10.2147/pgpm.s274258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 01/07/2023]
Abstract
Purpose Ulcerative colitis (UC) patients have an increased risk of colorectal cancer (CRC), and compared with sporadic CRC, ulcerative colitis-associated colorectal cancer (CAC) is more aggressive with a worse prognosis. This study aimed to identify a gene signature to predict the risk of CAC for patients with UC in remission. Patients and Methods Series of quiescent UC-related transcriptome data obtained from the Gene Expression Omnibus (GEO) data set were divided into a training set and a validation set. Gene Set Variation Analysis (GSVA), Gene Set Enrichment Analysis (GSEA), and \Weighted Correlation Network Analysis (WGCNA) combined with protein-protein interaction (PPI) analysis were used to identify the pathways and gene signatures related to tumorigenesis among quiescent UC patients. A generalized linear model (GLM) of Poisson regression based on the training set was applied to estimate the diagnostic power of the gene signature in our validation set. Results The tumor necrosis factor (TNF) signaling via NF-κB pathway was significantly augmented with the highest normalized enrichment score (NES). The genes in the brown module from WGCNA have shown a significant correlation with CAC (Pearson coefficient = 0.83, p = 6e-06). A subset of NF-κB related genes (FOS, CCL4, CXCL1, MYC, CEBPB, ATF3, and JUNB) were identified with a relatively higher expression level in CAC samples. The diagnostic value of this 7-gene biomarker was estimated by the receiver operating characteristic (ROC) curve with an area under the ROC curve (AUC) at 0.82 (p<0.0001, 95% CI: 0.7098-0.9400) in the validation cohort. Conclusion In summary, the increased expression of this seven-NF-κB-related gene signature may act as a powerful index for tumorigenesis prediction among patients with UC in remission.
Collapse
Affiliation(s)
- Chao-Yi Ge
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| | - Li-Yuan Wei
- Department of Breast Surgery, Shanxi Bethune Hospital, Taiyuan, People's Republic of China
| | - Yu Tian
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| | - Hua-Hong Wang
- Department of Gastroenterology, Peking University First Hospital, Beijing, People's Republic of China
| |
Collapse
|
19
|
Liu Y, Chen Y, Deng X, Zhou J. ATF3 Prevents Stress-Induced Hematopoietic Stem Cell Exhaustion. Front Cell Dev Biol 2020; 8:585771. [PMID: 33195236 PMCID: PMC7652754 DOI: 10.3389/fcell.2020.585771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Protection of hematopoietic stem cells (HSCs) from exhaustion and effective regeneration of the HSC pool after bone marrow transplantation or irradiation therapy is an urgent clinical need. Here, we investigated the role of activating transcription factor 3 (ATF3) in steady-state and stress hematopoiesis using conditional knockout mice (Atf3fl/flVav1Cre mice). Deficiency of ATF3 in the hematopoietic system displayed no noticeable effects on hematopoiesis under steady-state conditions. Expression of ATF3 was significantly down-regulated in long-term HSCs (LT-HSCs) after exposure to stresses such as 5-fluorouracil challenge or irradiation. Atf3fl/flVav1Cre mice displayed enhanced proliferation and expansion of LT-HSCs upon short-term chemotherapy or irradiation compared with those in Atf3fl/fl littermate controls; however, the long-term reconstitution capability of LT-HSCs from Atf3fl/flVav1Cre mice was dramatically impaired after a series of bone marrow transplantations. These observations suggest that ATF3 plays an important role in preventing stress-induced exhaustion of HSCs.
Collapse
Affiliation(s)
- Yufeng Liu
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingying Chen
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaohui Deng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
20
|
He J, Yang Q, Xiao Q, Lei A, Li X, Zhou P, Liu T, Zhang L, Shi K, Yang Q, Dong J, Zhou J. IRF-7 Is a Critical Regulator of Type 2 Innate Lymphoid Cells in Allergic Airway Inflammation. Cell Rep 2020; 29:2718-2730.e6. [PMID: 31775040 DOI: 10.1016/j.celrep.2019.10.077] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/16/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Allergic asthma is a highly prevalent airway disease triggered by hyperresponsiveness to inhaled allergens. Interferon regulatory factor 7 (IRF7) has been shown to be highly expressed in nasal aspirates from children with asthma. Type 2 innate lymphoid cells (ILC2s) represent the major player in allergic airway inflammation. The role of IRF7 in ILC2-driven asthma remains to be explored. Here, we report that IRF7 expression in murine lung ILC2s is dramatically induced upon papain or interleukin-33 (IL-33) stimulation. ILC2s from asthma patients display a much higher level of IRF7 than those from healthy donors. Deficiency of IRF7 in mice significantly impairs the expansion and function of lung ILC2s in multiple models of allergic asthma. Furthermore, the regulation of ILC2s by IRF7 is cell intrinsic and mediated by the transcription factor Bcl11b. These observations identify IRF7 as a regulator of lung ILC2s, which may have immunotherapeutic value in allergic asthma.
Collapse
Affiliation(s)
- Juan He
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China; Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xiao
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Aihua Lei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xing Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pan Zhou
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Ting Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Zhang
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China
| | - Kun Shi
- Department of Gynaecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Junchao Dong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jie Zhou
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
21
|
Zhong L, Li S, Wen Y, Zheng J, Liu F, Cao D, Liu Y. Expansion of Polymorphonuclear Myeloid-Derived Suppressor Cells in Patients With Gout. Front Immunol 2020; 11:567783. [PMID: 33154749 PMCID: PMC7591715 DOI: 10.3389/fimmu.2020.567783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Gout is an inflammatory joint disease caused by monosodium urate (MSU) crystals; however, the mechanism underlying MSU-induced inflammation is unclear. Previous research has suggested that inflammation or cancer can drive the expansion of myeloid-derived suppressor cells (MDSCs). In this study, the role of MDSCs in MSU-induced gout inflammation was evaluated. A total of 28 patients with gout, and 20 healthy controls were recruited for the study. MDSCs, and their functions, were analyzed by flow cytometry and a T cell co-culture assay, respectively. We observed a higher frequency of PMN-MDSCs, and a stronger immunosuppressive function, in patients with gout compared to the controls. Moreover, circulating PMN-MDSCs were positively correlated with pathological indicators, including uric acid and C-reactive protein levels. We also demonstrated that MSU can induce significant PMN-MDSC expansion, using in vivo and in vitro experiments. Finally, MSU-induced PMN-MDSCs produced higher levels of IL-1β, which mediated gout inflammatory progression. Our results demonstrate that MSU modulates the expansion and suppressive function of PMN-MDSCs, providing insights into a novel mechanism underlying the pathogenesis of MSU-induced gout. Thus, MDSCs may be useful for the development of novel therapeutic strategies for the prevention and treatment of gout.
Collapse
Affiliation(s)
- Limei Zhong
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sitao Li
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Wen
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junhui Zheng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yufeng Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
22
|
Mechanism of Follicular Helper T Cell Differentiation Regulated by Transcription Factors. J Immunol Res 2020; 2020:1826587. [PMID: 32766317 PMCID: PMC7387970 DOI: 10.1155/2020/1826587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 12/23/2022] Open
Abstract
Helping B cells and antibody responses is a major function of CD4+T helper cells. Follicular helper T (Tfh) cells are identified as a subset of CD4+T helper cells, which is specialized in helping B cells in the germinal center reaction. Tfh cells express high levels of CXCR5, PD-1, IL-21, and other characteristic markers. Accumulating evidence has demonstrated that the dysregulation of Tfh cells is involved in infectious, inflammatory, and autoimmune diseases, including lymphocytic choriomeningitis virus (LCMV) infection, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), IgG4-related disease (IgG4-RD), Sjögren syndrome (SS), and type 1 diabetes (T1D). Activation of subset-specific transcription factors is the essential step for Tfh cell differentiation. The differentiation of Tfh cells is regulated by a complicated network of transcription factors, including positive factors (Bcl6, ATF-3, Batf, IRF4, c-Maf, and so on) and negative factors (Blimp-1, STAT5, IRF8, Bach2, and so on). The current knowledge underlying the molecular mechanisms of Tfh cell differentiation at the transcriptional level is summarized in this paper, which will provide many perspectives to explore the pathogenesis and treatment of the relevant immune diseases.
Collapse
|
23
|
Globig AM, Sommer NP, Wild K, Schardey J, Zoldan K, Thomann AK, Schulte LA, Schreiner R, Reindl W, Klaus J, Schempp CM, Hofmann M, Thimme R, Boettler T, Hasselblatt P. Ustekinumab Inhibits T Follicular Helper Cell Differentiation in Patients With Crohn's Disease. Cell Mol Gastroenterol Hepatol 2020; 11:1-12. [PMID: 32679193 PMCID: PMC7593584 DOI: 10.1016/j.jcmgh.2020.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The pathogenesis of chronic inflammatory bowel diseases (Crohn's disease [CD] and ulcerative colitis) involves dysregulated TH1 and TH17 cell responses, which can be targeted therapeutically by the monoclonal antibody Ustekinumab directed against the joint p40 subunit of IL-12 and IL-23. These cytokines may also regulate the differentiation of T follicular helper (TFH) cells, which promote B cell function in germinal centers. However, the role of TFH cells in CD pathogenesis and impact of Ustekinumab therapy on TFH cell fate in patients are poorly defined. METHODS Lymphocytes were isolated from peripheral blood (n=45) and intestinal biopsies (n=15) of CD patients or healthy controls (n=21) and analyzed by flow cytometry to assess TFH cell phenotypes and functions ex vivo. In addition, TFH cell differentiation was analyzed in the presence of Ustekinumab in vitro. RESULTS TFH cell frequencies in the intestine as well as peripheral blood were associated with endoscopic as well as biochemical evidence of CD activity. CD patients with clinical response to Ustekinumab, but not those with response to anti-TNF antibodies, displayed reduced frequencies of circulating TFH cells in a concentration-dependent manner while the TFH phenotype was not affected by Ustekinumab therapy. In keeping with this notion, TFH cell differentiation was inhibited by Ustekinumab in vitro while TFH cell maintenance was not affected. Moreover, Ustekinumab therapy resulted in reduced germinal center activity in CD patients in vivo. CONCLUSIONS These data implicate TFH cells in the pathogenesis of CD and indicate that Ustekinumab therapy affects TFH cell differentiation, which may influence TFH-mediated immune functions in UST-treated CD patients.
Collapse
Affiliation(s)
- Anna-Maria Globig
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nikola Patricia Sommer
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wild
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Josefine Schardey
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Zoldan
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Kerstin Thomann
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Rupert Schreiner
- Medical Care Center Dr. Limbach and Colleagues, Heidelberg, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jochen Klaus
- Department of Medicine I, University Hospital Ulm, Ulm, Germany
| | - Christoph Mathis Schempp
- Department of Dermatology and Venerology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Department of Medicine II, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany,Correspondence Address requests for correspondence to: Peter Hasselblatt, MD, Department of Medicine II, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106 Freiburg, Germany. fax: ++49 761 270 33530.
| |
Collapse
|
24
|
Cao Y, Wang X, Yang Q, Deng H, Liu Y, Zhou P, Xu H, Chen D, Feng D, Zhang H, Wang H, Zhou J. Critical Role of Intestinal Microbiota in ATF3-Mediated Gut Immune Homeostasis. THE JOURNAL OF IMMUNOLOGY 2020; 205:842-852. [PMID: 32571839 DOI: 10.4049/jimmunol.1901000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/21/2020] [Indexed: 12/26/2022]
Abstract
Secretory Ig A (sIgA) plays an important role in the maintenance of intestinal homeostasis via cross-talk with gut microbiota. The defects in sIgA production could elicit dysbiosis of commensal microbiota and subsequently facilitate the development of inflammatory bowel disease. Our previous study revealed activating transcription factor 3 (ATF3) as an important regulator of follicular helper T (TFH) cells in gut. ATF3 deficiency in CD4+ T cells impaired the development of gut TFH cells, and therefore diminished sIgA production, which increased the susceptibility to murine colitis. However, the potential role of microbiota in ATF3-mediated gut homeostasis remains incompletely understood. In this study, we report that both Atf3-/- and CD4creAtf3fl/fl mice displayed profound dysbiosis of gut microbiota when compared with their littermate controls. The proinflammatory Prevotella taxa, especially Prevotella copri, were more abundant in ATF3-deficient mice when compared with littermate controls. This phenotype was obviously abrogated by adoptive transfer of either TFH cells or IgA+ B cells. Importantly, depletion of gut microbiota dramatically alleviated the severity of colitis in Atf3-/- mice, whereas transfer of microbiota from Atf3-/- mice to wild-type recipients increased their susceptibility to colitis. Collectively, these observations indicate the importance of IgA-microbiota interaction in ATF3-mediated gut homeostasis.
Collapse
Affiliation(s)
- Yingjiao Cao
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangyang Wang
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Deng
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongdong Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Pan Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Haixu Xu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dubo Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; and
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Zhou
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China; .,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
25
|
Leppkes M, Neurath MF. Cytokines in inflammatory bowel diseases - Update 2020. Pharmacol Res 2020; 158:104835. [PMID: 32416212 DOI: 10.1016/j.phrs.2020.104835] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory Bowel Diseases (IBD), namely Crohn's Disease and Ulcerative Colitis, cause a significant disease burden in modern civilization. Ever since the introduction of anti-TNF-directed therapies 20 years ago, cytokines have attracted a lot of research attention and several cytokine-directed therapies have been implemented in the clinical treatment of these diseases. The research progress in these past years has underlined the importance of both myeloid and lymphoid elements of the immune system in the pathogenesis of IBD and their cytokine-mediated interplay. The conceptual framework of the mucosal cytokine network has shifted during these years from a T helper (Th) dichotomy (Th1/Th2) to the effector/regulatory T cell balance, while nowadays, the importance of myeloid cell instruction of lymphocytes, namely by IL-12 and IL-23, is increasingly recognized. Anti-IL-12p40 agents, like ustekinumab, groundbreakingly changed patient care, and anti-IL23p19-directed approaches are on the verge of grand success. In this review we present a modular approach to understand the cytokine network and put it into the context of the pathogenesis of IBD with a special focus on publications since 2014.
Collapse
Affiliation(s)
- M Leppkes
- Department of Medicine, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany.
| | - M F Neurath
- Department of Medicine, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
26
|
Ku HC, Cheng CF. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer. Front Endocrinol (Lausanne) 2020; 11:556. [PMID: 32922364 PMCID: PMC7457002 DOI: 10.3389/fendo.2020.00556] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays vital roles in modulating metabolism, immunity, and oncogenesis. ATF3 acts as a hub of the cellular adaptive-response network. Multiple extracellular signals, such as endoplasmic reticulum (ER) stress, cytokines, chemokines, and LPS, are connected to ATF3 induction. The function of ATF3 as a regulator of metabolism and immunity has recently sparked intense attention. In this review, we describe how ATF3 can act as both a transcriptional activator and a repressor. We then focus on the role of ATF3 and ATF3-regulated signals in modulating metabolism, immunity, and oncogenesis. The roles of ATF3 in glucose metabolism and adipose tissue regulation are also explored. Next, we summarize how ATF3 regulates immunity and maintains normal host defense. In addition, we elaborate on the roles of ATF3 as a regulator of prostate, breast, colon, lung, and liver cancers. Further understanding of how ATF3 regulates signaling pathways involved in glucose metabolism, adipocyte metabolism, immuno-responsiveness, and oncogenesis in various cancers, including prostate, breast, colon, lung, and liver cancers, is then provided. Finally, we demonstrate that ATF3 acts as a master regulator of metabolic homeostasis and, therefore, may be an appealing target for the treatment of metabolic dyshomeostasis, immune disorders, and various cancers.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Ching-Feng Cheng
| |
Collapse
|
27
|
Wang L, Zhu L, Qin S. Gut Microbiota Modulation on Intestinal Mucosal Adaptive Immunity. J Immunol Res 2019; 2019:4735040. [PMID: 31687412 PMCID: PMC6794961 DOI: 10.1155/2019/4735040] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian intestine harbors a remarkable number of microbes and their components and metabolites, which are fundamental for the instigation and development of the host immune system. The intestinal innate and adaptive immunity coordinate and interact with the symbionts contributing to the intestinal homeostasis through establishment of a mutually beneficial relationship by tolerating to symbiotic microbiota and retaining the ability to exert proinflammatory response towards invasive pathogens. Imbalance between the intestinal immune system and commensal organisms disrupts the intestinal microbiological homeostasis, leading to microbiota dysbiosis, compromised integrity of the intestinal barrier, and proinflammatory immune responses towards symbionts. This, in turn, exacerbates the degree of the imbalance. Intestinal adaptive immunity plays a critical role in maintaining immune tolerance towards symbionts and the integrity of intestinal barrier, while the innate immune system regulates the adaptive immune responses to intestinal commensal bacteria. In this review, we will summarize recent findings on the effects and mechanisms of gut microbiota on intestinal adaptive immunity and the plasticity of several immune cells under diverse microenvironmental settings.
Collapse
Affiliation(s)
- Li Wang
- Hepatology Department, Infectious Disease Hospital of Yantai, 62 Huanshan Road, Zhifu District, Yantai 264001, China
| | - Limeng Zhu
- Institute of Processing Engineering, University of Chinese Academy of Sciences, 1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100049, China
| | - Song Qin
- Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Laishan District, Yantai 264003, China
| |
Collapse
|
28
|
Liu T, Yang Q, Cao YJ, Yuan WM, Lei AH, Zhou P, Zhou W, Liu YD, Shi MH, Yang Q, Tang JY, Wang HK, Zhang H, Yu Y, Zhou J. Cyclooxygenase-1 Regulates the Development of Follicular Th Cells via Prostaglandin E 2. THE JOURNAL OF IMMUNOLOGY 2019; 203:864-872. [PMID: 31243090 DOI: 10.4049/jimmunol.1801674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/07/2019] [Indexed: 11/19/2022]
Abstract
Cyclooxygenase (COX)-1, one of the critical enzymes required for the conversion of arachidonic acid to PGs, has been demonstrated to play an important role not only in the cardiovascular system but also in the immune system. COX-1 has been found to regulate early B cell differentiation, germinal center formation, and Ab production of B cells. However, the underlying mechanisms of COX-1-mediated B cell activation remains not fully understood. In this study, we reported that COX-1 is a potential regulator for the development of follicular Th (TFH) cells. COX-1-deficient (COX-1-/- ) mice displayed a significant reduction of TFH cells upon influenza infection or immunization with keyhole limpet hemocyanin, which led to a severe impairment of germinal center responses. We further demonstrated that COX-1-derived PGE2, via binding with its receptors EP2/EP4, represents the underlying mechanism. The administration of EP2/EP4 agonists or PGE2 almost completely rescued the defective TFH cell generation in COX-1-/- mice. Taken together, our observations indicate that COX-1 plays an important role in the development of TFH cells.
Collapse
Affiliation(s)
- Ting Liu
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Jiao Cao
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China
| | - Wei-Ming Yuan
- Department of Neonatology, Guangzhou Women and Children's Medical Centre, Guangzhou 510623, China
| | - Ai-Hua Lei
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Pan Zhou
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children's Medical Centre, Guangzhou 510623, China
| | - Yong-Dong Liu
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mao-Hua Shi
- First People's Hospital of Foshan, Foshan 528000, China
| | - Quan Yang
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jin-Yi Tang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Hai-Kun Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Joint Program in Immunology, Department of Internal Medicine, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China; .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|