1
|
Hardy L, Kannan B, Rigon M, Benton-Hawthorn G, Previdelli RL, Reichler IM, Guscetti F, Kowalewski MP, Campanella M. Canine Mammary Tumours (CMTs) exploit mitochondrial cholesterol for aggressive reprogramming. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167546. [PMID: 39486658 DOI: 10.1016/j.bbadis.2024.167546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
In human breast cancer the mitochondrial translocator protein (TSPO) aids pro-survival cellular response by facilitating the formation of mitochondrial contact sites with the nucleus termed Nucleus Associated Mitochondria (NAM). Here, we show that TSPO positively associates with the aggressiveness of tissues and cells isolated from Canine Mammary Tumours (CMTs). TSPO is also readily upregulated in reprogrammed mammary tumour cells following long-term deprivation of oestrogen or exposure to the endocrine chemotherapeutic (ET) agent Tamoxifen. The latter triggers mitochondrial handling of cholesterol which is facilitated by TSPO whose upregulation reduces susceptibility to Tamoxifen. TSPO binding ligands boost, on the other hand, the efficacy of Tamoxifen and Chemotherapy agents. In aggressive canine mammary tumour cells, TSPO repression impairs the NF-kB pattern thus confirming the pro-survival role of the NAM uncovered in the human counterpart. Mitochondrial cholesterol handling via TSPO emerges therefore as a signature in the aggressive reprogramming of CMTs thus advancing our understanding of the molecular mechanisms underpinning this pathology. A novel target mechanism to improve bio-marking and therapeutic protocols is here proposed.
Collapse
Affiliation(s)
- Liana Hardy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Brindha Kannan
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Manuel Rigon
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Genevieve Benton-Hawthorn
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Renato L Previdelli
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London NW01 TU, United Kingdom
| | - Iris M Reichler
- Clinic for Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Franco Guscetti
- Institute of Veterinary Pathology, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, 8057 Zurich, Switzerland
| | - Michelangelo Campanella
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, United Kingdom; Department of Biomedical Science, University of Padua, 35131, Italy; UMR9018CNRS, Institute Gustave Roussy, 94805 Villejuif, France.
| |
Collapse
|
2
|
Nayar S, Turner JD, Asam S, Fennell E, Pugh M, Colafrancesco S, Berardicurti O, Smith CG, Flint J, Teodosio A, Iannizzotto V, Gardner DH, van Roon J, Korsunsky I, Howdle D, Frei AP, Lassen KG, Bowman SJ, Ng WF, Croft AP, Filer A, Fisher BA, Buckley CD, Barone F. Molecular and spatial analysis of tertiary lymphoid structures in Sjogren's syndrome. Nat Commun 2025; 16:5. [PMID: 39747819 PMCID: PMC11697438 DOI: 10.1038/s41467-024-54686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/18/2024] [Indexed: 01/04/2025] Open
Abstract
Tertiary lymphoid structures play important roles in autoimmune and non-autoimmune conditions. While many of the molecular mechanisms involved in tertiary lymphoid structure formation have been identified, the cellular sources and temporal and spatial relationship remain unknown. Here we use combine single-cell RNA-sequencing, spatial transcriptomics and proteomics of minor salivary glands of patients with Sjogren's disease and Sicca Syndrome, with ex-vivo functional studies to construct a cellular and spatial map of key components involved in the formation and function of tertiary lymphoid structures. We confirm the presence of a fibroblast cell state and identify a pericyte/mural cell state with potential immunological functions. The identification of cellular properties associated with these structures and the molecular and functional interactions identified by this analysis may provide key therapeutic cues for tertiary lymphoid structures associated conditions in autoimmunity and cancer.
Collapse
Affiliation(s)
- Saba Nayar
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Jason D Turner
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Saba Asam
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- UCL Genomics, Zayed Centre for Research into Rare Disease in Children, University College London, London, UK
| | - Eanna Fennell
- School of Medicine & HRI & Bernal Institute, University of Limerick, Limerick, Ireland
| | - Matthew Pugh
- Department of Immunology and Immunotherapy, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | | | - Onorina Berardicurti
- Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, Università Campus Bio-Medico, Rome, and Immunorheumatology Unit, Fondazione Policlinico Universitario Campus Bio Medico, Rome, Italy
| | - Charlotte G Smith
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Joe Flint
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Ana Teodosio
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Valentina Iannizzotto
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - David H Gardner
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Joel van Roon
- Department of Rheumatology & Clinical Immunology/Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ilya Korsunsky
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
| | - Dawn Howdle
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Andreas P Frei
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kara G Lassen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon J Bowman
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Wan-Fai Ng
- HRB Clinical Research Facility, University College Cork, Cork, Ireland
| | - Adam P Croft
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Andrew Filer
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Birmingham Tissue Analytics, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Benjamin A Fisher
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Christopher D Buckley
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Francesca Barone
- Rheumatology Research Group, Department of Inflammation and Ageing, College of Medicine & Health, University of Birmingham, Birmingham, UK.
- Candel Therapeutics, Needham, MA, USA.
| |
Collapse
|
3
|
Hsu FM, Mohanty RP, Rubbi L, Thompson M, Pickering H, Reed EF, Greenland JR, Schaenman JM, Pellegrini M. An epigenetic human cytomegalovirus infection score predicts viremia risk in seropositive lung transplant recipients. Epigenetics 2024; 19:2408843. [PMID: 39360678 PMCID: PMC11451273 DOI: 10.1080/15592294.2024.2408843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Cytomegalovirus (CMV) infection and reactivation in solid organ transplant (SOT) recipients increases the risk of viremia, graft failure and death. Clinical studies of CMV serostatus indicate that donor positive recipient negative (D+/R-) patients have greater viremia risk than D-/R-. The majority of patients are R+ having intermediate serologic risk. To characterize the long-term impact of CMV infection and assess viremia risk, we sought to measure the effects of CMV on the recipient immune epigenome. Specifically, we profiled DNA methylation in 156 individuals before lung or kidney transplant. We found that the methylome of CMV positive SOT recipients is hyper-methylated at loci associated with neural development and Polycomb group (PcG) protein binding, and hypo-methylated at regions critical for the maturation of lymphocytes. In addition, we developed a machine learning-based model to predict the recipient CMV serostatus after correcting for cell type composition and ancestry. This CMV episcore measured at baseline in R+ individual stratifies viremia risk accurately in the lung transplant cohort, and along with serostatus the CMV episcore could be a potential biomarker for identifying R+ patients at high viremia risk.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences – The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Rashmi P. Mohanty
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - John R. Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joanna M. Schaenman
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences – The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Bartels HC, Hameed S, Young C, Nabhan M, Downey P, Curran KM, McCormack J, Fabre A, Kolch W, Zhernovkov V, Brennan DJ. Spatial proteomics and transcriptomics of the maternal-fetal interface in placenta accreta spectrum. Transl Res 2024; 274:67-80. [PMID: 39349165 DOI: 10.1016/j.trsl.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/21/2024] [Accepted: 09/21/2024] [Indexed: 10/02/2024]
Abstract
In severe Placenta Accreta Spectrum (PAS), trophoblasts gain deep access in the myometrium (placenta increta). This study investigated alterations at the fetal-maternal interface in PAS cases using a systems biology approach consisting of immunohistochemistry, spatial transcriptomics and proteomics. We identified spatial variation in the distribution of CD4+, CD3+ and CD8+ T-cells at the maternal-interface in placenta increta cases. Spatial transcriptomics identified transcription factors involved in promotion of trophoblast invasion such as AP-1 subunits ATF-3 and JUN, and NFKB were upregulated in regions with deep myometrial invasion. Pathway analysis of differentially expressed genes demonstrated that degradation of extracellular matrix (ECM) and class 1 MHC protein were increased in increta regions, suggesting local tissue injury and immune suppression. Spatial proteomics demonstrated that increta regions were characterised by excessive trophoblastic proliferation in an immunosuppressive environment. Expression of inhibitors of apoptosis such as BCL-2 and fibronectin were increased, while CTLA-4 was decreased and increased expression of PD-L1, PD-L2 and CD14 macrophages. Additionally, CD44, which is a ligand of fibronectin that promotes trophoblast invasion and cell adhesion was also increased in increta regions. We subsequently examined ligand receptor interactions enriched in increta regions, with interactions with ITGβ1, including with fibronectin and ADAMS, emerging as central in increta. These ITGβ1 ligand interactions are involved in activation of epithelial-mesenchymal transition and remodelling of ECM suggesting a more invasive trophoblast phenotype. In PAS, we suggest this is driven by fibronectin via AP-1 signalling, likely as a secondary response to myometrial scarring.
Collapse
Affiliation(s)
- Helena C Bartels
- Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland
| | - Sodiq Hameed
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Constance Young
- Department of Histopathology, National Maternity Hospital, Dublin, Ireland
| | - Myriam Nabhan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Paul Downey
- Department of Histopathology, National Maternity Hospital, Dublin, Ireland
| | | | - Janet McCormack
- Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Aurelie Fabre
- School of Medicine, University College Dublin, Dublin, Ireland; Research Pathology Core, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland; Histopathology, St Vincent's University Hospital, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Vadim Zhernovkov
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland
| | - Donal J Brennan
- Dept of UCD Obstetrics and Gynaecology, School of Medicine, University College Dublin, National Maternity Hospital, Holles Street, Dublin 2, Ireland; Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Ireland; University College Dublin Gynaecological Oncology Group (UCD-GOG), Mater Misericordiae University Hospital and St Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
5
|
Hofmann N, Bartkuhn M, Becker S, Biedenkopf N, Böttcher-Friebertshäuser E, Brinkrolf K, Dietzel E, Fehling SK, Goesmann A, Heindl MR, Hoffmann S, Karl N, Maisner A, Mostafa A, Kornecki L, Müller-Kräuter H, Müller-Ruttloff C, Nist A, Pleschka S, Sauerhering L, Stiewe T, Strecker T, Wilhelm J, Wuerth JD, Ziebuhr J, Weber F, Schmitz ML. Distinct negative-sense RNA viruses induce a common set of transcripts encoding proteins forming an extensive network. J Virol 2024; 98:e0093524. [PMID: 39283124 PMCID: PMC11494938 DOI: 10.1128/jvi.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 10/23/2024] Open
Abstract
The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.
Collapse
Affiliation(s)
- Nina Hofmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Stephan Becker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Nadine Biedenkopf
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Karina Brinkrolf
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Erik Dietzel
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Simone Hoffmann
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Nadja Karl
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Maisner
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Ahmed Mostafa
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Kornecki
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Helena Müller-Kräuter
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Christin Müller-Ruttloff
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lucie Sauerhering
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps University of Marburg, Marburg, Germany
| | - Thomas Strecker
- Institute of Virology, Philipps-University Marburg, Hans-Meerwein-Straße, Marburg, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Jennifer D. Wuerth
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11-Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
6
|
Patrick R, Naval-Sanchez M, Deshpande N, Huang Y, Zhang J, Chen X, Yang Y, Tiwari K, Esmaeili M, Tran M, Mohamed AR, Wang B, Xia D, Ma J, Bayliss J, Wong K, Hun ML, Sun X, Cao B, Cottle DL, Catterall T, Barzilai-Tutsch H, Troskie RL, Chen Z, Wise AF, Saini S, Soe YM, Kumari S, Sweet MJ, Thomas HE, Smyth IM, Fletcher AL, Knoblich K, Watt MJ, Alhomrani M, Alsanie W, Quinn KM, Merson TD, Chidgey AP, Ricardo SD, Yu D, Jardé T, Cheetham SW, Marcelle C, Nilsson SK, Nguyen Q, White MD, Nefzger CM. The activity of early-life gene regulatory elements is hijacked in aging through pervasive AP-1-linked chromatin opening. Cell Metab 2024; 36:1858-1881.e23. [PMID: 38959897 DOI: 10.1016/j.cmet.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
A mechanistic connection between aging and development is largely unexplored. Through profiling age-related chromatin and transcriptional changes across 22 murine cell types, analyzed alongside previous mouse and human organismal maturation datasets, we uncovered a transcription factor binding site (TFBS) signature common to both processes. Early-life candidate cis-regulatory elements (cCREs), progressively losing accessibility during maturation and aging, are enriched for cell-type identity TFBSs. Conversely, cCREs gaining accessibility throughout life have a lower abundance of cell identity TFBSs but elevated activator protein 1 (AP-1) levels. We implicate TF redistribution toward these AP-1 TFBS-rich cCREs, in synergy with mild downregulation of cell identity TFs, as driving early-life cCRE accessibility loss and altering developmental and metabolic gene expression. Such remodeling can be triggered by elevating AP-1 or depleting repressive H3K27me3. We propose that AP-1-linked chromatin opening drives organismal maturation by disrupting cell identity TFBS-rich cCREs, thereby reprogramming transcriptome and cell function, a mechanism hijacked in aging through ongoing chromatin opening.
Collapse
Affiliation(s)
- Ralph Patrick
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Marina Naval-Sanchez
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Nikita Deshpande
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yifei Huang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jingyu Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Xiaoli Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Ying Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Kanupriya Tiwari
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Mohammadhossein Esmaeili
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Minh Tran
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Amin R Mohamed
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Binxu Wang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jun Ma
- Genome Innovation Hub, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jacqueline Bayliss
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kahlia Wong
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Michael L Hun
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Xuan Sun
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Denny L Cottle
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Tara Catterall
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Hila Barzilai-Tutsch
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Robin-Lee Troskie
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Zhian Chen
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Andrea F Wise
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Ye Mon Soe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Snehlata Kumari
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Helen E Thomas
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Majid Alhomrani
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Walaa Alsanie
- Department of Clinical Laboratories Sciences, Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Research Centre for Health Sciences, Taif University, Taif, Saudi Arabia
| | - Kylie M Quinn
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Tobias D Merson
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ann P Chidgey
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Sharon D Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Thierry Jardé
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Department of Surgery, Cabrini Monash University, Malvern, VIC 3144, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christophe Marcelle
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Institut NeuroMyoGène, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Melanie D White
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Christian M Nefzger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Zhang Y, Li C, Zhang M, Gao F, Zhao Y, Kong X. Selective autophagy receptor p62 promotes antibacterial and antiviral immunity in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109719. [PMID: 38914181 DOI: 10.1016/j.fsi.2024.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Sequestosome 1 (SQSTM1/p62) is a selective autophagy adapter protein that participates in antiviral and bacterial immune responses and plays an important regulatory role in clearing the proteins to be degraded and maintaining intracellular protein homeostasis. In this study, two p62 genes were cloned from common carp (Cyprinus carpio), namely Ccp62-1 and Ccp62-2, and conducted bioinformatics analysis on them. The results showed that Ccp62s had the same structural domain (Phox and Bem1 domain, ZZ-type zinc finger domain, and ubiquitin-associated domain) as p62 from other species. Ccp62s were widely expressed in various tissues of fish, and highly expressed in immune organs such as gills, spleen, head kidney, etc. Subcellular localization study showed that they were mainly distributed in punctate aggregates in the cytoplasm. After stimulation with Aeromonas hydrophila and spring viraemia of carp virus (SVCV), the expression level of Ccp62s was generally up-regulated. Overexpression of Ccp62s in EPC cells could inhibit SVCV replication. Upon A. hydrophila challenge, the bacterial load in Ccp62s-overexpressing group was significantly reduced, the expression levels of pro-inflammatory cytokines and interferon factors were increased, and the survival rate of the fish was improved. These results indicated that Ccp62s were involved in the immune response of common carp to bacterial and viral infections.
Collapse
Affiliation(s)
- Yunli Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| | - Mengxi Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Yanjing Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
8
|
Auti A, Tathode M, Marino MM, Vitiello A, Ballini A, Miele F, Mazzone V, Ambrosino A, Boccellino M. Nature's weapons: Bioactive compounds as anti-cancer agents. AIMS Public Health 2024; 11:747-772. [PMID: 39416904 PMCID: PMC11474324 DOI: 10.3934/publichealth.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer represents a major global health burden, prompting continuous research for effective therapeutic strategies. Natural compounds derived from plants have emerged as potential strategies for preventing cancer and treatment because of their inherent pharmacological properties. This comprehensive review aimed to evaluate the therapeutic potential of five key natural compounds: apigenin, quercetin, piperine, curcumin, and resveratrol in cancer prevention and therapy. By examining their molecular mechanisms and preclinical evidence, this review seeks to elucidate their role as potential adjuvants or stand-alone therapies in cancer management. The exploration of natural compounds as cancer therapeutics offers several advantages, including low toxicity, wide availability, and compatibility with conventional chemotherapeutic agents. We highlighted the current understanding of their anticancer mechanisms and clinical applications for advancing personalized cancer care to improve patient outcomes. We discussed the empirical findings from in vitro, in vivo, and clinical studies reporting biological activity and therapeutic efficacy in antioxidant, immunomodulatory, anti-carcinogenic, and chemo-sensitizing modes. Innovative delivery systems and personalized treatment approaches may further enhance their bioavailability and therapeutic utility in a synergistic approach with chemo- and radiotherapeutic disease management. This review underscores the importance of natural compounds in cancer prevention and treatment, promoting a multidisciplinary approach to the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Amogh Auti
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Madhura Tathode
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Michela Marino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Antonio Vitiello
- Ministry of Health, Directorate-General for Health Prevention, 00144 Rome, Italy
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122, Foggia, Italy
| | - Francesco Miele
- General Surgery Unit, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Valeria Mazzone
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alessia Ambrosino
- Department of Experimental Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Mariarosaria Boccellino
- Department of Precision Medicine, Università della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| |
Collapse
|
9
|
Wang S, Stroup EK, Wang TY, Yang R, Ji Z. Comparative analyses of gene networks mediating cancer metastatic potentials across lineage types. Brief Bioinform 2024; 25:bbae357. [PMID: 39041189 PMCID: PMC11262869 DOI: 10.1093/bib/bbae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
Studies have identified genes and molecular pathways regulating cancer metastasis. However, it remains largely unknown whether metastatic potentials of cancer cells from different lineage types are driven by the same or different gene networks. Here, we aim to address this question through integrative analyses of 493 human cancer cells' transcriptomic profiles and their metastatic potentials in vivo. Using an unsupervised approach and considering both gene coexpression and protein-protein interaction networks, we identify different gene networks associated with various biological pathways (i.e. inflammation, cell cycle, and RNA translation), the expression of which are correlated with metastatic potentials across subsets of lineage types. By developing a regularized random forest regression model, we show that the combination of the gene module features expressed in the native cancer cells can predict their metastatic potentials with an overall Pearson correlation coefficient of 0.90. By analyzing transcriptomic profile data from cancer patients, we show that these networks are conserved in vivo and contribute to cancer aggressiveness. The intrinsic expression levels of these networks are correlated with drug sensitivity. Altogether, our study provides novel comparative insights into cancer cells' intrinsic gene networks mediating metastatic potentials across different lineage types, and our results can potentially be useful for designing personalized treatments for metastatic cancers.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60628, United States
| | - Emily K Stroup
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, United States
| | - Ting-You Wang
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, United States
| | - Rendong Yang
- Department of Urology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, United States
| | - Zhe Ji
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60628, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, United States
| |
Collapse
|
10
|
Yan S, Wang Z, Lan D, Niu J, Jian X, He F, Tang W, Hu C, Liu W. Circ_PABPC1 promotes the malignancy of gastric cancer through interacting with ILK to activate NF-κB pathway. Exp Cell Res 2024; 438:114058. [PMID: 38688434 DOI: 10.1016/j.yexcr.2024.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Gastric cancer (GC) is a common cancer type with both high incidence and mortality. Recent studies have revealed an important role of circRNA in the development of GC. However, more experiments are needed to reveal the precise molecular mechanisms of circRNA in GC development. METHODS Bioinformatics analysis was conducted to predict the potential role of circ_PABPC1 in GC and the target proteins of circ_PABPC1. Quantitative RT-PCR, Western blot and immunohistochemistry assays were conducted to detect the levels of circ_PABPC1, NF-κB p65, NF-κB p65 (Ser536) and ILK. MTT, Edu staining, cell scratch-wound and trans-well assays were carried out to detect cell proliferation, migration and invasion. The interaction between ILK and circ_PABPC1 was confirmed by RNA immunoprecipitation (RIP), RNA pull-down and fluorescence in situ hybridization assays. Genetically modified GC cells were injected into mice to evaluate the tumor growth performance. RESULTS This study found that the high expression of circ_PABPC1 was associated with a poor prognosis of GC. The up-regulation of circ_PABPC1 promoted the proliferation, migration and invasion of GC cells. Circ_PABPC1 bound to ILK protein, thereby preventing the degradation of ILK. ILK mediated the effect of circ_PABPC1 on GC cells through activating NF-κB. CONCLUSION circ_PABPC1 promotes the malignancy of GC cells through binding to ILK to activate NF-κB signaling pathway.
Collapse
Affiliation(s)
- Siqi Yan
- Departments of Oncology, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, 410011, China; Departments of Radiotherapy, Hunan Provincial Hospital of Integrated Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, China
| | - Zhu Wang
- Departments of Radiotherapy, Hunan Provincial Hospital of Integrated Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, China
| | - Dongqiang Lan
- Departments of Radiotherapy, Hunan Provincial Hospital of Integrated Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, China
| | - Junjie Niu
- Departments of Radiotherapy, Hunan Provincial Hospital of Integrated Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, China
| | - Xiaolan Jian
- Departments of Radiotherapy, Hunan Provincial Hospital of Integrated Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, China
| | - Fengjiao He
- Departments of Radiotherapy, Hunan Provincial Hospital of Integrated Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, China; Departments of Oncology, Xiangya Hospital of Central-South University, Changsha, Hunan, 410008, China
| | - Weizhi Tang
- Departments of Radiotherapy, Hunan Provincial Hospital of Integrated Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, China
| | - Chunhong Hu
- Departments of Oncology, The Second Xiangya Hospital of Central-South University, Changsha, Hunan, 410011, China.
| | - Wei Liu
- Departments of Radiotherapy, Hunan Provincial Hospital of Integrated Chinese and Western Medicine, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, 410006, China.
| |
Collapse
|
11
|
Skok Gibbs C, Mahmood O, Bonneau R, Cho K. PMF-GRN: a variational inference approach to single-cell gene regulatory network inference using probabilistic matrix factorization. Genome Biol 2024; 25:88. [PMID: 38589899 PMCID: PMC11003171 DOI: 10.1186/s13059-024-03226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates.
Collapse
Affiliation(s)
| | - Omar Mahmood
- Center for Data Science, New York University, New York, NY, 10011, USA
| | - Richard Bonneau
- Center for Data Science, New York University, New York, NY, 10011, USA
- Prescient Design, Genentech, New York, NY, 10010, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Kyunghyun Cho
- Center for Data Science, New York University, New York, NY, 10011, USA.
- Prescient Design, Genentech, New York, NY, 10010, USA.
| |
Collapse
|
12
|
D'Amico S, Kirillov V, Petrenko O, Reich NC. STAT3 is a genetic modifier of TGF-beta induced EMT in KRAS mutant pancreatic cancer. eLife 2024; 13:RP92559. [PMID: 38573819 PMCID: PMC10994661 DOI: 10.7554/elife.92559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Oncogenic mutations in KRAS are among the most common in cancer. Classical models suggest that loss of epithelial characteristics and the acquisition of mesenchymal traits are associated with cancer aggressiveness and therapy resistance. However, the mechanistic link between these phenotypes and mutant KRAS biology remains to be established. Here, we identify STAT3 as a genetic modifier of TGF-beta-induced epithelial to mesenchymal transition. Gene expression profiling of pancreatic cancer cells identifies more than 200 genes commonly regulated by STAT3 and oncogenic KRAS. Functional classification of the STAT3-responsive program reveals its major role in tumor maintenance and epithelial homeostasis. The signatures of STAT3-activated cell states can be projected onto human KRAS mutant tumors, suggesting that they faithfully reflect characteristics of human disease. These observations have implications for therapeutic intervention and tumor aggressiveness.
Collapse
Affiliation(s)
- Stephen D'Amico
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| | - Nancy C Reich
- Department of Microbiology and Immunology, Stony Brook UniversityStony BrookUnited States
| |
Collapse
|
13
|
Krishnamohan M, Kaplanov I, Maudi-Boker S, Yousef M, Machluf-Katz N, Cohen I, Elkabets M, Titus J, Bersudsky M, Apte RN, Voronov E, Braiman A. Tumor Cell-Associated IL-1α Affects Breast Cancer Progression and Metastasis in Mice through Manipulation of the Tumor Immune Microenvironment. Int J Mol Sci 2024; 25:3950. [PMID: 38612760 PMCID: PMC11011794 DOI: 10.3390/ijms25073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
IL-1α is a dual function cytokine that affects inflammatory and immune responses and plays a pivotal role in cancer. The effects of intracellular IL-1α on the development of triple negative breast cancer (TNBC) in mice were assessed using the CRISPR/Cas9 system to suppress IL-1α expression in 4T1 breast cancer cells. Knockout of IL-1α in 4T1 cells modified expression of multiple genes, including downregulation of cytokines and chemokines involved in the recruitment of tumor-associated pro-inflammatory cells. Orthotopical injection of IL-1α knockout (KO) 4T1 cells into BALB/c mice led to a significant decrease in local tumor growth and lung metastases, compared to injection of wild-type 4T1 (4T1/WT) cells. Neutrophils and myeloid-derived suppressor cells were abundant in tumors developing after injection of 4T1/WT cells, whereas more antigen-presenting cells were observed in the tumor microenvironment after injection of IL-1α KO 4T1 cells. This switch correlated with increased infiltration of CD3+CD8+ and NKp46+cells. Engraftment of IL-1α knockout 4T1 cells into immunodeficient NOD.SCID mice resulted in more rapid tumor growth, with increased lung metastasis in comparison to engraftment of 4T1/WT cells. Our results suggest that tumor-associated IL-1α is involved in TNBC progression in mice by modulating the interplay between immunosuppressive pro-inflammatory cells vs. antigen-presenting and cytotoxic cells.
Collapse
Affiliation(s)
- Mathumathi Krishnamohan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Irena Kaplanov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Sapir Maudi-Boker
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Muhammad Yousef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Noy Machluf-Katz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Jaison Titus
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Marina Bersudsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; (M.K.); (M.E.); (J.T.); (M.B.)
| |
Collapse
|
14
|
Davoodvandi A, Sadeghi S, Alavi SMA, Alavi SS, Jafari A, Khan H, Aschner M, Mirzaei H, Sharifi M, Asemi Z. The therapeutic effects of berberine for gastrointestinal cancers. Asia Pac J Clin Oncol 2024; 20:152-167. [PMID: 36915942 DOI: 10.1111/ajco.13941] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/17/2022] [Accepted: 01/10/2023] [Indexed: 03/15/2023]
Abstract
Cancer is one of the most serious human health issues. Drug therapy is the major common way to treat cancer. There is a growing interest in using natural compounds to overcome drug resistance, adverse reactions, and target specificity of certain types of drugs that may affect several targets with fewer side effects and be beneficial against various types of cancer. In this regard, the use of herbal medicines alone or in combination with the main anticancer drugs is commonly available. Berberine (BBR), a nature-driven phytochemical component, is a well-known nutraceutical due to its wide variety of pharmacological activities, including antioxidant, anti-inflammatory, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and hypolipidemic. In addition, BBR exerts anticancer activities. In present article, we summarized the information available on the therapeutic effects of BBR and its mechanisms on five types of the most prevalent gastrointestinal cancers, including esophageal, gastric, colorectal, hepatocarcinoma, and pancreatic cancers.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sahand Sadeghi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Seyedeh Shaghayegh Alavi
- Departmemt of Food Science, Engineering and Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Ameneh Jafari
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:223-247. [PMID: 38782500 DOI: 10.1016/bs.ircmb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
16
|
Lv H, Mu Y, Zhang C, Zhao M, Jiang P, Xiao S, Sun H, Wu N, Sun D, Jin Y. Comparative analysis of single-cell transcriptome reveals heterogeneity and commonality in the immune microenvironment of colorectal cancer and inflammatory bowel disease. Front Immunol 2024; 15:1356075. [PMID: 38529274 PMCID: PMC10961339 DOI: 10.3389/fimmu.2024.1356075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
Background During aging, chronic inflammation can promote tumor development and metastasis. Patients with chronic inflammatory bowel diseases (IBD) are at an increased risk of developing colorectal cancer (CRC). However, the molecular mechanism underlying is still unclear. Methods We conducted a large-scale single-cell sequencing analysis comprising 432,314 single cells from 92 CRC and 24 IBD patients. The analysis focused on the heterogeneity and commonality of CRC and IBD with respect to immune cell landscape, cellular communication, aging and inflammatory response, and Meta programs. Results The CRC and IBD had significantly different propensities in terms of cell proportions, differential genes and their functions, and cellular communication. The progression of CRC was mainly associated with epithelial cells, fibroblasts, and monocyte-macrophages, which displayed pronounced metabolic functions. In particular, monocyte-macrophages were enriched for the aging and inflammation-associated NF-κB pathway. And IBD was enriched in immune-related functions with B cells and T cells. Cellular communication analysis in CRC samples displayed an increase in MIF signaling from epithelial cells to T cells, and an increase in the efferent signal of senescence-associated SPP1 signaling from monocyte-macrophages. Notably, we also found some commonalities between CRC and IBD. The efferent and afferent signals showed that the pro-inflammatory cytokine played an important role. And the activity of aging and inflammatory response with AUCell analysis also showed a high degree of commonality. Furthermore, using the Meta programs (MPs) with the NMF algorithm, we found that the CRC non-malignant cells shared a substantial proportion of the MP genes with CRC malignant cells (68% overlap) and IBD epithelial cells (52% overlap), respectively. And it was extensively involved in functions of cell cycle and immune response, revealing its dual properties of inflammation and cancer. In addition, CRC malignant and non-malignant cells were enriched for the senescence-related cell cycle G2M phase transition and the p53 signaling pathway. Conclusion Our study highlights the characteristics of aging, inflammation and tumor in CRC and IBD at the single-cell level, and the dual property of inflammation-cancer in CRC non-malignant cells may provide a more up-to-date understanding of disease transformation.
Collapse
Affiliation(s)
- Hongchao Lv
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yu Mu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meiqi Zhao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Ping Jiang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Shan Xiao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Haiming Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Nan Wu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Donglin Sun
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
| | - Yan Jin
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, Heilongjiang, China
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Mo F, Tang Y, Shen H, Wu L, Liu Q, Nie S, Li M, Ling C. HIF1α/miR-146α/TRAF6/NF-κB axis modulates hepatic iron overload-induced inflammation. J Nutr Biochem 2024; 125:109499. [PMID: 37875229 DOI: 10.1016/j.jnutbio.2023.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
Transfusional therapy is used to cure anemia but raises the risk of hepatic iron overload (IO), which triggers oxidative stress damage, inflammation, and failure even fibrosis. microRNAs play a vital role in developing hepatic diseases. This study presented the mechanism by which IO induce hepatic inflammation through microRNAs. In this study, microRNA expression profiling in the liver was observed after IO for 2 weeks, in which the target microRNA will be found. IO activating the miR-146α/TRAF6/NF-κB pathway was validated, and the molecular mechanism of the IO-induced decrease of miR-146α in the liver was studied in vivo and in vitro. The expression of TRAF6/NF-κB (p65)-dependent inflammatory factors increased, whereas the expression of miR-146α decreased during the IO-induced inflammatory response in the liver. The reduced expression of HNF4α caused by HIF1α and miR-34α may decrease the expression of miR-146α. Overexpression of miR-146α alleviated the hepatic inflammatory response caused by IO. Our findings indicate that miR-146α is a key factor in inducing hepatic IO inflammation, which will be another potential target to prevent IO-induced hepatic damage.
Collapse
Affiliation(s)
- Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuxiao Tang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Lusha Wu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Qing Liu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China
| | - Min Li
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai, China; Institute of International Medical Science and Technology, Sanda University, Shanghai, China.
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Xu L, Qian GH, Zhu L, Huang HB, Huang CC, Qin J, Zheng YM, Sun L, Ren Y, Ding YY, Lv HT. Ubiquitin ligase MDM2 mediates endothelial inflammation in Kawasaki disease vasculitis development. Transl Pediatr 2024; 13:271-287. [PMID: 38455756 PMCID: PMC10915443 DOI: 10.21037/tp-23-459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 03/09/2024] Open
Abstract
Background Kawasaki disease (KD) often complicates coronary artery lesions (CALs). Despite the established significance of STAT3 signaling during the acute phase of KD and signal transducer and activator of transcription 3 (STAT3) signaling being closely related to CALs, it remains unknown whether and how STAT3 was regulated by ubiquitination during KD pathogenesis. Methods Bioinformatics and immunoprecipitation assays were conducted, and an E3 ligase, murine double minute 2 (MDM2) was identified as the ubiquitin ligase of STAT3. The blood samples from KD patients before and after intravenous immunoglobulin (IVIG) treatment were utilized to analyze the expression level of MDM2. Human coronary artery endothelial cells (HCAECs) and a mouse model were used to study the mechanisms of MDM2-STAT3 signaling during KD pathogenesis. Results The MDM2 expression level decreased while the STAT3 level and vascular endothelial growth factor A (VEGFA) level increased in KD patients with CALs and the KD mouse model. Mechanistically, MDM2 colocalized with STAT3 in HCAECs and the coronary vessels of the KD mouse model. Knocking down MDM2 caused an increased level of STAT3 protein in HCAECs, whereas MDM2 overexpression upregulated the ubiquitination level of STAT3 protein, hence leading to significantly decreased turnover of STAT3 and VEGFA. Conclusions MDM2 functions as a negative regulator of STAT3 signaling by promoting its ubiquitination during KD pathogenesis, thus providing a potential intervention target for KD therapy.
Collapse
Affiliation(s)
- Lei Xu
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatric, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Guang-Hui Qian
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Liyan Zhu
- Department of Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Hong-Biao Huang
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Cheng-Cheng Huang
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Jie Qin
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Yi-Ming Zheng
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Ling Sun
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yue-Yue Ding
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
- Ultrasonography Department, Jing’an District Centre Hospital of Shanghai, Shanghai, China
| | - Hai-Tao Lv
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, China
| |
Collapse
|
19
|
Liu S, Wang Y, Zhao Y, Liu L, Sun S, Zhang S, Liu H, Liu S, Li Y, Yang F, Jiao M, Sun X, Zhang Y, Liu R, Mu X, Wang H, Zhang S, Yang J, Xie X, Duan X, Zhang J, Hong G, Zhang XD, Ming D. A Nanozyme-Based Electrode for High-Performance Neural Recording. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304297. [PMID: 37882151 DOI: 10.1002/adma.202304297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Implanted neural electrodes have been widely used to treat brain diseases that require high sensitivity and biocompatibility at the tissue-electrode interface. However, currently used clinical electrodes cannot meet both these requirements simultaneously, which hinders the effective recording of electronic signals. Herein, nanozyme-based neural electrodes incorporating bioinspired atomically precise clusters are developed as a general strategy with a heterogeneous design for multiscale and ultrasensitive neural recording via quantum transport and biocatalytic processes. Owing to the dual high-speed electronic and ionic currents at the electrode-tissue interface, the impedance of nanozyme electrodes is 26 times lower than that of state-of-the-art metal electrodes, and the acquisition sensitivity for the local field potential is ≈10 times higher than that of clinical PtIr electrodes, enabling a signal-to-noise ratio (SNR) of up to 14.7 dB for single-neuron recordings in rats. The electrodes provide more than 100-fold higher antioxidant and multi-enzyme-like activities, which effectively decrease 67% of the neuronal injury area by inhibiting glial proliferation and allowing sensitive and stable neural recording. Moreover, nanozyme electrodes can considerably improve the SNR of seizures in acute epileptic rats and are expected to achieve precise localization of seizure foci in clinical settings.
Collapse
Affiliation(s)
- Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yue Zhao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Ling Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Shaofang Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Shuhu Liu
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, 100049, China
| | - Yonghui Li
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
| | - Menglu Jiao
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Xinyu Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yuqin Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Renpeng Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shu Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, 300041, China
| | - Jiang Yang
- School of Electronics and Information Technology and Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xi Xie
- School of Electronics and Information Technology and Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Department of Neurosurgery, General Hospital, Tianjin Medical University, Tianjin, 300041, China
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300354, China
| | - Dong Ming
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
20
|
Sun X, Jiang M, Wang Z, Xu C, Ma Z. GREM1 knockdown regulates the proliferation, apoptosis and EMT of benign prostatic hyperplasia by suppressing the STAT3/c-Myc signaling. Tissue Cell 2024; 86:102231. [PMID: 37931534 DOI: 10.1016/j.tice.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Gremlin 1 (GREM1) has been reported to be highly expressed in prostate hyperplasia tissues. However, the role and molecular mechanism of GREM1 in benign prostatic hyperplasia (BPH) is still unclear. METHODS In this study, expression of GREM1 in BPH-1 cells was detected by western blot assay. Cell counting kit-8 assay was performed to assess cell proliferation. Flow cytometry and western blot were used to assess cell apoptosis and cell cycle. The EMT process was detected by western blot assay and immunofluorescence staining. In addition, colivelin was used as a STAT3 activator and the expressions of STAT3/c-Myc signaling were assessed by western blot assay. RESULTS The data showed that GREM1 silencing inhibited BPH-1 cell proliferation and promoted cell apoptosis. Moreover, GREM1 silencing repressed the cell cycle progression and the development of EMT. In addition, knockdown of GREM1 suppressed the expression of the STAT3/c-Myc signaling in BPH-1 cells and colivelin treatment rehabilitated this signaling. Moreover, c-Myc overexpression or colivelin reversed the effects of GREM1 silencing on BPH-1 cell proliferation, cell apoptosis, cell cycle, as well as EMT. CONCLUSION To sum up, GREM1 silencing may alleviate the BPH progress by inhibiting the STAT3/c-Myc signaling.
Collapse
Affiliation(s)
- Xiaofei Sun
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Minjun Jiang
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Zhenfan Wang
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Chen Xu
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China
| | - Zheng Ma
- Department of Urology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou City, Jiangsu Province 215200, China.
| |
Collapse
|
21
|
Wang T, Wagner RT, Hlady RA, Pan X, Zhao X, Kim S, Wang L, Lee J, Luo H, Castle EP, Lake DF, Ho TH, Robertson KD. SETD2 loss in renal epithelial cells drives epithelial-to-mesenchymal transition in a TGF-β-independent manner. Mol Oncol 2024; 18:44-61. [PMID: 37418588 PMCID: PMC10766198 DOI: 10.1002/1878-0261.13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023] Open
Abstract
Histone-lysine N-methyltransferase SETD2 (SETD2), the sole histone methyltransferase that catalyzes trimethylation of lysine 36 on histone H3 (H3K36me3), is often mutated in clear cell renal cell carcinoma (ccRCC). SETD2 mutation and/or loss of H3K36me3 is linked to metastasis and poor outcome in ccRCC patients. Epithelial-to-mesenchymal transition (EMT) is a major pathway that drives invasion and metastasis in various cancer types. Here, using novel kidney epithelial cell lines isogenic for SETD2, we discovered that SETD2 inactivation drives EMT and promotes migration, invasion, and stemness in a transforming growth factor-beta-independent manner. This newly identified EMT program is triggered in part through secreted factors, including cytokines and growth factors, and through transcriptional reprogramming. RNA-seq and assay for transposase-accessible chromatin sequencing uncovered key transcription factors upregulated upon SETD2 loss, including SOX2, POU2F2 (OCT2), and PRRX1, that could individually drive EMT and stemness phenotypes in SETD2 wild-type (WT) cells. Public expression data from SETD2 WT/mutant ccRCC support the EMT transcriptional signatures derived from cell line models. In summary, our studies reveal that SETD2 is a key regulator of EMT phenotypes through cell-intrinsic and cell-extrinsic mechanisms that help explain the association between SETD2 loss and ccRCC metastasis.
Collapse
Affiliation(s)
- Tianchu Wang
- Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicRochesterMNUSA
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Ryan T. Wagner
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Ryan A. Hlady
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Xiaoyu Pan
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Sungho Kim
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Science ResearchMayo ClinicRochesterMNUSA
| | - Jeong‐Heon Lee
- Epigenomics Development LaboratoryMayo ClinicRochesterMNUSA
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
| | - Huijun Luo
- Division of Hematology and OncologyMayo Clinic ArizonaPhoenixAZUSA
| | | | | | - Thai H. Ho
- Division of Hematology and OncologyMayo Clinic ArizonaPhoenixAZUSA
| | - Keith D. Robertson
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMNUSA
| |
Collapse
|
22
|
Lankin VZ, Sharapov MG, Tikhaze AK, Goncharov RG, Antonova OA, Konovalova GG, Novoselov VI. Dicarbonyl-Modified Low-Density Lipoproteins Are Key Inducers of LOX-1 and NOX1 Gene Expression in the Cultured Human Umbilical Vein Endotheliocytes. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2125-2136. [PMID: 38462455 DOI: 10.1134/s0006297923120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 03/12/2024]
Abstract
Expression of LOX-1 and NOX1 genes in the human umbilical vein endotheliocytes (HUVECs) cultured in the presence of low-density lipoproteins (LDL) modified with various natural dicarbonyls was investigated for the first time. It was found that among the investigated dicarbonyl-modified LDLs (malondialdehyde (MDA)-modified LDLs, glyoxal-modified LDLs, and methylglyoxal-modified LDLs), the MDA-modified LDLs caused the greatest induction of the LOX-1 and NOX1 genes, as well as of the genes of antioxidant enzymes and genes of proapoptotic factors in HUVECs. Key role of the dicarbonyl-modified LDLs in the molecular mechanisms of vascular wall damage and endothelial dysfunction is discussed.
Collapse
Affiliation(s)
- Vadim Z Lankin
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | - Alla K Tikhaze
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Ruslan G Goncharov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Antonova
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Galina G Konovalova
- Chazov National Medical Research Center for Cardiology, Moscow, 121552, Russia
| | - Vladimir I Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
23
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
24
|
Whitehead AJ, Atcha H, Hocker JD, Ren B, Engler AJ. AP-1 signaling modulates cardiac fibroblast stress responses. J Cell Sci 2023; 136:jcs261152. [PMID: 37994565 PMCID: PMC10753496 DOI: 10.1242/jcs.261152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023] Open
Abstract
Matrix remodeling outcomes largely dictate patient survival post myocardial infarction. Moreover, human-restricted noncoding regulatory elements have been shown to worsen fibrosis, but their mechanism of action remains elusive. Here, we demonstrate, using induced pluripotent stem cell-derived cardiac fibroblasts (iCFs), that inflammatory ligands abundant in the remodeling heart after infarction activate AP-1 transcription factor signaling pathways resulting in fibrotic responses. This observed signaling induces deposition of fibronectin matrix and is further capable of supporting immune cell adhesion; pathway inhibition blocks iCF matrix production and cell adhesion. Polymorphisms in the noncoding regulatory elements within the 9p21 locus (also referred to as ANRIL) redirect stress programs, and in iCFs, they transcriptionally silence the AP-1 inducible transcription factor GATA5. The presence of these polymorphisms modulate iCF matrix production and assembly and reduce cell-cell signaling. These data suggest that this signaling axis is a critical modulator of cardiac disease models and might be influenced by noncoding regulatory elements.
Collapse
Affiliation(s)
- Alexander J. Whitehead
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Hamza Atcha
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - James D. Hocker
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
- Laboratory of Gene Regulation, Ludwig Institute for Cancer Research, La Jolla, CA 92037, USA
| | - Bing Ren
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
- Laboratory of Gene Regulation, Ludwig Institute for Cancer Research, La Jolla, CA 92037, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
25
|
Bhattacharya A, Fushimi A, Wang K, Yamashita N, Morimoto Y, Ishikawa S, Daimon T, Liu T, Liu S, Long MD, Kufe D. MUC1-C intersects chronic inflammation with epigenetic reprogramming by regulating the set1a compass complex in cancer progression. Commun Biol 2023; 6:1030. [PMID: 37821650 PMCID: PMC10567710 DOI: 10.1038/s42003-023-05395-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic inflammation promotes epigenetic reprogramming in cancer progression by pathways that remain unclear. The oncogenic MUC1-C protein is activated by the inflammatory NF-κB pathway in cancer cells. There is no known involvement of MUC1-C in regulation of the COMPASS family of H3K4 methyltransferases. We find that MUC1-C regulates (i) bulk H3K4 methylation levels, and (ii) the COMPASS SET1A/SETD1A and WDR5 genes by an NF-κB-mediated mechanism. The importance of MUC1-C in regulating the SET1A COMPASS complex is supported by the demonstration that MUC1-C and WDR5 drive expression of FOS, ATF3 and other AP-1 family members. In a feedforward loop, MUC1-C, WDR5 and AP-1 contribute to activation of genes encoding TRAF1, RELB and other effectors in the chronic NF-κB inflammatory response. We also show that MUC1-C, NF-κB, WDR5 and AP-1 are necessary for expression of the (i) KLF4 master regulator of the pluripotency network and (ii) NOTCH1 effector of stemness. In this way, MUC1-C/NF-κB complexes recruit SET1A/WDR5 and AP-1 to enhancer-like signatures in the KLF4 and NOTCH1 genes with increases in H3K4me3 levels, chromatin accessibility and transcription. These findings indicate that MUC1-C regulates the SET1A COMPASS complex and the induction of genes that integrate NF-κB-mediated chronic inflammation with cancer progression.
Collapse
Affiliation(s)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Satoshi Ishikawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Chen JS, Teng YN, Chen CY, Chen JY. A novel STAT3/ NFκB p50 axis regulates stromal-KDM2A to promote M2 macrophage-mediated chemoresistance in breast cancer. Cancer Cell Int 2023; 23:237. [PMID: 37821959 PMCID: PMC10568766 DOI: 10.1186/s12935-023-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Lysine Demethylase 2A (KDM2A) plays a crucial role in cancer cell growth, differentiation, metastasis, and the maintenance of cancer stemness. Our previous study found that cancer-secreted IL-6 can upregulate the expression of KDM2A to promote further the transition of cells into cancer-associated fibroblasts (CAFs). However, the molecular mechanism by which breast cancer-secreted IL-6 regulates the expression of KDM2A remains unclear. Therefore, this study aimed to elucidate the underlying molecular mechanism of IL-6 in regulating KDM2A expression in CAFs and KDM2A-mediated paclitaxel resistance in breast cancer. METHODS The ectopic vector expression and biochemical inhibitor were used to analyze the KDM2A expression regulated by HS-578 T conditioned medium or IL-6 in mammary fibroblasts. Immunoprecipitation and chromatin immunoprecipitation assays were conducted to examine the interaction between STAT3 and NFκB p50. M2 macrophage polarization was assessed by analyzing M2 macrophage-specific markers using flow cytometry and RT-PCR. ESTIMATE algorithm was used to analyze the tumor microenvironment-dominant breast cancer samples from the TCGA database. The correlation between stromal KDM2A and CD163 + M2 macrophages was analyzed using the Pearson correlation coefficient. Cell viability was determined using trypan blue exclusion assay. RESULTS IL-6 regulates gene expression via activation and dimerization of STAT3 or collaboration of STAT3 and NFκB. However, STAT3, a downstream transcription factor of the IL-6 signaling pathway, was directly complexed with NFκB p50, not NFκB p65, to upregulate the expression of KDM2A in CAFs. Enrichment analysis of immune cells/stromal cells using TCGA-breast cancer RNA-seq data unveiled a positive correlation between stromal KDM2A and the abundance of M2 macrophages. CXCR2-associated chemokines secreted by KDM2A-expressing CAFs stimulated M2 macrophage polarization, which in turn secreted CCL2 to increase paclitaxel resistance in breast cancer cells by activating CCR2 signaling. CONCLUSION This study revealed the non-canonical molecular mechanism of IL-6 secreted by breast cancer upregulated KDM2A expression in CAFs via a novel STAT3/NFκB p50 axis, which STAT3 complexed with NFκB p50 in NFκB p50 binding motif of KDM2A promoter. KDM2A-expressing CAFs dominantly secreted the CXCR2-associated chemokines to promote M2 macrophage polarization and enhance paclitaxel resistance in breast cancer. These findings underscore the therapeutic potential of targeting the CXCR2 or CCR2 pathway as a novel strategy for paclitaxel-resistant breast cancer.
Collapse
Affiliation(s)
- Jia-Shing Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung, 82445, Taiwan ROC
- Department of Pharmacy, E-Da Cancer Hospital, 21 Yida Road, Kaohsiung, 82445, Taiwan ROC
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan ROC
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan.
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan ROC.
| |
Collapse
|
27
|
Hermida-Prado F, Xie Y, Sherman S, Nagy Z, Russo D, Akhshi T, Chu Z, Feit A, Campisi M, Chen M, Nardone A, Guarducci C, Lim K, Font-Tello A, Lee I, García-Pedrero J, Cañadas I, Agudo J, Huang Y, Sella T, Jin Q, Tayob N, Mittendorf EA, Tolaney SM, Qiu X, Long H, Symmans WF, Lin JR, Santagata S, Bedrosian I, Yardley DA, Mayer IA, Richardson ET, Oliveira G, Wu CJ, Schuster EF, Dowsett M, Welm AL, Barbie D, Metzger O, Jeselsohn R. Endocrine Therapy Synergizes with SMAC Mimetics to Potentiate Antigen Presentation and Tumor Regression in Hormone Receptor-Positive Breast Cancer. Cancer Res 2023; 83:3284-3304. [PMID: 37450351 PMCID: PMC10543960 DOI: 10.1158/0008-5472.can-23-1711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated β2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of β2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer.
Collapse
Affiliation(s)
- Francisco Hermida-Prado
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), IUOPA, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shira Sherman
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zsuzsanna Nagy
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Douglas Russo
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tara Akhshi
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Zhengtao Chu
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Avery Feit
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Immunology, Harvard Medical School, Boston, Massachusetts
| | - Agostina Nardone
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cristina Guarducci
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Klothilda Lim
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alba Font-Tello
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Irene Lee
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Juana García-Pedrero
- University of Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), IUOPA, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Judith Agudo
- Harvard Medical School, Boston, Massachusetts
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ying Huang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tal Sella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Qingchun Jin
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Nabihah Tayob
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Elizabeth A. Mittendorf
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sara M. Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Xintao Qiu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Henry Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jia-Ren Lin
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - Sandro Santagata
- Ludwig Center at Harvard and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Isabelle Bedrosian
- Department of Breast Surgical Oncology, Division of Surgery, MD Anderson Cancer Center, Houston, Texas
| | - Denise A. Yardley
- Department of Medical Oncology, Sarah Cannon Cancer Center, Nashville, Tennessee
- Tennessee Oncology, Nashville, Tennessee
| | - Ingrid A. Mayer
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Edward T. Richardson
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Giacomo Oliveira
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Catherine J. Wu
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Eugene F. Schuster
- The BC Now Toby Robins Research Centre at the Institute of Cancer Research, London, United Kingdom
- Ralph Lauren Centre for BC Research, Royal Marsden Hospital, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Mitch Dowsett
- The BC Now Toby Robins Research Centre at the Institute of Cancer Research, London, United Kingdom
- Ralph Lauren Centre for BC Research, Royal Marsden Hospital, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Alana L. Welm
- Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - David Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Otto Metzger
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| | - Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, Massachusetts
| |
Collapse
|
28
|
Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT, Rangel-Corona R. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine 2023; 170:156334. [PMID: 37598478 DOI: 10.1016/j.cyto.2023.156334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous mixture of resident and tumor cells that maintain close communication through their secretion products. The composition of the TME is dynamic and complex among the different types of cancer, where the immune cells play a relevant role in the elimination of tumor cells, however, under certain circumstances they contribute to tumor development. In cervical cancer (CC) the human papilloma virus (HPV) shapes the microenvironment in order to mediate persistent infections that favors transformation and tumor development. Interleukin-2 (IL-2) is an important TME cytokine that induces CD8+ effector T cells and NKs to eliminate tumor cells, however, IL-2 can also suppress the immune response through Treg cells. Recent studies have shown that CC cells express the IL-2 receptor (IL-2R), that are induced to proliferate at low concentrations of exogenous IL-2 through alterations in the JAK/STAT pathway. This review provides an overview of the main immune cells that make up the TME in CC, as well as the participation of IL-2 in the tumor promotion. Finally, it is proposed that the low density of IL-2 produced by immunocompetent cells is used by tumor cells through its IL-2R as a mechanism to proliferate simultaneously depleting this molecule in order to evade immune response.
Collapse
Affiliation(s)
- Leonardo Trujillo-Cirilo
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico.
| | - Benny Weiss-Steider
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Carlos Adrian Vargas-Angeles
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Maria Teresa Corona-Ortega
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Rosalva Rangel-Corona
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| |
Collapse
|
29
|
Schepetkin IA, Danilets MG, Ligacheva AA, Trofimova ES, Selivanova NS, Sherstoboev EY, Krivoshchekov SV, Gulina EI, Brazovskii KS, Kirpotina LN, Quinn MT, Belousov MV. Immunomodulatory Activity of Polysaccharides Isolated from Saussurea salicifolia L. and Saussurea frolovii Ledeb. Molecules 2023; 28:6655. [PMID: 37764432 PMCID: PMC10536955 DOI: 10.3390/molecules28186655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The genus Saussurea has been used in the preparation of therapies for a number of medical problems, yet not much is known about the therapeutic high-molecular-weight compounds present in extracts from these plants. Since polysaccharides are important in immune modulation, we investigated the chemical composition and immunomodulatory activity of Saussurea salicifolia L. and Saussurea frolovii Ledeb polysaccharides. Water-soluble polysaccharides from the aerial parts of these plants were extracted using water at pHs of 2 and 6 and subsequently precipitated in ethanol to obtain fractions SSP2 and SSP6 from S. salicifolia and fractions SSF2 and SSF6 from S. frolovii. The molecular weights of fractions SSP2, SSP6, SFP2, and SFP6 were estimated to be 143.7, 113.2, 75.3, and 64.3 kDa, respectively. The polysaccharides from S. frolovii contained xylose (67.1-71.7%) and glucose (28.3-32.9%), whereas the polysaccharides from S. frolovii contained xylose (63.1-76.7%), glucose (11.8-19.2%), galactose (4.7-8.3%), and rhamnose (6.8-9.4%). Fractions SSP2, SSP6, and SFP2 stimulated nitric oxide (NO) production by murine macrophages, and NO production induced by SSP2, SSP6, and SFP2 was not inhibited by polymyxin B treatment of the fractions, whereaspolymyxin B treatment diminished the effects of SFP6, suggesting that SFP6 could contain lipopolysaccharide (LPS). The LPS-free fractions SSP2, SSP6, and SFP2 had potent immunomodulatory activity, induced NO production, and activated transcription factors NF-κB/AP-1 in human monocytic THP-1 cells and cytokine production by human MonoMac-6 monocytic cells, including interleukin (IL)-1α, IL-1β, IL-6, granulocyte macrophage colony-stimulating factor (GM-CSF), interferon-γ, monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor (TNF). These data suggest that at least part of the beneficial therapeutic effects reported for water extracts of the Saussurea species are due to the modulation of leukocyte functions by polysaccharides.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Marina G. Danilets
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634050, Russia; (M.G.D.); (A.A.L.); (E.S.T.); (N.S.S.); (E.Y.S.)
| | - Anastasia A. Ligacheva
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634050, Russia; (M.G.D.); (A.A.L.); (E.S.T.); (N.S.S.); (E.Y.S.)
| | - Evgenia S. Trofimova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634050, Russia; (M.G.D.); (A.A.L.); (E.S.T.); (N.S.S.); (E.Y.S.)
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia; (S.V.K.); (E.I.G.); (K.S.B.)
| | - Natalia S. Selivanova
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634050, Russia; (M.G.D.); (A.A.L.); (E.S.T.); (N.S.S.); (E.Y.S.)
| | - Evgenii Yu. Sherstoboev
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk NRMC, Tomsk 634050, Russia; (M.G.D.); (A.A.L.); (E.S.T.); (N.S.S.); (E.Y.S.)
| | - Sergei V. Krivoshchekov
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia; (S.V.K.); (E.I.G.); (K.S.B.)
| | - Ekaterina I. Gulina
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia; (S.V.K.); (E.I.G.); (K.S.B.)
| | - Konstantin S. Brazovskii
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia; (S.V.K.); (E.I.G.); (K.S.B.)
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
| | - Liliya N. Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA; (I.A.S.); (L.N.K.)
| | - Mikhail V. Belousov
- Pharmaceutical Faculty, Siberian State Medical University, Tomsk 634050, Russia; (S.V.K.); (E.I.G.); (K.S.B.)
| |
Collapse
|
30
|
D’Amico S, Kirillov V, Petrenko O, Reich NC. STAT3 is a genetic modifier of TGF-beta induced EMT in KRAS mutant pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555946. [PMID: 37732258 PMCID: PMC10508731 DOI: 10.1101/2023.09.01.555946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Oncogenic mutations in KRAS are among the most common in cancer. Classical models suggest that loss of epithelial characteristics and the acquisition of mesenchymal traits are associated with cancer aggressiveness and therapy resistance. However, the mechanistic link between these phenotypes and mutant KRAS biology remains to be established. Here we identify STAT3 as a genetic modifier of TGF-beta-induced epithelial to mesenchymal transition. Gene expression profiling of pancreatic cancer cells identifies more than 200 genes commonly regulated by STAT3 and oncogenic KRAS. Functional classification of STAT3 responsive program reveals its major role in tumor maintenance and epithelial homeostasis. The signatures of STAT3-activated cell states can be projected onto human KRAS mutant tumors, suggesting that they faithfully reflect characteristics of human disease. These observations have implications for therapeutic intervention and tumor aggressiveness.
Collapse
Affiliation(s)
- Stephen D’Amico
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
31
|
Yu JT, Fan S, Li XY, Hou R, Hu XW, Wang JN, Shan RR, Dong ZH, Xie MM, Dong YH, Shen XY, Jin J, Wen JG, Liu MM, Wang W, Meng XM. Novel insights into STAT3 in renal diseases. Biomed Pharmacother 2023; 165:115166. [PMID: 37473682 DOI: 10.1016/j.biopha.2023.115166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai Fan
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
32
|
Jiang Y, Zhang J, Shi C, Li X, Jiang Y, Mao R. NF- κB: a mediator that promotes or inhibits angiogenesis in human diseases? Expert Rev Mol Med 2023; 25:e25. [PMID: 37503730 DOI: 10.1017/erm.2023.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The nuclear factor of κ-light chain of enhancer-activated B cells (NF-κB) signaling pathway, which is conserved in invertebrates, plays a significant role in human diseases such as inflammation-related diseases and carcinogenesis. Angiogenesis refers to the growth of new capillary vessels derived from already existing capillaries and postcapillary venules. Maintaining normal angiogenesis and effective vascular function is a prerequisite for the stability of organ tissue function, and abnormal angiogenesis often leads to a variety of diseases. It has been suggested that NK-κB signalling molecules under pathological conditions play an important role in vascular differentiation, proliferation, apoptosis and tumourigenesis by regulating the transcription of multiple target genes. Many NF-κB inhibitors are being tested in clinical trials for cancer treatment and their effect on angiogenesis is summarised. In this review, we will summarise the role of NF-κB signalling in various neovascular diseases, especially in tumours, and explore whether NF-κB can be used as an attack target or activation medium to inhibit tumour angiogenesis.
Collapse
Affiliation(s)
- Yijing Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Jie Zhang
- Department of Oncology, Affiliated Tumor Hospital of Nantong University, 30Tongyang North Road, Pingchao Town, Nantong 226361, Jiangsu, People's Republic of China
| | - Conglin Shi
- Department of Pathogenic Biology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong 226001, Jiangsu, People's Republic of China
| |
Collapse
|
33
|
Duan M, Nguyen DC, Joyner CJ, Saney CL, Tipton CM, Andrews J, Lonial S, Kim C, Hentenaar I, Kosters A, Ghosn E, Jackson A, Knechtle S, Maruthamuthu S, Chandran S, Martin T, Rajalingam R, Vincenti F, Breeden C, Sanz I, Gibson G, Lee FEH. Understanding heterogeneity of human bone marrow plasma cell maturation and survival pathways by single-cell analyses. Cell Rep 2023; 42:112682. [PMID: 37355988 PMCID: PMC10391632 DOI: 10.1016/j.celrep.2023.112682] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/28/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASCs) to long-lived plasma cells (LLPCs). We provide single-cell transcriptional resolution of 17,347 BM ASCs from five healthy adults. Fifteen clusters are identified ranging from newly minted ASCs (cluster 1) expressing MKI67 and high major histocompatibility complex (MHC) class II that progress to late clusters 5-8 through intermediate clusters 2-4. Additional ASC clusters include the following: immunoglobulin (Ig) M predominant (likely of extra-follicular origin), interferon responsive, and high mitochondrial activity. Late ASCs are distinguished by G2M checkpoints, mammalian target of rapamycin (mTOR) signaling, distinct metabolic pathways, CD38 expression, utilization of tumor necrosis factor (TNF)-receptor superfamily members, and two distinct maturation pathways involving TNF signaling through nuclear factor κB (NF-κB). This study provides a single-cell atlas and molecular roadmap of LLPC maturation trajectories essential in the BM microniche. Altogether, understanding BM ASC heterogeneity in health and disease enables development of new strategies to enhance protective ASCs and to deplete pathogenic ones.
Collapse
Affiliation(s)
- Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Doan C Nguyen
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Chester J Joyner
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Celia L Saney
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Christopher M Tipton
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Joel Andrews
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Caroline Kim
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ian Hentenaar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Astrid Kosters
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Eliver Ghosn
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Annette Jackson
- Departments of Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | | | - Stalinraja Maruthamuthu
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sindhu Chandran
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tom Martin
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Flavio Vincenti
- Division of Nephrology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cynthia Breeden
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University, Atlanta, GA, USA; Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
35
|
González-Callejo P, Gener P, Díaz-Riascos ZV, Conti S, Cámara-Sánchez P, Riera R, Mancilla S, García-Gabilondo M, Peg V, Arango D, Rosell A, Labernadie A, Trepat X, Albertazzi L, Schwartz S, Seras-Franzoso J, Abasolo I. Extracellular vesicles secreted by triple-negative breast cancer stem cells trigger premetastatic niche remodeling and metastatic growth in the lungs. Int J Cancer 2023; 152:2153-2165. [PMID: 36705298 DOI: 10.1002/ijc.34447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/11/2022] [Accepted: 12/13/2022] [Indexed: 01/28/2023]
Abstract
Tumor secreted extracellular vesicles (EVs) are potent intercellular signaling platforms. They are responsible for the accommodation of the premetastatic niche (PMN) to support cancer cell engraftment and metastatic growth. However, complex cancer cell composition within the tumor increases also the heterogeneity among cancer secreted EVs subsets, a functional diversity that has been poorly explored. This phenomenon is particularly relevant in highly plastic and heterogenous triple-negative breast cancer (TNBC), in which a significant representation of malignant cancer stem cells (CSCs) is displayed. Herein, we selectively isolated and characterized EVs from CSC or differentiated cancer cells (DCC; EVsCSC and EVsDCC , respectively) from the MDA-MB-231 TNBC cell line. Our results showed that EVsCSC and EVsDCC contain distinct bioactive cargos and therefore elicit a differential effect on stromal cells in the TME. Specifically, EVsDCC activated secretory cancer associated fibroblasts (CAFs), triggering IL-6/IL-8 signaling and sustaining CSC phenotype maintenance. Complementarily, EVsCSC promoted the activation of α-SMA+ myofibroblastic CAFs subpopulations and increased the endothelial remodeling, enhancing the invasive potential of TNBC cells in vitro and in vivo. In addition, solely the EVsCSC mediated signaling prompted the transformation of healthy lungs into receptive niches able to support metastatic growth of breast cancer cells.
Collapse
Affiliation(s)
- Patricia González-Callejo
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Petra Gener
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Zamira V Díaz-Riascos
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Functional Validation & Preclinical Research (FVPR), Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Sefora Conti
- Integrative Cell and Tissue Dynamics Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Patricia Cámara-Sánchez
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Functional Validation & Preclinical Research (FVPR), Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Roger Riera
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Sandra Mancilla
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Functional Validation & Preclinical Research (FVPR), Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Miguel García-Gabilondo
- Neurovascular Research Laboratory, Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron, Barcelona, Spain
| | - Vicente Peg
- Department of Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Arango
- Department of Molecular Oncology, Biomedical Research Institute of Lleida, Lleida, Spain.,Biomedical Research in Digestive Tract Tumors, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig Vall d'Hebron, Barcelona, Spain
| | - Anna Labernadie
- Integrative Cell and Tissue Dynamics Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain
| | - Xavier Trepat
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Integrative Cell and Tissue Dynamics Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, Barcelona, Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.,Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - Simó Schwartz
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquin Seras-Franzoso
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.,Functional Validation & Preclinical Research (FVPR), Vall d‧Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), Passeig de la Vall d'Hebron, Barcelona, Spain
| |
Collapse
|
36
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
37
|
Sim N, Li Y. NF-κB/p52 augments ETS1 binding genome-wide to promote glioma progression. Commun Biol 2023; 6:445. [PMID: 37087499 PMCID: PMC10122670 DOI: 10.1038/s42003-023-04821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/06/2023] [Indexed: 04/24/2023] Open
Abstract
Gliomas are highly invasive and chemoresistant cancers, making them challenging to treat. Chronic inflammation is a key driver of glioma progression as it promotes aberrant activation of inflammatory pathways such as NF-κB signalling, which drives cancer cell invasion and angiogenesis. NF-κB factors typically dimerise with its own family members, but emerging evidence of their promiscuous interactions with other oncogenic factors has been reported to promote transcription of new target genes and function. Here, we show that non-canonical NF-κB activation directly regulates p52 at the ETS1 promoter, activating its expression. This impacts the genomic and transcriptional landscape of ETS1 in a glioma-specific manner. We further show that enhanced non-canonical NF-κB signalling promotes the co-localisation of p52 and ETS1, resulting in transcriptional activation of non-κB and/or non-ETS glioma-promoting genes. We conclude that p52-induced ETS1 overexpression in glioma cells remodels the genome-wide regulatory network of p52 and ETS1 to transcriptionally drive cancer progression.
Collapse
Affiliation(s)
- Nicholas Sim
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore, 138673, Singapore.
| |
Collapse
|
38
|
Lim JO, Kim WI, Pak SW, Lee SJ, Park SH, Shin IS, Kim JC. Toll-like receptor 4 is a key regulator of asthma exacerbation caused by aluminum oxide nanoparticles via regulation of NF-κB phosphorylation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130884. [PMID: 36736217 DOI: 10.1016/j.jhazmat.2023.130884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Aluminum oxide nanoparticles (Al2O3 NPs) have recently been reported to cause an inflammatory response in the lungs, and studies are being conducted on their adverse effects, especially in patients with underlying lung diseases such as asthma. However, the underlying mechanism of asthma aggravation caused by Al2O3 NPs remains unclear. This study investigated whether Al2O3 NPs exacerbate ovalbumin (OVA)-induced asthma and focused on the correlation between toll-like receptor 4 (TLR4) signaling and Al2O3 NP-induced asthma exacerbation. Al2O3 NP exposure in asthmatic mice resulted in increased inflammatory cell counts in the lungs, airway hyperresponsiveness, and increased levels of inflammatory cytokines compared with only OVA-induced mice, and excessive secretion of mucus was observed in the airways. Moreover, Al2O3 NP exposure in OVA-induced mice increased the expression levels of TLR4, phospho-nuclear transcription factor-kappa B (p-NFκB), myeloid differentiation factor 88 (MyD88), and phospho-NF kappa B inhibitor alpha (p-IκBα). Furthermore, in the lungs of TLR4 knockout mice exposed to Al2O3 NPs and in a human airway epithelial cell line with down regulated TLR4, the expression levels of MyD88, p-NFκB, and p-IκBα were decreased, and asthma-related allergic responses were reduced. Therefore, we demonstrated that TLR4 is important for aggravation of asthma induced by Al2O3 NPs, and this study provides useful information regarding as yet undiscovered novel target signaling.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung-Hyeuk Park
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
39
|
Bapat AS, O'Connor CH, Schwertfeger KL. Targeting the NF-κB pathway enhances responsiveness of mammary tumors to JAK inhibitors. Sci Rep 2023; 13:5349. [PMID: 37005447 PMCID: PMC10067805 DOI: 10.1038/s41598-023-32321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Interactions between tumor cells and the tumor microenvironment are critical for tumor growth, progression, and response to therapy. Effective targeting of oncogenic signaling pathways in tumors requires an understanding of how these therapies impact both tumor cells and cells within the tumor microenvironment. One such pathway is the janus kinase (JAK)/signal transducer and activator or transcription (STAT) pathway, which is activated in both breast cancer cells and in tumor associated macrophages. This study demonstrates that exposure of macrophages to JAK inhibitors leads to activation of NF-κB signaling, which results in increased expression of genes known to be associated with therapeutic resistance. Furthermore, inhibition of the NF-κB pathway improves the ability of ruxolitinib to reduce mammary tumor growth in vivo. Thus, the impact of the tumor microenvironment is an important consideration in studying breast cancer and understanding such mechanisms of resistance is critical to development of effective targeted therapies.
Collapse
Affiliation(s)
- Aditi S Bapat
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Christine H O'Connor
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
40
|
Karakaslar EO, Katiyar N, Hasham M, Youn A, Sharma S, Chung C, Marches R, Korstanje R, Banchereau J, Ucar D. Transcriptional activation of Jun and Fos members of the AP-1 complex is a conserved signature of immune aging that contributes to inflammaging. Aging Cell 2023; 22:e13792. [PMID: 36840360 PMCID: PMC10086525 DOI: 10.1111/acel.13792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/26/2023] Open
Abstract
Diverse mouse strains have different health and life spans, mimicking the diversity among humans. To capture conserved aging signatures, we studied long-lived C57BL/6J and short-lived NZO/HILtJ mouse strains by profiling transcriptomes and epigenomes of immune cells from peripheral blood and the spleen from young and old mice. Transcriptional activation of the AP-1 transcription factor complex, particularly Fos, Junb, and Jun genes, was the most significant and conserved aging signature across tissues and strains. ATAC-seq data analyses showed that the chromatin around these genes was more accessible with age and there were significantly more binding sites for these TFs with age across all studied tissues, targeting pro-inflammatory molecules including Il6. Age-related increases in binding sites of JUN and FOS factors were also conserved in human peripheral blood ATAC-seq data. Single-cell RNA-seq data from the mouse aging cell atlas Tabula Muris Senis showed that the expression of these genes increased with age in B, T, NK cells, and macrophages, with macrophages from old mice expressing these molecules more abundantly than other cells. Functional data showed that upon myeloid cell activation via poly(I:C), the levels of JUN protein and its binding activity increased more significantly in spleen cells from old compared to young mice. In addition, upon activation, old cells produced more IL6 compared to young cells. In sum, we showed that the aging-related transcriptional activation of Jun and Fos family members in AP-1 complex is conserved across immune tissues and long- and short-living mouse strains, possibly contributing to increased inflammation with age.
Collapse
Affiliation(s)
- Emin Onur Karakaslar
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
- Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Neerja Katiyar
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Muneer Hasham
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | | | | | - Cheng‐han Chung
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Radu Marches
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
| | - Ron Korstanje
- The Jackson Laboratory for Mammalian GeneticsBar HarborMaineUSA
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
- ImmunaiNew YorkNew YorkUSA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic MedicineFarmingtonConnecticutUSA
- Department of Genetics and Genome SciencesUniversity of Connecticut Health CenterFarmingtonConnecticutUSA
| |
Collapse
|
41
|
Qiu H, Makarov V, Bolzenius JK, Halstead A, Parker Y, Wang A, Iyer GV, Wise H, Kim D, Thayaparan V, Lindner DJ, Haber GP, Ting AH, Ren B, Chan TA, Arora V, Solit DB, Lee BH. KDM6A Loss Triggers an Epigenetic Switch That Disrupts Urothelial Differentiation and Drives Cell Proliferation in Bladder Cancer. Cancer Res 2023; 83:814-829. [PMID: 36638328 PMCID: PMC10015223 DOI: 10.1158/0008-5472.can-22-1444] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/10/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Disruption of KDM6A, a histone lysine demethylase, is one of the most common somatic alternations in bladder cancer. Insights into how KDM6A mutations affect the epigenetic landscape to promote carcinogenesis could help reveal potential new treatment approaches. Here, we demonstrated that KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and induces a neoplastic state characterized by increased cell proliferation. In bladder cancer cells with intact KDM6A, FOXA1 interacted with KDM6A to activate genes instructing urothelial differentiation. KDM6A-deficient cells displayed simultaneous loss of FOXA1 target binding and genome-wide redistribution of the bZIP transcription factor ATF3, which in turn repressed FOXA1-target genes and activated cell-cycle progression genes. Importantly, ATF3 depletion reversed the cell proliferation phenotype induced by KDM6A deficiency. These data establish that KDM6A loss engenders an epigenetic state that drives tumor growth in an ATF3-dependent manner, creating a potentially targetable molecular vulnerability. SIGNIFICANCE A gain-of-function epigenetic switch that disrupts differentiation is triggered by inactivating KDM6A mutations in bladder cancer and can serve as a potential target for novel therapies.
Collapse
Affiliation(s)
- Hong Qiu
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Vladimir Makarov
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Jennifer K. Bolzenius
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Angela Halstead
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Yvonne Parker
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Allen Wang
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, California
| | - Gopakumar V. Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hannah Wise
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Kim
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Varna Thayaparan
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Daniel J. Lindner
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Georges-Pascal Haber
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Angela H. Ting
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Bing Ren
- Center for Epigenomics, University of California San Diego School of Medicine, La Jolla, California
- Department of Cellular and Molecular Medicine, University of California San Diego School of Medicine, La Jolla, California
- Ludwig Institute for Cancer Research, La Jolla, California
| | - Timothy A. Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Vivek Arora
- Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - David B. Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Byron H. Lee
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
42
|
Deka K, Li Y. Transcriptional Regulation during Aberrant Activation of NF-κB Signalling in Cancer. Cells 2023; 12:788. [PMID: 36899924 PMCID: PMC10001244 DOI: 10.3390/cells12050788] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The NF-κB signalling pathway is a major signalling cascade involved in the regulation of inflammation and innate immunity. It is also increasingly recognised as a crucial player in many steps of cancer initiation and progression. The five members of the NF-κB family of transcription factors are activated through two major signalling pathways, the canonical and non-canonical pathways. The canonical NF-κB pathway is prevalently activated in various human malignancies as well as inflammation-related disease conditions. Meanwhile, the significance of non-canonical NF-κB pathway in disease pathogenesis is also increasingly recognized in recent studies. In this review, we discuss the double-edged role of the NF-κB pathway in inflammation and cancer, which depends on the severity and extent of the inflammatory response. We also discuss the intrinsic factors, including selected driver mutations, and extrinsic factors, such as tumour microenvironment and epigenetic modifiers, driving aberrant activation of NF-κB in multiple cancer types. We further provide insights into the importance of the interaction of NF-κB pathway components with various macromolecules to its role in transcriptional regulation in cancer. Finally, we provide a perspective on the potential role of aberrant NF-κB activation in altering the chromatin landscape to support oncogenic development.
Collapse
Affiliation(s)
- Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore 637551, Singapore
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore 138673, Singapore
| |
Collapse
|
43
|
ALK fusion NSCLC oncogenes promote survival and inhibit NK cell responses via SERPINB4 expression. Proc Natl Acad Sci U S A 2023; 120:e2216479120. [PMID: 36791109 PMCID: PMC9974509 DOI: 10.1073/pnas.2216479120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) fusion variants in Non-Small Cell Lung Cancer (NSCLC) consist of numerous dimerizing fusion partners. Retrospective investigations suggest that treatment benefit in response to ALK tyrosine kinase inhibitors (TKIs) differs dependent on the fusion variant present in the patient tumor. Therefore, understanding the oncogenic signaling networks driven by different ALK fusion variants is important. To do this, we developed controlled inducible cell models expressing either Echinoderm Microtubule Associated Protein Like 4 (EML4)-ALK-V1, EML4-ALK-V3, Kinesin Family Member 5B (KIF5B)-ALK, or TRK-fused gene (TFG)-ALK and investigated their transcriptomic and proteomic responses to ALK activity modulation together with patient-derived ALK-positive NSCLC cell lines. This allowed identification of both common and isoform-specific responses downstream of these four ALK fusions. An inflammatory signature that included upregulation of the Serpin B4 serine protease inhibitor was observed in both ALK fusion inducible and patient-derived cells. We show that Signal transducer and activator of transcription 3 (STAT3), Nuclear Factor Kappa B (NF-κB) and Activator protein 1 (AP1) are major transcriptional regulators of SERPINB4 downstream of ALK fusions. Upregulation of SERPINB4 promotes survival and inhibits natural killer cell-mediated cytotoxicity, which has potential for therapeutic impact targeting the immune response together with ALK TKIs in NSCLC.
Collapse
|
44
|
Antonova DV, Gnatenko DA, Kotova ES, Pleshkan VV, Kuzmich AI, Didych DA, Sverdlov ED, Alekseenko IV. Cell-specific expression of the FAP gene is regulated by enhancer elements. Front Mol Biosci 2023; 10:1111511. [PMID: 36825204 PMCID: PMC9941708 DOI: 10.3389/fmolb.2023.1111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/10/2023] Open
Abstract
Fibroblast activation protein (FAP) is an integral membrane serine protease that acts as both dipeptidyl peptidase and collagenase. In recent years, FAP has attracted considerable attention due to its specific upregulation in multiple types of tumor cell populations, including cancer cells in various cancer types, making FAP a potential target for therapy. However, relatively few papers pay attention to the mechanisms driving the cell-specific expression of the FAP gene. We found no correlation between the activities of the two FAP promoter variants (short and long) and the endogenous FAP mRNA expression level in several cell lines with different FAP expression levels. This suggested that other mechanisms may be responsible for specific transcriptional regulation of the FAP gene. We analyzed the distribution of known epigenetic and structural chromatin marks in FAP-positive and FAP-negative cell lines and identified two potential enhancer-like elements (E1 and E2) in the FAP gene locus. We confirmed the specific enrichment of H3K27ac in the putative enhancer regions in FAP-expressing cells. Both the elements exhibited enhancer activity independently of each other in the functional test by increasing the activity of the FAP promoter variants to a greater extent in FAP-expressing cell lines than in FAP-negative cell lines. The transcription factors AP-1, CEBPB, and STAT3 may be involved in FAP activation in the tumors. We hypothesized the existence of a positive feedback loop between FAP and STAT3, which may have implications for developing new approaches in cancer therapy.
Collapse
Affiliation(s)
- Dina V. Antonova
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry A. Gnatenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia
| | - Elena S. Kotova
- Laboratory of Human Molecular Genetics, FSBI Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Victor V. Pleshkan
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Alexey I. Kuzmich
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Dmitry A. Didych
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,*Correspondence: Dmitry A. Didych,
| | - Eugene D. Sverdlov
- Kurchatov Center for Genome Research, National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Irina V. Alekseenko
- Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Department of Genomics and Postgenomic Technologies, Russian Academy of Sciences, Moscow, Russia,Gene Oncotherapy Sector, Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow, Russia,Laboratory of Epigenetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
45
|
Li D, Xie T, Guo T, Hu Z, Li M, Tang Y, Wu Q, Luo F, Lin Q, Wang H. Sialic acid exerts anti-inflammatory effect through inhibiting MAPK-NF-κB/AP-1 pathway and apoptosis in ulcerative colitis. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
46
|
Ebrahimi N, Afshinpour M, Fakhr SS, Kalkhoran PG, Shadman-Manesh V, Adelian S, Beiranvand S, Rezaei-Tazangi F, Khorram R, Hamblin MR, Aref AR. Cancer stem cells in colorectal cancer: Signaling pathways involved in stemness and therapy resistance. Crit Rev Oncol Hematol 2023; 182:103920. [PMID: 36702423 DOI: 10.1016/j.critrevonc.2023.103920] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Colorectal cancer (CRC) is the third cause of cancer death worldwide. Although, in some cases, treatment can increase patient survival and reduce cancer recurrence, in many cases, tumors can develop resistance to therapy leading to recurrence. One of the main reasons for recurrence and therapy resistance is the presence of cancer stem cells (CSCs). CSCs possess a self-renewal ability, and their stemness properties lead to the avoidance of apoptosis, and allow a new clone of cancer cells to emerge. Numerous investigations inidicated the involvment of cellular signaling pathways in embryonic development, and growth, repair, and maintenance of tissue homeostasis, also participate in the generation and maintenance of stemness in colorectal CSCs. This review discusses the role of Wnt, NF-κB, PI3K/AKT/mTOR, Sonic hedgehog, and Notch signaling pathways in colorectal CSCs, and the possible modulating drugs that could be used in treatment for resistant CRC.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Division of Genetics, Department of cell and molecular & microbiology, Faculty of Science and technology, University of Isfahan, Isfahan, Iran
| | - Maral Afshinpour
- Department of chemistry and Biochemistry, South Dakota State University (SDSU), Brookings, SD, USA
| | - Siavash Seifollahy Fakhr
- Department of Biotechnology; Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Campus Hamar, Norway
| | - Paniz Ghasempour Kalkhoran
- Department of Cellular and Molecular Biology_Microbiology, Faculty of Advanced Science and Technology, Tehran Medical science, Islamic Azad University, Tehran, Iran
| | - Vida Shadman-Manesh
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sheida Beiranvand
- Department of Biotechnology, School of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA 02210, USA.
| |
Collapse
|
47
|
Zong Y, Kamoi K, Kurozumi-Karube H, Zhang J, Yang M, Ohno-Matsui K. Safety of intraocular anti-VEGF antibody treatment under in vitro HTLV-1 infection. Front Immunol 2023; 13:1089286. [PMID: 36761168 PMCID: PMC9905742 DOI: 10.3389/fimmu.2022.1089286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction HTLV-1 (human T-cell lymphotropic virus type 1) is a retrovirus that infects approximately 20 million people worldwide. Many diseases are caused by this virus, including HTLV-1-associated myelopathy, adult T-cell leukemia, and HTLV-1 uveitis. Intraocular anti-vascular endothelial growth factor (VEGF) antibody injection has been widely used in ophthalmology, and it is reportedly effective against age-related macular degeneration, complications of diabetic retinopathy, and retinal vein occlusions. HTLV-1 mimics VEGF165, the predominant isoform of VEGF, to recruit neuropilin-1 and heparan sulfate proteoglycans. VEGF165 is also a selective competitor of HTLV-1 entry. Here, we investigated the effects of an anti-VEGF antibody on ocular status under conditions of HTLV-1 infection in vitro. Methods We used MT2 and TL-Om1 cells as HTLV-1-infected cells and Jurkat cells as controls. Primary human retinal pigment epithelial cells (HRPEpiCs) and ARPE19 HRPEpiCs were used as ocular cells; MT2/TL-Om1/Jurkat cells and HRPEpiCs/ARPE19 cells were co-cultured to simulate the intraocular environment of HTLV-1-infected patients. Aflibercept was administered as an anti-VEGF antibody. To avoid possible T-cell adhesion, we lethally irradiated MT2/TL-Om1/Jurkat cells prior to the experiments. Results Anti-VEGF antibody treatment had no effect on activated NF-κB production, inflammatory cytokines, chemokines, HTLV-1 proviral load (PVL), or cell counts in the retinal pigment epithelium (RPE) under MT2 co-culture conditions. Under TL-Om1 co-culture conditions, anti-VEGF antibody treatment did not affect the production of activated NF-κB, chemokines, PVL, or cell counts, but production of the inflammatory cytokine IL-6 was increased. In addition, anti-VEGF treatment did not affect PVL in HTLV-1-infected T cells. Conclusion This preliminary in vitro assessment indicates that intraocular anti-VEGF antibody treatment for HTLV-1 infection does not exacerbate HTLV-1-related inflammation and thus may be safe for use.
Collapse
|
48
|
Pandey P, Al Rumaih Z, Kels MJT, Ng E, Kc R, Malley R, Chaudhri G, Karupiah G. Therapeutic Targeting of Inflammation and Virus Simultaneously Ameliorates Influenza Pneumonia and Protects from Morbidity and Mortality. Viruses 2023; 15:v15020318. [PMID: 36851532 PMCID: PMC9966636 DOI: 10.3390/v15020318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Influenza pneumonia is a severe complication caused by inflammation of the lungs following infection with seasonal and pandemic strains of influenza A virus (IAV), that can result in lung pathology, respiratory failure, and death. There is currently no treatment for severe disease and pneumonia caused by IAV. Antivirals are available but are only effective if treatment is initiated within 48 h of onset of symptoms. Influenza complications and mortality are often associated with high viral load and an excessive lung inflammatory cytokine response. Therefore, we simultaneously targeted the virus and inflammation. We used the antiviral oseltamivir and the anti-inflammatory drug etanercept to dampen TNF signaling after the onset of clinical signs to treat pneumonia in a mouse model of respiratory IAV infection. The combined treatment down-regulated the inflammatory cytokines TNF, IL-1β, IL-6, and IL-12p40, and the chemokines CCL2, CCL5, and CXCL10. Consequently, combined treatment with oseltamivir and a signal transducer and activator of transcription 3 (STAT3) inhibitor effectively reduced clinical disease and lung pathology. Combined treatment using etanercept or STAT3 inhibitor and oseltamivir dampened an overlapping set of cytokines. Thus, combined therapy targeting a specific cytokine or cytokine signaling pathway and an antiviral drug provide an effective treatment strategy for ameliorating IAV pneumonia. This approach might apply to treating pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Pratikshya Pandey
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Zahrah Al Rumaih
- Infection and Immunity Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Ma. Junaliah Tuazon Kels
- Infection and Immunity Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Esther Ng
- Infection and Immunity Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Rajendra Kc
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Roslyn Malley
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
| | - Geeta Chaudhri
- Infection and Immunity Group, Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Gunasegaran Karupiah
- Viral Immunology and Immunopathology Group, Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Tasmanian School of Medicine, University of Tasmania, Hobart, TAS 7000, Australia
- Correspondence:
| |
Collapse
|
49
|
Duan M, Nguyen DC, Joyner CJ, Saney CL, Tipton CM, Andrews J, Lonial S, Kim C, Hentenaar I, Kosters A, Ghosn E, Jackson A, Knechtle S, Maruthamuthu S, Chandran S, Martin T, Rajalingam R, Vincenti F, Breeden C, Sanz I, Gibson G, Eun-Hyung Lee F. Human Bone Marrow Plasma Cell Atlas: Maturation and Survival Pathways Unraveled by Single Cell Analyses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524601. [PMID: 36711623 PMCID: PMC9882341 DOI: 10.1101/2023.01.18.524601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Human bone marrow (BM) plasma cells are heterogeneous, ranging from newly arrived antibody-secreting cells (ASC) to long-lived plasma cells (LLPC). We provide single cell transcriptional resolution of 17,347 BM ASC from 5 healthy adults. Fifteen clusters were identified ranging from newly minted ASC (cluster 1) expressing MKI67 and high MHC Class II that progressed to late clusters 5-8 through intermediate clusters 2-4. Additional clusters included early and late IgM-predominant ASC of likely extra-follicular origin; IFN-responsive; and high mitochondrial activity ASC. Late ASCs were distinguished by differences in G2M checkpoints, MTOR signaling, distinct metabolic pathways, CD38 expression, and utilization of TNF-receptor superfamily members. They mature through two distinct paths differentiated by the degree of TNF signaling through NFKB. This study provides the first single cell resolution atlas and molecular roadmap of LLPC maturation, thereby providing insight into differentiation trajectories and molecular regulation of these essential processes in the human BM microniche. This information enables investigation of the origin of protective and pathogenic antibodies in multiple diseases and development of new strategies targeted to the enhancement or depletion of the corresponding ASC. One Sentence Summary: The single cell transcriptomic atlas of human bone marrow plasma cell heterogeneity shows maturation of class-switched early and late subsets, specific IgM and Interferon-driven clusters, and unique heterogeneity of the late subsets which encompass the long-lived plasma cells.
Collapse
|
50
|
Li J, Xiao Y, Yu H, Jin X, Fan S, Liu W. Mutual connected IL-6, EGFR and LIN28/Let7-related mechanisms modulate PD-L1 and IGF upregulation in HNSCC using immunotherapy. Front Oncol 2023; 13:1140133. [PMID: 37124491 PMCID: PMC10130400 DOI: 10.3389/fonc.2023.1140133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
The development of techniques and immunotherapies are widely applied in cancer treatment such as checkpoint inhibitors, adoptive cell therapy, and cancer vaccines apart from radiation therapy, surgery, and chemotherapy give enduring anti-tumor effects. Minority people utilize single-agent immunotherapy, and most people adopt multiple-agent immunotherapy. The difficulties are resolved by including the biomarkers to choose the non-responders' and responders' potentials. The possibility of the potential complications and side effects are examined to improve cancer therapy effects. The Head and Neck Squamous Cell Carcinoma (HNSCC) is analyzed with the help of programmed cell death ligand 1 (PD-L1) and Insulin-like growth factor (IGF). But how IGF and PD-L1 upregulation depends on IL-6, EGFR, and LIN28/Let7-related mechanisms are poorly understood. Briefly, IL-6 stimulates gene expressions of IGF-1/2, and IL-6 cross-activates IGF-1R signaling, NF-κB, and STAT3. NF-κB, up-regulating PD-L1 expressions. IL-6/JAK1 primes PD-L1 for STT3-mediated PD-L1 glycosylation, stabilizes PD-L1 and trafficks it to the cell surface. Moreover, ΔNp63 is predominantly overexpressed over TAp63 in HNSCC, elevates circulating IGF-1 levels by repressing IGFBP3, and activates insulin receptor substrate 1 (IRS1).TP63 and SOX2 form a complex with CCAT1 to promote EGFR expression. EGFR activation through EGF binding extends STAT3 activation, and EGFR and its downstream signaling prolong PD-L1 mRNA half-life. PLC-γ1 binding to a cytoplasmic motif of elevated PD-L1 improves EGF-induced activation of inositol 1,4,5-tri-phosphate (IP3), and diacylglycerol (DAG) subsequently elevates RAC1-GTP. RAC1-GTP was convincingly demonstrated to induce the autocrine production and action of IL-6/IL-6R, forming a feedback loop for IGF and PD-L1 upregulation. Furthermore, the LIN28-Let7 axis mediates the NF-κB-IL-6-STAT3 amplification loop, activated LIN28-Let7 axis up-regulates RAS, AKT, IL-6, IGF-1/2, IGF-1R, Myc, and PD-L1, plays pivotal roles in IGF-1R activation and Myc, NF-κB, STAT3 concomitant activation. Therefore, based on a detailed mechanisms review, our article firstly reveals that IL-6, EGFR, and LIN28/Let7-related mechanisms mediate PD-L1 and IGF upregulation in HNSCC, which comprehensively influences immunity, inflammation, metabolism, and metastasis in the tumor microenvironment, and might be fundamental for overcoming therapy resistance.
Collapse
Affiliation(s)
- Junjun Li
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
| | - Yazhou Xiao
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
| | - Huayue Yu
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
| | - Xia Jin
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
| | - Songqing Fan
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of The Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei Liu,
| |
Collapse
|