1
|
Bathla S, Datta D, Bolat D, Woo E, Duque A, Arellano J, Arnsten A, Nairn AC. Dysregulated calcium signaling in the aged macaque entorhinal cortex associated with tau hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.626721. [PMID: 39713378 PMCID: PMC11661118 DOI: 10.1101/2024.12.05.626721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tau pathology in sporadic Alzheimer's disease (AD) follows a distinct pattern, beginning in the entorhinal cortex (ERC) and spreading to interconnected brain regions. Early-stage tau pathology, characterized by soluble phosphorylated tau, is difficult to study in human brains post-mortem due to rapid dephosphorylation. Rhesus macaques, which naturally develop age-related tau pathology resembling human AD, provide an ideal model for investigating early tau etiology. This study examines the molecular processes underlying tau pathology in the macaque ERC, focusing on calcium and inflammatory signaling pathways. Our findings reveal age-related decreases in PDE4 phosphodiesterases that hydrolyze cAMP and increases in calpain-2 and GCPII that occur in parallel with early-stage tau hyperphosphorylation at multiple epitopes (pS214-tau, pT181-tau, pT217-tau). These findings suggest that dysregulated calcium signaling in ERC, beginning in middle-age, primes tau for hyperphosphorylation, potentially driving the early stages of AD, advancing our understanding of how ERC vulnerabilities contribute to neurodegeneration in AD.
Collapse
|
2
|
Frye BM, Negrey JD, Johnson CSC, Kim J, Barcus RA, Lockhart SN, Whitlow CT, Chiou KL, Snyder-Mackler N, Montine TJ, Craft S, Shively CA, Register TC. Mediterranean diet protects against a neuroinflammatory cortical transcriptome: Associations with brain volumetrics, peripheral inflammation, social isolation, and anxiety in nonhuman primates (Macaca fascicularis). Brain Behav Immun 2024; 119:681-692. [PMID: 38636565 DOI: 10.1016/j.bbi.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/17/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024] Open
Abstract
Mediterranean diets may be neuroprotective and prevent cognitive decline relative to Western diets; however, the underlying biology is poorly understood. We assessed the effects of Western versus Mediterranean-like diets on RNAseq-generated transcriptional profiles in lateral temporal cortex and their relationships with longitudinal changes in neuroanatomy, circulating monocyte gene expression, and observations of social isolation and anxiety in 38 socially-housed, middle-aged female cynomolgus macaques (Macaca fascicularis). Diet resulted in differential expression of seven transcripts (FDR < 0.05). Cyclin dependent kinase 14 (CDK14), a proinflammatory regulator, was lower in the Mediterranean group. The remaining six transcripts [i.e., "lunatic fringe" (LFNG), mannose receptor C type 2 (MRC2), solute carrier family 3 member 2 (SLCA32), butyrophilin subfamily 2 member A1 (BTN2A1), katanin regulatory subunit B1 (KATNB1), and transmembrane protein 268 (TMEM268)] were higher in cortex of the Mediterranean group and generally associated with anti-inflammatory/neuroprotective pathways. KATNB1 encodes a subcomponent of katanin, important in maintaining microtubule homeostasis. BTN2A1 is involved in immunomodulation of γδ T-cells which have anti-neuroinflammatory and neuroprotective effects. CDK14, LFNG, MRC2, and SLCA32 are associated with inflammatory pathways. The latter four differentially expressed cortex transcripts were associated with peripheral monocyte transcript levels, neuroanatomical changes determined by MRI, and with social isolation and anxiety. These results provide important insights into the potential mechanistic processes linking diet, peripheral and central inflammation, and behavior. Collectively, our results provide evidence that, relative to Western diets, Mediterranean diets confer protection against peripheral and central inflammation which is reflected in preserved brain structure and socioemotional behavior. Ultimately, such protective effects may confer resilience to the development of neuropathology and associated disease.
Collapse
Affiliation(s)
- Brett M Frye
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Biology, Emory and Henry College, Emory, VA, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA
| | - Jacob D Negrey
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; School of Anthropology, University of Arizona, Tucson, AZ, USA
| | | | - Jeongchul Kim
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Richard A Barcus
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Samuel N Lockhart
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christopher T Whitlow
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA; School of Life Sciences, Arizona State University, Tempe, AZ, USA; School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | | | - Suzanne Craft
- Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA; Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol A Shively
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA.
| | - Thomas C Register
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Alzheimer's Disease Research Center, Winston-Salem, NC, USA.
| |
Collapse
|
3
|
Li H, Xiang BL, Li X, Li C, Li Y, Miao Y, Ma GL, Ma YH, Chen JQ, Zhang QY, Lv LB, Zheng P, Bi R, Yao YG. Cognitive Deficits and Alzheimer's Disease-Like Pathologies in the Aged Chinese Tree Shrew. Mol Neurobiol 2024; 61:1892-1906. [PMID: 37814108 DOI: 10.1007/s12035-023-03663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Alzheimer's disease (AD) is the most common chronic progressive neurodegenerative disease in the elderly. It has an increasing prevalence and a growing health burden. One of the limitations in studying AD is the lack of animal models that show features of Alzheimer's pathogenesis. The tree shrew has a much closer genetic affinity to primates than to rodents and has great potential to be used for research into aging and AD. In this study, we aimed to investigate whether tree shrews naturally develop cognitive impairment and major AD-like pathologies with increasing age. Pole-board and novel object recognition tests were used to assess the cognitive performance of adult (about 1 year old) and aged (6 years old or older) tree shrews. The main AD-like pathologies were assessed by Western blotting, immunohistochemical staining, immunofluorescence staining, and Nissl staining. Our results showed that the aged tree shrews developed an impaired cognitive performance compared to the adult tree shrews. Moreover, the aged tree shrews exhibited several age-related phenotypes that are associated with AD, including increased levels of amyloid-β (Aβ) accumulation and phosphorylated tau protein, synaptic and neuronal loss, and reactive gliosis in the cortex and the hippocampal tissues. Our study provides further evidence that the tree shrew is a promising model for the study of aging and AD.
Collapse
Affiliation(s)
- Hongli Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Bo-Lin Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Cong Li
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Ying Miao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Science, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Guo-Lan Ma
- Kunming Biological Diversity Regional Center of Large Apparatus and Equipments, Public Technology Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Yu-Hua Ma
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Jia-Qi Chen
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Qing-Yu Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Long-Bao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, 650204, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650107, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
| |
Collapse
|
4
|
Pan MT, Zhang H, Li XJ, Guo XY. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool Res 2024; 45:263-274. [PMID: 38287907 PMCID: PMC11017080 DOI: 10.24272/j.issn.2095-8137.2023.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Currently, there are no therapies available that can delay, stop, or reverse the pathological progression of NDs in clinical settings. As the population ages, NDs are imposing a huge burden on public health systems and affected families. Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments. While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms, the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap. Old World non-human primates (NHPs), such as rhesus, cynomolgus, and vervet monkeys, are phylogenetically, physiologically, biochemically, and behaviorally most relevant to humans. This is particularly evident in the similarity of the structure and function of their central nervous systems, rendering such species uniquely valuable for neuroscience research. Recently, the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms. This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained, as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
Collapse
Affiliation(s)
- Ming-Tian Pan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Han Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang-Yu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
5
|
Jiang Z, Wang J, Qin Y, Liu S, Luo B, Bai F, Wei H, Zhang S, Wei J, Ding G, Ma L, He S, Chen R, Sun Y, Chen Y, Wang L, Xu H, Wang X, Chen G, Lei W. A nonhuman primate model with Alzheimer's disease-like pathology induced by hippocampal overexpression of human tau. Alzheimers Res Ther 2024; 16:22. [PMID: 38281031 PMCID: PMC10821564 DOI: 10.1186/s13195-024-01392-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most burdening diseases of the century with no disease-modifying treatment at this time. Nonhuman primates (NHPs) share genetic, anatomical, and physiological similarities with humans, making them ideal model animals for investigating the pathogenesis of AD and potential therapies. However, the use of NHPs in AD research has been hindered by the paucity of AD monkey models due to their long generation time, ethical considerations, and technical challenges in genetically modifying monkeys. METHODS Here, we developed an AD-like NHP model by overexpressing human tau in the bilateral hippocampi of adult rhesus macaque monkeys. We evaluated the pathological features of these monkeys with immunostaining, Nissl staining, cerebrospinal fluid (CSF) analysis, magnetic resonance imaging (MRI), positron emission tomography (PET), and behavioural tests. RESULTS We demonstrated that after hippocampal overexpression of tau protein, these monkeys displayed multiple pathological features of AD, including 3-repeat (3R)/4-repeat (4R) tau accumulation, tau hyperphosphorylation, tau propagation, neuronal loss, hippocampal atrophy, neuroinflammation, Aβ clearance deficits, blood vessel damage, and cognitive decline. More interestingly, the accumulation of both 3R and 4R tau is specific to NHPs but not found in adult rodents. CONCLUSIONS This work establishes a tau-induced AD-like NHP model with many key pathological and behavioural features of AD. In addition, our model may potentially become one of the AD NHP models adopted by researchers worldwide since it can be generated within 2 ~ 3 months through a single injection of AAVs into the monkey brains. Hence, our model NHPs may facilitate mechanistic studies and therapeutic treatments for AD.
Collapse
Affiliation(s)
- Zhouquan Jiang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Jing Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yongpeng Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Bin Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Fan Bai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Huiyi Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shaojuan Zhang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Junjie Wei
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Guoyu Ding
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Long Ma
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Shu He
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Rongjie Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Ying Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yi Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Lu Wang
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Hao Xu
- Department of Nuclear Medicine and PET/CT-MRI Centre, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiangyu Wang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
6
|
Thomas JL, Nilaver BI, Lomniczi A, Brown DI, Appleman ML, Kohama SG, Urbanski HF. Pathological Markers of Alzheimer's Disease and Related Dementia in the Rhesus Macaque Amygdala. J Alzheimers Dis Rep 2024; 8:25-32. [PMID: 38229831 PMCID: PMC10790150 DOI: 10.3233/adr-230184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
Rhesus macaques develop amyloid-β (Aβ) plaques during old age, but it is unclear how extensively they express other pathological hallmarks of dementia. Here we used immunohistochemistry to examine expression of phosphorylated tau (pTau) protein and cytoplasmic inclusions of TAR DNA binding protein 43 kDa (TDP-43) within the amygdala of young and old males, and also in old surgically-menopausal females that were maintained on regular or obesogenic diets. Only one animal, a 23-year-old female, showed pTau expression and none showed TDP-43 inclusions. What genetic and/or environmental factors protect macaques from expressing more severe human neuro-pathologies remains an interesting unresolved question.
Collapse
Affiliation(s)
- Jeremy L. Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Benjamin I. Nilaver
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Donald I. Brown
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Maria-Luisa Appleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Datta D, Perone I, Morozov YM, Arellano J, Duque A, Rakic P, van Dyck CH, Arnsten AFT. Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer's disease. Cereb Cortex 2023; 33:11501-11516. [PMID: 37874022 PMCID: PMC10724870 DOI: 10.1093/cercor/bhad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Isabella Perone
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yury M Morozov
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jon Arellano
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alvaro Duque
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Amy F T Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Negrey JD, Frye BM, Johnson CSC, Kim J, Barcus RA, Lockhart SN, Whitlow CT, Sutphen C, Chiou KL, Snyder-Mackler N, Montine TJ, Craft S, Shively CA, Register TC. Mediterranean Diet Protects Against a Neuroinflammatory Cortical Transcriptome: Associations with Brain Volumetrics, Peripheral Inflammation, Social Isolation and Anxiety. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565068. [PMID: 37961556 PMCID: PMC10635044 DOI: 10.1101/2023.11.01.565068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION Mediterranean diets may be neuroprotective and prevent cognitive decline relative to Western diets, however the underlying biology is poorly understood. METHODS We assessed the effects of Western vs. Mediterranean-like diets on RNAseq generated transcriptional profiles in temporal cortex and their relationships with changes in MRI neuroimaging phenotypes, circulating monocyte gene expression, and observations of social isolation and anxiety in 38 socially-housed, middle-aged female cynomolgus macaques. RESULTS Diet resulted in differential expression of seven transcripts (FDR<0.05). Cyclin dependent kinase 14 ( CDK14 ), a proinflammatory regulator, was lower in the Mediterranean group. The remaining six transcripts [i.e., "lunatic fringe" ( LFNG ), mannose receptor C type 2 ( MRC2 ), solute carrier family 3 member 2 ( SLCA32 ), butyrophilin subfamily 2 member A1 ( BTN2A1 ), katanin regulatory subunit B1 ( KATNB1 ), and transmembrane protein 268 ( TMEM268 )] were higher in cortex of the Mediterranean group and generally associated with anti-inflammatory/neuroprotective pathways. KATNB1 encodes a subcomponent of katanin, important in maintaining microtubule homeostasis. BTN2A1 is involved in immunomodulation of γδ T-cells which have anti-neuroinflammatory and neuroprotective effects. CDK14 , LFNG , MRC2, and SLCA32 are associated with inflammatory pathways. The latter four differentially expressed cortex transcripts were associated with monocyte transcript levels, changes in AD-relevant brain volumes determined by MRI over the course of the study, and social isolation and anxiety. CDK14 was positively correlated with monocyte inflammatory transcripts, changes in total brain, gray matter, cortical gray matter volumes, and time alone and anxious behavior, and negatively correlated with changes in total white matter and cerebrospinal fluid (CSF) volumes. In contrast, LFNG , MRC2 , and SLCA32 were negatively correlated with monocyte inflammatory transcripts and changes in total gray matter volume, and positively correlated with CSF volume changes, and SLCA32 was negatively correlated with time alone. DISCUSSION Collectively, our results suggest that relative to Western diets, Mediterranean diets confer protection against peripheral and central inflammation which is reflected in preserved brain structure and behavior.
Collapse
|
9
|
Rothwell ES, Carp SB, Bliss-Moreau E. The importance of social behavior in nonhuman primate studies of aging: A mini-review. Neurosci Biobehav Rev 2023; 154:105422. [PMID: 37806369 PMCID: PMC10716830 DOI: 10.1016/j.neubiorev.2023.105422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Social behavior plays an important role in supporting both psychological and physical health across the lifespan. People's social lives change as they age, and the nature of these changes differ based on whether people are on healthy aging trajectories or are experiencing neurodegenerative diseases that cause dementia, such as Alzheimer's disease and Parkinson's disease. Nonhuman primate models of aging have provided a base of knowledge comparing aging trajectories in health and disease, but these studies rarely emphasize social behavior changes as a consequence of the aging process. What data exist hold particular value, as negative effects of disease and aging on social behavior are likely to have disproportionate impacts on quality of life. In this mini review, we examine the literature on nonhuman primate models of aging with a focus on social behavior, in the context of both health and disease. We propose that adopting a greater focus on social behavior outcomes in nonhuman primates will improve our understanding of the intersection of health, aging and sociality in humans.
Collapse
Affiliation(s)
- Emily S Rothwell
- Department of Neurobiology, School of Medicine University of Pittsburgh, 3501 Fifth Avenue, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Sarah B Carp
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| | - Eliza Bliss-Moreau
- Neuroscience & Behavior Unit, California National Primate Research Center, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA; Department of Psychology, University of California Davis, County Road 98 at Hutchinson Drive, Davis, CA 95616, USA
| |
Collapse
|
10
|
Cozachenco D, Zimmer ER, Lourenco MV. Emerging concepts towards a translational framework in Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105246. [PMID: 37236385 DOI: 10.1016/j.neubiorev.2023.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo R Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry (PPGBioq), UFRGS, Porto Alegre, RS, Brazil; Pharmacology and Therapeutics (PPGFT), UFRGS, Porto Alegre, RS, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Datta D. Interrogating the Etiology of Sporadic Alzheimer's Disease Using Aging Rhesus Macaques: Cellular, Molecular, and Cortical Circuitry Perspectives. J Gerontol A Biol Sci Med Sci 2023; 78:1523-1534. [PMID: 37279946 PMCID: PMC10460555 DOI: 10.1093/gerona/glad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/08/2023] Open
Abstract
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) associated with profound socioeconomic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3',5'-monophosphate [cAMP]-Protein kinase A (PKA)-calcium signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic reticulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connectivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic AD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Gambardella JC, Schoephoerster W, Bondarenko V, Yandell BS, Emborg ME. Expression of tau and phosphorylated tau in the brain of normal and hemiparkinsonian rhesus macaques. J Comp Neurol 2023; 531:1198-1216. [PMID: 37098996 PMCID: PMC10247506 DOI: 10.1002/cne.25490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/27/2023]
Abstract
Tau is a neuronal protein involved in microtubule stabilization and intracellular vesicle transport in axons. In neurodegenerative disorders termed "tauopathies," like Alzheimer's and Parkinson's disease, tau becomes hyperphosphorylated and forms intracellular inclusions. Rhesus macaques are widely used for studying ageing processes and modeling neurodegenerative disorders, yet little is known about endogenous tau expression in their brains. In this study, immunohistochemical methods were used to map and characterize total tau, 3R- and 4R-tau isoforms, and phosphorylated tau (pThr231-tau and pSer202/Thr205-tau/AT8) expression bilaterally in 16 brain regions of normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian adult rhesus macaques. Tau-immunoreactivity (-ir), including both 3R and 4R isoforms, was observed throughout the brain, with varying regional intensities. The anterior cingulate cortex, entorhinal cortex, and hippocampus displayed the most robust tau-ir, while the subthalamic nucleus and white matter regions had minimal expression. Tau was present in neurons of gray matter regions; it was preferentially observed in fibers of the globus pallidus and substantia nigra and in cell bodies of the thalamus and subthalamic nucleus. In white matter regions, tau was abundantly present in oligodendrocytes. Additionally, neuronal pThr231-tau-ir was abundant in all brain regions, but not AT8-ir. Differences in regional and intracellular protein expression were not detected between control subjects and both brain hemispheres of MPTP-treated animals. Specifically, tau-ir in the substantia nigra of all subjects colocalized with GABAergic neurons. Overall, this report provides an in-depth characterization of tau expression in the rhesus macaque brain to facilitate future investigations for understanding and modeling tau pathology in this species.
Collapse
Affiliation(s)
- Julia C. Gambardella
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison
| | - Wyatt Schoephoerster
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | - Viktoriya Bondarenko
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
| | | | - Marina E. Emborg
- Preclinical Parkinson’s Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison
- Department of Medical Physics, University of Wisconsin-Madison
| |
Collapse
|
13
|
Chen CY, Chao YM, Cho CC, Chen CS, Lin WY, Chen YH, Cassar M, Lu CS, Yang JL, Chan JYH, Juo SHH. Cerebral Semaphorin3D is a novel risk factor for age-associated cognitive impairment. Cell Commun Signal 2023; 21:140. [PMID: 37316917 DOI: 10.1186/s12964-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND We previously reported that miR-195 exerts neuroprotection by inhibiting Sema3A and cerebral miR-195 levels decreased with age, both of which urged us to explore the role of miR-195 and miR-195-regulated Sema3 family members in age-associated dementia. METHODS miR-195a KO mice were used to assess the effect of miR-195 on aging and cognitive functions. Sema3D was predicted as a miR-195 target by TargetScan and then verified by luciferase reporter assay, while effects of Sema3D and miR-195 on neural senescence were assessed by beta-galactosidase and dendritic spine density. Cerebral Sema3D was over-expressed by lentivirus and suppressed by si-RNA, and effects of over-expression of Sema3D and knockdown of miR-195 on cognitive functions were assessed by Morris Water Maze, Y-maze, and open field test. The effect of Sema3D on lifespan was assessed in Drosophila. Sema3D inhibitor was developed using homology modeling and virtual screening. One-way and two-way repeated measures ANOVA were applied to assess longitudinal data on mouse cognitive tests. RESULTS Cognitive impairment and reduced density of dendritic spine were observed in miR-195a knockout mice. Sema3D was identified to be a direct target of miR-195 and a possible contributor to age-associated neurodegeneration as Sema3D levels showed age-dependent increase in rodent brains. Injection of Sema3D-expressing lentivirus caused significant memory deficits while silencing hippocampal Sema3D improved cognition. Repeated injections of Sema3D-expressing lentivirus to elevate cerebral Sema3D for 10 weeks revealed a time-dependent decline of working memory. More importantly, analysis of the data on the Gene Expression Omnibus database showed that Sema3D levels were significantly higher in dementia patients than normal controls (p < 0.001). Over-expression of homolog Sema3D gene in the nervous system of Drosophila reduced locomotor activity and lifespan by 25%. Mechanistically, Sema3D might reduce stemness and number of neural stem cells and potentially disrupt neuronal autophagy. Rapamycin restored density of dendritic spines in the hippocampus from mice injected with Sema3D lentivirus. Our novel small molecule increased viability of Sema3D-treated neurons and might improve autophagy efficiency, which suggested Sema3D could be a potential drug target. Video Abstract CONCLUSION: Our results highlight the importance of Sema3D in age-associated dementia. Sema3D could be a novel drug target for dementia treatment.
Collapse
Affiliation(s)
- Chien-Yuan Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ching-Chang Cho
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Psychiatry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Yong Lin
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
- Brain Diseases Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Marlène Cassar
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Institut du Cerveau Et de La Moelle Epinière (ICM)-Sorbonne, UniversitéInserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cecilia S Lu
- Formation and Regulation of Neuronal Connectivity Research Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Julie Y H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Suh-Hang H Juo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Killinger BA, Mercado G, Choi S, Tittle T, Chu Y, Brundin P, Kordower JH. Distribution of phosphorylated alpha-synuclein in non-diseased brain implicates olfactory bulb mitral cells in synucleinopathy pathogenesis. NPJ Parkinsons Dis 2023; 9:43. [PMID: 36966145 PMCID: PMC10039879 DOI: 10.1038/s41531-023-00491-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
Synucleinopathies are neurodegenerative diseases characterized by pathological inclusions called "Lewy pathology" (LP) that consist of aggregated alpha-synuclein predominantly phosphorylated at serine 129 (PSER129). Despite the importance for understanding disease, little is known about the endogenous function of PSER129 or why it accumulates in the diseased brain. Here we conducted several observational studies using a sensitive tyramide signal amplification (TSA) technique to determine PSER129 distribution and function in the non-diseased mammalian brain. In wild-type non-diseased mice, PSER129 was detected in the olfactory bulb (OB) and several brain regions across the neuroaxis (i.e., OB to brainstem). In contrast, PSER129 immunoreactivity was not observed in any brain region of alpha-synuclein knockout mice. We found evidence of PSER129 positive structures in OB mitral cells of non-diseased mice, rats, non-human primates, and healthy humans. Using TSA multiplex fluorescent labeling, we showed that PSER129 positive punctate structures occur within inactive (i.e., c-fos negative) T-box transcription factor 21 (TBX21) positive mitral cells and PSER129 within these cells was spatially associated with PK-resistant alpha-synuclein. Ubiquitin was found in PSER129 mitral cells but was not closely associated with PSER129. Biotinylation by antibody recognition (BAR) identified 125 PSER129-interacting proteins in the OB of healthy mice, which were significantly enriched for presynaptic vesicle trafficking/recycling, SNARE, fatty acid oxidation, oxidative phosphorylation, and RNA binding. TSA multiplex labeling confirmed the physical association of BAR-identified protein Ywhag with PSER129 in the OB and in other regions across the neuroaxis. We conclude that PSER129 accumulates in the mitral cells of the healthy OB as part of alpha-synuclein normal cellular functions. Incidental LP has been reported in the OB, and therefore we speculate that for synucleinopathies, either the disease processes begin locally in OB mitral cells or a systemic disease process is most apparent in the OB because of the natural tendency to accumulate PSER129.
Collapse
Affiliation(s)
- Bryan A Killinger
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Gabriela Mercado
- Parkinson's disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Solji Choi
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Tyler Tittle
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), Arizona State University, Tempe, AZ, 85287, USA
| | - Patrik Brundin
- Parkinson's disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Pharma Research and Early Development (pRED), F Hoffman-La Roche, New York, NY, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
15
|
Gupta A, Vardalakis N, Wagner FB. Neuroprosthetics: from sensorimotor to cognitive disorders. Commun Biol 2023; 6:14. [PMID: 36609559 PMCID: PMC9823108 DOI: 10.1038/s42003-022-04390-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Neuroprosthetics is a multidisciplinary field at the interface between neurosciences and biomedical engineering, which aims at replacing or modulating parts of the nervous system that get disrupted in neurological disorders or after injury. Although neuroprostheses have steadily evolved over the past 60 years in the field of sensory and motor disorders, their application to higher-order cognitive functions is still at a relatively preliminary stage. Nevertheless, a recent series of proof-of-concept studies suggest that electrical neuromodulation strategies might also be useful in alleviating some cognitive and memory deficits, in particular in the context of dementia. Here, we review the evolution of neuroprosthetics from sensorimotor to cognitive disorders, highlighting important common principles such as the need for neuroprosthetic systems that enable multisite bidirectional interactions with the nervous system.
Collapse
Affiliation(s)
- Ankur Gupta
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Fabien B. Wagner
- grid.462010.1Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
16
|
Zhang Z, Zhang Y, Yuwen T, Huo J, Zheng E, Zhang W, Li J. Hyper-excitability of corticothalamic PT neurons in mPFC promotes irritability in the mouse model of Alzheimer’s disease. Cell Rep 2022; 41:111577. [DOI: 10.1016/j.celrep.2022.111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/09/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
|
17
|
Sang J, Zhuang D, Zhang T, Wu Q, Yu J, Zhang Z. Convergent and Divergent Age Patterning of Gut Microbiota Diversity in Humans and Nonhuman Primates. mSystems 2022; 7:e0151221. [PMID: 35758593 PMCID: PMC9426537 DOI: 10.1128/msystems.01512-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
The gut microbiome has significant effects on healthy aging and aging-related diseases, whether in humans or nonhuman primates. However, little is known about the divergence and convergence of gut microbial diversity between humans and nonhuman primates during aging, which limits their applicability for studying the gut microbiome's role in human health and aging. Here, we performed 16S rRNA gene sequencing analysis for captive rhesus macaques (Macaca mulatta) and compared this data set with other freely available gut microbial data sets containing four human populations (Chinese, Japanese, Italian, and British) and two nonhuman primates (wild lemurs [Lemur catta] and wild chimpanzees [Pan troglodytes]). Based on the consistent V4 region of the 16S rRNA gene, beta diversity analysis suggested significantly separated gut microbial communities associated with host backgrounds of seven host groups, but within each group, significant gut microbial divergences were observed, and indicator bacterial genera were identified as associated with aging. We further discovered six common anti-inflammatory gut bacteria (Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia) that had butyrate-producing potentials suggested by pangenomic analysis and that showed similar dynamic changes in at least two selected host groups during aging, independent of distinct host backgrounds. Finally, we found striking age-related changes in 66 plasma metabolites in macaques. Two highly changed metabolites, hydroxyproline and leucine, enriched in adult macaques were significantly and positively correlated with Prevotella and Prevotellamassilia. Furthermore, genus-level pangenome analysis suggested that those six common indicator bacteria can synthesize leucine and arginine as hydroxyproline and proline precursors in both humans and macaques. IMPORTANCE This study provides the first comprehensive investigation of age patterning of gut microbiota of four human populations and three nonhuman primates and found that Prevotellamassilia, Prevotella, Gemmiger, Coprococcus, Faecalibacterium, and Roseburia may be common antiaging microbial markers in both humans and nonhuman primates due to their potential metabolic capabilities for host health benefits. Our results also provide key support for using macaques as animal models in studies of the gut microbiome's role during human aging.
Collapse
Affiliation(s)
- Jianan Sang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Daohua Zhuang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Tao Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Qunfu Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jiangkun Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Zhigang Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary & Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
18
|
Hernandez AR, Hoffman JM, Hernandez CM, Cortes CJ, Jumbo-Lucioni P, Baxter MG, Esser KA, Liu AC, McMahon LL, Bizon JL, Burke SN, Buford TW, Carter CS. Reuniting the Body "Neck Up and Neck Down" to Understand Cognitive Aging: The Nexus of Geroscience and Neuroscience. J Gerontol A Biol Sci Med Sci 2022; 77:e1-e9. [PMID: 34309630 PMCID: PMC8751793 DOI: 10.1093/gerona/glab215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/01/2023] Open
Affiliation(s)
- Abbi R Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham (UAB), USA
| | | | - Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA
| | - Constanza J Cortes
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, USA
| | - Patricia Jumbo-Lucioni
- Department of Biology, University of Alabama at Birmingham, USA.,Pharmaceutical, Social, and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama,USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Lori L McMahon
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA
| | - Jennifer L Bizon
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | - Sara N Burke
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Christy S Carter
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA
| |
Collapse
|
19
|
Jester HM, Gosrani SP, Ding H, Zhou X, Ko MC, Ma T. Characterization of Early Alzheimer's Disease-Like Pathological Alterations in Non-Human Primates with Aging: A Pilot Study. J Alzheimers Dis 2022; 88:957-970. [PMID: 35723096 PMCID: PMC9378582 DOI: 10.3233/jad-215303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sporadic or late onset Alzheimer's disease (LOAD) is a multifactorial neurodegenerative disease with aging the most known risk factor. Non-human primates (NHPs) may serve as an excellent model to study LOAD because of their close similarity to humans in many aspects including neuroanatomy and neurodevelopment. Recent studies reveal AD-like pathology in old NHPs. OBJECTIVE In this pilot study, we took advantage of brain samples from 6 Cynomolgus macaques that were divided into two groups: middle aged (average age 14.81 years) and older (average age 19.33 years). We investigated whether AD-like brain pathologies are present in the NHPs. METHODS We used immunohistochemical method to examine brain Aβ pathology and neuron density. We applied biochemical assays to measure tau phosphorylation and multiple signaling pathways indicated in AD. We performed electron microscopy experiments to study alterations of postsynaptic density and mitochondrial morphology in the brain of NHPs. RESULTS We found multiple AD-like pathological alteration in the prefrontal cortex (but not in the hippocampus) of the older NHPs including tau hyperphosphorylation, increased activity of AMP-activated protein kinase (AMPK), decreased expression of protein phosphatase 2A (PP2A), impairments in mitochondrial morphology, and postsynaptic densities formation. CONCLUSION These findings may provide insights into the factors contributing to the development of LOAD, particularly during the early stage transitioning from middle to old age. Future endeavors are warranted to elucidate mechanisms underlying the regional (and perhaps cellular) vulnerability with aging and the functional correlation of such pathological changes in NHPs.
Collapse
Affiliation(s)
- Hannah M. Jester
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Saahj P. Gosrani
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
20
|
Yan Z, Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol Psychiatry 2022; 27:445-465. [PMID: 33875802 PMCID: PMC8523584 DOI: 10.1038/s41380-021-01092-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
The prefrontal cortex (PFC) serves as the chief executive officer of the brain, controlling the highest level cognitive and emotional processes. Its local circuits among glutamatergic principal neurons and GABAergic interneurons, as well as its long-range connections with other brain regions, have been functionally linked to specific behaviors, ranging from working memory to reward seeking. The efficacy of synaptic signaling in the PFC network is profundedly influenced by monoaminergic inputs via the activation of dopamine, adrenergic, or serotonin receptors. Stress hormones and neuropeptides also exert complex effects on the synaptic structure and function of PFC neurons. Dysregulation of PFC synaptic transmission is strongly linked to social deficits, affective disturbance, and memory loss in brain disorders, including autism, schizophrenia, depression, and Alzheimer's disease. Critical neural circuits, biological pathways, and molecular players that go awry in these mental illnesses have been revealed by integrated electrophysiological, optogenetic, biochemical, and transcriptomic studies of PFC. Novel epigenetic mechanism-based strategies are proposed as potential avenues of therapeutic intervention for PFC-involved diseases. This review provides an overview of PFC network organization and synaptic modulation, as well as the mechanisms linking PFC dysfunction to the pathophysiology of neurodevelopmental, neuropsychiatric, and neurodegenerative diseases. Insights from the preclinical studies offer the potential for discovering new medical treatments for human patients with these brain disorders.
Collapse
Affiliation(s)
- Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
21
|
Beckman D, Morrison JH. Towards developing a rhesus monkey model of early Alzheimer's disease focusing on women's health. Am J Primatol 2021; 83:e23289. [PMID: 34056733 DOI: 10.1002/ajp.23289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of elderly dementia, affecting nearly 50 million people worldwide, with two-thirds of the cases in the USA in women. Despite considerable investment, this prevalence is expected to increase further in the coming decades, based on the projected demographics of the population. Currently, most of the preclinical AD studies rely on transgenic mice carrying mutations associated with the early onset familiar form of AD, although the vast majority of cases are sporadic. A prevailing current hypothesis is that the cascade of events leading to AD starts with the accumulation of small soluble oligomers of the Aβ peptide (AβOs) that target and disrupt synapses. Taking advantage of the high translational power of rhesus monkeys due to their physiological and genetic similarities to humans, we recently developed a female rhesus monkey model of early AD pathogenesis based on exogenous administration AβOs. Here we review and discuss how soluble oligomers of Aβ can target vulnerable spines in the neocortex and hippocampus of female middle-aged monkeys and induce neuroinflammatory responses, similar to what is known to occur in the human brain. Developing a rhesus monkey model of early AD focusing on women's health is critical for the understanding of how hormonal changes during menopause transition affect brain health and ultimately may contribute to AD neurodegeneration.
Collapse
Affiliation(s)
- Danielle Beckman
- California National Primate Research Center, UC Davis, Davis, California, USA
| | - John H Morrison
- California National Primate Research Center, UC Davis, Davis, California, USA
- Department of Neurology, School of Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
22
|
Upright NA, Baxter MG. Prefrontal cortex and cognitive aging in macaque monkeys. Am J Primatol 2021; 83:e23250. [PMID: 33687098 DOI: 10.1002/ajp.23250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/11/2022]
Abstract
Cognitive impairments that accompany aging, even in the absence of neurodegenerative diseases, include deficits in executive function and memory mediated by the prefrontal cortex. Because of the unique differentiation and expansion of the prefrontal cortex in primates, investigations of the neurobiological basis of cognitive aging in nonhuman primates have been particularly informative about the potential basis for age-related cognitive decline in humans. We review the cognitive functions mediated by specific subregions of prefrontal cortex, and their corresponding connections, as well as the evidence for age-related alterations in specific regions of prefrontal cortex. We also discuss evidence for similarities and differences in the effects of aging on prefrontal cortex across species.
Collapse
Affiliation(s)
- Nicholas A Upright
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Cooper CP, Shafer AT, Armstrong NM, Rossi SL, Young J, Herold C, Gu H, Yang Y, Stein EA, Resnick SM, Rapp PR. Recognition Memory is Associated with Distinct Patterns of Regional Gray Matter Volumes in Young and Aged Monkeys. Cereb Cortex 2021; 32:933-948. [PMID: 34448810 DOI: 10.1093/cercor/bhab257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cognitive aging varies tremendously across individuals and is often accompanied by regionally specific reductions in gray matter (GM) volume, even in the absence of disease. Rhesus monkeys provide a primate model unconfounded by advanced neurodegenerative disease, and the current study used a recognition memory test (delayed non-matching to sample; DNMS) in conjunction with structural imaging and voxel-based morphometry (VBM) to characterize age-related differences in GM volume and brain-behavior relationships. Consistent with expectations from a long history of neuropsychological research, DNMS performance in young animals prominently correlated with the volume of multiple structures in the medial temporal lobe memory system. Less anticipated correlations were also observed in the cingulate and cerebellum. In aged monkeys, significant volumetric correlations with DNMS performance were largely restricted to the prefrontal cortex and striatum. Importantly, interaction effects in an omnibus analysis directly confirmed that the associations between volume and task performance in the MTL and prefrontal cortex are age-dependent. These results demonstrate that the regional distribution of GM volumes coupled with DNMS performance changes across the lifespan, consistent with the perspective that the aged primate brain retains a substantial capacity for structural reorganization.
Collapse
Affiliation(s)
- C'iana P Cooper
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| | - Andrea T Shafer
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 02903, United States
| | - Nicole M Armstrong
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Sharyn L Rossi
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| | - Jennifer Young
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| | - Christa Herold
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| | - Hong Gu
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Yihong Yang
- Magnetic Resonance Imaging and Spectroscopy Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Elliot A Stein
- Cognitive and Affective Neuroscience of Addiction Section, Neuroimaging Research Branch, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 02903, United States
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, United States
| |
Collapse
|
24
|
Yang J, Huber L, Yu Y, Bandettini PA. Linking cortical circuit models to human cognition with laminar fMRI. Neurosci Biobehav Rev 2021; 128:467-478. [PMID: 34245758 DOI: 10.1016/j.neubiorev.2021.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Laboratory animal research has provided significant knowledge into the function of cortical circuits at the laminar level, which has yet to be fully leveraged towards insights about human brain function on a similar spatiotemporal scale. The use of functional magnetic resonance imaging (fMRI) in conjunction with neural models provides new opportunities to gain important insights from current knowledge. During the last five years, human studies have demonstrated the value of high-resolution fMRI to study laminar-specific activity in the human brain. This is mostly performed at ultra-high-field strengths (≥ 7 T) and is known as laminar fMRI. Advancements in laminar fMRI are beginning to open new possibilities for studying questions in basic cognitive neuroscience. In this paper, we first review recent methodological advances in laminar fMRI and describe recent human laminar fMRI studies. Then, we discuss how the use of laminar fMRI can help bridge the gap between cortical circuit models and human cognition.
Collapse
Affiliation(s)
- Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA.
| | - Laurentius Huber
- MR-Methods Group, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A. Alternative Animal Models of Aging Research. Front Mol Biosci 2021; 8:660959. [PMID: 34079817 PMCID: PMC8166319 DOI: 10.3389/fmolb.2021.660959] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Most research on mechanisms of aging is being conducted in a very limited number of classical model species, i.e., laboratory mouse (Mus musculus), rat (Rattus norvegicus domestica), the common fruit fly (Drosophila melanogaster) and roundworm (Caenorhabditis elegans). The obvious advantages of using these models are access to resources such as strains with known genetic properties, high-quality genomic and transcriptomic sequencing data, versatile experimental manipulation capabilities including well-established genome editing tools, as well as extensive experience in husbandry. However, this approach may introduce interpretation biases due to the specific characteristics of the investigated species, which may lead to inappropriate, or even false, generalization. For example, it is still unclear to what extent knowledge of aging mechanisms gained in short-lived model organisms is transferable to long-lived species such as humans. In addition, other specific adaptations favoring a long and healthy life from the immense evolutionary toolbox may be entirely missed. In this review, we summarize the specific characteristics of emerging animal models that have attracted the attention of gerontologists, we provide an overview of the available data and resources related to these models, and we summarize important insights gained from them in recent years. The models presented include short-lived ones such as killifish (Nothobranchius furzeri), long-lived ones such as primates (Callithrix jacchus, Cebus imitator, Macaca mulatta), bathyergid mole-rats (Heterocephalus glaber, Fukomys spp.), bats (Myotis spp.), birds, olms (Proteus anguinus), turtles, greenland sharks, bivalves (Arctica islandica), and potentially non-aging ones such as Hydra and Planaria.
Collapse
Affiliation(s)
- Susanne Holtze
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Stan Braude
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Alessandro Cellerino
- Biology Laboratory, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Central Animal Laboratory, University Hospital Essen, Essen, Germany
| | - Thomas B. Hildebrandt
- Department of Reproduction Management, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
- Faculty of Veterinary Medicine, Free University of Berlin, Berlin, Germany
| | - Andreas Hoeflich
- Division Signal Transduction, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Eva Terzibasi Tozzini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maxim Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
26
|
Edler MK, Mhatre-Winters I, Richardson JR. Microglia in Aging and Alzheimer's Disease: A Comparative Species Review. Cells 2021; 10:1138. [PMID: 34066847 PMCID: PMC8150617 DOI: 10.3390/cells10051138] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are the primary immune cells of the central nervous system that help nourish and support neurons, clear debris, and respond to foreign stimuli. Greatly impacted by their environment, microglia go through rapid changes in cell shape, gene expression, and functional behavior during states of infection, trauma, and neurodegeneration. Aging also has a profound effect on microglia, leading to chronic inflammation and an increase in the brain's susceptibility to neurodegenerative processes that occur in Alzheimer's disease. Despite the scientific community's growing knowledge in the field of neuroinflammation, the overall success rate of drug treatment for age-related and neurodegenerative diseases remains incredibly low. Potential reasons for the lack of translation from animal models to the clinic include the use of a single species model, an assumption of similarity in humans, and ignoring contradictory data or information from other species. To aid in the selection of validated and predictive animal models and to bridge the translational gap, this review evaluates similarities and differences among species in microglial activation and density, morphology and phenotype, cytokine expression, phagocytosis, and production of oxidative species in aging and Alzheimer's disease.
Collapse
Affiliation(s)
- Melissa K. Edler
- Department of Anthropology, School of Biomedical Sciences, Brain Health Research Institute, Kent State University, Kent, OH 44240, USA;
| | - Isha Mhatre-Winters
- School of Biomedical Sciences, College of Arts and Sciences, Kent State University, Kent, OH 44240, USA;
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jason R. Richardson
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
27
|
Frye BM, Craft S, Register TC, Andrews RN, Appt SE, Vitolins MZ, Uberseder B, Silverstein‐Metzler MG, Chen H, Whitlow CT, Kim J, Barcus RA, Lockhart SN, Hoscheidt S, Say BM, Corbitt SE, Shively CA. Diet, psychosocial stress, and Alzheimer's disease-related neuroanatomy in female nonhuman primates. Alzheimers Dement 2021; 17:733-744. [PMID: 33270373 PMCID: PMC8119381 DOI: 10.1002/alz.12232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Associations between diet, psychosocial stress, and neurodegenerative disease, including Alzheimer's disease (AD), have been reported, but causal relationships are difficult to determine in human studies. METHODS We used structural magnetic resonance imaging in a well-validated non-human primate model of AD-like neuropathology to examine the longitudinal effects of diet (Mediterranean vs Western) and social subordination stress on brain anatomy, including global volumes, cortical thicknesses and volumes, and 20 individual regions of interest (ROIs). RESULTS Western diet resulted in greater cortical thicknesses, total brain volumes, and gray matter, and diminished cerebrospinal fluid and white matter volumes. Socially stressed subordinates had smaller whole brain volumes but larger ROIs relevant to AD than dominants. DISCUSSION The observation of increased size of AD-related brain areas is consistent with similar reports of mid-life volume increases predicting increased AD risk later in life. While the biological mechanisms underlying the findings require future investigation, these observations suggest that Western diet and psychosocial stress instigate pathologic changes that increase risk of AD-associated neuropathology, whereas the Mediterranean diet may protect the brain.
Collapse
Affiliation(s)
- Brett M. Frye
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | - Thomas C. Register
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Rachel N. Andrews
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Susan E. Appt
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Mara Z. Vitolins
- Department of Epidemiology and PreventionWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Beth Uberseder
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Haiying Chen
- Department of Biostatistics and Data ScienceWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | | | - Jeongchul Kim
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Richard A. Barcus
- Department of RadiologyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Samuel N. Lockhart
- Wake Forest Alzheimer's Disease Research CenterWinston‐SalemNorth CarolinaUSA
| | | | - Brandon M. Say
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Sarah E. Corbitt
- Biomedical SciencesMS programIntegrative Physiology and PharmacologyAdult Behavioral HealthUSA
| | - Carol A. Shively
- Department of Pathology/Comparative MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
28
|
Mulholland MM, Sherwood CC, Schapiro SJ, Raghanti MA, Hopkins WD. Age- and cognition-related differences in the gray matter volume of the chimpanzee brain (Pan troglodytes): A voxel-based morphometry and conjunction analysis. Am J Primatol 2021; 83:e23264. [PMID: 33899958 DOI: 10.1002/ajp.23264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/29/2021] [Accepted: 04/10/2021] [Indexed: 01/01/2023]
Abstract
Several primate species have been shown to exhibit age-related changes in cognition, brain, and behavior. However, severe neurodegenerative illnesses, such as Alzheimer's disease (AD), were once thought to be uniquely human. Recently, some chimpanzees naturally were documented to develop both neurofibrillary tangles and amyloid plaques, the main characteristics of AD pathology. In addition, like humans and other primates, chimpanzees show similar declines in cognition and motor function with age. Here, we used voxel-based morphometry to examine the relationships among gray matter volume, age, and cognition using magnetic resonance imaging scans previously acquired from chimpanzees (N = 216). We first determined the relationship between age and gray matter volume, identifying the regions that declined with age. With a subset of our sample (N = 103), we also determined differences in gray matter volume between older chimpanzees with higher cognition scores than expected for their age, and older chimpanzees with lower than expected scores. Finally, we ran a conjunction analysis to determine any overlap in brain regions between these two analyses. We found that as chimpanzees age, they lose gray matter in regions associated with cognition. In addition, cognitively healthy older chimpanzees (those performing better for their age) have greater gray matter volume in many brain regions compared with chimpanzees who underperform for their age. Finally, the conjunction analysis revealed that regions of age-related decline overlap with the regions that differ between cognitively healthy chimpanzees and those who underperform. This study provides further evidence that chimpanzees are an important model for research on the neurobiology of aging. Future studies should investigate the effects of cognitive stimulation on both cognitive performance and brain structure in aging nonhuman primates.
Collapse
Affiliation(s)
- Michele M Mulholland
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA
| | - Steven J Schapiro
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.,Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| |
Collapse
|
29
|
Amyloid-β: A double agent in Alzheimer's disease? Biomed Pharmacother 2021; 139:111575. [PMID: 33845371 DOI: 10.1016/j.biopha.2021.111575] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 01/23/2023] Open
Abstract
Amyloid-β (Aβ) accumulation is one of the cardinal pathological hallmarks of Alzheimer's disease and plays an important role in its pathogenesis. Although the neurotoxic effects of Aβ has been extensively studied, recent studies have revealed that it may also have protective effects. Here, we review novel findings that have shifted our understanding of the role of Aβ in the pathogenesis of Alzheimer's disease. An in-depth and comprehensive understanding of Aβ will provide us with a broader perspective on the treatment of Alzheimer's disease.
Collapse
|
30
|
Datta D, Leslie SN, Wang M, Morozov YM, Yang S, Mentone S, Zeiss C, Duque A, Rakic P, Horvath TL, van Dyck CH, Nairn AC, Arnsten AFT. Age-related calcium dysregulation linked with tau pathology and impaired cognition in non-human primates. Alzheimers Dement 2021; 17:920-932. [PMID: 33829643 PMCID: PMC8195842 DOI: 10.1002/alz.12325] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022]
Abstract
Introduction The etiology of sporadic Alzheimer's disease (AD) requires non‐genetically modified animal models. Methods The relationship of tau phosphorylation to calcium‐cyclic adenosine monophosphate (cAMP)‐protein kinase A (PKA) dysregulation was analyzed in aging rhesus macaque dorsolateral prefrontal cortex (dlPFC) and rat primary cortical neurons using biochemistry and immuno‐electron microscopy. The influence of calcium leak from ryanodine receptors (RyRs) on neuronal firing and cognitive performance was examined in aged macaques. Results Aged monkeys naturally develop hyperphosphorylated tau, including AD biomarkers (AT8 (pS202/pT205) and pT217) and early tau pathology markers (pS214 and pS356) that correlated with evidence of increased calcium leak (pS2808‐RyR2). Calcium also regulated early tau phosphorylation in vitro. Age‐related reductions in the calcium‐binding protein, calbindin, and in phosphodiesterase PDE4D were seen within dlPFC pyramidal cell dendrites. Blocking RyRs with S107 improved neuronal firing and cognitive performance in aged macaques. Discussion Dysregulated calcium signaling confers risk for tau pathology and provides a potential therapeutic target.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Shannon N Leslie
- Department of Psychiatry, School of Medicine, Yale University, Connecticut, USA.,Interdepartmental Neuroscience Program, School of Medicine, Yale University, Connecticut, USA
| | - Min Wang
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Yury M Morozov
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Shengtao Yang
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - SueAnn Mentone
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Caroline Zeiss
- Department of Comparative Medicine, School of Medicine, Yale University, Connecticut, USA
| | - Alvaro Duque
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Pasko Rakic
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| | - Tamas L Horvath
- Department of Comparative Medicine, School of Medicine, Yale University, Connecticut, USA
| | - Christopher H van Dyck
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA.,Department of Psychiatry, School of Medicine, Yale University, Connecticut, USA
| | - Angus C Nairn
- Department of Psychiatry, School of Medicine, Yale University, Connecticut, USA
| | - Amy F T Arnsten
- Departments of Neuroscience, School of Medicine, Yale University, Connecticut, USA
| |
Collapse
|
31
|
Plagenhoef MR, Callahan PM, Beck WD, Blake DT, Terry AV. Aged rhesus monkeys: Cognitive performance categorizations and preclinical drug testing. Neuropharmacology 2021; 187:108489. [PMID: 33561449 PMCID: PMC8286428 DOI: 10.1016/j.neuropharm.2021.108489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022]
Abstract
Rodent models have facilitated major discoveries in neurobiology, however, the low success rate of novel medications in clinical trials have led to questions about their translational value in neuropsychiatric drug development research. For age-related disorders of cognition such as Alzheimer' disease (AD) there is interest in moving beyond transgenic amyloid-β and/or tau-expressing rodent models and focusing more on natural aging and dissociating "healthy" from "pathological" aging to identify new therapeutic targets and treatments. In complex disorders such as AD, it can also be argued that animals with closer neurobiology to humans (e.g., nonhuman primates) should be employed more often particularly in the later phases of drug development. The purpose of the work described here was to evaluate the cognitive capabilities of rhesus monkeys across a wide range of ages in different delayed response tasks, a computerized delayed match to sample (DMTS) task and a manual delayed match to position (DMTP) task. Based on specific performance criteria and comparisons to younger subjects, the older subjects were generally less proficient, however, some performed as well as young subjects, while other aged subjects were markedly impaired. Accordingly, the older subjects could be categorized as aged "cognitively-unimpaired" or aged "cognitively-impaired" with a third group (aged-other) falling in between. Finally, as a proof of principle, we demonstrated using the DMTP task that aged cognitively-impaired monkeys are sensitive to the pro-cognitive effects of a nicotinic acetylcholine receptor (nAChR) partial agonist, encenicline, suggesting that nAChR ligands remain viable as potential treatments for age-related disorders of cognition.
Collapse
Affiliation(s)
- Marc R Plagenhoef
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Wayne D Beck
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - David T Blake
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, 30912, Georgia.
| |
Collapse
|
32
|
Buss EW, Corbett NJ, Roberts JG, Ybarra N, Musial TF, Simkin D, Molina-Campos E, Oh KJ, Nielsen LL, Ayala GD, Mullen SA, Farooqi AK, D'Souza GX, Hill CL, Bean LA, Rogalsky AE, Russo ML, Curlik DM, Antion MD, Weiss C, Chetkovich DM, Oh MM, Disterhoft JF, Nicholson DA. Cognitive aging is associated with redistribution of synaptic weights in the hippocampus. Proc Natl Acad Sci U S A 2021; 118:e1921481118. [PMID: 33593893 PMCID: PMC7923642 DOI: 10.1073/pnas.1921481118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."
Collapse
Affiliation(s)
- Eric W Buss
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Nicola J Corbett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Joshua G Roberts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Natividad Ybarra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Dina Simkin
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | | | - Kwang-Jin Oh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Lauren L Nielsen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Gelique D Ayala
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Sheila A Mullen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Anise K Farooqi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Gary X D'Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Corinne L Hill
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Linda A Bean
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Annalise E Rogalsky
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Matthew L Russo
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Dani M Curlik
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Marci D Antion
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - M Matthew Oh
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612;
| |
Collapse
|
33
|
Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K. Compartmentalized Signaling in Aging and Neurodegeneration. Cells 2021; 10:464. [PMID: 33671541 PMCID: PMC7926881 DOI: 10.3390/cells10020464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Liliana F. Iannucci
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta C. Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Sofia Zanin
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Filippo Conca
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Francesca Grisan
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy;
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
34
|
O’Dell RS, Mecca AP, Chen MK, Naganawa M, Toyonaga T, Lu Y, Godek TA, Harris JE, Bartlett HH, Banks ER, Kominek VL, Zhao W, Nabulsi NB, Ropchan J, Ye Y, Vander Wyk BC, Huang Y, Arnsten AFT, Carson RE, van Dyck CH. Association of Aβ deposition and regional synaptic density in early Alzheimer's disease: a PET imaging study with [ 11C]UCB-J. Alzheimers Res Ther 2021; 13:11. [PMID: 33402201 PMCID: PMC7786921 DOI: 10.1186/s13195-020-00742-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Attempts to associate amyloid-β (Aβ) pathogenesis with synaptic loss in Alzheimer's disease (AD) have thus far been limited to small numbers of postmortem studies. Aβ plaque burden is not well-correlated with indices of clinical severity or neurodegeneration-at least in the dementia stage-as deposition of Aβ reaches a ceiling. In this study, we examined in vivo the association between fibrillar Aβ deposition and synaptic density in early AD using positron emission tomography (PET). We hypothesized that global Aβ deposition would be more strongly inversely associated with hippocampal synaptic density in participants with amnestic mild cognitive impairment (aMCI; a stage of continued Aβ accumulation) compared to those with dementia (a stage of relative Aβ plateau). METHODS We measured SV2A binding ([11C]UCB-J) and Aβ deposition ([11C]PiB) in 14 participants with aMCI due to AD and 24 participants with mild AD dementia. Distribution volume ratios (DVR) with a cerebellar reference region were calculated for both tracers to investigate the association between global Aβ deposition and SV2A binding in hippocampus. Exploratory analyses examined correlations between both global and regional Aβ deposition and SV2A binding across a broad range of brain regions using both ROI- and surface-based approaches. RESULTS We observed a significant inverse association between global Aβ deposition and hippocampal SV2A binding in participants with aMCI (r = - 0.55, P = 0.04), but not mild dementia (r = 0.05, P = 0.82; difference statistically significant by Fisher z = - 1.80, P = 0.04). Exploratory analyses across other ROIs and whole brain analyses demonstrated no broad or consistent associations between global Aβ deposition and regional SV2A binding in either diagnostic group. ROI-based analyses of the association between regional Aβ deposition and SV2A binding also revealed no consistent pattern but suggested a "paradoxical" positive association between local Aβ deposition and SV2A binding in the hippocampus. CONCLUSIONS Our findings lend support to a model in which fibrillar Aβ is still accumulating in the early stages of clinical disease but approaching a relative plateau, a point at which Aβ may uncouple from neurodegenerative processes including synaptic loss. Future research should investigate the relationship between Aβ deposition and synaptic loss in larger cohorts beginning preclinically and followed longitudinally in conjunction with other biomarkers.
Collapse
Affiliation(s)
- Ryan S. O’Dell
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
| | - Adam P. Mecca
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
| | - Ming-Kai Chen
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Tyler A. Godek
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
| | - Joanna E. Harris
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
| | - Hugh H. Bartlett
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
| | - Emmie R. Banks
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
| | - Victoria L. Kominek
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
| | - Wenzhen Zhao
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
| | - Nabeel B. Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Yunpeng Ye
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Brent C. Vander Wyk
- Program on Aging, Yale University School of Medicine, P.O. Box 207900, New Haven, CT 06520 USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Amy F. T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520 USA
| | - Richard E. Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, P.O. Box 208048, New Haven, CT 06520 USA
| | - Christopher H. van Dyck
- Alzheimer’s Disease Research Unit, Yale University School of Medicine, One Church Street, 8th Floor, New Haven, CT 06510 USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06510 USA
- Department of Neuroscience, Yale University School of Medicine, P.O. Box 208001, New Haven, CT 06520 USA
- Department of Neurology, Yale University School of Medicine, P.O. Box 208018, New Haven, CT 06520 USA
| |
Collapse
|
35
|
Arnsten AFT, Datta D, Del Tredici K, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease. Alzheimers Dement 2021; 17:115-124. [PMID: 33075193 PMCID: PMC7983919 DOI: 10.1002/alz.12192] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
The etiology of the common, sporadic form of Alzheimer's disease (sAD) is unknown. We hypothesize that tau pathology within select projection neurons with susceptible microenvironments can initiate sAD. This postulate rests on extensive data demonstrating that in human brains tau pathology appears about a decade before the formation of Aβ plaques (Aβps), especially targeting glutamate projection neurons in the association cortex. Data from aging rhesus monkeys show abnormal tau phosphorylation within vulnerable neurons, associated with calcium dysregulation. Abnormally phosphorylated tau (pTau) on microtubules traps APP-containing endosomes, which can increase Aβ production. As Aβ oligomers increase abnormal phosphorylation of tau, this would drive vicious cycles leading to sAD pathology over a long lifespan, with genetic and environmental factors that may accelerate pathological events. This hypothesis could be testable in the aged monkey association cortex that naturally expresses characteristics capable of promoting and sustaining abnormal tau phosphorylation and Aβ production.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
36
|
Drepper F, Biernat J, Kaniyappan S, Meyer HE, Mandelkow EM, Warscheid B, Mandelkow E. A combinatorial native MS and LC-MS/MS approach reveals high intrinsic phosphorylation of human Tau but minimal levels of other key modifications. J Biol Chem 2020; 295:18213-18225. [PMID: 33106314 PMCID: PMC7939451 DOI: 10.1074/jbc.ra120.015882] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Abnormal changes of neuronal Tau protein, such as phosphorylation and aggregation, are considered hallmarks of cognitive deficits in Alzheimer's disease. Abnormal phosphorylation is thought to precede aggregation and therefore to promote aggregation, but the nature and extent of phosphorylation remain ill-defined. Tau contains ∼85 potential phosphorylation sites, which can be phosphorylated by various kinases because the unfolded structure of Tau makes them accessible. However, methodological limitations (e.g. in MS of phosphopeptides, or antibodies against phosphoepitopes) led to conflicting results regarding the extent of Tau phosphorylation in cells. Here we present results from a new approach based on native MS of intact Tau expressed in eukaryotic cells (Sf9). The extent of phosphorylation is heterogeneous, up to ∼20 phosphates per molecule distributed over 51 sites. The medium phosphorylated fraction Pm showed overall occupancies of ∼8 Pi (± 5) with a bell-shaped distribution; the highly phosphorylated fraction Ph had 14 Pi (± 6). The distribution of sites was highly asymmetric (with 71% of all P-sites in the C-terminal half of Tau). All sites were on Ser or Thr residues, but none were on Tyr. Other known posttranslational modifications were near or below our detection limit (e.g. acetylation, ubiquitination). These findings suggest that normal cellular Tau shows a remarkably high extent of phosphorylation, whereas other modifications are nearly absent. This implies that abnormal phosphorylations at certain sites may not affect the extent of phosphorylation significantly and do not represent hyperphosphorylation. By implication, the pathological aggregation of Tau is not likely a consequence of high phosphorylation.
Collapse
Affiliation(s)
- Friedel Drepper
- Group of Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Jacek Biernat
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany
| | - Senthilvelrajan Kaniyappan
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn, Bonn, Germany
| | - Helmut E Meyer
- Medical Proteome Center, Ruhr-University Bochum, Bochum, Germany; Department of Biomedical Research, Leibniz-Institute for Analytical Sciences (ISAS), Dortmund, Germany
| | - Eva Maria Mandelkow
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; CAESAR Research Center, Bonn, Germany
| | - Bettina Warscheid
- Group of Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Eckhard Mandelkow
- DZNE (German Center for Neurodegenerative Diseases), Bonn, Germany; CAESAR Research Center, Bonn, Germany.
| |
Collapse
|
37
|
Kelberman M, Keilholz S, Weinshenker D. What's That (Blue) Spot on my MRI? Multimodal Neuroimaging of the Locus Coeruleus in Neurodegenerative Disease. Front Neurosci 2020; 14:583421. [PMID: 33122996 PMCID: PMC7573566 DOI: 10.3389/fnins.2020.583421] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/16/2020] [Indexed: 01/04/2023] Open
Abstract
The locus coeruleus (LC) has long been underappreciated for its role in the pathophysiology of Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenerative disorders. While AD and PD are distinct in clinical presentation, both are characterized by prodromal protein aggregation in the LC, late-stage degeneration of the LC, and comorbid conditions indicative of LC dysfunction. Many of these early studies were limited to post-mortem histological techniques due to the LC’s small size and location deep in the brainstem. Thus, there is a growing interest in utilizing in vivo imaging of the LC as a predictor of preclinical neurodegenerative processes and biomarker of disease progression. Simultaneously, neuroimaging in animal models of neurodegenerative disease holds promise for identifying early alterations to LC circuits, but has thus far been underutilized. While still in its infancy, a handful of studies have reported effects of single gene mutations and pathology on LC function in disease using various neuroimaging techniques. Furthermore, combining imaging and optogenetics or chemogenetics allows for interrogation of network connectivity in response to changes in LC activity. The purpose of this article is twofold: (1) to review what magnetic resonance imaging (MRI) and positron emission tomography (PET) have revealed about LC dysfunction in neurodegenerative disease and its potential as a biomarker in humans, and (2) to explore how animal models can be used to test hypotheses derived from clinical data and establish a mechanistic framework to inform LC-focused therapeutic interventions to alleviate symptoms and impede disease progression.
Collapse
Affiliation(s)
- Michael Kelberman
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Shella Keilholz
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
38
|
Chiou KL, Montague MJ, Goldman EA, Watowich MM, Sams SN, Song J, Horvath JE, Sterner KN, Ruiz-Lambides AV, Martínez MI, Higham JP, Brent LJN, Platt ML, Snyder-Mackler N. Rhesus macaques as a tractable physiological model of human ageing. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190612. [PMID: 32951555 DOI: 10.1098/rstb.2019.0612] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research in the basic biology of ageing is increasingly identifying mechanisms and modifiers of ageing in short-lived organisms such as worms and mice. The ultimate goal of such work is to improve human health, particularly in the growing segment of the population surviving into old age. Thus far, few interventions have robustly transcended species boundaries in the laboratory, suggesting that changes in approach are needed to avoid costly failures in translational human research. In this review, we discuss both well-established and alternative model organisms for ageing research and outline how research in nonhuman primates is sorely needed, first, to translate findings from short-lived organisms to humans, and second, to understand key aspects of ageing that are unique to primate biology. We focus on rhesus macaques as a particularly promising model organism for ageing research owing to their social and physiological similarity to humans as well as the existence of key resources that have been developed for this species. As a case study, we compare gene regulatory signatures of ageing in the peripheral immune system between humans and rhesus macaques from a free-ranging study population in Cayo Santiago. We show that both mRNA expression and DNA methylation signatures of immune ageing are broadly shared between macaques and humans, indicating strong conservation of the trajectory of ageing in the immune system. We conclude with a review of key issues in the biology of ageing for which macaques and other nonhuman primates may uniquely contribute valuable insights, including the effects of social gradients on health and ageing. We anticipate that continuing research in rhesus macaques and other nonhuman primates will play a critical role in conjunction with the model organism and human biodemographic research in ultimately improving translational outcomes and extending health and longevity in our ageing population. This article is part of the theme issue 'Evolution of the primate ageing process'.
Collapse
Affiliation(s)
- Kenneth L Chiou
- Department of Psychology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA 98195, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Marina M Watowich
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Sierra N Sams
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Jeff Song
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Julie E Horvath
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA.,Research and Collections Section, North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Kirstin N Sterner
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Angelina V Ruiz-Lambides
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| | - Melween I Martínez
- Caribbean Primate Research Center, Unit of Comparative Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY 10003, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter EX4 4QG, UK
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Marketing, Wharton School of Business, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, WA 98195, USA.,Department of Pathology, Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA 98195, USA.,Department of Biology, University of Washington, Seattle, WA 98195, USA.,Center for Studies in Demography and Ecology, University of Washington, Seattle, WA 98195, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85281, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
39
|
Krystal HL, Ross DA, Mecca AP. Amyloid: From Starch to Finish. Biol Psychiatry 2020; 87:e23-e24. [PMID: 32299582 PMCID: PMC7449531 DOI: 10.1016/j.biopsych.2020.02.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Hannah L. Krystal
- Medical student, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David A. Ross
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Adam P. Mecca
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
40
|
Buffalo EA, Movshon JA, Wurtz RH. From basic brain research to treating human brain disorders. Proc Natl Acad Sci U S A 2019; 116:26167-26172. [PMID: 31871205 PMCID: PMC6936684 DOI: 10.1073/pnas.1919895116] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Elizabeth A. Buffalo
- Department of Physiology and Biophysics, School of Medicine, Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | | | - Robert H. Wurtz
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
41
|
Alzheimer's disease: A clinical perspective and future nonhuman primate research opportunities. Proc Natl Acad Sci U S A 2019; 116:26224-26229. [PMID: 31871211 DOI: 10.1073/pnas.1912954116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the sixth leading cause of death and the most common cause of dementia worldwide. Over the last few decades, significant advancements have been made in our understanding of AD by investigating the molecular mechanisms underlying amyloid-β and tau pathology. Despite this progress, no disease-modifying treatments exist for AD, an issue that will exacerbated by the rising costs and prevalence of the disorder. Moreover, effective therapies to address the devastating cognitive and behavioral symptoms are also urgently needed. This perspective focuses on the value of nonhuman primate (NHP) models in bridging the molecular, circuit, and behavioral levels of analysis to better understand the complex genetic and environmental/lifestyle factors that contribute to AD pathogenesis. These investigations could provide an opportunity for translating our understanding of the pathogenesis and physiological mechanisms underlying AD and related disorders into new diagnostic approaches and disease-modifying therapies to prevent disease or restore brain function for symptomatic individuals.
Collapse
|