1
|
Wang D, Wang T, Kim D, Tan S, Liu S, Wan J, Deng Q. MicroRNA-375 modulates neutrophil chemotaxis via targeting Cathepsin B in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109933. [PMID: 39343064 PMCID: PMC11561466 DOI: 10.1016/j.fsi.2024.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Neutrophils are crucial for defense against numerous infections, and their migration and activations are tightly regulated to prevent collateral tissue damage. We previously performed a neutrophil-specific miRNA overexpression screening and identified several microRNAs, including miR-375, as potent modulators for neutrophil activity. Overexpression of miR-375 decreases neutrophil motility and migration in zebrafish and human neutrophil-like cells. We screened the genes downregulated by miR-375 in zebrafish neutrophils and identified that Cathepsin B (Ctsba) is required for neutrophil motility and chemotaxis upon tail wounding and bacterial infection. Pharmacological inhibition or neutrophil-specific knockout of ctsba significantly decreased the neutrophil chemotaxis in zebrafish and survival upon systemic bacterial infection. Notably, Ctsba knockdown in human neutrophil-like cells also resulted in reduced chemotaxis. Inhibiting integrin receptor function using RGDS rescued the neutrophil migration defects and susceptibility to systemic infection in zebrafish with either miR-375 overexpression or ctsba knockout. Our results demonstrate that miR-375 and its target Ctsba modulate neutrophil activity during tissue injury and bacterial infection in vivo, providing novel insights into neutrophil biology and the overall inflammation process.
Collapse
Affiliation(s)
- Decheng Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Daniel Kim
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Shelly Tan
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, 46202, USA; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Tao S, Long X, Gong P, Yu X, Tian L. Phosphoproteomics Reveals Novel Insights into the Pathogenesis and Identifies New Therapeutic Kinase Targets of Ulcerative Colitis. Inflamm Bowel Dis 2024; 30:1367-1378. [PMID: 38085663 DOI: 10.1093/ibd/izad291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 08/02/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic recurrent inflammatory disease with unclear etiology. Currently, safe and effective treatment options for UC remain to be developed. Kinases, which catalyze the phosphorylation of substrates, have emerged as promising therapeutic targets for inflammatory diseases. We clarified the kinase activity profile and phosphorylation network in UC and aimed to reveal new pathogenic mechanisms and potential therapeutic targets. METHODS We first performed the phosphoproteomic analysis of rectal tissues from UC patients and healthy individuals. Further bioinformatic analyses revealed the remodeling of key kinases and signaling pathways. Then, we conducted a screening of kinases to identify new potential therapeutic targets through in vivo and in vitro experiments. RESULTS Phosphoproteomics revealed a drastic remodeling of signaling pathways in UC, such as pathways related to tight junction, adhesion junction, and necroptosis. Additionally, the activity of kinases such as CDK2, CLK1 and AURKB were significantly changed. Additional screening of these kinases identified CDK2 as a potential therapeutic target for UC, as inhibiting CDK2 effectively alleviated dextran sulfate sodium-induced colitis in mice. Further research revealed that suppressing CDK2 remarkably inhibited RIPK1, RIPK3, and MLKL phosphorylation, as well as MLKL oligomerization, thereby inhibiting epithelial necroptosis and protecting the intestinal barrier. CONCLUSIONS Our research deepened the understanding of UC pathogenesis through the lens of phosphorylation. Moreover, we identified CDK2 as a new potential therapeutic target for UC, revealing a novel role for CDK2 in necroptosis.
Collapse
Affiliation(s)
- Sifan Tao
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
- Key Laboratory of Non-resolving Inflammation and Cancer of the Hunan Province, The Third Xiangya Hospital, The Central South University, Changsha, China
| | - Xiuyan Long
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
| | - Pan Gong
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
| | - Xiaoyu Yu
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
| | - Li Tian
- Department of Gastroenterology, The Third Xiangya Hospital, The Central South University, Changsha, China
| |
Collapse
|
3
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
4
|
Garley M, Nowak K, Jabłońska E. Neutrophil microRNAs. Biol Rev Camb Philos Soc 2024; 99:864-877. [PMID: 38148491 DOI: 10.1111/brv.13048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Neutrophils are considered 'first-line defence' cells as they can be rapidly recruited to the site of the immune response. As key components of non-specific immune mechanisms, neutrophils use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to fight pathogens. Recently, immunoregulatory abilities of neutrophils associated with the secretion of several mediators, including cytokines and extracellular vesicles (EVs) containing, among other components, microRNAs (miRNAs), have also been reported. EVs are small structures released by cells into the extracellular space and are present in all body fluids. Microvesicles show the composition and status of the releasing cell, its physiological state, and pathological changes. Currently, EVs have gained immense scientific interest as they act as transporters of epigenetic information in intercellular communication. This review summarises findings from recent scientific reports that have evaluated the utility of miRNA molecules as biomarkers for effective diagnostics or even as start-points for new therapeutic strategies in neutrophil-mediated immune reactions. In addition, this review describes the current state of knowledge on miRNA molecules, which are endogenous regulators of gene expression besides being involved in the regulation of the immune response.
Collapse
Affiliation(s)
- Marzena Garley
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Ewa Jabłońska
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, Bialystok, 15-269, Poland
| |
Collapse
|
5
|
Feng Y, Bao X, Zhao J, Kang L, Sun X, Xu B. MSC-Derived Exosomes Mitigate Myocardial Ischemia/Reperfusion Injury by Reducing Neutrophil Infiltration and the Formation of Neutrophil Extracellular Traps. Int J Nanomedicine 2024; 19:2071-2090. [PMID: 38476275 PMCID: PMC10928923 DOI: 10.2147/ijn.s436925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Acute inflammatory storm is a major cause of myocardial ischemia/reperfusion (I/R) injury, with no effective treatment currently available. The excessive aggregation of neutrophils is correlated with an unfavorable prognosis in acute myocardial infarction (AMI) patients. Exosomes derived from mesenchymal stromal cells (MSC-Exo) have certain immunomodulatory potential and might be a therapeutic application. Therefore, we investigated the protective role of MSC-Exo in modulating neutrophil infiltration and formation of neutrophil extracellular traps (NETs) following myocardial I/R injury. Methods Exosomes were isolated from the supernatant of MSCs using a gradient centrifugation method. We used flow cytometry, histochemistry, and immunofluorescence to detect the changes of neutrophils post-intravenous MSC-Exo injection. Additionally, cardiac magnetic resonance (CMR) and thioflavin S experiments were applied to detect microvascular obstruction (MVO). The NLR family pyrin domain containing 3 (NLRP3) inflammasome was examined for mechanism exploration. Primary neutrophils were extracted for in vitro experiment. Antibody of Ly6G was given to depleting the neutrophils in mice for verification the effect of MSC-Exo. Finally, we analyzed the MiRNA sequence of MSC-Exo and verified it in vitro. Results MSC-Exo administration reduced neutrophil infiltration and NETs formation after myocardial I/R. MSC-Exo treatment also could attenuate the activation of NLRP3 inflammasome both in vivo and in vitro. At the same time, the infarction size and MVO following I/R injury were reduced by MSC-Exo. Moreover, systemic depletion of neutrophils partly negated the therapeutic effects of MSC-Exo. Up-regulation of miR-199 in neutrophils has been shown to decrease the expression of NETs formation after stimulation. Discussion Our results demonstrated that MSC-Exo mitigated myocardial I/R injury in mice by modulating neutrophil infiltration and NETs formation. This study provides novel insights into the potential therapeutic application of MSC-Exo for myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xue Bao
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jinxuan Zhao
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Jiang X, Zhang X, Cai X, Li N, Zheng H, Tang M, Zhu J, Su K, Zhang R, Ye N, Peng J, Zhao M, Wu W, Yang J, Ye H. NU6300 covalently reacts with cysteine-191 of gasdermin D to block its cleavage and palmitoylation. SCIENCE ADVANCES 2024; 10:eadi9284. [PMID: 38324683 PMCID: PMC10849585 DOI: 10.1126/sciadv.adi9284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyu Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiangli Zhu
- Department of Urology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Syahirah R, Beckman J, Malik H, Hsu AY, Deng Q. Method for Visualization of Emergency Granulopoiesis in the Zebrafish Embryo. Zebrafish 2023; 20:175-179. [PMID: 37306974 PMCID: PMC10495196 DOI: 10.1089/zeb.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Emergency granulopoiesis (EG) is a response to severe inflammation in which increased neutrophils are generated in the hematopoietic tissue. Photolabeling is utilized to distinguish newly developed neutrophils from existing neutrophils. However, this technique requires a strong laser line and labels subsets of the existing neutrophils. Here we create a transgenic zebrafish line that expresses a time-dependent switch from green fluorescent protein (GFP) to red fluorescent protein (RFP) in neutrophils, which allows quantification of EG using simple GFP/RFP ratiometric imaging.
Collapse
Affiliation(s)
- Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer Beckman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Hanna Malik
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Alan Y. Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
Liu W, Shao F, You X, Cao Y, Xi J, Wu J, Wan J, Zhang X, Fei J, Luan Y. Non-carcinogenic/non-nephrotoxic aristolochic acid IVa exhibited anti-inflammatory activities in mice. J Nat Med 2023; 77:251-261. [PMID: 36525161 DOI: 10.1007/s11418-022-01665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Aristolochic acid (AA)-containing herbs have been prescribed for thousands of years as anti-inflammatory drugs, despite the active pharmaceutical ingredients remaining unclear. However, exposure to AAI and AAII has been proven to be a significant risk factor for severe nephropathy and carcinogenicity. AAIVa, an analogue abundant in AA-containing herbs, showed neither carcinogenicity nor nephrotoxicity in our study and other reports, implying that the pharmacological effects of AAIVa on inflammation are worth studying. Herein, we employed RAW 264.7 cells, the ear edema mouse model, and the lipopolysaccharide (LPS)-induced systematic inflammation model in TNF-IRES-Luc mice (tracking TNFα luciferase activities in real-time) to evaluate the anti-inframammary effect of AAIVa. Our results showed that AAIVa could decrease pro-inflammatory cytokines (TNFα and IL-6) production in LPS-stimulated RAW 264.7 cells, indicating its anti-inflammatory effects in vitro. Furthermore, the application of AAIVa (400 and 600 μg/ear) could significantly inhibit phorbol 12-myristate 13-acetate-induced ear edema, suggesting its topical anti-inflammatory activity in vivo. Moreover, LPS-stimulated TNF-IRES-Luc mice were used to investigate the onset and duration of AAIVa on systematic inflammation. A single dosage of AAIVa (100 mg/kg, i.g.) could suppress LPS-triggered inflammation, by decreasing luciferase activities of TNFα at 3 h in TNF-IRES-Luc mice. In addition, the online pharmacological databases predicted that AAIVa might target the regulation of T cell activation-related protein (ADA, ADORA2A, ERBB2) to exhibit anti-inflammatory effect. In conclusion, we demonstrated that AAIVa had anti-inflammatory effect for the first time; our findings are constructive for further studies on pharmacological mechanism of AAIVa.
Collapse
Affiliation(s)
- Weiying Liu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Fangyang Shao
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China
| | - Xinyue You
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Jiaying Wu
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Jingjing Wan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China
| | - Jian Fei
- School of Life Science and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center for Model Organisms, SRCMO/SMOC, Shanghai, 201203, China
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
9
|
Li Z, Chen M, Wang Z, Fan Q, Lin Z, Tao X, Wu J, Liu Z, Lin R, Zhao C. Berberine inhibits RA-FLS cell proliferation and adhesion by regulating RAS/MAPK/FOXO/HIF-1 signal pathway in the treatment of rheumatoid arthritis. Bone Joint Res 2023; 12:91-102. [PMID: 36718649 PMCID: PMC9950669 DOI: 10.1302/2046-3758.122.bjr-2022-0269.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIMS Rheumatoid arthritis (RA) is a common chronic immune disease. Berberine, as its main active ingredient, was also contained in a variety of medicinal plants such as Berberaceae, Buttercup, and Rutaceae, which are widely used in digestive system diseases in traditional Chinese medicine with anti-inflammatory and antibacterial effects. The aims of this article were to explore the therapeutic effect and mechanism of berberine on rheumatoid arthritis. METHODS Cell Counting Kit-8 was used to evaluate the effect of berberine on the proliferation of RA fibroblast-like synoviocyte (RA-FLS) cells. The effect of berberine on matrix metalloproteinase (MMP)-1, MMP-3, receptor activator of nuclear factor kappa-Β ligand (RANKL), tumour necrosis factor alpha (TNF-α), and other factors was determined by enzyme-linked immunoassay (ELISA) kit. Transcriptome technology was used to screen related pathways and the potential targets after berberine treatment, which were verified by reverse transcription-polymerase chain reaction (RT-qPCR) and Western blot (WB) technology. RESULTS Berberine inhibited proliferation and adhesion of RA-FLS cells, and significantly reduced the expression of MMP-1, MMP-3, RANKL, and TNF-α. Transcriptional results suggested that berberine intervention mainly regulated forkhead box O (FOXO) signal pathway, prolactin signal pathway, neurotrophic factor signal pathway, and hypoxia-inducible factor 1 (HIF-1) signal pathway. CONCLUSION The effect of berberine on RA was related to the regulation of RAS/mitogen-activated protein kinase/FOXO/HIF-1 signal pathway in RA-FLS cells.Cite this article: Bone Joint Res 2023;12(2):91-102.
Collapse
Affiliation(s)
- Zhiqi Li
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Meilin Chen
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Zhaoyi Wang
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Qiqi Fan
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Zili Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Tao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Jiarui Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Ruichao Lin
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China
| | - Chongjun Zhao
- Beijing University of Chinese Medicine, Beijing, China,Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, Beijing, China, Mr. Chongjun Zhao. E-mail:
| |
Collapse
|
10
|
George PM, Reed A, Desai SR, Devaraj A, Faiez TS, Laverty S, Kanwal A, Esneau C, Liu MKC, Kamal F, Man WDC, Kaul S, Singh S, Lamb G, Faizi FK, Schuliga M, Read J, Burgoyne T, Pinto AL, Micallef J, Bauwens E, Candiracci J, Bougoussa M, Herzog M, Raman L, Ahmetaj-Shala B, Turville S, Aggarwal A, Farne HA, Dalla Pria A, Aswani AD, Patella F, Borek WE, Mitchell JA, Bartlett NW, Dokal A, Xu XN, Kelleher P, Shah A, Singanayagam A. A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae. Sci Transl Med 2022; 14:eabo5795. [PMID: 36383686 DOI: 10.1126/scitranslmed.abo5795] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications.
Collapse
Affiliation(s)
- Peter M George
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Anna Reed
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Sujal R Desai
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Anand Devaraj
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Tasnim Shahridan Faiez
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Sarah Laverty
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Amama Kanwal
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Camille Esneau
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael K C Liu
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | | | - William D-C Man
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, UK
| | - Sundeep Kaul
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Suveer Singh
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Georgia Lamb
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Fatima K Faizi
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Michael Schuliga
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jane Read
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Thomas Burgoyne
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Andreia L Pinto
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
| | - Jake Micallef
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Emilie Bauwens
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Julie Candiracci
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Mhammed Bougoussa
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Marielle Herzog
- Belgian Volition SRL, 22 rue Phocas Lejeune, Parc Scientifique Créalys, Isnes 5032, Belgium
| | - Lavanya Raman
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | | | - Stuart Turville
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anupriya Aggarwal
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hugo A Farne
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
- The Kirby Institute, University of New South Wales, Sydney, NSW 2052, Australia
- Chest and Allergy Department, St Mary's Hospital, Imperial College NHS Trust, London W2 1NY, UK
| | - Alessia Dalla Pria
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Department of HIV and Genitourinary Medicine, Chelsea and Westminster NHS Foundation Trust, London SW10 9NH, UK
| | - Andrew D Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Santersus AG, Buckhauserstrasse 34, Zurich 8048, Switzerland
| | - Francesca Patella
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Weronika E Borek
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Jane A Mitchell
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Nathan W Bartlett
- Faculty of Health, Medicine and Wellbeing, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arran Dokal
- Kinomica Ltd, Biohub, Alderley Park, Alderley Edge, Macclesfield, Cheshire SK10 4TG, UK
| | - Xiao-Ning Xu
- Section of Virology, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
| | - Peter Kelleher
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- Department of HIV and Genitourinary Medicine, Chelsea and Westminster NHS Foundation Trust, London SW10 9NH, UK
- Immunology of Infection Section, Department of Infectious Disease, Imperial College London, London W2 1PG, UK
- Department of Infection and Immunity Sciences, North West London Pathology NHS Trust, London W2 1NY, UK
| | - Anand Shah
- Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London SW3 6NR, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Aran Singanayagam
- Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
11
|
Wu R, Liu J, Wang N, Zeng L, Yu C, Chen F, Wang H, Billiar TR, Jiang J, Tang D, Kang R. Aconitate decarboxylase 1 is a mediator of polymicrobial sepsis. Sci Transl Med 2022; 14:eabo2028. [PMID: 36001682 DOI: 10.1126/scitranslmed.abo2028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sepsis is a challenging clinical syndrome caused by a dysregulated host response to infection. Here, we identified an unexpected proseptic activity of aconitate decarboxylase 1 (ACOD1) in monocytes and macrophages. Previous studies have suggested that ACOD1, also known as immune-responsive gene 1, is an immunometabolic regulator that favors itaconate production to inhibit bacterial lipopolysaccharide-induced innate immunity. We used next-generation sequencing of lipopolysaccharide-activated THP1 cells to demonstrate that ACOD1 accumulation confers a robust proinflammation response by activating a cytokine storm, predominantly through the tumor necrosis factor signaling pathway. We further revealed that the phosphorylation of cyclin-dependent kinase 2 (CDK2) on threonine-160 mediates the activation of mitogen-activated protein kinase 8 through receptor for activated C kinase 1, leading to JUN-dependent transcription of ACOD1 in human and mouse macrophages or monocytes. Genetic deletion of CDK2 or ACOD1 in myeloid cells, or the administration of the CDK inhibitor dinaciclib, protected mice against polymicrobial sepsis and was associated with improved survival and decreased cytokine storm. The expression of the CDK2-ACOD1 axis also correlated with severity of illness in a cohort of 40 patients with bacterial sepsis. Thus, our findings provide evidence for a previously unrecognized function of ACOD1 in innate immunity and suggest it as a potential therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Zeng
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinsteins Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jianxin Jiang
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Xiao S, Liu L, Sun Z, Liu X, Xu J, Guo Z, Yin X, Liao F, Xu J, You Y, Zhang T. Network Pharmacology and Experimental Validation to Explore the Mechanism of Qing-Jin-Hua-Tan-Decoction Against Acute Lung Injury. Front Pharmacol 2022; 13:891889. [PMID: 35873580 PMCID: PMC9304690 DOI: 10.3389/fphar.2022.891889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Qing-Jin-Hua-Tan-Decoction (QJHTD), a classic famous Chinese ancient prescription, has been used for treatment of pulmonary diseases since Ming Dynasty. A total of 22 prototype compounds of QJHTD absorbed into rat blood were chosen as candidates for the pharmacological network analysis and molecular docking. The targets from the intersection of compound target and ALI disease targets were used for GO and KEGG enrichment analyses. Molecular docking was adopted to further verify the interactions between 22 components and the top 20 targets with higher degree values in the component–target–pathway network. In vitro experiments were performed to verify the results of network pharmacology using SPR experiments, Western blot experiments, and the PMA-induced neutrophils to produce neutrophil extracellular trap (NET) model. The compound–target–pathway network includes 176 targets and 20 signaling pathways in which the degree of MAPK14, CDK2, EGFR, F2, SRC, and AKT1 is higher than that of other targets and which may be potential disease targets. The biological processes in QJHTD for ALI mainly included protein phosphorylation, response to wounding, response to bacterium, regulation of inflammatory response, and so on. KEGG enrichment analyses revealed multiple signaling pathways, including lipid and atherosclerosis, HIF-1 signaling pathway, renin–angiotensin system, and neutrophil extracellular trap formation. The molecular docking results showed that baicalin, oroxylin A-7-glucuronide, hispidulin-7-O-β-D-glucuronide, wogonoside, baicalein, wogonin, tianshic acid, and mangiferin can be combined with most of the targets, which might be the core components of QJHTD in treatment of ALI. Direct binding ability of baicalein, wogonin, and baicalin to thrombin protein was all micromolar, and their KD values were 11.92 μM, 1.303 μM, and 1.146 μM, respectively, revealed by SPR experiments, and QJHTD could inhibit Src phosphorylation in LPS-activated neutrophils by Western blot experiments. The experimental results of PMA-induced neutrophils to produce NETs indicated that QJHTD could inhibit the production of NETs. This study revealed the active compounds, effective targets, and potential pharmacological mechanisms of QJHTD acting on ALI.
Collapse
Affiliation(s)
- Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Xu
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yun You, ; Tiejun Zhang,
| | - Tiejun Zhang
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- *Correspondence: Yun You, ; Tiejun Zhang,
| |
Collapse
|
13
|
Wang Y, Liu X, Xia P, Li Z, FuChen X, Shen Y, Yu P, Zhang J. The Regulatory Role of MicroRNAs on Phagocytes: A Potential Therapeutic Target for Chronic Diseases. Front Immunol 2022; 13:901166. [PMID: 35634335 PMCID: PMC9130478 DOI: 10.3389/fimmu.2022.901166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022] Open
Abstract
An effective acute inflammatory response results in the elimination of infectious microorganisms, followed by a smooth transition to resolution and repair. During the inflammatory response, neutrophils play a crucial role in antimicrobial defense as the first cells to reach the site of infection damage. However, if the neutrophils that have performed the bactericidal effect are not removed in time, the inflammatory response will not be able to subside. Anti-inflammatory macrophages are the main scavengers of neutrophils and can promote inflammation towards resolution. MicroRNAs (miRNAs) have great potential as clinical targeted therapy and have attracted much attention in recent years. This paper summarizes the involvement of miRNAs in the process of chronic diseases such as atherosclerosis, rheumatoid arthritis and systemic lupus erythematosus by regulating lipid metabolism, cytokine secretion, inflammatory factor synthesis and tissue repair in two types of cells. This will provide a certain reference for miRNA-targeted treatment of chronic diseases.
Collapse
Affiliation(s)
- Yongbo Wang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xingyu Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xinxi FuChen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yunfeng Shen
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| |
Collapse
|
14
|
Liu H, Weng J. A comprehensive bioinformatic analysis of cyclin-dependent kinase 2 (CDK2) in glioma. Gene 2022; 822:146325. [PMID: 35183683 DOI: 10.1016/j.gene.2022.146325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 12/21/2022]
|
15
|
Expression characteristics and interaction networks of microRNAs in spleen tissues of grass carp (Ctenopharyngodon idella). PLoS One 2022; 17:e0266189. [PMID: 35344574 PMCID: PMC8959171 DOI: 10.1371/journal.pone.0266189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
The spleen is an important immune organ in fish. MicroRNAs (miRNAs) have been shown to play an important role in the regulation of immune function. However, miRNA expression profiles and their interaction networks associated with the postnatal late development of spleen tissue are still poorly understood in fish. The grass carp (Ctenopharyngodon idella) is an important economic aquaculture species in China. Here, two small RNA libraries were constructed from the spleen tissue of healthy grass carp at one-year-old and three-year-old. A total of 324 known conserved miRNAs and 9 novel miRNAs were identified by using bioinformatic analysis. Family analysis showed that 23 families such as let-7, mir-1, mir-10, mir-124, mir-8, mir-7, mir-9, and mir-153 were highly conserved between vertebrates and invertebrates. In addition, 14 families such as mir-459, mir-430, mir-462, mir-7147, mir-2187, and mir-722 were present only in fish. Expression analysis showed that the expression patterns of miRNAs in the spleen of one-year-old and three-year-old grass carp were highly consistent, and the percentage of miRNAs with TPM > 100 was above 39%. Twenty significant differentially expressed (SDE) miRNAs were identified. Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that these SDE miRNAs were primarily involved in erythrocyte differentiation, lymphoid organ development, immune response, lipid metabolic process, the B cell receptor signaling pathway, the T cell receptor signaling pathway, and the PPAR signaling pathway. In addition, the following miRNA-mRNA interaction networks were constructed: immune and hematopoietic, cell proliferation and differentiation, and lipid metabolism. This study determined the miRNA transcriptome as well as miRNA-mRNA interaction networks in normal spleen tissue during the late development stages of grass carp. The results expand the number of known miRNAs in grass carp and are a valuable resource for better understanding the molecular biology of the spleen development in grass carp.
Collapse
|
16
|
Hsu AY, Wang T, Syahirah R, Liu S, Li K, Zhang W, Wang J, Cao Z, Tian S, Matosevic S, Staiger CJ, Wan J, Deng Q. Rora Regulates Neutrophil Migration and Activation in Zebrafish. Front Immunol 2022; 13:756034. [PMID: 35309302 PMCID: PMC8931656 DOI: 10.3389/fimmu.2022.756034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil migration and activation are essential for defense against pathogens. However, this process may also lead to collateral tissue injury. We used microRNA overexpression as a platform and discovered protein-coding genes that regulate neutrophil migration. Here we show that miR-99 decreased the chemotaxis of zebrafish neutrophils and human neutrophil-like cells. In zebrafish neutrophils, miR-99 directly targets the transcriptional factor RAR-related orphan receptor alpha (roraa). Inhibiting RORα, but not the closely related RORγ, reduced chemotaxis of zebrafish and primary human neutrophils without causing cell death, and increased susceptibility of zebrafish to bacterial infection. Expressing a dominant-negative form of Rorα or disrupting the roraa locus specifically in zebrafish neutrophils reduced cell migration. At the transcriptional level, RORα regulates transmembrane signaling receptor activity and protein phosphorylation pathways. Our results, therefore, reveal previously unknown functions of miR-99 and RORα in regulating neutrophil migration and anti-microbial defense.
Collapse
Affiliation(s)
- Alan Y. Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
| | - Kailing Li
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University – Purdue University Indianapolis, Indianapolis, IN, United States
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Ziming Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Simon Tian
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University – Purdue University Indianapolis, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
17
|
Syahirah R, Hsu AY, Deng Q. A curious case of cyclin‐dependent kinases in neutrophils. J Leukoc Biol 2022; 111:1057-1068. [PMID: 35188696 PMCID: PMC9035055 DOI: 10.1002/jlb.2ru1021-573r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Neutrophils are terminally differentiated, short-lived white blood cells critical for innate immunity. Although cyclin-dependent kinases (CDKs) are typically related to cell cycle progression, increasing evidence has shown that they regulate essential functions of neutrophils. This review highlights the roles of CDKs and their partners, cyclins, in neutrophils, outside of cell cycle regulation. CDK1-10 and several cyclins are expressed in neutrophils, albeit at different levels. Observed phenotypes associated with specific inhibition or genetic loss of CDK2 indicate its role in modulating neutrophil migration. CDK4 and 6 regulate neutrophil extracellular traps (NETs) formation, while CDK5 regulates neutrophil degranulation. CDK7 and 9 are critical in neutrophil apoptosis, contributing to inflammation resolution. In addition to the CDKs that regulate mature neutrophil functions, cyclins are essential in hematopoiesis and granulopoiesis. The pivotal roles of CDKs in neutrophils present an untapped potential in targeting CDKs for treating neutrophil-dominant inflammatory diseases and understanding the regulation of the neutrophil life cycle.
Collapse
Affiliation(s)
- Ramizah Syahirah
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Alan Y. Hsu
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
- Department of Pathology Harvard Medical School Boston Massachusetts USA
- Department of Laboratory Medicine The Stem Cell Program, Boston Children's Hospital Boston Massachusetts USA
| | - Qing Deng
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
- Purdue Institute of Inflammation Immunology and Infectious Disease, Purdue University West Lafayette Indiana USA
- Purdue University Center for Cancer Research, Purdue University West Lafayette Indiana USA
| |
Collapse
|
18
|
Bao L, Inoue N, Ishikawa M, Gotoh E, Teh OK, Higa T, Morimoto T, Ginanjar EF, Harashima H, Noda N, Watahiki M, Hiwatashi Y, Sekine M, Hasebe M, Wada M, Fujita T. A PSTAIRE-type cyclin-dependent kinase controls light responses in land plants. SCIENCE ADVANCES 2022; 8:eabk2116. [PMID: 35089781 PMCID: PMC8797184 DOI: 10.1126/sciadv.abk2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Light is a critical signal perceived by plants to adapt their growth rate and direction. Although many signaling components have been studied, how plants respond to constantly fluctuating light remains underexplored. Here, we showed that in the moss Physcomitrium (Physcomitrella) patens, the PSTAIRE-type cyclin-dependent kinase PpCDKA is dispensable for growth. Instead, PpCDKA and its homolog in Arabidopsis thaliana control light-induced tropisms and chloroplast movements by probably influencing the cytoskeleton organization independently of the cell cycle. In addition, lower PpCDKA kinase activity was required to elicit light responses relative to cell cycle regulation. Thus, our study suggests that plant CDKAs may have been co-opted to control multiple light responses, and owing to the bistable switch properties of PSTAIRE-type CDKs, the noncanonical functions are widely conserved for eukaryotic environmental adaptation.
Collapse
Affiliation(s)
- Liang Bao
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Natsumi Inoue
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaki Ishikawa
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Eiji Gotoh
- Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ooi-Kock Teh
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Takeshi Higa
- Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Tomoro Morimoto
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | - Hirofumi Harashima
- Cell Function Research Team, RIKEN Centre for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Natsumi Noda
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan
| | - Masami Sekine
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi 921-8836, Japan
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan
| | - Masamitsu Wada
- Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
19
|
Anisman H, Kusnecov AW. Immunotherapies and their moderation. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Hati S, Zallocchi M, Hazlitt R, Li Y, Vijayakumar S, Min J, Rankovic Z, Lovas S, Zuo J. AZD5438-PROTAC: A selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur J Med Chem 2021; 226:113849. [PMID: 34560429 PMCID: PMC8608744 DOI: 10.1016/j.ejmech.2021.113849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinase 2 (CDK2) is a potential therapeutic target for the treatment of hearing loss and cancer. Previously, we identified AZD5438 and AT7519-7 as potent inhibitors of CDK2, however, they also targeted additional kinases, leading to unwanted toxicities. Proteolysis Targeting Chimeras (PROTACs) are a new promising class of small molecules that can effectively direct specific proteins to proteasomal degradation. Herein we report the design, synthesis, and characterization of PROTACs of AT7519-7 and AZD5438 and the identification of PROTAC-8, an AZD5438-PROTAC, that exhibits selective, partial CDK2 degradation. Furthermore, PROTAC-8 protects against cisplatin ototoxicity and kainic acid excitotoxicity in zebrafish. Molecular dynamics simulations reveal the structural requirements for CDK2 degradation. Together, PROTAC-8 is among the first-in-class PROTACs with in vivo therapeutic activities and represents a new lead compound that can be further developed for better efficacy and selectivity for CDK2 degradation against hearing loss and cancer.
Collapse
Affiliation(s)
- Santanu Hati
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Marisa Zallocchi
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Robert Hazlitt
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yuju Li
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Jaeki Min
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sándor Lovas
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, 68178, USA.
| |
Collapse
|
21
|
Liu W, Hsu AY, Wang Y, Lin T, Sun H, Pachter JS, Groisman A, Imperioli M, Yungher FW, Hu L, Wang P, Deng Q, Fan Z. Mitofusin-2 regulates leukocyte adhesion and β2 integrin activation. J Leukoc Biol 2021; 111:771-791. [PMID: 34494308 DOI: 10.1002/jlb.1a0720-471r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Neutrophils are critical for inflammation and innate immunity, and their adhesion to vascular endothelium is a crucial step in neutrophil recruitment. Mitofusin-2 (MFN2) is required for neutrophil adhesion, but molecular details are unclear. Here, we demonstrated that β2 -integrin-mediated slow-rolling and arrest, but not PSGL-1-mediated cell rolling, are defective in MFN2-deficient neutrophil-like HL60 cells. This adhesion defect is associated with reduced expression of fMLP (N-formylmethionyl-leucyl-phenylalanine) receptor FPR1 as well as the inhibited β2 integrin activation, as assessed by conformation-specific monoclonal antibodies. MFN2 deficiency also leads to decreased actin polymerization, which is important for β2 integrin activation. Mn2+ -induced cell spreading is also inhibited after MFN2 knockdown. MFN2 deficiency limited the maturation of β2 integrin activation during the neutrophil-directed differentiation of HL60 cells, which is indicated by CD35 and CD87 markers. MFN2 knockdown in β2-integrin activation-matured cells (CD87high population) also inhibits integrin activation, indicating that MFN2 directly affects β2 integrin activation. Our study illustrates the function of MFN2 in leukocyte adhesion and may provide new insights into the development and treatment of MFN2 deficiency-related diseases.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joel S Pachter
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, California, USA
| | | | | | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, Indiana, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
22
|
Cheng X, Lu E, Fan M, Pi Z, Zheng Z, Liu S, Song F, Liu Z. A comprehensive strategy to clarify the pharmacodynamic constituents and mechanism of Wu-tou decoction based on the constituents migrating to blood and their in vivo process under pathological state. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114172. [PMID: 33932514 DOI: 10.1016/j.jep.2021.114172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine (TCM) formula, Wu-tou decoction has been used for treating rheumatoid arthritis (RA) for more than a thousand years. Identifying pharmacodynamic constituents (PCs) of WTD and exploring their in vivo process are very meaningful for promoting the modernization of TCM. However, the pathological state might change this process. AIM OF THE STUDY Hence, it is necessary and significant to compare the process in vivo of drugs both in normal and disease state and clarify their action mechanism. MATERIALS AND METHODS Taking Wu-tou decoction (WTD) as the research object, a comprehensive strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) was developed to identify PCs, clarify and compare their absorption and distribution in normal and model rats, and then explore the potential mechanism of TCM. Firstly, the PCs in WTD were identified. Then, the pharmacokinetics (PK) and tissue distribution of these ingredients were studied. Finally, the constituents with the difference between normal and model rats were selected for target network pharmacological analysis to clarify the mechanism. RESULTS A total of 27 PCs of WTD were identified. The absorption and distribution of 20 PCs were successfully analyzed. In the disease state, the absorption and distribution of all these components were improved to have better treatment effects. The results of target network pharmacological analysis indicated that PTGS1, PTGS2, ABCB1, SLC6A4, CHRM2, ESR1, ESR2, CDK2, TNF and IL-6 are 10 key targets for WTD against RA. The regulatory effects of WTD on the expression of PTGS2 and TNF were further verified. Pathway enrichment analysis showed that the key mechanism of WTD against RA is to reduce inflammation and regulate the immune response. CONCLUSION These results indicated that this strategy could better understand the in vivo process and mechanism of WTD under the pathological state. Furthermore, this strategy is also appropriate for other TCM.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/chemistry
- Antirheumatic Agents/pharmacokinetics
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Chromatography, High Pressure Liquid
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacokinetics
- Drugs, Chinese Herbal/pharmacology
- Glycyrrhizic Acid/blood
- Glycyrrhizic Acid/chemistry
- Inflammation/metabolism
- Lipopolysaccharides/toxicity
- Male
- Mass Spectrometry
- Medicine, Chinese Traditional
- Metabolic Networks and Pathways/drug effects
- Mice
- RAW 264.7 Cells
- Rats, Sprague-Dawley
- Tissue Distribution
- Tumor Necrosis Factor-alpha/metabolism
- Rats
Collapse
Affiliation(s)
- Xiaoxu Cheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Enyu Lu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Meiling Fan
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, 130021, Changchun, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; Changchun Sunnytech Co.,Ltd., 130061, Changchun, China.
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
23
|
Disner GR, Falcão MAP, Lima C, Lopes-Ferreira M. In Silico Target Prediction of Overexpressed microRNAs from LPS-Challenged Zebrafish ( Danio rerio) Treated with the Novel Anti-Inflammatory Peptide TnP. Int J Mol Sci 2021; 22:7117. [PMID: 34281170 PMCID: PMC8268205 DOI: 10.3390/ijms22137117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs regulate gene expression post-transcriptionally in various processes, e.g., immunity, development, and diseases. Since their experimental analysis is complex, in silico target prediction is important for directing investigations. TnP is a candidate peptide for anti-inflammatory therapy, first discovered in the venom of Thalassophryne nattereri, which led to miRNAs overexpression in LPS-inflamed zebrafish post-treatment. This work aimed to predict miR-21, miR-122, miR-731, and miR-26 targets using overlapped results of DIANA microT-CDS and TargetScanFish software. This study described 513 miRNAs targets using highly specific thresholds. Using Gene Ontology over-representation analysis, we identified their main roles in regulating gene expression, neurogenesis, DNA-binding, transcription regulation, immune system process, and inflammatory response. miRNAs act in post-transcriptional regulation, but we revealed that their targets are strongly related to expression regulation at the transcriptional level, e.g., transcription factors proteins. A few predicted genes participated concomitantly in many biological processes and molecular functions, such as foxo3a, rbpjb, rxrbb, tyrobp, hes6, zic5, smad1, e2f7, and npas4a. Others were particularly involved in innate immunity regulation: il17a/f2, pik3r3b, and nlrc6. Together, these findings not only provide new insights into the miRNAs mode of action but also raise hope for TnP therapy and may direct future experimental investigations.
Collapse
Affiliation(s)
| | | | | | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICS/FAPESP), Butantan Institute, São Paulo 05503-900, Brazil; (G.R.D.); (M.A.P.F.); (C.L.)
| |
Collapse
|
24
|
Pimentel Falcao MA, Banderó Walker CI, Rodrigo Disner G, Batista-Filho J, Silva Soares AB, Balan-Lima L, Lima C, Lopes-Ferreira M. Knockdown of miR-26a in zebrafish leads to impairment of the anti-inflammatory function of TnP in the control of neutrophilia. FISH & SHELLFISH IMMUNOLOGY 2021; 114:301-310. [PMID: 33984485 DOI: 10.1016/j.fsi.2021.04.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Our recent data show the valuable potential of TnP for the development of a new and safe anti-inflammatory drug due to its ability to control the traffic and activation of leukocytes in response to inflammation. Although there is considerable knowledge surrounding the cellular mechanisms of TnP, less is known about the mechanistic molecular role of TnP underlying its immunomodulatory functions. Here, we conducted investigations to identify whether miRNAs could be one of the molecular bases of the therapeutic effect of TnP. Using a zebrafish model of neutrophilic inflammation with a combination of genetic gain- and loss-of-function approaches, we showed that TnP treatment was followed by up-regulation of only four known miRNAs, and mature dre-miR-26a-1, herein referred just as miR-26a was the first most highly expressed. The knockdown of miR-26a ubiquitously resulted in a significant reduction of miR-26a in embryos, accompanied by impaired TnP immunomodulatory function observed by the loss of the control of the removal of neutrophils in response to inflammation, while the overexpression increased the inhibition of neutrophilic inflammation promoted by TnP. The striking importance of miR-26a was confirmed when rescue strategies were used (morpholino and mimic combination). Our results identified miR-26a as an essential molecular regulator of the therapeutic action of TnP, and suggest that miR-26a or its targets could be used as promising therapeutic candidates for enhancing the resolution of inflammation.
Collapse
Affiliation(s)
- Maria Alice Pimentel Falcao
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil; Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Cristiani Isabel Banderó Walker
- Laboratory of Neuropharmacological Studies (LABEN), Post-Graduation Program of Pharmaceutical Science, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Geonildo Rodrigo Disner
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - João Batista-Filho
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil; Post-Graduation Program of Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Amanda Beatriz Silva Soares
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - Leticia Balan-Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| | - Carla Lima
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil.
| | - Monica Lopes-Ferreira
- Immunoregulation Unit of the Laboratory of Applied Toxinology (CeTICs/FAPESP), Butantan Institute, Vital Brazil Avenue, 1500. Butantan, 05503-009, São Paulo, Brazil
| |
Collapse
|
25
|
Kusama K, Rashid MB, Kowsar R, Marey MA, Talukder AK, Nagaoka K, Shimada M, Khatib H, Imakawa K, Miyamoto A. Day 7 Embryos Change the Proteomics and Exosomal Micro-RNAs Content of Bovine Uterine Fluid: Involvement of Innate Immune Functions. Front Genet 2021; 12:676791. [PMID: 34262596 PMCID: PMC8273763 DOI: 10.3389/fgene.2021.676791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
This study aimed to characterize proteins and exosomal microRNAs (miRNAs) in the uterine flushings (UF) of cows associated with Day 7 (D7) pregnancy using the embryo donor cows of the embryo transfer program. Superovulated cows either were inseminated (AI cows) or remained non-inseminated (Ctrl cows). UF was collected on D7 in the presence of multiple embryos (AI cows) or without embryos (Ctrl cows) and subjected to isobaric tags for relative and absolute quantification protein analysis. A total of 336 proteins were identified, of which 260 proteins were more than 2-fold higher in AI cows than Ctrl cows. Gene ontology analysis revealed that many differentially expressed proteins were involved in “neutrophil-related” and “extracellular vesicular exosome-related” terms. In silico analysis of proteins with higher concentrations in the UF of AI identified 18 uniquely expressed proteins. Exosomes were isolated from the UF, from which RNA was subjected to miRNA-seq, identifying 37 miRNAs. Of these, three miRNAs were lower, and six miRNAs were higher in the UF of AI cows than those of Ctrl ones. The principal component analysis displayed a close association in miRNA and protein between bta-miR-29a, bta-miR-199b, SUGT1, and PPID. In addition, the receiver operating characteristic curve analysis showed that SUGT1 was the best predictor for the presence of embryos in the uterus. These findings suggest that the presence of multiple D7 embryos in the uterus can lead to significant changes in the protein composition and exosomal miRNA contents of UF, which could mediate innate immunological interactions between the pre-hatching embryo and the uterus in cows.
Collapse
Affiliation(s)
- Kazuya Kusama
- Department of Endocrine Pharmacology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Mohammad B Rashid
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Physiology and Pharmacology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Rasoul Kowsar
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mohamed A Marey
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Theriogenology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Anup K Talukder
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Kazuhiko Imakawa
- Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Akio Miyamoto
- Global Agromedicine Research Center (GAMRC), Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
26
|
Paré G, Vitry J, Merchant ML, Vaillancourt M, Murru A, Shen Y, Elowe S, Lahoud MH, Naccache PH, McLeish KR, Fernandes MJ. The Inhibitory Receptor CLEC12A Regulates PI3K-Akt Signaling to Inhibit Neutrophil Activation and Cytokine Release. Front Immunol 2021; 12:650808. [PMID: 34234773 PMCID: PMC8256872 DOI: 10.3389/fimmu.2021.650808] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/21/2021] [Indexed: 12/25/2022] Open
Abstract
The myeloid inhibitory C-type lectin receptor CLEC12A limits neutrophil activation, pro-inflammatory pathways and disease in mouse models of inflammatory arthritis by a molecular mechanism that remains poorly understood. We addressed how CLEC12A-mediated inhibitory signaling counteracts activating signaling by cross-linking CLEC12A in human neutrophils. CLEC12A cross-linking induced its translocation to flotillin-rich membrane domains where its ITIM was phosphorylated in a Src-dependent manner. Phosphoproteomic analysis identified candidate signaling molecules regulated by CLEC12A that include MAPKs, phosphoinositol kinases and members of the JAK-STAT pathway. Stimulating neutrophils with uric acid crystals, the etiological agent of gout, drove the hyperphosphorylation of p38 and Akt. Ultimately, one of the pathways through which CLEC12A regulates uric acid crystal-stimulated release of IL-8 by neutrophils is through a p38/PI3K-Akt signaling pathway. In summary this work defines early molecular events that underpin CLEC12A signaling in human neutrophils to modulate cytokine synthesis. Targeting this pathway could be useful therapeutically to dampen inflammation.
Collapse
Affiliation(s)
- Guillaume Paré
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Julien Vitry
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Myriam Vaillancourt
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada
| | - Andréa Murru
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Yunyun Shen
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada.,Reproduction, Mother and Youth Health Division, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Mireille H Lahoud
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Paul H Naccache
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, United States
| | - Maria J Fernandes
- Division of Infectious Diseases and Immunology, Laval University, Centres Hospitaliers Universitaires (CHU) de Québec Research Center, Québec, QC, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, CHU de Québec Research Center, Québec, QC, Canada
| |
Collapse
|
27
|
Sullivan C, Soos BL, Millard PJ, Kim CH, King BL. Modeling Virus-Induced Inflammation in Zebrafish: A Balance Between Infection Control and Excessive Inflammation. Front Immunol 2021; 12:636623. [PMID: 34025644 PMCID: PMC8138431 DOI: 10.3389/fimmu.2021.636623] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
The inflammatory response to viral infection in humans is a dynamic process with complex cell interactions that are governed by the immune system and influenced by both host and viral factors. Due to this complexity, the relative contributions of the virus and host factors are best studied in vivo using animal models. In this review, we describe how the zebrafish (Danio rerio) has been used as a powerful model to study host-virus interactions and inflammation by combining robust forward and reverse genetic tools with in vivo imaging of transparent embryos and larvae. The innate immune system has an essential role in the initial inflammatory response to viral infection. Focused studies of the innate immune response to viral infection are possible using the zebrafish model as there is a 4-6 week timeframe during development where they have a functional innate immune system dominated by neutrophils and macrophages. During this timeframe, zebrafish lack a functional adaptive immune system, so it is possible to study the innate immune response in isolation. Sequencing of the zebrafish genome has revealed significant genetic conservation with the human genome, and multiple studies have revealed both functional conservation of genes, including those critical to host cell infection and host cell inflammatory response. In addition to studying several fish viruses, zebrafish infection models have been developed for several human viruses, including influenza A, noroviruses, chikungunya, Zika, dengue, herpes simplex virus type 1, Sindbis, and hepatitis C virus. The development of these diverse viral infection models, coupled with the inherent strengths of the zebrafish model, particularly as it relates to our understanding of macrophage and neutrophil biology, offers opportunities for far more intensive studies aimed at understanding conserved host responses to viral infection. In this context, we review aspects relating to the evolution of innate immunity, including the evolution of viral pattern recognition receptors, interferons and interferon receptors, and non-coding RNAs.
Collapse
Affiliation(s)
- Con Sullivan
- College of Arts and Sciences, University of Maine at Augusta, Bangor, ME, United States
| | - Brandy-Lee Soos
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
| | - Paul J. Millard
- Department of Environmental and Sustainable Engineering, University at Albany, Albany, NY, United States
| | - Carol H. Kim
- Department of Biomedical Sciences, University at Albany, Albany, NY, United States
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Benjamin L. King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| |
Collapse
|
28
|
Integrated Molecular Docking with Network Pharmacology to Reveal the Molecular Mechanism of Simiao Powder in the Treatment of Acute Gouty Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5570968. [PMID: 34007291 PMCID: PMC8100412 DOI: 10.1155/2021/5570968] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022]
Abstract
Background The incidence of gout has been rapidly increasing in recent years with the changing of diet. At present, modern medications used in the clinical treatment of gout showed several side effects, such as gastrointestinal damage and the increased risk of cardiovascular disease. The traditional Chinese prescription Simiao Powder (SMP) has a long history in the treatment of acute gouty arthritis (AGA) and has a good curative effect. However, the mechanism and target of its therapeutic effects are still not completely understood. Methods Potential active compounds (PACs) and targets of SMP were found in the TCMSP database, and the disease target genes related to AGA were obtained by searching CTD, DisGeNET, DrugBank, GeneCards, TTD, OMIM, and PharmGKB disease databases with “acute gouty arthritis” and “Arthritis, Gouty” as keywords, respectively. The network of “Traditional Chinese medicine (TCM)-PACs-potential targets of acute gouty arthritis” was constructed with the Cytoscape 3.7.2 software, and the target genes of acute gouty arthritis were intersected with genes regulated by active compounds of SMP. The resultant common gene targets were input into Cytoscape 3.7.2 software, and the BisoGenet plug-in was used to construct a PPI network. The GO functional enrichment analysis and KEGG pathway enrichment analysis of the intersecting target proteins were performed using R software and corresponding program packages. The molecular docking verification was carried out between the potentially active compounds of SMP and the core target at the same time. Results 40 active components and 203 targets were identified, of which 95 targets were common targets for the drugs and diseases. GO function enrichment analysis revealed that SMP regulated several biological processes, such as response to lipopolysaccharide and oxidative stress, RNA polymerase II transcription regulator complex, protein kinase complex, and other cellular and molecular processes, including DNA-binding transcription factor binding. Results of KEGG pathway analysis showed that SMP was associated with AGA-related pathways such as interleukin-17 (IL-17), tumor necrosis factor (TNF), p53, and hypoxia-inducible factor 1 (HIF-1) signaling pathways. The results of molecular docking showed that active compounds in SMP exhibited strong binding to five core protein receptors (TP53, FN1, ESR1, CDK2, and HSPA5). Conclusions Active components of SMP, such as quercetin, kaempferol, wogonin, baicalein, beta-sitosterol, and rutaecarpine, showed therapeutic effects on AGA. These compounds were strongly associated with core target proteins (such as TP53, FN1, ESR1, CDK2, and HSPA5). This study reveals that IL-17, TNF, p53, and HIF-1 signaling pathways mediate the therapeutic effects of SMP on AGA. These findings expand our understanding of the mechanism of SMP in the treatment of AGA.
Collapse
|
29
|
Wang Y, Hsu AY, Walton EM, Park SJ, Syahirah R, Wang T, Zhou W, Ding C, Lemke AP, Zhang G, Tobin DM, Deng Q. A robust and flexible CRISPR/Cas9-based system for neutrophil-specific gene inactivation in zebrafish. J Cell Sci 2021; 134:237799. [PMID: 33722979 DOI: 10.1242/jcs.258574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas9-based tissue-specific knockout techniques are essential for probing the functions of genes in embryonic development and disease using zebrafish. However, the lack of capacity to perform gene-specific rescue or live imaging in the tissue-specific knockout background has limited the utility of this approach. Here, we report a robust and flexible gateway system for tissue-specific gene inactivation in neutrophils. Using a transgenic fish line with neutrophil-restricted expression of Cas9 and ubiquitous expression of single guide (sg)RNAs targeting rac2, specific disruption of the rac2 gene in neutrophils is achieved. Transient expression of sgRNAs targeting rac2 or cdk2 in the neutrophil-restricted Cas9 line also results in significantly decreased cell motility. Re-expressing sgRNA-resistant rac2 or cdk2 genes restores neutrophil motility in the corresponding knockout background. Moreover, active Rac and force-bearing F-actins localize to both the cell front and the contracting tail during neutrophil interstitial migration in an oscillating fashion that is disrupted when rac2 is knocked out. Together, our work provides a potent tool that can be used to advance the utility of zebrafish in identifying and characterizing gene functions in a tissue-specific manner.
Collapse
Affiliation(s)
- Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Eric M Walton
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sung Jun Park
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Wenqing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Ding
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Abby Pei Lemke
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, and Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,Purdue Institute for Inflammation, Immunology, & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
Wright K, de Silva K, Plain KM, Purdie AC, Blair TA, Duggin IG, Britton WJ, Oehlers SH. Mycobacterial infection-induced miR-206 inhibits protective neutrophil recruitment via the CXCL12/CXCR4 signalling axis. PLoS Pathog 2021; 17:e1009186. [PMID: 33826679 PMCID: PMC8055004 DOI: 10.1371/journal.ppat.1009186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Pathogenic mycobacteria actively dysregulate protective host immune signalling pathways during infection to drive the formation of permissive granuloma microenvironments. Dynamic regulation of host microRNA (miRNA) expression is a conserved feature of mycobacterial infections across host-pathogen pairings. Here we examine the role of miR-206 in the zebrafish model of Mycobacterium marinum infection, which allows investigation of the early stages of granuloma formation. We find miR-206 is upregulated following infection by pathogenic M. marinum and that antagomir-mediated knockdown of miR-206 is protective against infection. We observed striking upregulation of cxcl12a and cxcr4b in infected miR-206 knockdown zebrafish embryos and live imaging revealed enhanced recruitment of neutrophils to sites of infection. We used CRISPR/Cas9-mediated knockdown of cxcl12a and cxcr4b expression and AMD3100 inhibition of Cxcr4 to show that the enhanced neutrophil response and reduced bacterial burden caused by miR-206 knockdown was dependent on the Cxcl12/Cxcr4 signalling axis. Together, our data illustrate a pathway through which pathogenic mycobacteria induce host miR-206 expression to suppress Cxcl12/Cxcr4 signalling and prevent protective neutrophil recruitment to granulomas.
Collapse
Affiliation(s)
- Kathryn Wright
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, New South Wales, Australia
| | - Kumudika de Silva
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, New South Wales, Australia
| | - Karren M. Plain
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, New South Wales, Australia
| | - Auriol C. Purdie
- The University of Sydney, Faculty of Science, Sydney School of Veterinary Science, Sydney, New South Wales, Australia
| | - Tamika A. Blair
- ithree Institute, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Iain G. Duggin
- ithree Institute, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Warwick J. Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Stefan H. Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, New South Wales, Australia
- The University of Sydney, Faculty of Medicine and Health & Marie Bashir Institute, Camperdown, New South Wales, Australia
| |
Collapse
|
31
|
Wang L, Shao X, Zhong T, Wu Y, Xu A, Sun X, Gao H, Liu Y, Lan T, Tong Y, Tao X, Du W, Wang W, Chen Y, Li T, Meng X, Deng H, Yang B, He Q, Ying M, Rao Y. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat Chem Biol 2021; 17:567-575. [PMID: 33664520 DOI: 10.1038/s41589-021-00742-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/20/2021] [Indexed: 02/01/2023]
Abstract
The discovery of effective therapeutic treatments for cancer via cell differentiation instead of antiproliferation remains a great challenge. Cyclin-dependent kinase 2 (CDK2) inactivation, which overcomes the differentiation arrest of acute myeloid leukemia (AML) cells, may be a promising method for AML treatment. However, there is no available selective CDK2 inhibitor. More importantly, the inhibition of only the enzymatic function of CDK2 would be insufficient to promote notable AML differentiation. To further validate the role and druggability of CDK2 involved in AML differentiation, a suitable chemical tool is needed. Therefore, we developed first-in-class CDK2-targeted proteolysis-targeting chimeras (PROTACs), which promoted rapid and potent CDK2 degradation in different cell lines without comparable degradation of other targets, and induced remarkable differentiation of AML cell lines and primary patient cells. These data clearly demonstrated the practicality and importance of PROTACs as alternative tools for verifying CDK2 protein functions.
Collapse
Affiliation(s)
- Liguo Wang
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Xuejing Shao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianbai Zhong
- Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yue Wu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Aixiao Xu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiuyun Sun
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Hongying Gao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Yongbo Liu
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Tianlong Lan
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Yan Tong
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China
| | - Xue Tao
- Department of Research, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wenxin Du
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqian Chen
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ting Li
- MOE Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,National Center for Protein Science, Tsinghua University, Beijing, China
| | - Xianbin Meng
- National Center for Protein Science, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,National Center for Protein Science, Tsinghua University, Beijing, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Yu Rao
- MOE Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, China. .,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
32
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
33
|
Zhou W, Hsu AY, Wang Y, Syahirah R, Wang T, Jeffries J, Wang X, Mohammad H, Seleem MN, Umulis D, Deng Q. Mitofusin 2 regulates neutrophil adhesive migration and the actin cytoskeleton. J Cell Sci 2020; 133:jcs248880. [PMID: 32788232 PMCID: PMC7491649 DOI: 10.1242/jcs.248880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Neutrophils rely on glycolysis for energy production. How mitochondria regulate neutrophil function is not fully understood. Here, we report that mitochondrial outer membrane protein Mitofusin 2 (MFN2) regulates neutrophil homeostasis and chemotaxis in vivoMfn2-deficient neutrophils are released from the hematopoietic tissue, trapped in the vasculature in zebrafish embryos, and not capable of chemotaxis. Consistent with this, human neutrophil-like cells that are deficient for MFN2 fail to arrest on activated endothelium under sheer stress or perform chemotaxis on 2D surfaces. Deletion of MFN2 results in a significant reduction of neutrophil infiltration to the inflamed peritoneal cavity in mice. Mechanistically, MFN2-deficient neutrophil-like cells display disrupted mitochondria-ER interaction, heightened intracellular Ca2+ levels and elevated Rac activation after chemokine stimulation. Restoring a mitochondria-ER tether rescues the abnormal Ca2+ levels, Rac hyperactivation and chemotaxis defect resulting from MFN2 depletion. Finally, inhibition of Rac activation restores chemotaxis in MFN2-deficient neutrophils. Taken together, we have identified that MFN2 regulates neutrophil migration via maintaining the mitochondria-ER interaction to suppress Rac activation, and uncovered a previously unrecognized role of MFN2 in regulating cell migration and the actin cytoskeleton.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Wenqing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Alan Y Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yueyang Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jacob Jeffries
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xu Wang
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| | - David Umulis
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology & Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
Zhang L, Wu H, Zhao M, Chang C, Lu Q. Clinical significance of miRNAs in autoimmunity. J Autoimmun 2020; 109:102438. [PMID: 32184036 DOI: 10.1016/j.jaut.2020.102438] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are evolutionally conserved, single-stranded RNAs that regulate gene expression at the posttranscriptional level by disrupting translation. MiRNAs are key players in variety of biological processes that regulate the differentiation, development and activation of immune cells in both innate and adaptive immunity. The disruption and dysfunction of miRNAs can perturb the immune response, stimulate the release of inflammatory cytokines and initiate the production of autoantibodies, and contribute to the pathogenesis of autoimmune diseases, including systemic lupus erythmatosus (SLE), rheumatoid arthritis (RA), primary biliary cholangitis (PBC), and multiple sclerosis (MS). Accumulating studies demonstrate that miRNAs, which can be collected by noninvasive methods, have the potential to be developed as diagnostic and therapeutic biomarkers, the discovery and validation of which is essential for the improvement of disease diagnosis and clinical monitoring. Recently, with the development of detection tools, such as microarrays and NGS (Next Generation Sequencing), large amounts of miRNAs have been identified and suggest a critical role in the pathogenesis of autoimmune diseases. Several miRNAs associated diagnostic biomarkers have been developed and applied clinically, though the pharmaceutical industry is still facing challenges in commercialization and drug delivery. The development of miRNAs is less advanced for autoimmune diseases compared with cancer. However, drugs that target miRNAs have been introduced as candidates and adopted in clinical trials. This review comprehensively summarizes the differentially expressed miRNAs in several types of autoimmune diseases and discusses the role and the significance of miRNAs in clinical management. The study of miRNAs in autoimmunity promises to provide novel and broad diagnostic and therapeutic strategies for a clinical market that is still in its infancy.
Collapse
Affiliation(s)
- Lian Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical, Immunology, University of California at Davis School of Medicine, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China.
| |
Collapse
|
35
|
Cash JN, Chandan NR, Hsu AY, Sharma PV, Deng Q, Smrcka AV, Tesmer JJG. Discovery of Small Molecules That Target the Phosphatidylinositol (3,4,5) Trisphosphate (PIP 3)-Dependent Rac Exchanger 1 (P-Rex1) PIP 3-Binding Site and Inhibit P-Rex1-Dependent Functions in Neutrophils. Mol Pharmacol 2020; 97:226-236. [PMID: 31900312 DOI: 10.1124/mol.119.117556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (3,4,5) trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a Rho guanine-nucleotide exchange factor that was originally discovered in neutrophils and is regulated by G protein βγ subunits and the lipid PIP3 in response to chemoattractants. P-Rex1 has also become increasingly recognized for its role in promoting metastasis of breast cancer, prostate cancer, and melanoma. Recent structural, biochemical, and biologic work has shown that binding of PIP3 to the pleckstrin homology (PH) domain of P-Rex1 is required for its activation in cells. Here, differential scanning fluorimetry was used in a medium-throughput screen to identify six small molecules that interact with the P-Rex1 PH domain and block binding of and activation by PIP3 Three of these compounds inhibit N-formylmethionyl-leucyl-phenylalanine induced spreading of human neutrophils as well as activation of the GTPase Rac2, both of which are downstream effects of P-Rex1 activity. Furthermore, one of these compounds reduces neutrophil velocity and inhibits neutrophil recruitment in response to inflammation in a zebrafish model. These results suggest that the PH domain of P-Rex1 is a tractable drug target and that these compounds might be useful for inhibiting P-Rex1 in other experimental contexts. SIGNIFICANCE STATEMENT: A set of small molecules identified in a thermal shift screen directed against the phosphatidylinositol (3,4,5) trisphosphate-dependent Rac exchanger 1 (P-Rex1) pleckstrin homology domain has effects consistent with P-Rex1 inhibition in neutrophils.
Collapse
Affiliation(s)
- Jennifer N Cash
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Naincy R Chandan
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Alan Y Hsu
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Prateek V Sharma
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Qing Deng
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Alan V Smrcka
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|