1
|
Gentry H, Buckner C. Transitional gradation and the distinction between episodic and semantic memory. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230407. [PMID: 39278251 PMCID: PMC11449154 DOI: 10.1098/rstb.2023.0407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 09/18/2024] Open
Abstract
In this article, we explore various arguments against the traditional distinction between episodic and semantic memory based on the metaphysical phenomenon of transitional gradation. Transitional gradation occurs when two candidate kinds A and B grade into one another along a continuum according to their characteristic properties. We review two kinds of arguments-from the gradual semanticization of episodic memories as they are consolidated, and from the composition of episodic memories during storage and recall from semantic memories-that predict the proliferation of such transitional forms. We further explain why the distinction cannot be saved from the challenges of transitional gradation by appealing to distinct underlying memory structures and applying our perspective to the impasse over research into 'episodic-like' memory in non-human animals. On the whole, we recommend replacing the distinction with a dynamic life cycle of memory in which a variety of transitional forms will proliferate, and illustrate the utility of this perspective by tying together recent trends in animal episodic memory research and recommending productive future directions. This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
Affiliation(s)
- Hunter Gentry
- Philosophy, Kansas State University , Manhattan, KS 66506, USA
| | - Cameron Buckner
- Philosophy, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Tozzi F, Guglielmo S, Paraciani C, van den Oever MC, Mainardi M, Cattaneo A, Origlia N. Involvement of a lateral entorhinal cortex engram in episodic-like memory recall. Cell Rep 2024; 43:114795. [PMID: 39325619 DOI: 10.1016/j.celrep.2024.114795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/16/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Episodic memory relies on the entorhinal cortex (EC), a crucial hub connecting the hippocampus and sensory processing regions. This study investigates the role of the lateral EC (LEC) in episodic-like memory in mice. Here, we employ the object-place-context-recognition task (OPCRT), a behavioral test used to study episodic-like memory in rodents. Electrophysiology in brain slices reveals that OPCRT specifically induces a shift in the threshold for the induction of synaptic plasticity in LEC superficial layer II. Additionally, a dual viral system is used to express chemogenetic receptors coupled to the c-Fos promoter in neurons recruited during the learning. We demonstrate that the inhibition of LEC neurons impairs the performance of the mice in the memory task, while their stimulation significantly facilitates memory recall. Our findings provide evidence for an episodic-like memory engram in the LEC and emphasize its role in memory processing within the broader network of episodic memory.
Collapse
Affiliation(s)
- Francesca Tozzi
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, 56124 Pisa, Italy; Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Stefano Guglielmo
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, 56124 Pisa, Italy; Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Camilla Paraciani
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Marco Mainardi
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; Department of Biomedical Sciences University of Padova, 35122 Padova, Italy
| | - Antonino Cattaneo
- BIO@SNS Laboratory, Scuola Normale Superiore, Via Moruzzi 1, 56124 Pisa, Italy; European Brain Research Institute Rita Levi-Montalcini, Via del Fosso di Fiorano 64/65, 00143 Rome, Italy
| | - Nicola Origlia
- Institute of Neuroscience, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
3
|
Howard MW, Esfahani ZG, Le B, Sederberg PB. Learning temporal relationships between symbols with Laplace Neural Manifolds. ARXIV 2024:arXiv:2302.10163v4. [PMID: 36866224 PMCID: PMC9980275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Firing across populations of neurons in many regions of the mammalian brain maintains a temporal memory, a neural timeline of the recent past. Behavioral results demonstrate that people can both remember the past and anticipate the future over an analogous internal timeline. This paper presents a mathematical framework for building this timeline of the future. We assume that the input to the system is a time series of symbols-sparse tokenized representations of the present-in continuous time. The goal is to record pairwise temporal relationships between symbols over a wide range of time scales. We assume that the brain has access to a temporal memory in the form of the real Laplace transform. Hebbian associations with a diversity of synaptic time scales are formed between the past timeline and the present symbol. The associative memory stores the convolution between the past and the present. Knowing the temporal relationship between the past and the present allows one to infer relationships between the present and the future. With appropriate normalization, this Hebbian associative matrix can store a Laplace successor representation and a Laplace predecessor representation from which measures of temporal contingency can be evaluated. The diversity of synaptic time constants allows for learning of non-stationary statistics as well as joint statistics between triplets of symbols. This framework synthesizes a number of recent neuroscientific findings including results from dopamine neurons in the mesolimbic forebrain.
Collapse
Affiliation(s)
- Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave, Boston, 02215, MA, USA
| | - Zahra Gh Esfahani
- Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Ave, Boston, 02215, MA, USA
| | - Bao Le
- Department of Psychology, University of Virginia, 409 McCormick Road, Charlottesville, 22904, VA, USA
| | - Per B Sederberg
- Department of Psychology, University of Virginia, 409 McCormick Road, Charlottesville, 22904, VA, USA
| |
Collapse
|
4
|
Cao R, Bright IM, Howard MW. Ramping cells in the rodent medial prefrontal cortex encode time to past and future events via real Laplace transform. Proc Natl Acad Sci U S A 2024; 121:e2404169121. [PMID: 39254998 PMCID: PMC11420195 DOI: 10.1073/pnas.2404169121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
In interval reproduction tasks, animals must remember the event starting the interval and anticipate the time of the planned response to terminate the interval. The interval reproduction task thus allows for studying both memory for the past and anticipation of the future. We analyzed previously published recordings from the rodent medial prefrontal cortex [J. Henke et al., eLife10, e71612 (2021)] during an interval reproduction task and identified two cell groups by modeling their temporal receptive fields using hierarchical Bayesian models. The firing in the "past cells" group peaked at the start of the interval and relaxed exponentially back to baseline. The firing in the "future cells" group increased exponentially and peaked right before the planned action at the end of the interval. Contrary to the previous assumption that timing information in the brain has one or two time scales for a given interval, we found strong evidence for a continuous distribution of the exponential rate constants for both past and future cell populations. The real Laplace transformation of time predicts exponential firing with a continuous distribution of rate constants across the population. Therefore, the firing pattern of the past cells can be identified with the Laplace transform of time since the past event while the firing pattern of the future cells can be identified with the Laplace transform of time until the planned future event.
Collapse
Affiliation(s)
- Rui Cao
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - Ian M. Bright
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| | - Marc W. Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA02215
| |
Collapse
|
5
|
McKenzie S, Sommer AL, Donaldson TN, Pimentel I, Kakani M, Choi IJ, Newman EL, English DF. Event boundaries drive norepinephrine release and distinctive neural representations of space in the rodent hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605900. [PMID: 39131365 PMCID: PMC11312532 DOI: 10.1101/2024.07.30.605900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Episodic memories are temporally segmented around event boundaries that tend to coincide with moments of environmental change. During these times, the state of the brain should change rapidly, or reset, to ensure that the information encountered before and after an event boundary is encoded in different neuronal populations. Norepinephrine (NE) is thought to facilitate this network reorganization. However, it is unknown whether event boundaries drive NE release in the hippocampus and, if so, how NE release relates to changes in hippocampal firing patterns. The advent of the new GRABNE sensor now allows for the measurement of NE binding with sub-second resolution. Using this tool in mice, we tested whether NE is released into the dorsal hippocampus during event boundaries defined by unexpected transitions between spatial contexts and presentations of novel objections. We found that NE binding dynamics were well explained by the time elapsed after each of these environmental changes, and were not related to conditioned behaviors, exploratory bouts of movement, or reward. Familiarity with a spatial context accelerated the rate in which phasic NE binding decayed to baseline. Knowing when NE is elevated, we tested how hippocampal coding of space differs during these moments. Immediately after context transitions we observed relatively unique patterns of neural spiking which settled into a modal state at a similar rate in which NE returned to baseline. These results are consistent with a model wherein NE release drives hippocampal representations away from a steady-state attractor. We hypothesize that the distinctive neural codes observed after each event boundary may facilitate long-term memory and contribute to the neural basis for the primacy effect.
Collapse
Affiliation(s)
- Sam McKenzie
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Alexandra L. Sommer
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Tia N. Donaldson
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
| | - Infania Pimentel
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Mechanical Engineering, Tufts School of Engineering, Medford MA 02155
| | - Meenakshi Kakani
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87106
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Irene Jungyeon Choi
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
| | - Ehren L. Newman
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405
| | | |
Collapse
|
6
|
Courellis HS, Valiante TA, Mamelak AN, Adolphs R, Rutishauser U. Neural dynamics underlying minute-timescale persistent behavior in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603717. [PMID: 39071326 PMCID: PMC11275932 DOI: 10.1101/2024.07.16.603717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The ability to pursue long-term goals relies on a representations of task context that can both be maintained over long periods of time and switched flexibly when goals change. Little is known about the neural substrate for such minute-scale maintenance of task sets. Utilizing recordings in neurosurgical patients, we examined how groups of neurons in the human medial frontal cortex and hippocampus represent task contexts. When cued explicitly, task context was encoded in both brain areas and changed rapidly at task boundaries. Hippocampus exhibited a temporally dynamic code with fast decorrelation over time, preventing cross-temporal generalization. Medial frontal cortex exhibited a static code that decorrelated slowly, allowing generalization across minutes of time. When task context needed to be inferred as a latent variable, hippocampus encoded task context with a static code. These findings reveal two possible regimes for encoding minute-scale task-context representations that were engaged differently based on task demands.
Collapse
|
7
|
Lohnas LJ, Howard MW. The influence of emotion on temporal context models. Cogn Emot 2024:1-29. [PMID: 39007902 DOI: 10.1080/02699931.2024.2371075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Temporal context models (TCMs) have been influential in understanding episodic memory and its neural underpinnings. Recently, TCMs have been extended to explain emotional memory effects, one of the most clinically important findings in the field of memory research. This review covers recent advances in hypotheses for the neural representation of spatiotemporal context through the lens of TCMs, including their ability to explain the influence of emotion on episodic and temporal memory. In recent years, simplifying assumptions of "classical" TCMs - with exponential trace decay and the mechanism by which temporal context is recovered - have become increasingly clear. The review also outlines how recent advances could be incorporated into a future TCM, beyond classical assumptions, to integrate emotional modulation.
Collapse
Affiliation(s)
- Lynn J Lohnas
- Department of Psychology, Syracuse University, Syracuse, NY, USA
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
8
|
Neupane S, Fiete I, Jazayeri M. Mental navigation in the primate entorhinal cortex. Nature 2024; 630:704-711. [PMID: 38867051 PMCID: PMC11224022 DOI: 10.1038/s41586-024-07557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
A cognitive map is a suitably structured representation that enables novel computations using previous experience; for example, planning a new route in a familiar space1. Work in mammals has found direct evidence for such representations in the presence of exogenous sensory inputs in both spatial2,3 and non-spatial domains4-10. Here we tested a foundational postulate of the original cognitive map theory1,11: that cognitive maps support endogenous computations without external input. We recorded from the entorhinal cortex of monkeys in a mental navigation task that required the monkeys to use a joystick to produce one-dimensional vectors between pairs of visual landmarks without seeing the intermediate landmarks. The ability of the monkeys to perform the task and generalize to new pairs indicated that they relied on a structured representation of the landmarks. Task-modulated neurons exhibited periodicity and ramping that matched the temporal structure of the landmarks and showed signatures of continuous attractor networks12,13. A continuous attractor network model of path integration14 augmented with a Hebbian-like learning mechanism provided an explanation of how the system could endogenously recall landmarks. The model also made an unexpected prediction that endogenous landmarks transiently slow path integration, reset the dynamics and thereby reduce variability. This prediction was borne out in a reanalysis of firing rate variability and behaviour. Our findings link the structured patterns of activity in the entorhinal cortex to the endogenous recruitment of a cognitive map during mental navigation.
Collapse
Affiliation(s)
- Sujaya Neupane
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ila Fiete
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mehrdad Jazayeri
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Spens E, Burgess N. A generative model of memory construction and consolidation. Nat Hum Behav 2024; 8:526-543. [PMID: 38242925 PMCID: PMC10963272 DOI: 10.1038/s41562-023-01799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/05/2023] [Indexed: 01/21/2024]
Abstract
Episodic memories are (re)constructed, share neural substrates with imagination, combine unique features with schema-based predictions and show schema-based distortions that increase with consolidation. Here we present a computational model in which hippocampal replay (from an autoassociative network) trains generative models (variational autoencoders) to (re)create sensory experiences from latent variable representations in entorhinal, medial prefrontal and anterolateral temporal cortices via the hippocampal formation. Simulations show effects of memory age and hippocampal lesions in agreement with previous models, but also provide mechanisms for semantic memory, imagination, episodic future thinking, relational inference and schema-based distortions including boundary extension. The model explains how unique sensory and predictable conceptual elements of memories are stored and reconstructed by efficiently combining both hippocampal and neocortical systems, optimizing the use of limited hippocampal storage for new and unusual information. Overall, we believe hippocampal replay training generative models provides a comprehensive account of memory construction, imagination and consolidation.
Collapse
Affiliation(s)
- Eleanor Spens
- UCL Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, University College London, London, UK.
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
10
|
Cao R, Bright IM, Howard MW. Ramping cells in rodent mPFC encode time to past and future events via real Laplace transform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580170. [PMID: 38405896 PMCID: PMC10888827 DOI: 10.1101/2024.02.13.580170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In interval reproduction tasks, animals must remember the event starting the interval and anticipate the time of the planned response to terminate the interval. The interval reproduction task thus allows for studying both memory for the past and anticipation of the future. We analyzed previously published recordings from rodent mPFC (Henke et al., 2021) during an interval reproduction task and identified two cell groups by modeling their temporal receptive fields using hierarchical Bayesian models. The firing in the "past cells" group peaked at the start of the interval and relaxed exponentially back to baseline. The firing in the "future cells" group increased exponentially and peaked right before the planned action at the end of the interval. Contrary to the previous assumption that timing information in the brain has one or two time scales for a given interval, we found strong evidence for a continuous distribution of the exponential rate constants for both past and future cell populations. The real Laplace transformation of time predicts exponential firing with a continuous distribution of rate constants across the population. Therefore, the firing pattern of the past cells can be identified with the Laplace transform of time since the past event while the firing pattern of the future cells can be identified with the Laplace transform of time until the planned future event.
Collapse
Affiliation(s)
- Rui Cao
- Department of Psychological and Brain Sciences, Boston University
| | - Ian M Bright
- Department of Psychological and Brain Sciences, Boston University
| | - Marc W Howard
- Department of Psychological and Brain Sciences, Boston University
| |
Collapse
|
11
|
Affan RO, Bright IM, Pemberton LN, Cruzado NA, Scott BB, Howard MW. Ramping Dynamics in the Frontal Cortex Unfold Over Multiple Timescales During Motor Planning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578819. [PMID: 38370792 PMCID: PMC10871223 DOI: 10.1101/2024.02.05.578819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Plans are formulated and refined over the period leading to their execution, ensuring that the appropriate behavior is enacted at just the right time. While existing evidence suggests that memory circuits convey the passage of time through diverse neuronal responses, it remains unclear whether the neural circuits involved in planning behavior exhibit analogous temporal dynamics. Using publicly available data, we analyzed how activity in the frontal motor cortex evolves during motor planning. Individual neurons exhibited diverse ramping activity throughout a delay interval that preceded a planned movement. The collective activity of these neurons was useful for making temporal predictions that became increasingly precise as the movement time approached. This temporal diversity gave rise to a spectrum of encoding patterns, ranging from stable to dynamic representations of the upcoming movement. Our results indicate that neural activity unfolds over multiple timescales during motor planning, suggesting a shared mechanism in the brain for processing temporal information related to both past memories and future plans.
Collapse
Affiliation(s)
- R O Affan
- Graduate Program in Neuroscience, Boston University, Boston, MA
| | - I M Bright
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| | - L N Pemberton
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| | - N A Cruzado
- Graduate Program in Neuroscience, Boston University, Boston, MA
| | - B B Scott
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| | - M W Howard
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215
| |
Collapse
|
12
|
Wang C, Lee H, Rao G, Knierim JJ. Multiplexing of temporal and spatial information in the lateral entorhinal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578307. [PMID: 38352543 PMCID: PMC10862918 DOI: 10.1101/2024.01.31.578307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Episodic memory involves the processing of spatial and temporal aspects of personal experiences. The lateral entorhinal cortex (LEC) plays an essential role in subserving memory. However, the specific mechanism by which LEC integrates spatial and temporal information remains elusive. Here, we recorded LEC neurons while rats performed foraging and shuttling behaviors on one-dimensional, linear or circular tracks. Unlike open-field foraging tasks, many LEC cells displayed spatial firing fields in these tasks and demonstrated selectivity for traveling directions. Furthermore, some LEC neurons displayed changes in the firing rates of their spatial rate maps during a session, a phenomenon referred to as rate remapping. Importantly, this temporal modulation was consistent across sessions, even when the spatial environment was altered. Notably, the strength of temporal modulation was found to be greater in LEC compared to other brain regions, such as the medial entorhinal cortex (MEC), CA1, and CA3. Thus, the spatial rate mapping observed in LEC neurons may serve as a coding mechanism for temporal context, allowing for flexible multiplexing of spatial and temporal information.
Collapse
Affiliation(s)
- Cheng Wang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
| | - Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
| | - Geeta Rao
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD
- Lead contact
| |
Collapse
|
13
|
de Lafuente V, Jazayeri M, Merchant H, García-Garibay O, Cadena-Valencia J, Malagón AM. Keeping time and rhythm by internal simulation of sensory stimuli and behavioral actions. SCIENCE ADVANCES 2024; 10:eadh8185. [PMID: 38198556 PMCID: PMC10780886 DOI: 10.1126/sciadv.adh8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Effective behavior often requires synchronizing our actions with changes in the environment. Rhythmic changes in the environment are easy to predict, and we can readily time our actions to them. Yet, how the brain encodes and maintains rhythms is not known. Here, we trained primates to internally maintain rhythms of different tempos and performed large-scale recordings of neuronal activity across the sensory-motor hierarchy. Results show that maintaining rhythms engages multiple brain areas, including visual, parietal, premotor, prefrontal, and hippocampal regions. Each recorded area displayed oscillations in firing rates and oscillations in broadband local field potential power that reflected the temporal and spatial characteristics of an internal metronome, which flexibly encoded fast, medium, and slow tempos. The presence of widespread metronome-related activity, in the absence of stimuli and motor activity, suggests that internal simulation of stimuli and actions underlies timekeeping and rhythm maintenance.
Collapse
Affiliation(s)
- Victor de Lafuente
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Mehrdad Jazayeri
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hugo Merchant
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Otto García-Garibay
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| | - Jaime Cadena-Valencia
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
- Faculty of Science and Medicine, Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg 1700, Switzerland
- Cognitive Neuroscience Laboratory, German Primate Center—Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Ana M. Malagón
- Institute of Neurobiology, National Autonomous University of Mexico, Boulevard Juriquilla 3001, Querétaro, QRO 76230, México
| |
Collapse
|
14
|
Rolando F, Kononowicz TW, Duhamel JR, Doyère V, Wirth S. Distinct neural adaptations to time demand in the striatum and the hippocampus. Curr Biol 2024; 34:156-170.e7. [PMID: 38141617 DOI: 10.1016/j.cub.2023.11.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/18/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
How do neural codes adjust to track time across a range of resolutions, from milliseconds to multi-seconds, as a function of the temporal frequency at which events occur? To address this question, we studied time-modulated cells in the striatum and the hippocampus, while macaques categorized three nested intervals within the sub-second or the supra-second range (up to 1, 2, 4, or 8 s), thereby modifying the temporal resolution needed to solve the task. Time-modulated cells carried more information for intervals with explicit timing demand, than for any other interval. The striatum, particularly the caudate, supported the most accurate temporal prediction throughout all time ranges. Strikingly, its temporal readout adjusted non-linearly to the time range, suggesting that the striatal resolution shifted from a precise millisecond to a coarse multi-second range as a function of demand. This is in line with monkey's behavioral latencies, which indicated that they tracked time until 2 s but employed a coarse categorization strategy for durations beyond. By contrast, the hippocampus discriminated only the beginning from the end of intervals, regardless of the range. We propose that the hippocampus may provide an overall poor signal marking an event's beginning, whereas the striatum optimizes neural resources to process time throughout an interval adapting to the ongoing timing necessity.
Collapse
Affiliation(s)
- Felipe Rolando
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université Lyon 1, 67 boulevard Pinel, 69500 Bron, France
| | - Tadeusz W Kononowicz
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université Lyon 1, 67 boulevard Pinel, 69500 Bron, France; Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay (NeuroPSI), 91400 Saclay, France; Institute of Psychology, The Polish Academy of Sciences, ul. Jaracza 1, 00-378 Warsaw, Poland
| | - Jean-René Duhamel
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université Lyon 1, 67 boulevard Pinel, 69500 Bron, France
| | - Valérie Doyère
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay (NeuroPSI), 91400 Saclay, France
| | - Sylvia Wirth
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, Université Lyon 1, 67 boulevard Pinel, 69500 Bron, France.
| |
Collapse
|
15
|
Antony JW, Van Dam J, Massey JR, Barnett AJ, Bennion KA. Long-term, multi-event surprise correlates with enhanced autobiographical memory. Nat Hum Behav 2023; 7:2152-2168. [PMID: 37322234 DOI: 10.1038/s41562-023-01631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
Neurobiological and psychological models of learning emphasize the importance of prediction errors (surprises) for memory formation. This relationship has been shown for individual momentary surprising events; however, it is less clear whether surprise that unfolds across multiple events and timescales is also linked with better memory of those events. We asked basketball fans about their most positive and negative autobiographical memories of individual plays, games and seasons, allowing surprise measurements spanning seconds, hours and months. We used advanced analytics on National Basketball Association play-by-play data and betting odds spanning 17 seasons, more than 22,000 games and more than 5.6 million plays to compute and align the estimated surprise value of each memory. We found that surprising events were associated with better recall of positive memories on the scale of seconds and months and negative memories across all three timescales. Game and season memories could not be explained by surprise at shorter timescales, suggesting that long-term, multi-event surprise correlates with memory. These results expand notions of surprise in models of learning and reinforce its relevance in real-world domains.
Collapse
Affiliation(s)
- James W Antony
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA.
| | - Jacob Van Dam
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Jarett R Massey
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Kelly A Bennion
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| |
Collapse
|
16
|
M Aghajan Z, Kreiman G, Fried I. Minute-scale periodicity of neuronal firing in the human entorhinal cortex. Cell Rep 2023; 42:113271. [PMID: 37906591 DOI: 10.1016/j.celrep.2023.113271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/09/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023] Open
Abstract
Grid cells in the entorhinal cortex demonstrate spatially periodic firing, thought to provide a spatial map on behaviorally relevant length scales. Whether such periodicity exists for behaviorally relevant time scales in the human brain remains unclear. We investigate neuronal firing during a temporally continuous experience by presenting 14 neurosurgical patients with a video while recording neuronal activity from multiple brain regions. We report on neurons that modulate their activity in a periodic manner across different time scales-from seconds to many minutes, most prevalently in the entorhinal cortex. These neurons remap their dominant periodicity to shorter time scales during a subsequent recognition memory task. When the video is presented at two different speeds, a significant percentage of these temporally periodic cells (TPCs) maintain their time scales, suggesting a degree of invariance. The TPCs' temporal periodicity might complement the spatial periodicity of grid cells and together provide scalable spatiotemporal metrics for human experience.
Collapse
Affiliation(s)
- Zahra M Aghajan
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Gabriel Kreiman
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA; Faculty of Medicine, Tel Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
17
|
Schonhaut DR, Aghajan ZM, Kahana MJ, Fried I. A neural code for time and space in the human brain. Cell Rep 2023; 42:113238. [PMID: 37906595 DOI: 10.1016/j.celrep.2023.113238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Time and space are primary dimensions of human experience. Separate lines of investigation have identified neural correlates of time and space, yet little is known about how these representations converge during self-guided experience. Here, 10 subjects with intracranially implanted microelectrodes play a timed, virtual navigation game featuring object search and retrieval tasks separated by fixed delays. Time cells and place cells activate in parallel during timed navigation intervals, whereas a separate time cell sequence spans inter-task delays. The prevalence, firing rates, and behavioral coding strengths of time cells and place cells are indistinguishable-yet time cells selectively remap between search and retrieval tasks, while place cell responses remain stable. Thus, the brain can represent time and space as overlapping but dissociable dimensions. Time cells and place cells may constitute a biological basis for the cognitive map of spatiotemporal context onto which memories are written.
Collapse
Affiliation(s)
- Daniel R Schonhaut
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zahra M Aghajan
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA 90024, USA; Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel.
| |
Collapse
|
18
|
Lamberti M, Tripathi S, van Putten MJAM, Marzen S, le Feber J. Prediction in cultured cortical neural networks. PNAS NEXUS 2023; 2:pgad188. [PMID: 37383023 PMCID: PMC10299080 DOI: 10.1093/pnasnexus/pgad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/18/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
Theory suggest that networks of neurons may predict their input. Prediction may underlie most aspects of information processing and is believed to be involved in motor and cognitive control and decision-making. Retinal cells have been shown to be capable of predicting visual stimuli, and there is some evidence for prediction of input in the visual cortex and hippocampus. However, there is no proof that the ability to predict is a generic feature of neural networks. We investigated whether random in vitro neuronal networks can predict stimulation, and how prediction is related to short- and long-term memory. To answer these questions, we applied two different stimulation modalities. Focal electrical stimulation has been shown to induce long-term memory traces, whereas global optogenetic stimulation did not. We used mutual information to quantify how much activity recorded from these networks reduces the uncertainty of upcoming stimuli (prediction) or recent past stimuli (short-term memory). Cortical neural networks did predict future stimuli, with the majority of all predictive information provided by the immediate network response to the stimulus. Interestingly, prediction strongly depended on short-term memory of recent sensory inputs during focal as well as global stimulation. However, prediction required less short-term memory during focal stimulation. Furthermore, the dependency on short-term memory decreased during 20 h of focal stimulation, when long-term connectivity changes were induced. These changes are fundamental for long-term memory formation, suggesting that besides short-term memory the formation of long-term memory traces may play a role in efficient prediction.
Collapse
Affiliation(s)
- Martina Lamberti
- Department of Clinical Neurophysiology, University of Twente, PO Box 217 7500AE, Enschede, The Netherlands
| | - Shiven Tripathi
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, PO Box 217 7500AE, Enschede, The Netherlands
| | - Sarah Marzen
- W. M. Keck Science Department, Pitzer, Scripps, and Claremont McKenna College, Claremont, CA 91711, USA
| | - Joost le Feber
- Department of Clinical Neurophysiology, University of Twente, PO Box 217 7500AE, Enschede, The Netherlands
| |
Collapse
|
19
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
20
|
Zeraati R, Shi YL, Steinmetz NA, Gieselmann MA, Thiele A, Moore T, Levina A, Engel TA. Intrinsic timescales in the visual cortex change with selective attention and reflect spatial connectivity. Nat Commun 2023; 14:1858. [PMID: 37012299 PMCID: PMC10070246 DOI: 10.1038/s41467-023-37613-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Intrinsic timescales characterize dynamics of endogenous fluctuations in neural activity. Variation of intrinsic timescales across the neocortex reflects functional specialization of cortical areas, but less is known about how intrinsic timescales change during cognitive tasks. We measured intrinsic timescales of local spiking activity within columns of area V4 in male monkeys performing spatial attention tasks. The ongoing spiking activity unfolded across at least two distinct timescales, fast and slow. The slow timescale increased when monkeys attended to the receptive fields location and correlated with reaction times. By evaluating predictions of several network models, we found that spatiotemporal correlations in V4 activity were best explained by the model in which multiple timescales arise from recurrent interactions shaped by spatially arranged connectivity, and attentional modulation of timescales results from an increase in the efficacy of recurrent interactions. Our results suggest that multiple timescales may arise from the spatial connectivity in the visual cortex and flexibly change with the cognitive state due to dynamic effective interactions between neurons.
Collapse
Affiliation(s)
- Roxana Zeraati
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Yan-Liang Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Marc A Gieselmann
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander Thiele
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Anna Levina
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
- Department of Computer Science, University of Tübingen, Tübingen, Germany.
- Bernstein Center for Computational Neuroscience Tübingen, Tübingen, Germany.
| | - Tatiana A Engel
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
21
|
Lindeberg T. A time-causal and time-recursive scale-covariant scale-space representation of temporal signals and past time. BIOLOGICAL CYBERNETICS 2023; 117:21-59. [PMID: 36689001 PMCID: PMC10160219 DOI: 10.1007/s00422-022-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/21/2022] [Indexed: 05/05/2023]
Abstract
This article presents an overview of a theory for performing temporal smoothing on temporal signals in such a way that: (i) temporally smoothed signals at coarser temporal scales are guaranteed to constitute simplifications of corresponding temporally smoothed signals at any finer temporal scale (including the original signal) and (ii) the temporal smoothing process is both time-causal and time-recursive, in the sense that it does not require access to future information and can be performed with no other temporal memory buffer of the past than the resulting smoothed temporal scale-space representations themselves. For specific subsets of parameter settings for the classes of linear and shift-invariant temporal smoothing operators that obey this property, it is shown how temporal scale covariance can be additionally obtained, guaranteeing that if the temporal input signal is rescaled by a uniform temporal scaling factor, then also the resulting temporal scale-space representations of the rescaled temporal signal will constitute mere rescalings of the temporal scale-space representations of the original input signal, complemented by a shift along the temporal scale dimension. The resulting time-causal limit kernel that obeys this property constitutes a canonical temporal kernel for processing temporal signals in real-time scenarios when the regular Gaussian kernel cannot be used, because of its non-causal access to information from the future, and we cannot additionally require the temporal smoothing process to comprise a complementary memory of the past beyond the information contained in the temporal smoothing process itself, which in this way also serves as a multi-scale temporal memory of the past. We describe how the time-causal limit kernel relates to previously used temporal models, such as Koenderink's scale-time kernels and the ex-Gaussian kernel. We do also give an overview of how the time-causal limit kernel can be used for modelling the temporal processing in models for spatio-temporal and spectro-temporal receptive fields, and how it more generally has a high potential for modelling neural temporal response functions in a purely time-causal and time-recursive way, that can also handle phenomena at multiple temporal scales in a theoretically well-founded manner. We detail how this theory can be efficiently implemented for discrete data, in terms of a set of recursive filters coupled in cascade. Hence, the theory is generally applicable for both: (i) modelling continuous temporal phenomena over multiple temporal scales and (ii) digital processing of measured temporal signals in real time. We conclude by stating implications of the theory for modelling temporal phenomena in biological, perceptual, neural and memory processes by mathematical models, as well as implications regarding the philosophy of time and perceptual agents. Specifically, we propose that for A-type theories of time, as well as for perceptual agents, the notion of a non-infinitesimal inner temporal scale of the temporal receptive fields has to be included in representations of the present, where the inherent nonzero temporal delay of such time-causal receptive fields implies a need for incorporating predictions from the actual time-delayed present in the layers of a perceptual hierarchy, to make it possible for a representation of the perceptual present to constitute a representation of the environment with timing properties closer to the actual present.
Collapse
Affiliation(s)
- Tony Lindeberg
- Computational Brain Science Lab, Division of Computational Science and Technology, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden.
| |
Collapse
|
22
|
Sawatani F, Ide K, Takahashi S. The neural representation of time distributed across multiple brain regions differs between implicit and explicit time demands. Neurobiol Learn Mem 2023; 199:107731. [PMID: 36764645 DOI: 10.1016/j.nlm.2023.107731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/19/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Animals appear to possess an internal timer during action, based on the passage of time. However, the neural underpinnings of the perception of time, ranging from seconds to minutes, remain unclear. Herein, we considered the neural representation of time based on mounting evidence on the neural correlates of time perception. The passage of time in the brain is represented by two types of neural encoding as follows: (i) the modulation of firing rates in single neurons and (ii) the sequential activity in neural ensembles. Time-dependent neural activity reflects the relative time rather than the absolute time, similar to a clock. They emerge in multiple regions, including the hippocampus, medial and lateral entorhinal cortices, medial prefrontal cortex, and dorsal striatum. Moreover, they involve different brain regions, depending on an implicit or explicit event duration. Thus, the two types of internal timers distributed across multiple brain regions simultaneously engage in time perception, in response to implicit or explicit time demands.
Collapse
Affiliation(s)
- Fumiya Sawatani
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan.
| | - Kaoru Ide
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan
| | - Susumu Takahashi
- Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University, Kyotanabe City, Kyoto 610-0394, Japan.
| |
Collapse
|
23
|
Jeong H, Taylor A, Floeder JR, Lohmann M, Mihalas S, Wu B, Zhou M, Burke DA, Namboodiri VMK. Mesolimbic dopamine release conveys causal associations. Science 2022; 378:eabq6740. [PMID: 36480599 PMCID: PMC9910357 DOI: 10.1126/science.abq6740] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Learning to predict rewards based on environmental cues is essential for survival. It is believed that animals learn to predict rewards by updating predictions whenever the outcome deviates from expectations, and that such reward prediction errors (RPEs) are signaled by the mesolimbic dopamine system-a key controller of learning. However, instead of learning prospective predictions from RPEs, animals can infer predictions by learning the retrospective cause of rewards. Hence, whether mesolimbic dopamine instead conveys a causal associative signal that sometimes resembles RPE remains unknown. We developed an algorithm for retrospective causal learning and found that mesolimbic dopamine release conveys causal associations but not RPE, thereby challenging the dominant theory of reward learning. Our results reshape the conceptual and biological framework for associative learning.
Collapse
Affiliation(s)
- Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Annie Taylor
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Joseph R Floeder
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | | | - Stefan Mihalas
- Allen Institute for Brain Science, Seattle, WA, USA
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Brenda Wu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Mingkang Zhou
- Department of Neurology, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Dennis A Burke
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, CA, USA
| |
Collapse
|
24
|
Barri A, Wiechert MT, Jazayeri M, DiGregorio DA. Synaptic basis of a sub-second representation of time in a neural circuit model. Nat Commun 2022; 13:7902. [PMID: 36550115 PMCID: PMC9780315 DOI: 10.1038/s41467-022-35395-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Temporal sequences of neural activity are essential for driving well-timed behaviors, but the underlying cellular and circuit mechanisms remain elusive. We leveraged the well-defined architecture of the cerebellum, a brain region known to support temporally precise actions, to explore theoretically whether the experimentally observed diversity of short-term synaptic plasticity (STP) at the input layer could generate neural dynamics sufficient for sub-second temporal learning. A cerebellar circuit model equipped with dynamic synapses produced a diverse set of transient granule cell firing patterns that provided a temporal basis set for learning precisely timed pauses in Purkinje cell activity during simulated delay eyelid conditioning and Bayesian interval estimation. The learning performance across time intervals was influenced by the temporal bandwidth of the temporal basis, which was determined by the input layer synaptic properties. The ubiquity of STP throughout the brain positions it as a general, tunable cellular mechanism for sculpting neural dynamics and fine-tuning behavior.
Collapse
Affiliation(s)
- A. Barri
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| | - M. T. Wiechert
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| | - M. Jazayeri
- grid.116068.80000 0001 2341 2786McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
| | - D. A. DiGregorio
- grid.508487.60000 0004 7885 7602Institut Pasteur, Université Paris Cité, Synapse and Circuit Dynamics Laboratory, CNRS UMR 3571 Paris, France
| |
Collapse
|
25
|
Tiganj Z, Singh I, Esfahani ZG, Howard MW. Scanning a compressed ordered representation of the future. J Exp Psychol Gen 2022; 151:3082-3096. [PMID: 35913876 PMCID: PMC9670103 DOI: 10.1037/xge0001243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several authors have suggested a deep symmetry between the psychological processes that underlie our ability to remember the past and make predictions about the future. The judgment of recency (JOR) task measures temporal order judgments for the past by presenting pairs of probe stimuli; participants choose the probe that was presented more recently. We performed a short-term relative JOR task and introduced a novel judgment of imminence (JOI) task to study temporal order judgments for the future. In the JOR task, participants were presented with a sequence of stimuli and asked to choose which of two probe stimuli was presented closer to the present. In the JOI task, participants were trained on a probabilistic sequence. After training, the sequence was interrupted with probe stimuli. Participants were asked to choose which of two probe stimuli was expected to be presented closer to the present. Replicating prior work on JOR, we found that RT results supported a backward self-terminating search model operating on a temporally organized representation of the past. We also showed that RT distributions are consistent with this model and that the temporally organized representation is compressed. Critically, results for the JOI task probing expectations of the future suggest a forward self-terminating search model operating on a temporally organized representation of the future. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
26
|
Wang J, Tambini A, Lapate RC. The tie that binds: temporal coding and adaptive emotion. Trends Cogn Sci 2022; 26:1103-1118. [PMID: 36302710 DOI: 10.1016/j.tics.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/11/2022]
Abstract
Emotions are temporally dynamic, but the persistence of emotions outside of their appropriate temporal context is detrimental to health and well-being. Yet, precisely how temporal coding and emotional processing interact remains unclear. Recently unveiled temporal context representations in the hippocampus, entorhinal cortex (EC), and prefrontal cortex (PFC) support memory for what happened when. Here, we discuss how these neural temporal representations may interact with densely interconnected amygdala circuitry to shape emotional functioning. We propose a neuroanatomically informed framework suggesting that high-fidelity temporal representations linked to dynamic experiences promote emotion regulation and adaptive emotional memories. Then, we discuss how newly-identified synaptic and molecular features of amygdala-hippocampal projections suggest that intense, amygdala-dependent emotional responses may distort temporal-coding mechanisms. We conclude by identifying key avenues for future research.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Arielle Tambini
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Regina C Lapate
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
27
|
Jakob AMV, Mikhael JG, Hamilos AE, Assad JA, Gershman SJ. Dopamine mediates the bidirectional update of interval timing. Behav Neurosci 2022; 136:445-452. [PMID: 36222637 PMCID: PMC9725808 DOI: 10.1037/bne0000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The role of dopamine (DA) as a reward prediction error (RPE) signal in reinforcement learning (RL) tasks has been well-established over the past decades. Recent work has shown that the RPE interpretation can also account for the effects of DA on interval timing by controlling the speed of subjective time. According to this theory, the timing of the dopamine signal relative to reward delivery dictates whether subjective time speeds up or slows down: Early DA signals speed up subjective time and late signals slow it down. To test this bidirectional prediction, we reanalyzed measurements of dopaminergic neurons in the substantia nigra pars compacta of mice performing a self-timed movement task. Using the slope of ramping dopamine activity as a readout of subjective time speed, we found that trial-by-trial changes in the slope could be predicted from the timing of dopamine activity on the previous trial. This result provides a key piece of evidence supporting a unified computational theory of RL and interval timing. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Anthony M V Jakob
- Section of Life Sciences Engineering, École Polytechnique Fédérale de Lausanne
| | | | | | - John A Assad
- Department of Neurobiology, Harvard Medical School
| | - Samuel J Gershman
- Department of Psychology and Center for Brain Science, Harvard University
| |
Collapse
|
28
|
Tsao A, Yousefzadeh SA, Meck WH, Moser MB, Moser EI. The neural bases for timing of durations. Nat Rev Neurosci 2022; 23:646-665. [PMID: 36097049 DOI: 10.1038/s41583-022-00623-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Durations are defined by a beginning and an end, and a major distinction is drawn between durations that start in the present and end in the future ('prospective timing') and durations that start in the past and end either in the past or the present ('retrospective timing'). Different psychological processes are thought to be engaged in each of these cases. The former is thought to engage a clock-like mechanism that accurately tracks the continuing passage of time, whereas the latter is thought to engage a reconstructive process that utilizes both temporal and non-temporal information from the memory of past events. We propose that, from a biological perspective, these two forms of duration 'estimation' are supported by computational processes that are both reliant on population state dynamics but are nevertheless distinct. Prospective timing is effectively carried out in a single step where the ongoing dynamics of population activity directly serve as the computation of duration, whereas retrospective timing is carried out in two steps: the initial generation of population state dynamics through the process of event segmentation and the subsequent computation of duration utilizing the memory of those dynamics.
Collapse
Affiliation(s)
- Albert Tsao
- Department of Biology, Stanford University, Stanford, CA, USA.
| | | | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - May-Britt Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Edvard I Moser
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
29
|
Ning W, Bladon JH, Hasselmo ME. Complementary representations of time in the prefrontal cortex and hippocampus. Hippocampus 2022; 32:577-596. [PMID: 35822589 PMCID: PMC9444055 DOI: 10.1002/hipo.23451] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
Episodic memory binds the spatial and temporal relationships between the elements of experience. The hippocampus encodes space through place cells that fire at specific spatial locations. Similarly, time cells fire sequentially at specific time points within a temporally organized experience. Recent studies in rodents, monkeys, and humans have identified time cells with discrete firing fields and cells with monotonically changing activity in supporting the temporal organization of events across multiple timescales. Using in vivo electrophysiological tetrode recordings, we simultaneously recorded neurons from the prefrontal cortex and dorsal CA1 of the hippocampus while rats performed a delayed match to sample task. During the treadmill mnemonic delay, hippocampal time cells exhibited sparser firing fields with decreasing resolution over time, consistent with previous results. In comparison, temporally modulated cells in the prefrontal cortex showed more monotonically changing firing rates, ramping up or decaying with the passage of time, and exhibited greater temporal precision for Bayesian decoding of time at long time lags. These time cells show exquisite temporal resolution both in their firing fields and in the fine timing of spikes relative to the phase of theta oscillations. Here, we report evidence of theta phase precession in both the prefrontal cortex and hippocampus during the temporal delay, however, hippocampal cells exhibited steeper phase precession slopes and more punctate time fields. To disentangle whether time cell activity reflects elapsed time or distance traveled, we varied the treadmill running speed on each trial. While many neurons contained multiplexed representations of time and distance, both regions were more strongly influenced by time than distance. Overall, these results demonstrate the flexible integration of spatiotemporal dimensions and reveal complementary representations of time in the prefrontal cortex and hippocampus in supporting memory-guided behavior.
Collapse
Affiliation(s)
- Wing Ning
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California, USA
| | - John H. Bladon
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
- Department of Psychology, Brandeis University, Waltham, Massachusetts, USA
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Bellmund JLS, Deuker L, Montijn ND, Doeller CF. Mnemonic construction and representation of temporal structure in the hippocampal formation. Nat Commun 2022; 13:3395. [PMID: 35739096 PMCID: PMC9226117 DOI: 10.1038/s41467-022-30984-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
The hippocampal-entorhinal region supports memory for episodic details, such as temporal relations of sequential events, and mnemonic constructions combining experiences for inferential reasoning. However, it is unclear whether hippocampal event memories reflect temporal relations derived from mnemonic constructions, event order, or elapsing time, and whether these sequence representations generalize temporal relations across similar sequences. Here, participants mnemonically constructed times of events from multiple sequences using infrequent cues and their experience of passing time. After learning, event representations in the anterior hippocampus reflected temporal relations based on constructed times. Temporal relations were generalized across sequences, revealing distinct representational formats for events from the same or different sequences. Structural knowledge about time patterns, abstracted from different sequences, biased the construction of specific event times. These findings demonstrate that mnemonic construction and the generalization of relational knowledge combine in the hippocampus, consistent with the simulation of scenarios from episodic details and structural knowledge.
Collapse
Affiliation(s)
- Jacob L S Bellmund
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Lorena Deuker
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Nicole D Montijn
- Department of Clinical Psychology, Utrecht University, Utrecht, The Netherlands
| | - Christian F Doeller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, Norwegian University of Science and Technology, Trondheim, Norway.
- Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany.
| |
Collapse
|
31
|
Takehara-Nishiuchi K. Neuronal Code for Episodic Time in the Lateral Entorhinal Cortex. Front Integr Neurosci 2022; 16:899412. [PMID: 35573446 PMCID: PMC9099416 DOI: 10.3389/fnint.2022.899412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Neuroscience Program, University of Toronto, Toronto, ON, Canada
- *Correspondence: Kaori Takehara-Nishiuchi
| |
Collapse
|
32
|
Liu Y, Levy S, Mau W, Geva N, Rubin A, Ziv Y, Hasselmo M, Howard M. Consistent population activity on the scale of minutes in the mouse hippocampus. Hippocampus 2022; 32:359-372. [PMID: 35225408 PMCID: PMC10085730 DOI: 10.1002/hipo.23409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
Neurons in the hippocampus fire in consistent sequence over the timescale of seconds during the delay period of some memory experiments. For longer timescales, the firing of hippocampal neurons also changes slowly over minutes within experimental sessions. It was thought that these slow dynamics are caused by stochastic drift or a continuous change in the representation of the episode, rather than consistent sequences unfolding over minutes. This paper studies the consistency of contextual drift in three chronic calcium imaging recordings from the hippocampus CA1 region in mice. Computational measures of consistency show reliable sequences within experimental trials at the scale of seconds as one would expect from time cells or place cells during the trial, as well as across experimental trials on the scale of minutes within a recording session. Consistent sequences in the hippocampus are observed over a wide range of time scales, from seconds to minutes. The hippocampal activity could reflect a scale-invariant spatiotemporal context as suggested by theories of memory from cognitive psychology.
Collapse
Affiliation(s)
- Yue Liu
- Department of Physics, Boston University, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| | - Samuel Levy
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - William Mau
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Nitzan Geva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Rubin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Marc Howard
- Department of Physics, Boston University, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Houser TM. Spatialization of Time in the Entorhinal-Hippocampal System. Front Behav Neurosci 2022; 15:807197. [PMID: 35069143 PMCID: PMC8770534 DOI: 10.3389/fnbeh.2021.807197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
The functional role of the entorhinal-hippocampal system has been a long withstanding mystery. One key theory that has become most popular is that the entorhinal-hippocampal system represents space to facilitate navigation in one's surroundings. In this Perspective article, I introduce a novel idea that undermines the inherent uniqueness of spatial information in favor of time driving entorhinal-hippocampal activity. Specifically, by spatializing events that occur in succession (i.e., across time), the entorhinal-hippocampal system is critical for all types of cognitive representations. I back up this argument with empirical evidence that hints at a role for the entorhinal-hippocampal system in non-spatial representation, and computational models of the logarithmic compression of time in the brain.
Collapse
Affiliation(s)
- Troy M. Houser
- Department of Psychology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
34
|
Do Q, Hasselmo ME. Neural circuits and symbolic processing. Neurobiol Learn Mem 2021; 186:107552. [PMID: 34763073 PMCID: PMC10121157 DOI: 10.1016/j.nlm.2021.107552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/14/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
The ability to use symbols is a defining feature of human intelligence. However, neuroscience has yet to explain the fundamental neural circuit mechanisms for flexibly representing and manipulating abstract concepts. This article will review the research on neural models for symbolic processing. The review first focuses on the question of how symbols could possibly be represented in neural circuits. The review then addresses how neural symbolic representations could be flexibly combined to meet a wide range of reasoning demands. Finally, the review assesses the research on program synthesis and proposes that the most flexible neural representation of symbolic processing would involve the capacity to rapidly synthesize neural operations analogous to lambda calculus to solve complex cognitive tasks.
Collapse
Affiliation(s)
- Quan Do
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, United States.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, United States.
| |
Collapse
|
35
|
K Namboodiri VM, Stuber GD. The learning of prospective and retrospective cognitive maps within neural circuits. Neuron 2021; 109:3552-3575. [PMID: 34678148 PMCID: PMC8809184 DOI: 10.1016/j.neuron.2021.09.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Brain circuits are thought to form a "cognitive map" to process and store statistical relationships in the environment. A cognitive map is commonly defined as a mental representation that describes environmental states (i.e., variables or events) and the relationship between these states. This process is commonly conceptualized as a prospective process, as it is based on the relationships between states in chronological order (e.g., does reward follow a given state?). In this perspective, we expand this concept on the basis of recent findings to postulate that in addition to a prospective map, the brain forms and uses a retrospective cognitive map (e.g., does a given state precede reward?). In doing so, we demonstrate that many neural signals and behaviors (e.g., habits) that seem inflexible and non-cognitive can result from retrospective cognitive maps. Together, we present a significant conceptual reframing of the neurobiological study of associative learning, memory, and decision making.
Collapse
Affiliation(s)
- Vijay Mohan K Namboodiri
- Department of Neurology, Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, Neuroscience Graduate Program, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Guo C, Huson V, Macosko EZ, Regehr WG. Graded heterogeneity of metabotropic signaling underlies a continuum of cell-intrinsic temporal responses in unipolar brush cells. Nat Commun 2021; 12:5491. [PMID: 34620856 PMCID: PMC8497507 DOI: 10.1038/s41467-021-22893-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Many neuron types consist of populations with continuously varying molecular properties. Here, we show a continuum of postsynaptic molecular properties in three types of neurons and assess the functional correlates in cerebellar unipolar brush cells (UBCs). While UBCs are generally thought to form discrete functional subtypes, with mossy fiber (MF) activation increasing firing in ON-UBCs and suppressing firing in OFF-UBCs, recent work also points to a heterogeneity of response profiles. Indeed, we find a continuum of response profiles that reflect the graded and inversely correlated expression of excitatory mGluR1 and inhibitory mGluR2/3 pathways. MFs coactivate mGluR2/3 and mGluR1 in many UBCs, leading to sequential inhibition-excitation because mGluR2/3-currents are faster. Additionally, we show that DAG-kinase controls mGluR1 response duration, and that graded DAG kinase levels correlate with systematic variation of response duration over two orders of magnitude. These results demonstrate that continuous variations in metabotropic signaling can generate a stable cell-autonomous basis for temporal integration and learning over multiple time scales.
Collapse
Affiliation(s)
- Chong Guo
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Vincent Huson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Stanley Center for Psychiatric Research, 450 Main St., Cambridge, MA, USA
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
37
|
Arnsten AFT, Datta D, Wang M. The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Mol Psychiatry 2021; 26:3684-3700. [PMID: 33319854 PMCID: PMC8203737 DOI: 10.1038/s41380-020-00973-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Neurons in the association cortices are particularly vulnerable in cognitive disorders such as schizophrenia and Alzheimer's disease, while those in primary visual cortex remain relatively resilient. This review proposes that the special molecular mechanisms needed for higher cognitive operations confer vulnerability to dysfunction, atrophy, and neurodegeneration when regulation is lost due to genetic and/or environmental insults. Accumulating data suggest that higher cortical circuits rely on magnified levels of calcium (from NMDAR, calcium channels, and/or internal release from the smooth endoplasmic reticulum) near the postsynaptic density to promote the persistent firing needed to maintain, manipulate, and store information without "bottom-up" sensory stimulation. For example, dendritic spines in the primate dorsolateral prefrontal cortex (dlPFC) express the molecular machinery for feedforward, cAMP-PKA-calcium signaling. PKA can drive internal calcium release and promote calcium flow through NMDAR and calcium channels, while in turn, calcium activates adenylyl cyclases to produce more cAMP-PKA signaling. Excessive levels of cAMP-calcium signaling can have a number of detrimental effects: for example, opening nearby K+ channels to weaken synaptic efficacy and reduce neuronal firing, and over a longer timeframe, driving calcium overload of mitochondria to induce inflammation and dendritic atrophy. Thus, calcium-cAMP signaling must be tightly regulated, e.g., by agents that catabolize cAMP or inhibit its production (PDE4, mGluR3), and by proteins that bind calcium in the cytosol (calbindin). Many genetic or inflammatory insults early in life weaken the regulation of calcium-cAMP signaling and are associated with increased risk of schizophrenia (e.g., GRM3). Age-related loss of regulatory proteins which result in elevated calcium-cAMP signaling over a long lifespan can additionally drive tau phosphorylation, amyloid pathology, and neurodegeneration, especially when protective calcium binding proteins are lost from the cytosol. Thus, the "genie" we need for our remarkable cognitive abilities may make us vulnerable to cognitive disorders when we lose essential regulation.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
38
|
Liang M, Zheng J, Isham E, Ekstrom A. Common and Distinct Roles of Frontal Midline Theta and Occipital Alpha Oscillations in Coding Temporal Intervals and Spatial Distances. J Cogn Neurosci 2021; 33:2311-2327. [PMID: 34347871 DOI: 10.1162/jocn_a_01765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Judging how far something is and how long it takes to get there is critical to memory and navigation. Yet, the neural codes for spatial and temporal information remain unclear, particularly the involvement of neural oscillations in maintaining such codes. To address these issues, we designed an immersive virtual reality environment containing teleporters that displace participants to a different location after entry. Upon exiting the teleporters, participants made judgments from two given options regarding either the distance they had traveled (spatial distance condition) or the duration they had spent inside the teleporters (temporal duration condition). We wirelessly recorded scalp EEG while participants navigated in the virtual environment by physically walking on an omnidirectional treadmill and traveling through teleporters. An exploratory analysis revealed significantly higher alpha and beta power for short-distance versus long-distance traversals, whereas the contrast also revealed significantly higher frontal midline delta-theta-alpha power and global beta power increases for short versus long temporal duration teleportation. Analyses of occipital alpha instantaneous frequencies revealed their sensitivity for both spatial distances and temporal durations, suggesting a novel and common mechanism for both spatial and temporal coding. We further examined the resolution of distance and temporal coding by classifying discretized distance bins and 250-msec time bins based on multivariate patterns of 2- to 30-Hz power spectra, finding evidence that oscillations code fine-scale time and distance information. Together, these findings support partially independent coding schemes for spatial and temporal information, suggesting that low-frequency oscillations play important roles in coding both space and time.
Collapse
|
39
|
Kragel JE, Ezzyat Y, Lega BC, Sperling MR, Worrell GA, Gross RE, Jobst BC, Sheth SA, Zaghloul KA, Stein JM, Kahana MJ. Distinct cortical systems reinstate the content and context of episodic memories. Nat Commun 2021; 12:4444. [PMID: 34290240 PMCID: PMC8295370 DOI: 10.1038/s41467-021-24393-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Episodic recall depends upon the reinstatement of cortical activity present during the formation of a memory. Evidence from functional neuroimaging and invasive recordings in humans suggest that reinstatement organizes our memories by time or content, yet the neural systems involved in reinstating these unique types of information remain unclear. Here, combining computational modeling and intracranial recordings from 69 epilepsy patients, we show that two cortical systems uniquely reinstate the semantic content and temporal context of previously studied items during free recall. Examining either the posterior medial or anterior temporal networks, we find that forward encoding models trained on the brain's response to the temporal and semantic attributes of items can predict the serial position and semantic category of unseen items. During memory recall, these models uniquely link reinstatement of temporal context and semantic content to these posterior and anterior networks, respectively. These findings demonstrate how specialized cortical systems enable the human brain to target specific memories.
Collapse
Affiliation(s)
- James E. Kragel
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Youssef Ezzyat
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| | - Bradley C. Lega
- grid.267313.20000 0000 9482 7121Department of Neurosurgery, University of Texas Southwestern, Dallas, TX USA
| | - Michael R. Sperling
- grid.265008.90000 0001 2166 5843Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - Gregory A. Worrell
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN USA
| | - Robert E. Gross
- grid.189967.80000 0001 0941 6502Department of Neurosurgery, Emory School of Medicine, Atlanta, GA USA
| | - Barbara C. Jobst
- grid.413480.a0000 0004 0440 749XDepartment of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH USA
| | - Sameer A. Sheth
- grid.239585.00000 0001 2285 2675Department of Neurosurgery, Columbia University Medical Center, New York, NY USA
| | - Kareem A. Zaghloul
- grid.94365.3d0000 0001 2297 5165Surgical Neurology Branch, National Institutes of Health, Bethesda, MD USA
| | - Joel M. Stein
- grid.411115.10000 0004 0435 0884Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA USA
| | - Michael J. Kahana
- grid.25879.310000 0004 1936 8972Department of Psychology, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
40
|
Shikano Y, Ikegaya Y, Sasaki T. Minute-encoding neurons in hippocampal-striatal circuits. Curr Biol 2021; 31:1438-1449.e6. [PMID: 33545048 DOI: 10.1016/j.cub.2021.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022]
Abstract
Animals process temporal information in an ever-changing environment, but the neuronal mechanisms of this process, especially on timescales longer than seconds, remain unresolved. Here, we designed a hippocampus-dependent task in which rats prospectively increased their reward-seeking behavior over a duration of minutes. During this timing behavior, hippocampal and striatal neurons represented successive time points on the order of minutes by gradually changing their firing rates and transiently increasing their firing rates at specific time points. These minute-encoding patterns progressively developed as the rats learned a time-reward relationship, and the patterns underwent flexible scaling in parallel with timing behavior. These observations suggest a neuronal basis in the hippocampal-striatal circuits that enables temporal processing and formation of episodic memory on a timescale of minutes.
Collapse
Affiliation(s)
- Yu Shikano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Center for Information and Neural Networks, 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan; Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Sasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
41
|
McKenzie S, Huszár R, English DF, Kim K, Christensen F, Yoon E, Buzsáki G. Preexisting hippocampal network dynamics constrain optogenetically induced place fields. Neuron 2021; 109:1040-1054.e7. [PMID: 33539763 PMCID: PMC8095399 DOI: 10.1016/j.neuron.2021.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/19/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Memory models often emphasize the need to encode novel patterns of neural activity imposed by sensory drive. Prior learning and innate architecture likely restrict neural plasticity, however. Here, we test how the incorporation of synthetic hippocampal signals is constrained by preexisting circuit dynamics. We optogenetically stimulated small groups of CA1 neurons as mice traversed a chosen segment of a linear track, mimicking the emergence of place fields. Stimulation induced persistent place field remapping in stimulated and non-stimulated neurons. The emergence of place fields could be predicted from sporadic firing in the new place field location and the temporal relationship to peer neurons before the optogenetic perturbation. Circuit modification was reflected by altered spike transmission between connected pyramidal cells and inhibitory interneurons, which persisted during post-experience sleep. We hypothesize that optogenetic perturbation unmasked sub-threshold place fields. Plasticity in recurrent/lateral inhibition may drive learning through the rapid association of existing states.
Collapse
Affiliation(s)
- Sam McKenzie
- The Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY 10016, USA; Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Roman Huszár
- The Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Daniel F English
- The Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY 10016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kanghwan Kim
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fletcher Christensen
- Department of Mathematics and Statistics, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA; Center for Nanomedicine, Institute for Basic Science (IBS) and Graduate Program of Nano Biomedical Engineering (Nano BME), Yonsei University, Seoul 03722, Republic of Korea
| | - György Buzsáki
- The Neuroscience Institute, Department of Neurology, NYU Langone Medical Center and Center for Neural Science, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
42
|
Whittington JCR, Muller TH, Mark S, Chen G, Barry C, Burgess N, Behrens TEJ. The Tolman-Eichenbaum Machine: Unifying Space and Relational Memory through Generalization in the Hippocampal Formation. Cell 2020; 183:1249-1263.e23. [PMID: 33181068 PMCID: PMC7707106 DOI: 10.1016/j.cell.2020.10.024] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 06/11/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022]
Abstract
The hippocampal-entorhinal system is important for spatial and relational memory tasks. We formally link these domains, provide a mechanistic understanding of the hippocampal role in generalization, and offer unifying principles underlying many entorhinal and hippocampal cell types. We propose medial entorhinal cells form a basis describing structural knowledge, and hippocampal cells link this basis with sensory representations. Adopting these principles, we introduce the Tolman-Eichenbaum machine (TEM). After learning, TEM entorhinal cells display diverse properties resembling apparently bespoke spatial responses, such as grid, band, border, and object-vector cells. TEM hippocampal cells include place and landmark cells that remap between environments. Crucially, TEM also aligns with empirically recorded representations in complex non-spatial tasks. TEM also generates predictions that hippocampal remapping is not random as previously believed; rather, structural knowledge is preserved across environments. We confirm this structural transfer over remapping in simultaneously recorded place and grid cells.
Collapse
Affiliation(s)
- James C R Whittington
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK.
| | - Timothy H Muller
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK; Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Shirley Mark
- Wellcome Centre for Human Neuroimaging, UCL, London WC1N 3AR, UK
| | - Guifen Chen
- Institute of Cognitive Neuroscience, UCL, London WC1N 3AZ, UK; School of Biological and Chemical Sciences, QMUL, London E1 4NS, UK
| | - Caswell Barry
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London W1T 4JG, UK; Research department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | - Neil Burgess
- Institute of Neurology, UCL, London WC1N 3BG, UK; Wellcome Centre for Human Neuroimaging, UCL, London WC1N 3AR, UK; Institute of Cognitive Neuroscience, UCL, London WC1N 3AZ, UK; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London W1T 4JG, UK
| | - Timothy E J Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX3 9DU, UK; Wellcome Centre for Human Neuroimaging, UCL, London WC1N 3AR, UK; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, UCL, London W1T 4JG, UK
| |
Collapse
|
43
|
Cruzado NA, Tiganj Z, Brincat SL, Miller EK, Howard MW. Conjunctive representation of what and when in monkey hippocampus and lateral prefrontal cortex during an associative memory task. Hippocampus 2020; 30:1332-1346. [DOI: 10.1002/hipo.23282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Nathanael A. Cruzado
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| | - Zoran Tiganj
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
| | - Scott L. Brincat
- Picower Institute of Learning and Memory, MIT Cambridge Massachusetts USA
- Department of Brain and Cognitive Sciences MIT Cambridge Massachusetts USA
| | - Earl K. Miller
- Picower Institute of Learning and Memory, MIT Cambridge Massachusetts USA
- Department of Brain and Cognitive Sciences MIT Cambridge Massachusetts USA
| | - Marc W. Howard
- Department of Psychological and Brain Sciences Boston University Boston Massachusetts USA
- Center for Memory and Brain, Boston University Boston Massachusetts USA
| |
Collapse
|