1
|
Sun C, Cheng X, Xu J, Chen H, Tao J, Dong Y, Wei S, Chen R, Meng X, Ma Y, Tian H, Guo X, Bi S, Zhang C, Kang J, Zhang M, Lv H, Shang Z, Lv W, Zhang R, Jiang Y. A review of disease risk prediction methods and applications in the omics era. Proteomics 2024; 24:e2300359. [PMID: 38522029 DOI: 10.1002/pmic.202300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024]
Abstract
Risk prediction and disease prevention are the innovative care challenges of the 21st century. Apart from freeing the individual from the pain of disease, it will lead to low medical costs for society. Until very recently, risk assessments have ushered in a new era with the emergence of omics technologies, including genomics, transcriptomics, epigenomics, proteomics, and so on, which potentially advance the ability of biomarkers to aid prediction models. While risk prediction has achieved great success, there are still some challenges and limitations. We reviewed the general process of omics-based disease risk model construction and the applications in four typical diseases. Meanwhile, we highlighted the problems in current studies and explored the potential opportunities and challenges for future clinical practice.
Collapse
Affiliation(s)
- Chen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Jing Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Haiyan Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Junxian Tao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Yu Dong
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Siyu Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Rui Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xin Meng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yingnan Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| | - Hongsheng Tian
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xuying Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shuo Bi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Chen Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jingxuan Kang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingming Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongchao Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhenwei Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenhua Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yongshuai Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- The EWAS Project, Harbin, China
| |
Collapse
|
2
|
Brock P, Liynarachchi S, Nieminen TT, Chan C, Kohlmann W, Stout LA, Yao S, La Greca A, Jensen KE, Kolesar JM, Salhia B, Gulhati P, Hicks JK, Ringel MD. CHEK2 Founder Variants and Thyroid Cancer Risk. Thyroid 2024; 34:477-483. [PMID: 38279823 PMCID: PMC10998703 DOI: 10.1089/thy.2023.0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Background: Germline pathogenic variants in CHEK2 are associated with a moderate increase in the lifetime risk for breast cancer. Increased risk for other cancers, including non-medullary thyroid cancer (NMTC), has also been suggested. To date, data implicating CHEK2 variants in NMTC predisposition primarily derive from studies within Poland, driven by a splice site variant (c.444 + 1G>A) that is uncommon in other populations. In contrast, the predominant CHEK2 variants in non-Polish populations are c.1100del and c.470T>C/p.I157T, representing 61.1% and 63.8%, respectively, of all CHEK2 pathogenic variants in two large U.S.-based commercial laboratory datasets. To further delineate the impact of common CHEK2 variants on thyroid cancer, we aimed to investigate the association of three CHEK2 founder variants (c.444 + 1G>A, c.1100del, and c.470T>C/p.Ile157Thr) on NMTC susceptibility in three groups of unselected NMTC patients. Methods: The presence of three CHEK2 founder variants was assessed within three groups: (1) 1544 NMTC patients (and 1593 controls) from previously published genome-wide association study (GWAS) analyses, (2) 789 NMTC patients with germline exome sequencing (Oncology Research Information Exchange Network [ORIEN] Avatar), and (3) 499 NMTC patients with germline sequence data available in The Cancer Genome Atlas (TCGA). A case-control study design was utilized with odds ratios (ORs) calculated by comparison of all three groups with the Ohio State University GWAS control group. Results: The predominant Polish variant (c.444 + 1G>A) was present in only one case. The proportion of patients with c.1100del was 0.92% in the GWAS group, 1.65% in the ORIEN Avatar group, and 0.80% in the TCGA group. The ORs (with 95% confidence intervals [CIs]) for NMTC associated with c.1100del were 1.71 (0.73-4.29), 2.64 (0.95-7.63), and 2.5 (0.63-8.46), respectively. The proportion of patients with c.470T>C/p.I157T was 0.91% in the GWAS group, 0.76% in the ORIEN Avatar group, and 0.80% in the TCGA group, respectively. The ORs (with CIs) for NMTC associated with c.470T>C/p.I157T were 1.75 (0.74-4.39), 1.52 (0.42-4.96), and 2.31 (0.58-7.90), respectively. Conclusions: Our analyses of unselected patients with NMTC suggest that CHEK2 variants c.1100del and c.470T>C/p.I157T have only a modest impact on thyroid cancer risk. These results provide important information for providers regarding the relatively low magnitude of thyroid cancer risk associated with these CHEK2 variants.
Collapse
Affiliation(s)
- Pamela Brock
- Division of Human Genetics, The Ohio State University College of Medicine, Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Sandya Liynarachchi
- Department of Molecular Medicine and Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Taina T. Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Carlos Chan
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Wendy Kohlmann
- University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Leigh Anne Stout
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Song Yao
- Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Amanda La Greca
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Kirk E. Jensen
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jill M. Kolesar
- College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Bodour Salhia
- Department of Translational Genomics, Norris Comprehensive Cancer Center, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Pat Gulhati
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - J. Kevin Hicks
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
3
|
Jiang YJ, Xia Y, Han ZJ, Hu YX, Huang T. Chromosomal localization of mutated genes in non-syndromic familial thyroid cancer. Front Oncol 2024; 14:1286426. [PMID: 38571492 PMCID: PMC10987779 DOI: 10.3389/fonc.2024.1286426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Familial non-medullary thyroid carcinoma (FNMTC) is a type of thyroid cancer characterized by genetic susceptibility, representing approximately 5% of all non-medullary thyroid carcinomas. While some cases of FNMTC are associated with familial multi-organ tumor predisposition syndromes, the majority occur independently. The genetic mechanisms underlying non-syndromic FNMTC remain unclear. Initial studies utilized SNP linkage analysis to identify susceptibility loci, including the 1q21 locus, 2q21 locus, and 4q32 locus, among others. Subsequent research employed more advanced techniques such as Genome-wide Association Study and Whole Exome Sequencing, leading to the discovery of genes such as IMMP2L, GALNTL4, WDR11-AS1, DUOX2, NOP53, MAP2K5, and others. But FNMTC exhibits strong genetic heterogeneity, with each family having its own pathogenic genes. This is the first article to provide a chromosomal landscape map of susceptibility genes associated with non-syndromic FNMTC and analyze their potential associations. It also presents a detailed summary of variant loci, characteristics, research methodologies, and validation results from different countries.
Collapse
Affiliation(s)
- Yu-jia Jiang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Xia
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuo-jun Han
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-xuan Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Gibson TM, Karyadi DM, Hartley SW, Arnold MA, Berrington de Gonzalez A, Conces MR, Howell RM, Kapoor V, Leisenring WM, Neglia JP, Sampson JN, Turcotte LM, Chanock SJ, Armstrong GT, Morton LM. Polygenic risk scores, radiation treatment exposures and subsequent cancer risk in childhood cancer survivors. Nat Med 2024; 30:690-698. [PMID: 38454124 PMCID: PMC11029534 DOI: 10.1038/s41591-024-02837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024]
Abstract
Survivors of childhood cancer are at increased risk for subsequent cancers attributable to the late effects of radiotherapy and other treatment exposures; thus, further understanding of the impact of genetic predisposition on risk is needed. Combining genotype data for 11,220 5-year survivors from the Childhood Cancer Survivor Study and the St Jude Lifetime Cohort, we found that cancer-specific polygenic risk scores (PRSs) derived from general population, genome-wide association study, cancer loci identified survivors of European ancestry at increased risk of subsequent basal cell carcinoma (odds ratio per s.d. of the PRS: OR = 1.37, 95% confidence interval (CI) = 1.29-1.46), female breast cancer (OR = 1.42, 95% CI = 1.27-1.58), thyroid cancer (OR = 1.48, 95% CI = 1.31-1.67), squamous cell carcinoma (OR = 1.20, 95% CI = 1.00-1.44) and melanoma (OR = 1.60, 95% CI = 1.31-1.96); however, the association for colorectal cancer was not significant (OR = 1.19, 95% CI = 0.94-1.52). An investigation of joint associations between PRSs and radiotherapy found more than additive increased risks of basal cell carcinoma, and breast and thyroid cancers. For survivors with radiotherapy exposure, the cumulative incidence of subsequent cancer by age 50 years was increased for those with high versus low PRS. These findings suggest a degree of shared genetic etiology for these malignancy types in the general population and survivors, which remains evident in the context of strong radiotherapy-related risk.
Collapse
Affiliation(s)
- Todd M Gibson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Danielle M Karyadi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen W Hartley
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Arnold
- Department of Pathology, Children's Hospital of Colorado, University of Colorado, Denver, CO, USA
| | | | - Miriam R Conces
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Rebecca M Howell
- Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidushi Kapoor
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wendy M Leisenring
- Cancer Prevention and Clinical Statistics Programs, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Joseph P Neglia
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Joshua N Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lucie M Turcotte
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gregory T Armstrong
- Department of Epidemiology and Cancer Control, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay M Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Pozdeyev N, Dighe M, Barrio M, Raeburn C, Smith H, Fisher M, Chavan S, Rafaels N, Shortt JA, Lin M, Leu MG, Clark T, Marshall C, Haugen BR, Subramanian D, Crooks K, Gignoux C, Cohen T. Thyroid Cancer Polygenic Risk Score Improves Classification of Thyroid Nodules as Benign or Malignant. J Clin Endocrinol Metab 2024; 109:402-412. [PMID: 37683082 DOI: 10.1210/clinem/dgad530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
CONTEXT Thyroid nodule ultrasound-based risk stratification schemas rely on the presence of high-risk sonographic features. However, some malignant thyroid nodules have benign appearance on thyroid ultrasound. New methods for thyroid nodule risk assessment are needed. OBJECTIVE We investigated polygenic risk score (PRS) accounting for inherited thyroid cancer risk combined with ultrasound-based analysis for improved thyroid nodule risk assessment. METHODS The convolutional neural network classifier was trained on thyroid ultrasound still images and cine clips from 621 thyroid nodules. Phenome-wide association study (PheWAS) and PRS PheWAS were used to optimize PRS for distinguishing benign and malignant nodules. PRS was evaluated in 73 346 participants in the Colorado Center for Personalized Medicine Biobank. RESULTS When the deep learning model output was combined with thyroid cancer PRS and genetic ancestry estimates, the area under the receiver operating characteristic curve (AUROC) of the benign vs malignant thyroid nodule classifier increased from 0.83 to 0.89 (DeLong, P value = .007). The combined deep learning and genetic classifier achieved a clinically relevant sensitivity of 0.95, 95% CI [0.88-0.99], specificity of 0.63 [0.55-0.70], and positive and negative predictive values of 0.47 [0.41-0.58] and 0.97 [0.92-0.99], respectively. AUROC improvement was consistent in European ancestry-stratified analysis (0.83 and 0.87 for deep learning and deep learning combined with PRS classifiers, respectively). Elevated PRS was associated with a greater risk of thyroid cancer structural disease recurrence (ordinal logistic regression, P value = .002). CONCLUSION Augmenting ultrasound-based risk assessment with PRS improves diagnostic accuracy.
Collapse
Affiliation(s)
- Nikita Pozdeyev
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Manjiri Dighe
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Martin Barrio
- Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher Raeburn
- Division of GI, Trauma, and Endocrine Surgery, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Harry Smith
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Matthew Fisher
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sameer Chavan
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jonathan A Shortt
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Meng Lin
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael G Leu
- Information Technology Services, UW Medicine, Seattle, WA 98195, USA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
- Division of Hospital Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Toshimasa Clark
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carrie Marshall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bryan R Haugen
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Kristy Crooks
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher Gignoux
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Trevor Cohen
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Wang JR, Zafereo ME, Wang W, Joshu C, Ray D. Association of Polygenic Score With Tumor Molecular Subtypes in Papillary Thyroid Carcinoma. J Clin Endocrinol Metab 2023; 109:e306-e313. [PMID: 37453101 DOI: 10.1210/clinem/dgad407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
CONTEXT Genome-wide association studies have identified germline variants associated with elevated PTC risk. It is also known that somatic driver mutations contribute to PTC development and as such PTCs can be further categorized into different molecular subtypes based on their somatic alterations. However, it remains unknown whether identified germline variants predictive of PTC risk are associated with specific molecular subtypes. OBJECTIVE The primary goal of the present study is to determine whether germline genetic risk, as assessed using a polygenic score (PGS) is associated with molecular subtypes of papillary thyroid carcinoma (PTC), defined based on tumor driver mutation status. METHODS This study was carried out using data from The Cancer Genome Atlas (TCGA) thyroid cancer study. A previously validated 10-single-nucleotide variation PGS for PTC derived from genome-wide association study hits was calculated to ascertain germline genetic risk. The primary molecular subtypes of interest were defined by tumor driver mutation status (BRAFV600E-mutated vs RAS-mutated vs "other"). We also explored associations between PGS and molecular subtypes defined by messenger RNA (mRNA) expression, microRNA expression, and DNA methylation patterns. Polytomous logistic regression analysis was used to assess the association between PGS and PTC molecular subtype with and without adjustment for clinical variables. Odds ratios (ORs) with their 95% CIs were estimated. RESULTS A total of 359 patients were included in the study. PGS was significantly associated specific tumor molecular subtypes defined by tumor driver mutation status. Increasing germline risk was associated with having a higher odd of BRAFV600E-mutated PTC compared to PTCs without driver mutations in the "other" category. No significant difference was detected in terms of PGS tumor categorization in the RAS subtype compared to BRAFV600E. In exploratory analyses, PGS was also associated with mRNA-, microRNA-, and DNA methylation-defined molecular subtypes, as defined by the TCGA PTC study. CONCLUSION PGS has molecular subtype-specific associations in PTC, which has implications for their use in risk prediction.
Collapse
Affiliation(s)
- Jennifer R Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark E Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA
| | - Corinne Joshu
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Debashree Ray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Lucotte EA, Asgari Y, Sugier PE, Karimi M, Domenighetti C, Lesueur F, Boland-Augé A, Ostroumova E, de Vathaire F, Zidane M, Guénel P, Deleuze JF, Boutron-Ruault MC, Severi G, Liquet B, Truong T. Investigation of common genetic risk factors between thyroid traits and breast cancer. Hum Mol Genet 2023; 33:38-47. [PMID: 37740403 PMCID: PMC10729861 DOI: 10.1093/hmg/ddad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Breast cancer (BC) risk is suspected to be linked to thyroid disorders, however observational studies exploring the association between BC and thyroid disorders gave conflicting results. We proposed an alternative approach by investigating the shared genetic risk factors between BC and several thyroid traits. We report a positive genetic correlation between BC and thyroxine (FT4) levels (corr = 0.13, p-value = 2.0 × 10-4) and a negative genetic correlation between BC and thyroid-stimulating hormone (TSH) levels (corr = -0.09, p-value = 0.03). These associations are more striking when restricting the analysis to estrogen receptor-positive BC. Moreover, the polygenic risk scores (PRS) for FT4 and hyperthyroidism are positively associated to BC risk (OR = 1.07, 95%CI: 1.00-1.13, p-value = 2.8 × 10-2 and OR = 1.04, 95%CI: 1.00-1.08, p-value = 3.8 × 10-2, respectively), while the PRS for TSH is inversely associated to BC risk (OR = 0.93, 95%CI: 0.89-0.97, p-value = 2.0 × 10-3). Using the PLACO method, we detected 49 loci associated to both BC and thyroid traits (p-value < 5 × 10-8), in the vicinity of 130 genes. An additional colocalization and gene-set enrichment analyses showed a convincing causal role for a known pleiotropic locus at 2q35 and revealed an additional one at 8q22.1 associated to both BC and thyroid cancer. We also found two new pleiotropic loci at 14q32.33 and 17q21.31 that were associated to both TSH levels and BC risk. Enrichment analyses and evidence of regulatory signals also highlighted brain tissues and immune system as candidates for obtaining associations between BC and TSH levels. Overall, our study sheds light on the complex interplay between BC and thyroid traits and provides evidence of shared genetic risk between those conditions.
Collapse
Affiliation(s)
- Elise A Lucotte
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Yazdan Asgari
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Pierre-Emmanuel Sugier
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
| | - Mojgan Karimi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Cloé Domenighetti
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTech, 75006 Paris, France
| | - Anne Boland-Augé
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Florent de Vathaire
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Monia Zidane
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team of Epidemiology of radiations, 94807 Villejuif, France
| | - Pascal Guénel
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| | - Jean-François Deleuze
- National Centre of Human Genomics Research, François Jacob Institute of Biology, Commissariat à l’Energie Atomique, Paris-Saclay University, 91000 Evry, France
| | | | - Gianluca Severi
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
- Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, 50121 Florence, Italy
| | - Benoît Liquet
- Laboratoire de Mathématiques et de leurs Applications de Pau, Université de Pau et des Pays de l’Adour, UMR CNRS 5142, E2S-UPPA, 64013 Pau, France
- School of Mathematical and Physical Sciences, Macquarie University, 2109 Sydney, Australia
| | - Thérèse Truong
- Paris-Saclay University, UVSQ, Gustave Roussy, Inserm, CESP, Team “Exposome and Heredity”, 94807 Villejuif, France
| |
Collapse
|
8
|
Gunjača I, Benzon B, Pleić N, Babić Leko M, Pešutić Pisac V, Barić A, Kaličanin D, Punda A, Polašek O, Vukojević K, Zemunik T. Role of ST6GAL1 in Thyroid Cancers: Insights from Tissue Analysis and Genomic Datasets. Int J Mol Sci 2023; 24:16334. [PMID: 38003522 PMCID: PMC10671354 DOI: 10.3390/ijms242216334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Thyroid cancer is the predominant endocrine-related malignancy. ST6 β-galactoside α2,6-sialyltransferase 1 (ST6GAL1) has been studied in various types of cancers; however, the expression and function of ST6GAL1 in thyroid cancer has not been investigated so far. Previously, we conducted two genome-wide association studies and have identified the association of the ST6GAL1 gene with plasma thyroglobulin (Tg) levels. Since Tg levels are altered in thyroid pathologies, in the current study, we wanted to evaluate the expression of ST6GAL1 in thyroid cancer tissues. We performed an immunohistochemical analysis using human thyroid tissue from 89 patients and analyzed ST6GAL1 protein expression in papillary thyroid cancer (including follicular variant and microcarcinoma) and follicular thyroid cancer in comparison to normal thyroid tissue. Additionally, ST6GAL1 mRNA levels from The Cancer Genome Atlas (TCGA, n = 572) and the Genotype-Tissue Expression (GTEx) project (n = 279) were examined. The immunohistochemical analysis revealed higher ST6GAL1 protein expression in all thyroid tumors compared to normal thyroid tissue. TCGA data revealed increased ST6GAL1 mRNA levels in both primary and metastatic tumors versus controls. Notably, the follicular variant of papillary thyroid cancer exhibited significantly higher ST6GAL1 mRNA levels than classic papillary thyroid cancer. High ST6GAL1 mRNA levels significantly correlated with lymph node metastasis status, clinical stage, and reduced survival rate. ST6GAL1 emerges as a potential cancer-associated glycosyltransferase in thyroid malignancies, offering valuable insights into its diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Ivana Gunjača
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (K.V.)
| | - Nikolina Pleić
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Mirjana Babić Leko
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Valdi Pešutić Pisac
- Clinical Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
| | - Ana Barić
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia; (A.B.); (A.P.)
| | - Dean Kaličanin
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia; (A.B.); (A.P.)
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (K.V.)
| | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| |
Collapse
|
9
|
Song H, Jung YS, Tran TXM, Moon CM, Park B. Increased risk of pancreatic, thyroid, prostate and breast cancers in men with a family history of breast cancer: A population-based study. Int J Cancer 2023. [PMID: 37248785 DOI: 10.1002/ijc.34573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/18/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
The association between a family history of breast cancer (FHBC) in female first-degree relatives (FDRs) and cancer risk in men has not been evaluated. This study aimed to compare the risks of overall and site-specific cancers in men with and without FHBC. A population-based study was conducted with 3 329 106 men aged ≥40 years who underwent national cancer screening between 2013 and 2014. Men with and without FHBC in their female FDRs were age-matched in a 1:4 ratio. Men without FHBC were defined as those without a family history of any cancer type in their FDRs. Data from 69 124 men with FHBC and 276 496 men without FHBC were analyzed. The mean follow-up period was 4.7 ± 0.9 years. Men with an FHBC in any FDR (mother or sister) had a higher risk of pancreatic, thyroid, prostate and breast cancers than those without an FHBC (adjusted hazard ratios [aHRs] (95% confidence interval [CI]): 1.35 (1.07-1.70), 1.33 (1.12-1.56), 1.28 (1.13-1.44) and 3.03 (1.130-8.17), respectively). Although an FHBC in any one of the FDRs was not associated with overall cancer risk, FHBC in both mother and sibling was a significant risk factor for overall cancer (aHR: 1.69, 95% CI:1.11-2.57) and increased the risk of thyroid cancer by 3.41-fold (95% CI: 1.10-10.61). FHBC in the mother or sister was a significant risk factor for pancreatic, thyroid, prostate and breast cancers in men; therefore, men with FHBC may require more careful BRCA1/2 mutation-related cancer surveillance.
Collapse
Affiliation(s)
- Huiyeon Song
- Graduate School of Public Health, Hanyang University, Seoul, Republic of Korea
| | - Yoon Suk Jung
- Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Thi Xuan Mai Tran
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Chang Mo Moon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Yang Z, Heng Y, Zhao Q, Hao D, Tao L, Deng X, Cai W, Qiu W. The proposed modification of TNM staging and therapeutic strategy for skip metastasis in papillary thyroid carcinoma: A multicenter retrospective cohort study. Cancer Med 2023. [PMID: 37140212 DOI: 10.1002/cam4.6018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/18/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Skip metastasis is a special type of lateral lymph node metastasis, which is not classified definitely by the eighth edition of the AJCC TNM staging system. The aim of the research was to study the prognosis of skip metastasis in PTC patients, and carry out a more appropriate N staging for skip metastasis. METHODS Study subjects were 3167 patients with papillary thyroid carcinoma (PTC), who underwent thyroidectomy at three clinical centers from 2016 to 2019. We identified two well-balanced cohorts matched on the basis of propensity score. RESULTS During a median follow-up of 42 months, recurrence occurred in 68 (4.3%) patients with lymph node metastasis. 34 cases recurred in 1120 patients with central lymph node metastasis (N1a), and 34 recurred in 461 patients with lateral lymph node metastasis (N1b), among which 73 patients were diagnosis with skip metastasis. The RFS of N1a was significantly lower than that of N1b (p < 0.001). After propensity-score matching, recurrence rate was significantly lower in the skip metastasis group than in the LLNM group (p = 0.039), whereas the rate was similar in the skip metastasis groups and the CLNM group (p = 0.29). CONCLUSIONS In conclusion, our study indicated that, among patients with LLNM, those with positive skip metastasis showed significantly lower recurrence, exhibiting a similar rucurrence tendency as patients with CLNM. Thus, skip metastasis could be categorized into N1a stage rather than N1b stage based on the AJCC TNM staging system. The downstaging of skip metastasis may reveal more conservative treatment strategy.
Collapse
Affiliation(s)
- Zheyu Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Heng
- Department of Otolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China
| | - Qiwu Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ding Hao
- Department of General Surgery, Civil Aviation Shanghai Hospital, Shanghai, China
| | - Lei Tao
- Department of Otolaryngology, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai, China
| | - Xiaxing Deng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weihua Qiu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of General Surgery, Civil Aviation Shanghai Hospital, Shanghai, China
| |
Collapse
|
11
|
Sugier P, Lucotte EA, Domenighetti C, Law MH, Iles MM, Brown K, Amos C, McKay JD, Hung RJ, Karimi M, Bacq‐Daian D, Boland‐Augé A, Olaso R, Deleuze J, Lesueur F, Ostroumova E, Kesminiene A, de Vathaire F, Guénel P, Sreelatha AAK, Schulte C, Grover S, May P, Bobbili DR, Radivojkov‐Blagojevic M, Lichtner P, Singleton AB, Hernandez DG, Edsall C, Mellick GD, Zimprich A, Pirker W, Rogaeva E, Lang AE, Koks S, Taba P, Lesage S, Brice A, Corvol J, Chartier‐Harlin M, Mutez E, Brockmann K, Deutschländer AB, Hadjigeorgiou GM, Dardiotis E, Stefanis L, Simitsi AM, Valente EM, Petrucci S, Straniero L, Zecchinelli A, Pezzoli G, Brighina L, Ferrarese C, Annesi G, Quattrone A, Gagliardi M, Matsuo H, Nakayama A, Hattori N, Nishioka K, Chung SJ, Kim YJ, Kolber P, van de Warrenburg BP, Bloem BR, Aasly J, Toft M, Pihlstrøm L, Guedes LC, Ferreira JJ, Bardien S, Carr J, Tolosa E, Ezquerra M, Pastor P, Diez‐Fairen M, Wirdefeldt K, Pedersen N, Ran C, Belin AC, Puschmann A, Rödström EY, Clarke CE, Morrison KE, Tan M, Krainc D, Burbulla LF, Farrer MJ, Kruger R, Gasser T, Sharma M, Truong T, Elbaz A. Investigation of Shared Genetic Risk Factors Between Parkinson's Disease and Cancers. Mov Disord 2023; 38:604-615. [PMID: 36788297 PMCID: PMC10334300 DOI: 10.1002/mds.29337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Epidemiological studies that examined the association between Parkinson's disease (PD) and cancers led to inconsistent results, but they face a number of methodological difficulties. OBJECTIVE We used results from genome-wide association studies (GWASs) to study the genetic correlation between PD and different cancers to identify common genetic risk factors. METHODS We used individual data for participants of European ancestry from the Courage-PD (Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in Parkinson's Disease; PD, N = 16,519) and EPITHYR (differentiated thyroid cancer, N = 3527) consortia and summary statistics of GWASs from iPDGC (International Parkinson Disease Genomics Consortium; PD, N = 482,730), Melanoma Meta-Analysis Consortium (MMAC), Breast Cancer Association Consortium (breast cancer), the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome (prostate cancer), International Lung Cancer Consortium (lung cancer), and Ovarian Cancer Association Consortium (ovarian cancer) (N comprised between 36,017 and 228,951 for cancer GWASs). We estimated the genetic correlation between PD and cancers using linkage disequilibrium score regression. We studied the association between PD and polymorphisms associated with cancers, and vice versa, using cross-phenotypes polygenic risk score (PRS) analyses. RESULTS We confirmed a previously reported positive genetic correlation of PD with melanoma (Gcorr = 0.16 [0.04; 0.28]) and reported an additional significant positive correlation of PD with prostate cancer (Gcorr = 0.11 [0.03; 0.19]). There was a significant inverse association between the PRS for ovarian cancer and PD (odds ratio [OR] = 0.89 [0.84; 0.94]). Conversely, the PRS of PD was positively associated with breast cancer (OR = 1.08 [1.06; 1.10]) and inversely associated with ovarian cancer (OR = 0.95 [0.91; 0.99]). The association between PD and ovarian cancer was mostly driven by rs183211 located in an intron of the NSF gene (17q21.31). CONCLUSIONS We show evidence in favor of a contribution of pleiotropic genes to the association between PD and specific cancers. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Pierre‐Emmanuel Sugier
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
- Laboratoire de Mathématiques et de leurs Applications de PauE2S UPPA, CNRSPauFrance
| | - Elise A. Lucotte
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Cloé Domenighetti
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Matthew H. Law
- Statistical Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- Faculty of Health, Queensland University of TechnologyBrisbaneAustralia
| | - Mark M. Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and PathologyUniversity of LeedsLeedsUnited Kingdom
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Christopher Amos
- Institute for Clinical and Translational ResearchBaylor Medical College of MedecineHoustonTexasUSA
| | | | - Rayjean J. Hung
- Lunenfeld‐Tanenbuaum Research Institute, Sinai Health SystemTorontoOntarioCanada
- Dalla Lana School of Public Health, University of TorontoTorontoOntarioCanada
| | - Mojgan Karimi
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Delphine Bacq‐Daian
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Anne Boland‐Augé
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Robert Olaso
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Jean‐françois Deleuze
- Université Paris‐Saclay, CEA, Centre National de Recherche en Génomique Humaine, Institut de Biologie François JacobEvryFrance
| | - Fabienne Lesueur
- Inserm, U900, Institut Curie, PSL University, Mines ParisTechParisFrance
| | | | | | - Florent de Vathaire
- Université Paris‐Saclay, UVSQ, Gustave Roussy, Inserm, Team “Epidemiology of radiations,” CESPVillejuifFrance
| | - Pascal Guénel
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | | | - Ashwin Ashok Kumar Sreelatha
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
| | - Claudia Schulte
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Sandeep Grover
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
| | - Patrick May
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
| | - Dheeraj R. Bobbili
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
| | | | - Peter Lichtner
- Institute of Human GeneticsHelmholtz Zentrum MünchenNeuherbergGermany
| | - Andrew B. Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
- Center For Alzheimer's and Related Dementias, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Dena G. Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - Connor Edsall
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of HealthBethesdaMarylandUSA
| | - George D. Mellick
- Griffith Institute for Drug DiscoveryGriffith UniversityNathanAustralia
| | | | - Walter Pirker
- Department of NeurologyKlinik OttakringViennaAustria
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative DiseasesUniversity of TorontoTorontoOntarioCanada
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders ClinicToronto Western Hospital, UHNTorontoOntarioCanada
- Division of NeurologyUniversity of TorontoTorontoOntarioCanada
- Krembil Brain InstituteTorontoOntarioCanada
| | - Sulev Koks
- Centre for Molecular Medicine and Innovative TherapeuticsMurdoch UniversityMurdochAustralia
- Perron Institute for Neurological and Translational ScienceNedlandsAustralia
| | - Pille Taba
- Department of Neurology and NeurosurgeryUniversity of TartuTartuEstonia
- Neurology Clinic, Tartu University HospitalTartuEstonia
| | - Suzanne Lesage
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
| | - Alexis Brice
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
| | - Jean‐Christophe Corvol
- Department of NeurologySorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, INSERM, CNRS, Assistance Publique Hôpitaux de ParisParisFrance
- Assistance Publique Hôpitaux de Paris, Department of NeurologyCIC NeurosciencesParisFrance
| | | | - Eugénie Mutez
- Université de Lille, Inserm, CHU Lille, UMR‐S 1172, LilNCog, Centre de Recherche Lille Neurosciences & CognitionLilleFrance
| | - Kathrin Brockmann
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Angela B. Deutschländer
- Department of NeurologyLudwig Maximilians University of MunichMunichGermany
- Department of NeurologyMax Planck Institute of PsychiatryMunichGermany
| | - Georges M. Hadjigeorgiou
- Department of Neurology and Department of Clinical GenomicsMayo Clinic FloridaJacksonvilleFloridaUSA
- Department of Neurology, Laboratory of NeurogeneticsUniversity of Thessaly, University Hospital of LarissaLarissaGreece
- Department of NeurologyMedical School, University of CyprusNicosiaCyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of NeurogeneticsUniversity of Thessaly, University Hospital of LarissaLarissaGreece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
- Center of Clinical Research, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece
| | - Athina Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, Medical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Enza Maria Valente
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Mondino FoundationPaviaItaly
| | - Simona Petrucci
- UOC Medical Genetics and Advanced Cell DiagnosticsS. Andrea University HospitalRomeItaly
- Department of Clinical and Molecular MedicineSapienza University of RomeRomeItaly
| | | | - Anna Zecchinelli
- Parkinson Institute, Azienda Socio Sanitaria Territoriale (ASST) Gaetano Pini/CTOMilanItaly
| | - Gianni Pezzoli
- Parkinson Institute, Fontazione Grigioni–Via ZurettiMilanItaly
| | - Laura Brighina
- Department of NeurologySan Gerardo HospitalMonzaItaly
- Department of Medicine and Surgery and Milan Center for NeuroscienceUniversity of Milano BicoccaMilanItaly
| | - Carlo Ferrarese
- Department of NeurologySan Gerardo HospitalMonzaItaly
- Department of Medicine and Surgery and Milan Center for NeuroscienceUniversity of Milano BicoccaMilanItaly
| | - Grazia Annesi
- Institute for Biomedical Research and InnovationNational Research CouncilCosenzaItaly
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical SciencesMagna Graecia University of CatanzaroCatanzaroItaly
- Department of Medical and Surgical Sciences, Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | - Monica Gagliardi
- Department of Medical and Surgical Sciences, Neuroscience Research CenterMagna Graecia UniversityCatanzaroItaly
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio‐Nano MedicineNational Defense Medical CollegeSaitamaJapan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio‐Nano MedicineNational Defense Medical CollegeSaitamaJapan
| | - Nobutaka Hattori
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Kenya Nishioka
- Department of NeurologyJuntendo University School of MedicineTokyoJapan
| | - Sun Ju Chung
- Department of Neurology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Yun Joong Kim
- Department of NeurologyYonsei University College of MedicineSeoulSouth Korea
| | - Pierre Kolber
- Neurology, Centre Hospitalier de LuxembourgLuxembourgLuxembourg
| | - Bart P.C. van de Warrenburg
- Department of Neurology, Radboud University Medical CentreDonders Institute for Brain, Cognition and BehaviourNijmegenthe Netherlands
| | - Bastiaan R. Bloem
- Department of Neurology, Radboud University Medical CentreDonders Institute for Brain, Cognition and BehaviourNijmegenthe Netherlands
| | - Jan Aasly
- Department of NeurologySt. Olav's Hospital and Norwegian University of Science and TechnologyTrondheimNorway
| | - Mathias Toft
- Department of NeurologyOslo University HospitalOsloNorway
| | | | - Leonor Correia Guedes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa MariaCentro Hospitalar Universitario Lisboa Norte (CHULN)LisbonPortugal
| | - Joaquim J. Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Department of Neurosciences and Mental Health, Neurology, Hospital de Santa MariaCentro Hospitalar Universitario Lisboa Norte (CHULN)LisbonPortugal
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical SciencesFaculty of Medicine and Health Sciences, Stellenbosch UniversityStellenboschSouth Africa
| | - Jonathan Carr
- Division of Neurology, Department of MedicineFaculty of Medicine and Health Sciences, Stellenbosch UniversityStellenboschSouth Africa
| | - Eduardo Tolosa
- Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018‐ISCIII)BarcelonaSpain
| | - Mario Ezquerra
- Lab of Parkinson's disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de NeurociènciesUniversitat de BarcelonaBarcelonaSpain
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of NeurologyUniversity Hospital Germans Trias i PujolBarcelonaSpain
| | - Monica Diez‐Fairen
- Fundació per la Recerca Biomèdica i Social Mútua TerrassaBarcelonaSpain
- Movement Disorders Unit, Department of NeurologyHospital Universitari Mutua de TerrassaBarcelonaSpain
| | - Karin Wirdefeldt
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Nancy Pedersen
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Caroline Ran
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Andrea C. Belin
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Andreas Puschmann
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, NeurologyLundSweden
| | - Emil Ygland Rödström
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, NeurologyLundSweden
| | - Carl E. Clarke
- University of Birmingham and Sandwell and West Birmingham Hospitals NHS TrustBirminghamUnited Kingdom
| | - Karen E. Morrison
- Faculty of Medicine, Health and Life SciencesQueens UniversityBelfastUnited Kingdom
| | - Manuela Tan
- Department of NeurologyOslo University HospitalOsloNorway
| | - Dimitri Krainc
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Lena F. Burbulla
- German Center for Neurodegenerative DiseasesTübingenGermany
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Metabolic Biochemistry, Biomedical Center, Faculty of MedicineLudwig‐Maximilians‐Universität MünchenMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Matt J. Farrer
- Department of NeurologyMcKnight Brain Institute, University of FloridaGainesvilleFloridaUSA
| | - Rejko Kruger
- Translational Neuroscience, Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐BelvalLuxembourg
- NeurologyCentre Hospitalier de LuxembourgLuxembourgLuxembourg
- Parkinson's Research ClinicCentre Hospitalier de LuxembourgLuxembourgLuxembourg
- Transversal Translational MedicineLuxembourg Institute of HealthStrassenLuxembourg
| | - Thomas Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
- German Center for Neurodegenerative DiseasesTübingenGermany
| | - Manu Sharma
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied BiometryUniversity of TubingenTübingenGermany
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain ResearchUniversity of TubingenTübingenGermany
| | | | - Thérèse Truong
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| | - Alexis Elbaz
- Université Paris‐Saclay, UVSQ, Inserm, Gustave Roussy, Team “Exposome, Heredity, Cancer and Health”, CESPVillejuifFrance
| |
Collapse
|
12
|
Aegisdottir HM, Thorolfsdottir RB, Sveinbjornsson G, Stefansson OA, Gunnarsson B, Tragante V, Thorleifsson G, Stefansdottir L, Thorgeirsson TE, Ferkingstad E, Sulem P, Norddahl G, Rutsdottir G, Banasik K, Christensen AH, Mikkelsen C, Pedersen OB, Brunak S, Bruun MT, Erikstrup C, Jacobsen RL, Nielsen KR, Sørensen E, Frigge ML, Hjorleifsson KE, Ivarsdottir EV, Helgadottir A, Gretarsdottir S, Steinthorsdottir V, Oddsson A, Eggertsson HP, Halldorsson GH, Jones DA, Anderson JL, Knowlton KU, Nadauld LD, Haraldsson M, Thorgeirsson G, Bundgaard H, Arnar DO, Thorsteinsdottir U, Gudbjartsson DF, Ostrowski SR, Holm H, Stefansson K. Genetic variants associated with syncope implicate neural and autonomic processes. Eur Heart J 2023; 44:1070-1080. [PMID: 36747475 DOI: 10.1093/eurheartj/ehad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 11/22/2022] [Accepted: 01/05/2023] [Indexed: 02/08/2023] Open
Abstract
AIMS Syncope is a common and clinically challenging condition. In this study, the genetics of syncope were investigated to seek knowledge about its pathophysiology and prognostic implications. METHODS AND RESULTS This genome-wide association meta-analysis included 56 071 syncope cases and 890 790 controls from deCODE genetics (Iceland), UK Biobank (United Kingdom), and Copenhagen Hospital Biobank Cardiovascular Study/Danish Blood Donor Study (Denmark), with a follow-up assessment of variants in 22 412 cases and 286 003 controls from Intermountain (Utah, USA) and FinnGen (Finland). The study yielded 18 independent syncope variants, 17 of which were novel. One of the variants, p.Ser140Thr in PTPRN2, affected syncope only when maternally inherited. Another variant associated with a vasovagal reaction during blood donation and five others with heart rate and/or blood pressure regulation, with variable directions of effects. None of the 18 associations could be attributed to cardiovascular or other disorders. Annotation with regard to regulatory elements indicated that the syncope variants were preferentially located in neural-specific regulatory regions. Mendelian randomization analysis supported a causal effect of coronary artery disease on syncope. A polygenic score (PGS) for syncope captured genetic correlation with cardiovascular disorders, diabetes, depression, and shortened lifespan. However, a score based solely on the 18 syncope variants performed similarly to the PGS in detecting syncope risk but did not associate with other disorders. CONCLUSION The results demonstrate that syncope has a distinct genetic architecture that implicates neural regulatory processes and a complex relationship with heart rate and blood pressure regulation. A shared genetic background with poor cardiovascular health was observed, supporting the importance of a thorough assessment of individuals presenting with syncope.
Collapse
Affiliation(s)
- Hildur M Aegisdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | | | | | | | | | | | | | | | | | - Egil Ferkingstad
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Patrick Sulem
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Alex Hoerby Christensen
- The Unit for Inherited Cardiac Diseases, Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
- Department of Cardiology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 1, Herlev 2730, Denmark
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Christina Mikkelsen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Ole Birger Pedersen
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Clinical Immunology, Zealand University Hospital - Køge, Lykkebækvej 1, Køge 4600, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3A, Copenhagen 2200, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, J. B. Winsløws Vej 4, Odense 5000, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, Aarhus 8000, Denmark
| | - Rikke Louise Jacobsen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Kaspar Rene Nielsen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32, Aalborg 9000, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Michael L Frigge
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Anna Helgadottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - Asmundur Oddsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | | | | | - David A Jones
- Precision Genomics, Intermountain Healthcare, 600 S. Medical Center Drive, Saint George, UT 84790, USA
| | - Jeffrey L Anderson
- Intermountain Medical Center, Intermountain Heart Institute, 5171 S. Cottonwood Street Building 1, Salt Lake City, UT 84107, USA
- Department of Internal Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, 5171 S. Cottonwood Street Building 1, Salt Lake City, UT 84107, USA
- School of Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Lincoln D Nadauld
- Precision Genomics, Intermountain Healthcare, 600 S. Medical Center Drive, Saint George, UT 84790, USA
- School of Medicine, Stanford University, 291 Campus Drive, Stanford, CA 94305, USA
| | | | - Magnus Haraldsson
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
- Department of Psychiatry, Landspitali, The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Gudmundur Thorgeirsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Henning Bundgaard
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- The Capital Regions Unit for Inherited Cardiac Diseases, Department of Cardiology, The Heart Centre, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - David O Arnar
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
- Department of Medicine, Landspitali, The National University Hospital of Iceland, Hringbraut, Reykjavik 101, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Hjardarhagi 4, Reykjavik 107, Iceland
| | - Sisse R Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Hilma Holm
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Inc., Sturlugata 8, Reykjavik 101, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, Reykjavik 101, Iceland
| |
Collapse
|
13
|
Wang XY, Wang LL, Xu L, Liang SZ, Yu MC, Zhang QY, Dong QJ. Evaluation of polygenic risk score for risk prediction of gastric cancer. World J Gastrointest Oncol 2023; 15:276-285. [PMID: 36908320 PMCID: PMC9994049 DOI: 10.4251/wjgo.v15.i2.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023] Open
Abstract
Genetic variations are associated with individual susceptibility to gastric cancer. Recently, polygenic risk score (PRS) models have been established based on genetic variants to predict the risk of gastric cancer. To assess the accuracy of current PRS models in the risk prediction, a systematic review was conducted. A total of eight eligible studies consisted of 544842 participants were included for evaluation of the performance of PRS models. The overall accuracy was moderate with Area under the curve values ranging from 0.5600 to 0.7823. Incorporation of epidemiological factors or Helicobacter pylori (H. pylori) status increased the accuracy for risk prediction, while selection of single nucleotide polymorphism (SNP) and number of SNPs appeared to have little impact on the model performance. To further improve the accuracy of PRS models for risk prediction of gastric cancer, we summarized the association between gastric cancer risk and H. pylori genomic variations, cancer associated bacteria members in the gastric microbiome, discussed the potentials for performance improvement of PRS models with these microbial factors. Future studies on comprehensive PRS models established with human SNPs, epidemiological factors and microbial factors are indicated.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Li-Li Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Lin Xu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Shu-Zhen Liang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Meng-Chao Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Qiu-Yue Zhang
- Department of Clinical Laboratory, the Eighth Medical Center of the General Hospital of the People’s Liberation Army, Beijing 100000, China
| | - Quan-Jiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
14
|
Xiao Q, Mao C, Gao Y, Huang H, Yu B, Yu L, Li X, Mao X, Zhang W, Yin J, Liu Z. Establishing a Prediction Model for the Efficacy of Platinum-Based Chemotherapy in NSCLC Based on a Two Cohorts GWAS Study. J Clin Med 2023; 12:jcm12041318. [PMID: 36835855 PMCID: PMC9958581 DOI: 10.3390/jcm12041318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Platinum drugs combined with other agents have been the first-line treatment for non-small cell lung cancer (NSCLC) in the past decades. To better evaluate the efficacy of platinum-based chemotherapy in NSCLC, we establish a platinum chemotherapy response prediction model. Here, a total of 217 samples from Xiangya Hospital of Central South University were selected as the discovery cohort for a genome-wide association analysis (GWAS) to select SNPs. Another 216 samples were genotyped as a validation cohort. In the discovery cohort, using linkage disequilibrium (LD) pruning, we extract a subset that does not contain correlated SNPs. The SNPs with p < 10-3 and p < 10-4 are selected for modeling. Subsequently, we validate our model in the validation cohort. Finally, clinical factors are incorporated into the model. The final model includes four SNPs (rs7463048, rs17176196, rs527646, and rs11134542) as well as two clinical factors that contributed to the efficacy of platinum chemotherapy in NSCLC, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.726.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Chenxue Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Ying Gao
- Department of Geriatric Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanxue Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Bing Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Lulu Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
- Correspondence: (J.Y.); (Z.L.); Tel.: +86-731-84805380 (J.Y.); +86-731-82655012 (Z.L.); Fax: +86-731-82354476 (J.Y. & Z.L.)
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, China
- Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
- Correspondence: (J.Y.); (Z.L.); Tel.: +86-731-84805380 (J.Y.); +86-731-82655012 (Z.L.); Fax: +86-731-82354476 (J.Y. & Z.L.)
| |
Collapse
|
15
|
Feng X, Wang F, Yang W, Zheng Y, Liu C, Huang L, Li L, Cheng H, Cai H, Li X, Chen X, Yang X. Association Between Genetic Risk, Adherence to Healthy Lifestyle Behavior, and Thyroid Cancer Risk. JAMA Netw Open 2022; 5:e2246311. [PMID: 36508215 PMCID: PMC9856466 DOI: 10.1001/jamanetworkopen.2022.46311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/21/2022] [Indexed: 12/14/2022] Open
Abstract
Importance Genetic and lifestyle factors are related to thyroid cancer (TC). Whether a healthy lifestyle is associated with TC and could attenuate the influence of genetic variants in TC remains equivocal. Objectives To examine the associations between genetics and healthy lifestyle with incident TC and whether adherence to a healthy lifestyle modifies the association between genetic variants and TC. Design, Setting, and Participants A prospective cohort study using UK Biobank data recruited 502 505 participants aged 40 to 69 years between March 13, 2006, and October 1, 2010. A total of 307 803 participants of European descent were recruited at baseline, and 264 956 participants were available for the present study. Data analysis was conducted from November 1, 2021, to April 22, 2022. Exposures Lifestyle behaviors were determined by diet index, physical activity, weight, smoking, and alcohol consumption. Lifestyle was categorized as unfavorable (scores 0-1), intermediate (score 2), and favorable (scores 3-5). The polygenic risk score (PRS) was derived from a meta-genome-wide association study using 3 cohorts and categorized as low, intermediate, and high. Main Outcomes and Measures Thyroid cancer was defined using the International Classification of Diseases, Ninth Revision (code 193), International Statistical Classification of Diseases and Related Health Problems, Tenth Revision (code C73), and self-report (code 1065). Results Of 264 956 participants, 137 665 were women (52%). The median age was 57 (IQR, 49-62) years. During a median follow-up of 11.1 (IQR, 10.33-11.75) years (2 885 046 person-years), 423 incident TCs were ascertained (14.66 per 100 000 person-years). Higher PRSs were associated with TC (hazard ratio [HR], 2.25; 95% CI, 1.91-2.64; P = 8.65 × 10-23). An unfavorable lifestyle was also associated with a higher risk of TC (HR, 1.93; 95% CI, 1.50-2.49; P < .001). When stratified by PRS, unfavorable lifestyle was associated with TC in the higher PRS group (favorable vs unfavorable HR, 0.52; 95% CI, 0.37-0.73; P < .001). Furthermore, participants with both a high PRS and unfavorable lifestyle had the highest risk of TC (HR, 4.89; 95% CI, 3.03-7.91; P < .001). Conclusions and Relevance In this prospective cohort study, genetic and lifestyle factors were independently associated with incident TC, which suggests that a healthier lifestyle may attenuate the deleterious influence of genetics on the risk of TC in individuals of European descent.
Collapse
Affiliation(s)
- Xiuming Feng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Wenjun Yang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuan Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Lulu Huang
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Longman Li
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Department of Urology, Institute of Urology and Nephrology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiangzhi Li
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Xing Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory on Precise Prevention and Treatment for Thyroid Tumor, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi, China
- Guangxi Key Laboratory of Environment and Health Research, Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
16
|
Brigante G, Lazzaretti C, Paradiso E, Nuzzo F, Sitti M, Tüttelmann F, Moretti G, Silvestri R, Gemignani F, Försti A, Hemminki K, Elisei R, Romei C, Zizzi EA, Deriu MA, Simoni M, Landi S, Casarini L. Genetic signature of differentiated thyroid carcinoma susceptibility: a machine learning approach. Eur Thyroid J 2022; 11:e220058. [PMID: 35976137 PMCID: PMC9513665 DOI: 10.1530/etj-22-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022] Open
Abstract
To identify a peculiar genetic combination predisposing to differentiated thyroid carcinoma (DTC), we selected a set of single nucleotide polymorphisms (SNPs) associated with DTC risk, considering polygenic risk score (PRS), Bayesian statistics and a machine learning (ML) classifier to describe cases and controls in three different datasets. Dataset 1 (649 DTC, 431 controls) has been previously genotyped in a genome-wide association study (GWAS) on Italian DTC. Dataset 2 (234 DTC, 101 controls) and dataset 3 (404 DTC, 392 controls) were genotyped. Associations of 171 SNPs reported to predispose to DTC in candidate studies were extracted from the GWAS of dataset 1, followed by replication of SNPs associated with DTC risk (P < 0.05) in dataset 2. The reliability of the identified SNPs was confirmed by PRS and Bayesian statistics after merging the three datasets. SNPs were used to describe the case/control state of individuals by ML classifier. Starting from 171 SNPs associated with DTC, 15 were positive in both datasets 1 and 2. Using these markers, PRS revealed that individuals in the fifth quintile had a seven-fold increased risk of DTC than those in the first. Bayesian inference confirmed that the selected 15 SNPs differentiate cases from controls. Results were corroborated by ML, finding a maximum AUC of about 0.7. A restricted selection of only 15 DTC-associated SNPs is able to describe the inner genetic structure of Italian individuals, and ML allows a fair prediction of case or control status based solely on the individual genetic background.
Collapse
Affiliation(s)
- Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Nuzzo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Sitti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | | | | | | | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kari Hemminki
- Biomedical Center, Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rossella Elisei
- Department of Endocrinology, University Hospital, Pisa, Italy
| | - Cristina Romei
- Department of Endocrinology, University Hospital, Pisa, Italy
| | - Eric Adriano Zizzi
- Polito Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
| | - Marco Agostino Deriu
- Polito Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Kitahara CM, Schneider AB. Epidemiology of Thyroid Cancer. Cancer Epidemiol Biomarkers Prev 2022; 31:1284-1297. [PMID: 35775227 PMCID: PMC9473679 DOI: 10.1158/1055-9965.epi-21-1440] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Affiliation(s)
- Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Bethesda, Maryland
| | - Arthur B Schneider
- University of Illinois at Chicago, College of Medicine, Department of Medicine, Chicago, Illinois
| |
Collapse
|
18
|
Zhang F, Fan G, Wang X. Correlation between BTG3, CASP9 and LRP4 single-nucleotide polymorphisms and susceptibility to papillary thyroid carcinoma. Biomark Med 2022; 16:537-547. [PMID: 35362324 DOI: 10.2217/bmm-2021-0711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objective: To study the association of BTG3, CASP9 and LRP4 single-nucleotide polymorphisms with susceptibility to papillary thyroid carcinoma (PTC). Methods: The BTG3 rs9977638, CASP9 rs884363 and LRP4 rs898604 genotypes of 175 PTC patients and 175 controls were analyzed. Results: Rs9977638 TC genotype and CC genotype, rs884363 CC genotype and rs898604 GG genotype were related to a lower PTC susceptibility risk (p < 0.01). The risk of PTC susceptibility was higher when carrying BTG3 rs9977638 CC, CASP9 rs884363 AC and LRP4 rs898604 AG at the same time (p < 0.01). Conclusion: Combined BTG3, CASP9 and LRP4 genotype analysis has a certain application value in the diagnosis of PTC.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy,Tianjin Cancer Institute, National Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of Thyroid Breast Hernia Surgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Guidong Fan
- Department of Thyroid Breast Hernia Surgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia Autonomous Region, 010017, China
| | - Xudong Wang
- Department of Maxillofacial & E.N.T. Oncology, Tianjin Medical University Cancer Institute & Hospital, Key Laboratory of Cancer Prevention and Therapy,Tianjin Cancer Institute, National Clinical Research Center for Cancer, Tianjin, 300060, China
| |
Collapse
|
19
|
Kamani T, Charkhchi P, Zahedi A, Akbari MR. Genetic susceptibility to hereditary non-medullary thyroid cancer. Hered Cancer Clin Pract 2022; 20:9. [PMID: 35255942 PMCID: PMC8900298 DOI: 10.1186/s13053-022-00215-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
Non-medullary thyroid cancer (NMTC) is the most common type of thyroid cancer. With the increasing incidence of NMTC in recent years, the familial form of the disease has also become more common than previously reported, accounting for 5-15% of NMTC cases. Familial NMTC is further classified as non-syndromic and the less common syndromic FNMTC. Although syndromic NMTC has well-known genetic risk factors, the gene(s) responsible for the vast majority of non-syndromic FNMTC cases are yet to be identified. To date, several candidate genes have been identified as susceptibility genes in hereditary NMTC. This review summarizes genetic predisposition to non-medullary thyroid cancer and expands on the role of genetic variants in thyroid cancer tumorigenesis and the level of penetrance of NMTC-susceptibility genes.
Collapse
Affiliation(s)
- Tina Kamani
- Women's College Research Institute, University of Toronto, 76 Grenville St. Room 6421, Toronto, ON, M5S 1B2, Canada
| | - Parsa Charkhchi
- Women's College Research Institute, University of Toronto, 76 Grenville St. Room 6421, Toronto, ON, M5S 1B2, Canada
| | - Afshan Zahedi
- Women's College Research Institute, University of Toronto, 76 Grenville St. Room 6421, Toronto, ON, M5S 1B2, Canada
| | - Mohammad R Akbari
- Women's College Research Institute, University of Toronto, 76 Grenville St. Room 6421, Toronto, ON, M5S 1B2, Canada. .,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Dalla Lana School of Public Health, University of Toronto, Toronto, ON, M5T 3M7, Canada.
| |
Collapse
|
20
|
Icduygu FM, Akgun E, Sengul D, Ozgoz A, Alp E. Expression of SOX2OT, DANCR and TINCR long non‑coding RNAs in papillary thyroid cancer and its effects on clinicopathological features. Mol Med Rep 2022; 25:120. [PMID: 35147200 PMCID: PMC8855165 DOI: 10.3892/mmr.2022.12636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/19/2022] [Indexed: 11/06/2022] Open
Abstract
Long non‑coding RNAs (lncRNAs) are molecules that are >200 base pairs long and do not encode a protein. However, they perform important roles in regulating gene expression. Recent studies have revealed that the changes in the expressions of lncRNAs serve a role in the development and metastases of a number of types of cancer. A number of studies have been published on the association of SOX2 overlapping transcript (SOX2OT), differentiation antagonizing non‑protein coding RNA (DANCR) and tissue differentiation‑induced non‑coding RNA (TINCR) expression with various types of cancer. However, researchers have not yet studied their roles in papillary thyroid cancer or at least, those roles are not clarified. The aim of the present study was to investigate the expression and clinical significance of SOX2OT, DANCR and TINCR in papillary thyroid cancer (PTC). A total of 102 patients with PTC were included in the present study. Reverse transcription‑quantitative PCR method was used to determine the relative gene expression levels of lncRNAs and then the relationship between expressions of lncRNAs and clinical characteristics of the subjects was analyzed in detail. Expression levels of SOX2OT (P=0.016) and DANCR (P=0.017) increased in the tumor samples in contrast to the normal tissues. No significant difference was observed in the expression level of TINCR (P=0.298). In addition, SOX2OT expression was associated with micro carcinoma (P<0.001), tumor size (P=0.010) and primary tumor (P=0.006), while DANCR expression was associated with age (P=0.030) and micro carcinoma (P=0.004). The findings of the present study indicated that DANCR may contribute to the development of PTC while SOX2OT may contribute to both the development and progression of PTC.
Collapse
Affiliation(s)
- Fadime Mutlu Icduygu
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun 28100, Turkey
| | - Egemen Akgun
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun 28100, Turkey
| | - Demet Sengul
- Department of Pathology, Faculty of Medicine, Giresun University, Giresun 28100, Turkey
| | - Asuman Ozgoz
- Department of Medical Genetics, Faculty of Medicine, Kastamonu University, Kastamonu 37100, Turkey
| | - Ebru Alp
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun 28100, Turkey
| |
Collapse
|
21
|
Emerging Biomarkers in Thyroid Practice and Research. Cancers (Basel) 2021; 14:cancers14010204. [PMID: 35008368 PMCID: PMC8744846 DOI: 10.3390/cancers14010204] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Tumor biomarkers are molecules at genetic or protein level, or certain evaluable characteristics. These help in perfecting patient management. Over the past decade, advanced and more sensitive techniques have led to the identification of many new biomarkers in the field of oncology. A knowledge of the recent developments is essential for their application to clinical practice, and furthering research. This review provides a comprehensive account of such various markers identified in thyroid carcinoma, the most common endocrine malignancy. While some of these have been brought into use in routine patient management, others are novel and need more research before clinical application. Abstract Thyroid cancer is the most common endocrine malignancy. Recent developments in molecular biological techniques have led to a better understanding of the pathogenesis and clinical behavior of thyroid neoplasms. This has culminated in the updating of thyroid tumor classification, including the re-categorization of existing and introduction of new entities. In this review, we discuss various molecular biomarkers possessing diagnostic, prognostic, predictive and therapeutic roles in thyroid cancer. A comprehensive account of epigenetic dysregulation, including DNA methylation, the function of various microRNAs and long non-coding RNAs, germline mutations determining familial occurrence of medullary and non-medullary thyroid carcinoma, and single nucleotide polymorphisms predisposed to thyroid tumorigenesis has been provided. In addition to novel immunohistochemical markers, including those for neuroendocrine differentiation, and next-generation immunohistochemistry (BRAF V600E, RAS, TRK, and ALK), the relevance of well-established markers, such as Ki-67, in current clinical practice has also been discussed. A tumor microenvironment (PD-L1, CD markers) and its influence in predicting responses to immunotherapy in thyroid cancer and the expanding arena of techniques, including liquid biopsy based on circulating nucleic acids and plasma-derived exosomes as a non-invasive technique for patient management, are also summarized.
Collapse
|
22
|
Malchoff CD. Inherited Risk Factors for Nonmedullary Thyroid Carcinoma. J Clin Endocrinol Metab 2021; 106:e4287-e4289. [PMID: 33739387 DOI: 10.1210/clinem/dgab185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Carl D Malchoff
- Division of Endocrinology and Metabolism and The Neag Comprehensive Cancer Center, UCONN Health, Farmington, CT, USA
| |
Collapse
|
23
|
Song N, Liu Q, Wilson CL, Sapkota Y, Ehrhardt MJ, Gibson TM, Morton LM, Chanock SJ, Neglia JP, Arnold MA, Michael JR, Gout AM, Mulder HL, Easton J, Bhatia S, Armstrong GT, Zhang J, Delaney A, Hudson MM, Robison LL, Yasui Y, Wang Z. Polygenic Risk Score Improves Risk Stratification and Prediction of Subsequent Thyroid Cancer after Childhood Cancer. Cancer Epidemiol Biomarkers Prev 2021; 30:2096-2104. [PMID: 34465587 DOI: 10.1158/1055-9965.epi-21-0448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Subsequent thyroid cancer (STC) is one of the most common malignancies in childhood cancer survivors. We aimed to evaluate the polygenic contributions to STC risk and potential utility in improving risk prediction. METHODS A polygenic risk score (PRS) was calculated from 12 independent SNPs associated with thyroid cancer risk in the general population. Associations between PRS and STC risk were evaluated among survivors from St. Jude Lifetime Cohort (SJLIFE) and were replicated in survivors from Childhood Cancer Survivor Study (CCSS). A risk prediction model integrating the PRS and clinical factors, initially developed in SJLIFE, and its performance were validated in CCSS. RESULTS Among 2,370 SJLIFE survivors with a median follow-up of 28.8 [interquartile range (IQR) = 21.9-36.1] years, 65 (2.7%) developed STC. Among them, the standardized PRS was associated with an increased rate of STC [relative rate (RR) = 1.57; 95% confidence interval (CI) = 1.24-1.98; P < 0.001]. Similar associations were replicated in 6,416 CCSS survivors, among whom 121 (1.9%) developed STC during median follow-up of 28.9 (IQR = 22.6-34.6) years (RR = 1.52; 95% CI = 1.25-1.83; P < 0.001). A risk prediction model integrating the PRS with clinical factors showed better performance than the model considering only clinical factors in SJLIFE (P = 0.004, AUC = 83.2% vs. 82.1%, at age 40), which was further validated in CCSS (P = 0.010, AUC = 72.9% vs. 70.6%). CONCLUSIONS Integration of the PRS with clinical factors provided a statistically significant improvement in risk prediction of STC, although the magnitude of improvement was modest. IMPACT PRS improves risk stratification and prediction of STC, suggesting its potential utility for optimizing screening strategies in survivorship care.
Collapse
Affiliation(s)
- Nan Song
- St. Jude Children's Research Hospital, Memphis, Tennessee.,College of Pharmacy, Chungbuk National University, Cheongju, Republic of South Korea
| | - Qi Liu
- University of Alberta, Edmonton, Alberta, Canada
| | | | - Yadav Sapkota
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | | | | | | | | | | | | - John Easton
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Smita Bhatia
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Jinghui Zhang
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Angela Delaney
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | - Yutaka Yasui
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zhaoming Wang
- St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
24
|
Mio C, Verrienti A, Pecce V, Sponziello M, Damante G. Rare germline variants in DNA repair-related genes are accountable for papillary thyroid cancer susceptibility. Endocrine 2021; 73:648-657. [PMID: 33821390 PMCID: PMC8325654 DOI: 10.1007/s12020-021-02705-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Understanding the molecular mechanisms underlying papillary thyroid cancer (PTC) proved to be vital not only for diagnostic purposes but also for tailored treatments. Despite the strong evidence of heritability, only a small subset of alterations has been implicated in PTC pathogenesis. To this reason, we used targeted next-generation sequencing (NGS) to identify candidate variants implicated in PTC pathogenesis, progression, and invasiveness. METHODS A total of 42 primary PTC tissues were investigated using a targeted next-generation sequencing (NGS) panel enlisting 47 genes involved in DNA repair and tumor progression. RESULTS We identified 57 point mutations in 78.5% of samples (n = 32). Thirty-two somatic mutations were identified exclusively in known thyroid cancer genes (BRAF, KRAS, NRAS, and TERT). Unpredictably, 45% of the all identified mutations (n = 25) resulted to be germline, most affecting DNA repair genes. Interestingly, none of the latter variants was in the main population databases. Following ACMG classification, 20% of pathogenic/likely pathogenic and 68% of variant of unknown significance were identified. CONCLUSIONS Overall, our results support the hypothesis that rare germline variants in DNA repair genes are accountable for PTC susceptibility. More data, including the segregation analysis in affected families, should be collected before definitely annotate these alterations and to establish their potential prognostic and treatment implications.
Collapse
Affiliation(s)
- Catia Mio
- Department of Medicine, University of Udine, 33100, Udine, Italy.
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valeria Pecce
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, 33100, Udine, Italy
| |
Collapse
|
25
|
Mulder N, Zass L, Hamdi Y, Othman H, Panji S, Allali I, Fakim YJ. African Global Representation in Biomedical Sciences. Annu Rev Biomed Data Sci 2021; 4:57-81. [PMID: 34465182 DOI: 10.1146/annurev-biodatasci-102920-112550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
African populations are diverse in their ethnicity, language, culture, and genetics. Although plagued by high disease burdens, until recently the continent has largely been excluded from biomedical studies. Along with limitations in research and clinical infrastructure, human capacity, and funding, this omission has resulted in an underrepresentation of African data and disadvantaged African scientists. This review interrogates the relative abundance of biomedical data from Africa, primarily in genomics and other omics. The visibility of African science through publications is also discussed. A challenge encountered in this review is the relative lack of annotation of data on their geographical or population origin, with African countries represented as a single group. In addition to the abovementioned limitations,the global representation of African data may also be attributed to the hesitation to deposit data in public repositories. Whatever the reason, the disparity should be addressed, as African data have enormous value for scientists in Africa and globally.
Collapse
Affiliation(s)
- Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa; .,Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-AFRICA), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Lyndon Zass
- Computational Biology Division, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics and Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, University of Tunis El Manar, 1002 Tunis, Tunisia
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Sumir Panji
- Computational Biology Division, Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa;
| | - Imane Allali
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 1014 Rabat, Morocco
| | - Yasmina Jaufeerally Fakim
- Biotechnology Unit, Department of Agricultural and Food Science, Faculty of Agriculture, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
26
|
Morton LM, Karyadi DM, Stewart C, Bogdanova TI, Dawson ET, Steinberg MK, Dai J, Hartley SW, Schonfeld SJ, Sampson JN, Maruvka YE, Kapoor V, Ramsden DA, Carvajal-Garcia J, Perou CM, Parker JS, Krznaric M, Yeager M, Boland JF, Hutchinson A, Hicks BD, Dagnall CL, Gastier-Foster JM, Bowen J, Lee O, Machiela MJ, Cahoon EK, Brenner AV, Mabuchi K, Drozdovitch V, Masiuk S, Chepurny M, Zurnadzhy LY, Hatch M, Berrington de Gonzalez A, Thomas GA, Tronko MD, Getz G, Chanock SJ. Radiation-related genomic profile of papillary thyroid carcinoma after the Chernobyl accident. Science 2021; 372:science.abg2538. [PMID: 33888599 DOI: 10.1126/science.abg2538] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The 1986 Chernobyl nuclear power plant accident increased papillary thyroid carcinoma (PTC) incidence in surrounding regions, particularly for radioactive iodine (131I)-exposed children. We analyzed genomic, transcriptomic, and epigenomic characteristics of 440 PTCs from Ukraine (from 359 individuals with estimated childhood 131I exposure and 81 unexposed children born after 1986). PTCs displayed radiation dose-dependent enrichment of fusion drivers, nearly all in the mitogen-activated protein kinase pathway, and increases in small deletions and simple/balanced structural variants that were clonal and bore hallmarks of nonhomologous end-joining repair. Radiation-related genomic alterations were more pronounced for individuals who were younger at exposure. Transcriptomic and epigenomic features were strongly associated with driver events but not radiation dose. Our results point to DNA double-strand breaks as early carcinogenic events that subsequently enable PTC growth after environmental radiation exposure.
Collapse
Affiliation(s)
- Lindsay M Morton
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Danielle M Karyadi
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Chip Stewart
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tetiana I Bogdanova
- Laboratory of Morphology of the Endocrine System, V. P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Eric T Dawson
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.,Nvidia Corporation, Santa Clara, CA 95051, USA
| | - Mia K Steinberg
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Jieqiong Dai
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Stephen W Hartley
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sara J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joshua N Sampson
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yosef E Maruvka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vidushi Kapoor
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joel S Parker
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Marko Krznaric
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London W6 8RF, UK
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Joseph F Boland
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Casey L Dagnall
- Cancer Genomics Research Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Bethesda, MD 20892, USA
| | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH 43205, USA.,Departments of Pathology and Pediatrics, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jay Bowen
- Nationwide Children's Hospital, Biospecimen Core Resource, Columbus, OH 43205, USA
| | - Olivia Lee
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitchell J Machiela
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alina V Brenner
- Radiation Effects Research Foundation, Hiroshima 732-0815, Japan
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Drozdovitch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sergii Masiuk
- Radiological Protection Laboratory, Institute of Radiation Hygiene and Epidemiology, National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Mykola Chepurny
- Radiological Protection Laboratory, Institute of Radiation Hygiene and Epidemiology, National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv 04050, Ukraine
| | - Liudmyla Yu Zurnadzhy
- Laboratory of Morphology of the Endocrine System, V. P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Maureen Hatch
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Amy Berrington de Gonzalez
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gerry A Thomas
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London W6 8RF, UK
| | - Mykola D Tronko
- Department of Fundamental and Applied Problems of Endocrinology, V. P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Medical Sciences of Ukraine, Kyiv 04114, Ukraine
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Center for Cancer Research and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Chanock
- Laboratory of Genetic Susceptibility, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Song SS, Huang S, Park S. Association of Polygenetic Risk Scores Related to Cell Differentiation and Inflammation with Thyroid Cancer Risk and Genetic Interaction with Dietary Intake. Cancers (Basel) 2021; 13:1510. [PMID: 33805984 PMCID: PMC8038131 DOI: 10.3390/cancers13071510] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
The incidence of thyroid cancer continues to increase steadily, and this increasing incidence cannot be attributed solely to the overdiagnosis of microcarcinoma or technical advancements in detection methods and may also depend on environmental and genetic factors. However, the impacts and interactions of genetic and environmental factors remain controversial, and they may differ in Eastern and Western countries. The study's purpose was to identify single nucleotide polymorphisms of genes related to cell differentiation and inflammation to influence thyroid cancer incidence and determine interactions with lifestyles in a large city hospital-based cohort. Genetic variants were selected by genome-wide association study with thyroid cancer participants (case; n = 495) and controls without cancers (n = 56,439). SNPs having gene-gene interactions were selected by generalized multifactor dimensionality reduction. Polygenic risk scores (PRSs) were generated by summing the number of selected SNP risk alleles. PRSs of the best model included 6 SNPs, that is, DIRC3_rs6759952, GAP43_rs13059137, NRG1_rs7834206, PROM1_rs72616195, LRP1B_rs1369535, and LOC100507065_rs11175834. Participants with a high-PRS had a higher thyroid cancer risk by 3.9-fold than those with a low-PRS. The following variables were related to an increased thyroid cancer risk; female (OR = 4.21), high white blood cell count (OR = 4.03), and high energy (OR = 7.00), low alcohol (OR = 4.11), and high seaweed (OR = 4.02) intakes. These variables also interacted with PRS to influence thyroid cancer risk. Meat/noodle diet patterns interacted with PRSs to increase thyroid cancer risk (p = 0.0023). In conclusion, women with a high-PRS associated with cell differentiation and inflammation were at an elevated thyroid cancer risk. Daily energy, seaweeds, and alcohol intake interacted with PRS for thyroid cancer risk. These results could be applied to personalized nutrition plans to reduce the risk of thyroid cancer.
Collapse
Affiliation(s)
- Sang Shin Song
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
| | - ShaoKai Huang
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea;
| | - Sunmin Park
- Obesity/Diabetes Research Center, Department of Food and Nutrition, Hoseo University, Asan 31499, Korea;
- Department of Bio-Convergence System, Hoseo University, Asan 31499, Korea;
| |
Collapse
|
28
|
Xu X, Wang B, Jiang Z, Chen Q, Mao K, Shi X, Yan C, Hu J, Zha Y, Ma C, Zhang J, Guo R, Wang L, Zhao S, Liu H, Zhang Q, Zhang YB. Novel risk factors for craniofacial microsomia and assessment of their utility in clinic diagnosis. Hum Mol Genet 2021; 30:1045-1056. [PMID: 33615373 DOI: 10.1093/hmg/ddab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/03/2021] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Craniofacial microsomia (CFM, OMIM%164 210) is one of the most common congenital facial abnormalities worldwide, but it's genetic risk factors and environmental threats are poorly investigated, as well as their interaction, making the diagnosis and prenatal screening of CFM impossible. We perform a comprehensive association study on the largest CFM cohort of 6074 samples. We identify 15 significant (P < 5 × 10-8) associated genomic loci (including eight previously reported) and decipher 107 candidates based on multi-omics data. Gene Ontology term enrichment found that these candidates are mainly enriched in neural crest cell (NCC) development and hypoxic environment. Single-cell RNA-seq data of mouse embryo demonstrate that nine of them show dramatic expression change during early cranial NCC development whose dysplasia is involved in pathogeny of CFM. Furthermore, we construct a well-performed CFM risk-predicting model based on polygenic risk score (PRS) method and estimate seven environmental risk factors that interacting with PRS. Single-nucleotide polymorphism-based PRS is significantly associated with CFM [P = 7.22 × 10-58, odds ratio = 3.15, 95% confidence interval (CI) 2.74-3.63], and the top fifth percentile has a 6.8-fold CFM risk comparing with the 10th percentile. Father's smoking increases CFM risk as evidenced by interaction parameter of -0.324 (95% CI -0.578 to -0.070, P = 0.011) with PRS. In conclusion, the newly identified risk loci will significantly improve our understandings of genetics contribution to CFM. The risk prediction model is promising for CFM prediction, and father's smoking is a key environmental risk factor for CFM through interacting with genetic factors.
Collapse
Affiliation(s)
- Xiaopeng Xu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
| | - Bingqing Wang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Zhuoyuan Jiang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qi Chen
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Ke Mao
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xiaofeng Shi
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Chun Yan
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China
| | - Jintian Hu
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Yan Zha
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chao Ma
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Jiao Zhang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Rui Guo
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Shouqin Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Huisheng Liu
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
| | - Qingguo Zhang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Beijing 100144, China
| | - Yong-Biao Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing 100191, China.,Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing 100191, China
| |
Collapse
|
29
|
Capezzone M, Sagnella A, Pilli T, Maino F, Forleo R, Cantara S, Cartocci A, Castagna MG. Role of Age at Diagnosis in Defining Potential Familial Nonmedullary Thyroid Cancer in Kindreds With Two Affected Members. J Clin Endocrinol Metab 2021; 106:e855-e865. [PMID: 33175120 DOI: 10.1210/clinem/dgaa798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT The definition of familial nonmedullary thyroid cancer (FNMTC) in 2 or more first-degree relatives is controversial due to the high probability of observing a sporadic association when only 2 members of first-degree relatives are affected. OBJECTIVE To evaluate the role of age at diagnosis in differentiating the true cases of FNMTC. DESIGN, SETTING, PARTICIPANTS, AND MAIN OUTCOME From a group of 721 papillary thyroid cancer (PTC) patients, 95 familial PTC (FPTC) patients with 2 first-degree relatives have been identified. They were split in 2 groups: Group 1 consisted of both the proband and the affected relative, with age at diagnosis ≤ 45 years; Group 2 consisted of proband and/or the affected family member, with age at diagnosis > 45 years. The clinical-pathological features and outcome of both FPTC groups were compared with 626 sporadic PTC patients (SPTC). RESULTS Familial PTC patients with age at diagnosis ≤ 45 years, compared with the matched group of sporadic PTCs, had a more frequent multifocal, bilateral, and extrathyroidal extension of tumor and showed worse outcome. No differences were found between FPTC and SPTC patients with age > 45 years. At multivariate analysis, distant metastases, American Thyroid Association (ATA) risk, and FPTC ≤ 45 years were independent predictors of outcome. CONCLUSIONS Based on the observation that PTC is more aggressive when the diagnosis is made in 2 family members, both with age < 45years, we suggest that the definition of FPTC in kindreds with 2 affected members should also take into account the age at diagnosis as a key element of familial cancer.
Collapse
Affiliation(s)
- Marco Capezzone
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Alfonso Sagnella
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Tania Pilli
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Fabio Maino
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Raffaella Forleo
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | | | - Maria Grazia Castagna
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Miasaki FY, Fuziwara CS, de Carvalho GA, Kimura ET. Genetic Mutations and Variants in the Susceptibility of Familial Non-Medullary Thyroid Cancer. Genes (Basel) 2020; 11:E1364. [PMID: 33218058 PMCID: PMC7698903 DOI: 10.3390/genes11111364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Thyroid cancer is the most frequent endocrine malignancy with the majority of cases derived from thyroid follicular cells and caused by sporadic mutations. However, when at least two or more first degree relatives present thyroid cancer, it is classified as familial non-medullary thyroid cancer (FNMTC) that may comprise 3-9% of all thyroid cancer. In this context, 5% of FNMTC are related to hereditary syndromes such as Cowden and Werner Syndromes, displaying specific genetic predisposition factors. On the other hand, the other 95% of cases are classified as non-syndromic FNMTC. Over the last 20 years, several candidate genes emerged in different studies of families worldwide. Nevertheless, the identification of a prevalent polymorphism or germinative mutation has not progressed in FNMTC. In this work, an overview of genetic alteration related to syndromic and non-syndromic FNMTC is presented.
Collapse
Affiliation(s)
- Fabíola Yukiko Miasaki
- Department of Endocrinology and Metabolism (SEMPR), Hospital de Clínicas, Federal University of Paraná, Curitiba 80030-110, Brazil; (F.Y.M.); (G.A.d.C.)
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Gisah Amaral de Carvalho
- Department of Endocrinology and Metabolism (SEMPR), Hospital de Clínicas, Federal University of Paraná, Curitiba 80030-110, Brazil; (F.Y.M.); (G.A.d.C.)
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| |
Collapse
|
31
|
Yuan J, Song Y, Pan W, Li Y, Xu Y, Xie M, Shen Y, Zhang N, Liu J, Hua H, Wang B, An C, Yang M. LncRNA SLC26A4-AS1 suppresses the MRN complex-mediated DNA repair signaling and thyroid cancer metastasis by destabilizing DDX5. Oncogene 2020; 39:6664-6676. [PMID: 32939012 DOI: 10.1038/s41388-020-01460-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Lymph node metastasis is the major adverse feature for recurrence and death of thyroid cancer patients. To identify lncRNAs involved in thyroid cancer metastasis, we systemically screened differentially expressed lncRNAs in lymph node metastasis, thyroid cancer, and normal tissues via RNAseq. We found that lncRNA SLC26A4-AS1 was continuously, significantly down-regulated in normal tissues, thyroid cancer, and lymph node metastasis specimens. Low SLC26A4-AS1 levels in tissues were significantly associated with poor prognosis of thyroid cancer patients. LncRNA SLC26A4-AS1 markedly inhibited migration, invasion, and metastasis capability of cancer cells in vitro and in vivo. Intriguingly, SLC26A4-AS1 could simultaneously interact with DDX5 and the E3 ligase TRIM25, which promoting DDX5 degradation through the ubiquitin-proteasome pathway. In particular, SLC26A4-AS1 inhibited expression of multiple DNA double-strand breaks (DSBs) repair genes, especially genes coding proteins in the MRE11/RAS50/NBS1 (MRN) complex. Enhanced interaction between DDX5 and transcriptional factor E2F1 due to silencing of SLC26A4-AS1 promoted binding of the DDX5-E2F1 complex at promoters of the MRN genes and, thus, stimulate the MRN/ATM dependent DSB signaling and thyroid cancer metastasis. Our study uncovered new insights into the biology driving thyroid cancer metastasis and highlights potentials of lncRNAs as future therapeutic targets again cancer metastasis.
Collapse
Affiliation(s)
- Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenting Pan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yankang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
32
|
Liu J. Need to establish a new adolescent suicide prevention programme in South Korea. Gen Psychiatr 2020; 33:e100200. [PMID: 32695959 PMCID: PMC7351269 DOI: 10.1136/gpsych-2020-100200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Adolescent suicide is the leading cause of death among South Korean (Korean) youth. Despite great efforts being made towards suicide prevention in Korea, the suicide rate has not decreased significantly. There is an urgent need for a new adolescent suicide prevention strategy. This paper describes the seriousness of the issue of adolescent suicide in Korea, evaluates its current management by the SWOT analysis (strengths, weaknesses, opportunities and threats) and further recommends a new suicide prevention programme that integrates national/social involvement (State Suicide Intervention Committee, suicide posts’ monitoring, parental divorce information sharing and Adolescence Mental Health Promotion Foundation), school-based programmes (continuous monitoring system, psychology consultation team and mental health educational curricula) and family-based programmes (parental education and family-school communication). In addition, genetic analysis, biochemical tests and psychological disease registration are the indispensable elements that aid in suicidal behaviour prevention and prediction.
Collapse
Affiliation(s)
- Jiacheng Liu
- Melbourne School of Population & Global Health, Division of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Jordan B. [Polygenic scores and cancer risk]. Med Sci (Paris) 2020; 36:535-537. [PMID: 32452380 DOI: 10.1051/medsci/2020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Risk assessment for a cancer type with moderate heritability can be accurately performed using a relatively small number of SNPs detected by GWAS analyses to calculate a polygenic risk score (PRS) that has definite clinical utility.
Collapse
Affiliation(s)
- Bertrand Jordan
- UMR 7268 ADÉS, Aix-Marseille, Université /EFS/CNRS ; CoReBio PACA, case 901, Parc scientifique de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|