1
|
Li JL, Zhu CH, Tian MM, Liu Y, Ma L, Tao LJ, Zheng P, Yu JQ, Liu N. Negative allosteric modulator of Group Ⅰ mGluRs: Recent advances and therapeutic perspective for neuropathic pain. Neuroscience 2024; 560:406-421. [PMID: 39368605 DOI: 10.1016/j.neuroscience.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Neuropathic pain (NP) is a widespread public health problem that existing therapeutic treatments cannot manage adequately; therefore, novel treatment strategies are urgently required. G-protein-coupled receptors are important for intracellular signal transduction, and widely participate in physiological and pathological processes, including pain perception. Group I metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, are predominantly implicated in central sensitization, which can lead to hyperalgesia and allodynia. Many orthosteric site antagonists targeting Group I mGluRs have been found to alleviate NP, but their poor efficacy, low selectivity, and numerous side effects limit their development in NP treatment. Here we reviewed the advantages of Group I mGluRs negative allosteric modulators (NAMs) over orthosteric site antagonists based on allosteric modulation mechanism, and the challenges and opportunities of Group I mGluRs NAMs in NP treatment. This article aims to elucidate the advantages and future development potential of Group I mGluRs NAMs in the treatment of NP.
Collapse
Affiliation(s)
- Jia-Ling Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Chun-Hao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Miao-Miao Tian
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Jian-Qiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China.
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750000, China; School of Basic Medical Science, Ningxia Medical University, Yinchuan 750000, China.
| |
Collapse
|
2
|
Hovah ME, Holzgrabe U. Bivalent and bitopic ligands of the opioid receptors: The prospects of a dual approach. Med Res Rev 2024; 44:2545-2599. [PMID: 38751227 DOI: 10.1002/med.22050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 10/05/2024]
Abstract
Opioid receptors belonging to the class A G-protein coupled receptors (GPCRs) are the targets of choice in the treatment of acute and chronic pain. However, their on-target side effects such as respiratory depression, tolerance and addiction have led to the advent of the 'opioid crisis'. In the search for safer analgesics, bivalent and more recently, bitopic ligands have emerged as valuable tool compounds to probe these receptors. The activity of bivalent and bitopic ligands rely greatly on the allosteric nature of the GPCRs. Bivalent ligands consist of two pharmacophores, each binding to the individual orthosteric binding site (OBS) of the monomers within a dimer. Bitopic or dualsteric ligands bridge the gap between the OBS and the spatially distinct, less conserved allosteric binding site (ABS) through the simultaneous occupation of these two sites. Bivalent and bitopic ligands stabilize distinct conformations of the receptors which ultimately translates into unique signalling and pharmacological profiles. Some of the interesting properties shown by these ligands include improved affinity and/or efficacy, subtype and/or functional selectivity and reduced side effects. This review aims at providing an overview of some of the bivalent and bitopic ligands of the opioid receptors and, their pharmacology in the hope of inspiring the design and discovery of the next generation of opioid analgesics.
Collapse
Affiliation(s)
- Marie Emilie Hovah
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, Wuerzburg, Germany
| |
Collapse
|
3
|
Gomes I, Gupta A, Margolis EB, Fricker LD, Devi LA. Ketamine and Major Ketamine Metabolites Function as Allosteric Modulators of Opioid Receptors. Mol Pharmacol 2024; 106:240-252. [PMID: 39187388 PMCID: PMC11493337 DOI: 10.1124/molpharm.124.000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
Ketamine is a glutamate receptor antagonist that was developed over 50 years ago as an anesthetic agent. At subanesthetic doses, ketamine and some metabolites are analgesics and fast-acting antidepressants, presumably through targets other than glutamate receptors. We tested ketamine and its metabolites for activity as allosteric modulators of opioid receptors expressed as recombinant receptors in heterologous systems and with native receptors in rodent brain; signaling was examined by measuring GTP binding, β-arrestin recruitment, MAPK activation, and neurotransmitter release. Although micromolar concentrations of ketamine alone had weak agonist activity at μ opioid receptors, the combination of submicromolar concentrations of ketamine with endogenous opioid peptides produced robust synergistic responses with statistically significant increases in efficacies. All three opioid receptors (μ, δ, and κ) showed synergism with submicromolar concentrations of ketamine and either methionine-enkephalin (Met-enk), leucine-enkephalin (Leu-enk), and/or dynorphin A17 (Dyn A17), albeit the extent of synergy was variable between receptors and peptides. S-ketamine exhibited higher modulatory effects compared with R-ketamine or racemic ketamine, with ∼100% increase in efficacy. Importantly, the ketamine metabolite 6-hydroxynorketamine showed robust allosteric modulatory activity at μ opioid receptors; this metabolite is known to have analgesic and antidepressant activity but does not bind to glutamate receptors. Ketamine enhanced potency and efficacy of Met-enkephalin signaling both in mouse midbrain membranes and in rat ventral tegmental area neurons as determined by electrophysiology recordings in brain slices. Taken together, these findings support the hypothesis that some of the therapeutic effects of ketamine and its metabolites are mediated by directly engaging the endogenous opioid system. SIGNIFICANCE STATEMENT: This study found that ketamine and its major biologically active metabolites function as potent allosteric modulators of μ, δ, and κ opioid receptors, with submicromolar concentrations of these compounds synergizing with endogenous opioid peptides, such as enkephalin and dynorphin. This allosteric activity may contribute to ketamine's therapeutic effectiveness for treating acute and chronic pain and as a fast-acting antidepressant drug.
Collapse
Affiliation(s)
- Ivone Gomes
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Achla Gupta
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Elyssa B Margolis
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lloyd D Fricker
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| | - Lakshmi A Devi
- Departments of Pharmacological Sciences (I.G., A.G., L.A.D.) and Psychiatry (L.A.D.), and Nash Family Department of Neuroscience (L.A.D.), Icahn School of Medicine at Mount Sinai, New York, New York; UCSF Weill Institute for Neurosciences, Department of Neurology, Neuroscience Graduate Program, University of California, San Francisco, California (E.B.M.); and Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.)
| |
Collapse
|
4
|
Zhao J, Baiula M, Cuna E, Francescato M, Matalińska J, Lipiński PF, Bedini A, Gentilucci L. Identification of c[D-Trp-Phe-β-Ala-β-Ala], the First κ-Opioid Receptor-Specific Negative Allosteric Modulator. ACS Pharmacol Transl Sci 2024; 7:3192-3204. [PMID: 39416958 PMCID: PMC11475277 DOI: 10.1021/acsptsci.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Recently, the fungus secondary metabolite cyclotetrapetide c[Trp-Phe-D-Pro-Phe] (CJ-15,208) and its derivatives deserved some attention for their unusual structure and distinctive in vitro and in vivo activity. These tryptophan-containing noncationic opioid peptides can be truly regarded as versatile picklocks capable of activating all opioid receptors. Intriguingly, minimal modification of the potent κ-opioid receptor (KOR) agonist c[D-Trp-Phe-Gly-β-Ala] (3) yielded c[D-Trp-Phe-β-Ala-β-Ala] (11), the first KOR-specific negative allosteric modulator (NAM) reported to-date. KOR exerts control over numerous functions in the central nervous system, including pain, depression, stress, mood, and reward. Hence, this KOR-selective NAM looks promising for modulating the KOR in addiction and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Junwei Zhao
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
| | - Monica Baiula
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Elisabetta Cuna
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Marco Francescato
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
| | - Joanna Matalińska
- Department
of Neuropeptides, Mossakowski Medical Research
Institute, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | - Piotr F.J. Lipiński
- Department
of Neuropeptides, Mossakowski Medical Research
Institute, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw 02-106, Poland
| | - Andrea Bedini
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
| | - Luca Gentilucci
- Dept.
of Chemistry “G. Ciamician”, University of Bologna, Campus Navile - Ue4, via Gobetti 83, Bologna 40129, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Ozzano
Emilia 40064, Italy
| |
Collapse
|
5
|
Zhao Y, Zhang Z, Gou D, Li P, Yang T, Niu Z, Simon JP, Guan X, Li X, He C, Dong S. Intrathecal administration of MCRT produced potent antinociception in chronic inflammatory pain models via μ-δ heterodimer with limited side effects. Biomed Pharmacother 2024; 179:117389. [PMID: 39243426 DOI: 10.1016/j.biopha.2024.117389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
An important goal in the opioid field is to discover effective analgesic drugs with minimal side effects. MCRT demonstrated potent antinociceptive effects with limited side effects, making it a promising candidate. However, its pharmacological properties and how it minimizes side effects remain unknown. Various mouse pain and opioid side effect models were used to evaluate the antinociceptive properties and safety at the spinal level. The targets of MCRT were identified through cAMP measurement, isolated tissue assays, and pharmacological experiments. Immunofluorescence was employed to visualize protein expression. MCRT displayed distinct antinociceptive effects between acute and chronic inflammatory pain models due to its multifunctional properties at the μ opioid receptor (MOR), µ-δ heterodimer (MDOR), and neuropeptide FF receptor 2 (NPFFR2). Activation of NPFFR2 reduced MOR-mediated antinociception, leading to bell-shaped response curves in acute pain models. However, activation of MDOR produced more effective antinociception in chronic inflammatory pain models. MCRT showed limited tolerance and opioid-induced hyperalgesia in both acute and chronic pain models and did not develop cross-tolerance to morphine. Additionally, MCRT did not exhibit addictive properties, gastrointestinal inhibition, and effects on motor coordination. Mechanistically, peripheral chronic inflammation or repeated administration of morphine and MCRT induced an increase in MDOR in the spinal cord. Chronic administration of MCRT had no apparent effect on microglial activation in the spinal cord. These findings suggest that MCRT is a versatile compound that provides potent antinociception with minimal opioid-related side effects. MDOR could be a promising target for managing chronic inflammatory pain and addressing the opioid crisis.
Collapse
MESH Headings
- Animals
- Injections, Spinal
- Chronic Pain/drug therapy
- Receptors, Opioid, mu/metabolism
- Mice
- Male
- Inflammation/drug therapy
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Disease Models, Animal
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Mice, Inbred C57BL
- Analgesics/pharmacology
- Analgesics/administration & dosage
- Morphine/administration & dosage
- Morphine/pharmacology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
- Hyperalgesia/drug therapy
- Humans
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
Collapse
Affiliation(s)
- Yaofeng Zhao
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhonghua Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Dingnian Gou
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Pengtao Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Tong Yang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Zhanyu Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Jerine Peter Simon
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xuyan Guan
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Xinyu Li
- Cuiying Honors College, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Chunbo He
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China
| | - Shouliang Dong
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China.
| |
Collapse
|
6
|
Ople R, Ramos-Gonzalez N, Li Q, Sobecks BL, Aydin D, Powers AS, Faouzi A, Polacco BJ, Bernhard SM, Appourchaux K, Sribhashyam S, Eans SO, Tsai BA, Dror RO, Varga BR, Wang H, Hüttenhain R, McLaughlin JP, Majumdar S. Signaling Modulation Mediated by Ligand Water Interactions with the Sodium Site at μOR. ACS CENTRAL SCIENCE 2024; 10:1490-1503. [PMID: 39220695 PMCID: PMC11363324 DOI: 10.1021/acscentsci.4c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
The mu opioid receptor (μOR) is a target for clinically used analgesics. However, adverse effects, such as respiratory depression and physical dependence, necessitate the development of alternative treatments. Recently we reported a novel strategy to design functionally selective opioids by targeting the sodium binding allosteric site in μOR with a supraspinally active analgesic named C6guano. Presently, to improve systemic activity of this ligand, we used structure-based design, identifying a new ligand named RO76 where the flexible alkyl linker and polar guanidine guano group is swapped with a benzyl alcohol, and the sodium site is targeted indirectly through waters. A cryoEM structure of RO76 bound to the μOR-Gi complex confirmed that RO76 interacts with the sodium site residues through a water molecule, unlike C6guano which engages the sodium site directly. Signaling assays coupled with APEX based proximity labeling show binding in the sodium pocket modulates receptor efficacy and trafficking. In mice, RO76 was systemically active in tail withdrawal assays and showed reduced liabilities compared to those of morphine. In summary, we show that targeting water molecules in the sodium binding pocket may be an avenue to modulate signaling properties of opioids, and which may potentially be extended to other G-protein coupled receptors where this site is conserved.
Collapse
Affiliation(s)
- Rohini
S. Ople
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Nokomis Ramos-Gonzalez
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Qiongyu Li
- Department
of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94158, United States
| | - Briana L. Sobecks
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Deniz Aydin
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Alexander S. Powers
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Abdelfattah Faouzi
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Benjamin J. Polacco
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Sarah M. Bernhard
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Kevin Appourchaux
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Sashrik Sribhashyam
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O. Eans
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Bowen A. Tsai
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Ron O. Dror
- Department of Computer Science, Stanford
University, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Balazs R. Varga
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Haoqing Wang
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ruth Hüttenhain
- Department
of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Jay P. McLaughlin
- Department
of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United
States
| | - Susruta Majumdar
- Center
for Clinical Pharmacology, University of
Health Sciences & Pharmacy at St. Louis and Washington University
School of Medicine, St. Louis, Missouri 63110, United States
- Department
of Anesthesiology and Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
7
|
Yuan Y, Xu T, Huang Y, Shi J. Strategies for developing μ opioid receptor agonists with reduced adverse effects. Bioorg Chem 2024; 149:107507. [PMID: 38850778 DOI: 10.1016/j.bioorg.2024.107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Opioids are currently the most effective and widely used painkillers in the world. Unfortunately, the clinical use of opioid analgesics is limited by serious adverse effects. Many researchers have been working on designing and optimizing structures in search of novel μ opioid receptor(MOR) agonists with improved analgesic activity and reduced incidence of adverse effects. There are many strategies to develop MOR drugs, mainly focusing on new low efficacy agonists (potentially G protein biased agonists), MOR agonists acting on different Gα subtype, targeting opioid receptors in the periphery, acting on multiple opioid receptor, and targeting allosteric sites of opioid receptors, and others. This review summarizes the design methods, clinical applications, and structure-activity relationships of small-molecule agonists for MOR based on these different design strategies, providing ideas for the development of safer novel opioid ligands with therapeutic potential.
Collapse
Affiliation(s)
- Yan Yuan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Ting Xu
- Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yu Huang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
8
|
Fan YZ, Duan YL, Chen CT, Wang Y, Zhu AP. Advances in attenuating opioid-induced respiratory depression: A narrative review. Medicine (Baltimore) 2024; 103:e38837. [PMID: 39029082 PMCID: PMC11398798 DOI: 10.1097/md.0000000000038837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Opioids exert analgesic effects by agonizing opioid receptors and activating signaling pathways coupled to receptors such as G-protein and/or β-arrestin. Concomitant respiratory depression (RD) is a common clinical problem, and improvement of RD is usually achieved with specific antagonists such as naloxone; however, naloxone antagonizes opioid analgesia and may produce more unknown adverse effects. In recent years, researchers have used various methods to isolate opioid receptor-mediated analgesia and RD, with the aim of preserving opioid analgesia while attenuating RD. At present, the focus is mainly on the development of new opioids with weak respiratory inhibition or the use of non-opioid drugs to stimulate breathing. This review reports recent advances in novel opioid agents, such as mixed opioid receptor agonists, peripheral selective opioid receptor agonists, opioid receptor splice variant agonists, biased opioid receptor agonists, and allosteric modulators of opioid receptors, as well as in non-opioid agents, such as AMPA receptor modulators, 5-hydroxytryptamine receptor agonists, phosphodiesterase-4 inhibitors, and nicotinic acetylcholine receptor agonists.
Collapse
Affiliation(s)
- Yong-Zheng Fan
- The 991st Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang, China
| | - Yun-Li Duan
- Xiangyang No. 4 Middle School Compulsory Education Department, Xiangyang, China
| | - Chuan-Tao Chen
- Taihe Country People's Hospital·The Taihe Hospital of Wannan Medical College, Fuyang, China
| | - Yu Wang
- The 991st Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang, China
| | - An-Ping Zhu
- The 991st Hospital of Joint Logistic Support Force of People's Liberation Army, Xiangyang, China
| |
Collapse
|
9
|
Huang YH, Lin SY, Ou LC, Huang WC, Chao PK, Chang YC, Chang HF, Lee PT, Yeh TK, Kuo YH, Tien YW, Xi JH, Tao PL, Chen PY, Chuang JY, Shih C, Chen CT, Tung CW, Loh HH, Ueng SH, Yeh SH. Discovery of a mu-opioid receptor modulator that in combination with morphinan antagonists induces analgesia. Cell Chem Biol 2024:S2451-9456(24)00272-1. [PMID: 39025070 DOI: 10.1016/j.chembiol.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 07/20/2024]
Abstract
Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.
Collapse
Affiliation(s)
- Yi-Han Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wei-Cheng Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yung-Chiao Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pin-Tse Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Yu-Hsien Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ya-Wen Tien
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Jing-Hua Xi
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN 55455-0217, USA
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, Keelung 20401, Taiwan
| | - Jian-Ying Chuang
- Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chun-Wei Tung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Horace H Loh
- Department of Pharmacology, Medical School University of Minnesota, Minneapolis, MN 55455-0217, USA; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan.
| |
Collapse
|
10
|
Saito A, Alvi S, Valant C, Christopoulos A, Carbone SE, Poole DP. Therapeutic potential of allosteric modulators for the treatment of gastrointestinal motility disorders. Br J Pharmacol 2024; 181:2232-2246. [PMID: 36565295 DOI: 10.1111/bph.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Gastrointestinal motility is tightly regulated by the enteric nervous system (ENS). Disruption of coordinated enteric nervous system activity can result in dysmotility. Pharmacological treatment options for dysmotility include targeting of G protein-coupled receptors (GPCRs) expressed by neurons of the enteric nervous system. Current GPCR-targeting drugs for motility disorders bind to the highly conserved endogenous ligand-binding site and promote indiscriminate activation or inhibition of the target receptor throughout the body. This can be associated with significant side-effect liability and a loss of physiological tone. Allosteric modulators of GPCRs bind to a distinct site from the endogenous ligand, which is typically less conserved across multiple receptor subtypes and can modulate endogenous ligand signalling. Allosteric modulation of GPCRs that are important for enteric nervous system function may provide effective relief from motility disorders while limiting side-effects. This review will focus on how allosteric modulators of GPCRs may influence gastrointestinal motility, using 5-hydroxytryptamine (5-HT), acetylcholine (ACh) and opioid receptors as examples. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Ayame Saito
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Celine Valant
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Simona E Carbone
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| |
Collapse
|
11
|
O'Brien ES, Rangari VA, El Daibani A, Eans SO, Hammond HR, White E, Wang H, Shiimura Y, Krishna Kumar K, Jiang Q, Appourchaux K, Huang W, Zhang C, Kennedy BJ, Mathiesen JM, Che T, McLaughlin JP, Majumdar S, Kobilka BK. A µ-opioid receptor modulator that works cooperatively with naloxone. Nature 2024; 631:686-693. [PMID: 38961287 DOI: 10.1038/s41586-024-07587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/21/2024] [Indexed: 07/05/2024]
Abstract
The µ-opioid receptor (µOR) is a well-established target for analgesia1, yet conventional opioid receptor agonists cause serious adverse effects, notably addiction and respiratory depression. These factors have contributed to the current opioid overdose epidemic driven by fentanyl2, a highly potent synthetic opioid. µOR negative allosteric modulators (NAMs) may serve as useful tools in preventing opioid overdose deaths, but promising chemical scaffolds remain elusive. Here we screened a large DNA-encoded chemical library against inactive µOR, counter-screening with active, G-protein and agonist-bound receptor to 'steer' hits towards conformationally selective modulators. We discovered a NAM compound with high and selective enrichment to inactive µOR that enhances the affinity of the key opioid overdose reversal molecule, naloxone. The NAM works cooperatively with naloxone to potently block opioid agonist signalling. Using cryogenic electron microscopy, we demonstrate that the NAM accomplishes this effect by binding a site on the extracellular vestibule in direct contact with naloxone while stabilizing a distinct inactive conformation of the extracellular portions of the second and seventh transmembrane helices. The NAM alters orthosteric ligand kinetics in therapeutically desirable ways and works cooperatively with low doses of naloxone to effectively inhibit various morphine-induced and fentanyl-induced behavioural effects in vivo while minimizing withdrawal behaviours. Our results provide detailed structural insights into the mechanism of negative allosteric modulation of the µOR and demonstrate how this can be exploited in vivo.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Allosteric Regulation/drug effects
- Analgesics, Opioid/antagonists & inhibitors
- Analgesics, Opioid/pharmacology
- Binding Sites/drug effects
- Cryoelectron Microscopy
- Drug Evaluation, Preclinical
- Fentanyl/antagonists & inhibitors
- Fentanyl/pharmacology
- Kinetics
- Ligands
- Models, Molecular
- Morphine/antagonists & inhibitors
- Morphine/pharmacology
- Naloxone/administration & dosage
- Naloxone/chemistry
- Naloxone/metabolism
- Naloxone/pharmacology
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/chemistry
- Narcotic Antagonists/metabolism
- Narcotic Antagonists/pharmacology
- Opiate Overdose/drug therapy
- Protein Conformation/drug effects
- Protein Stability/drug effects
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Sf9 Cells
- Signal Transduction/drug effects
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Evan S O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vipin Ashok Rangari
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Amal El Daibani
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Haylee R Hammond
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Elizabeth White
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuki Shiimura
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Molecular Genetics, Institute of Life Science, Kurume University, Fukuoka, Japan
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Qianru Jiang
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Chensong Zhang
- Division of CryoEM and Bioimaging, SSRL, SLAC National Acceleration Laboratory, Menlo Park, CA, USA
| | | | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA.
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy at St Louis and Washington University School of Medicine, St Louis, MO, USA.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Cahill CM. Opioid crisis: compound opens up potential strategy to tackle overdoses. Nature 2024; 631:512-513. [PMID: 38961206 DOI: 10.1038/d41586-024-02133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
|
13
|
Wu Y, Song X, Ji Y, Chen G, Zhao L. A synthetic peptide exerts nontolerance-forming antihyperalgesic and antidepressant effects in mice. Neurotherapeutics 2024; 21:e00377. [PMID: 38777742 PMCID: PMC11284537 DOI: 10.1016/j.neurot.2024.e00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic pain is a prevalent and persistent ailment that affects individuals worldwide. Conventional medications employed in the treatment of chronic pain typically demonstrate limited analgesic effectiveness and frequently give rise to debilitating side effects, such as tolerance and addiction, thereby diminishing patient compliance with medication. Consequently, there is an urgent need for the development of efficacious novel analgesics and innovative methodologies to address chronic pain. Recently, a growing body of evidence has suggested that multireceptor ligands targeting opioid receptors (ORs) are favorable for improving analgesic efficacy, decreasing the risk of adverse effects, and occasionally yielding additional advantages. In this study, the intrathecal injection of a recently developed peptide (VYWEMEDKN) at nanomolar concentrations decreased pain sensitivity in naïve mice and effectively reduced pain-related behaviors in nociceptive pain model mice with minimal opioid-related side effects. Importantly, the compound exerted significant rapid-acting antidepressant effects in both the forced swim test and tail suspension test. It is possible that the rapid antihyperalgesic and antidepressant effects of the peptide are mediated through the OR pathway. Overall, this peptide could both effectively provide pain relief and alleviate depression with fewer side effects, suggesting that it is a potential agent for chronic pain and depression comorbidities from the perspective of pharmaceutical development.
Collapse
Affiliation(s)
- Yongjiang Wu
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Xiaofei Song
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - YanZhe Ji
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China; Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China; Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| | - Long Zhao
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China.
| |
Collapse
|
14
|
Kaneko S, Imai S, Uchikubo-Kamo T, Hisano T, Asao N, Shirouzu M, Shimada I. Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator. Nat Commun 2024; 15:3544. [PMID: 38740791 DOI: 10.1038/s41467-024-47792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
G-protein-coupled receptors (GPCRs) play pivotal roles in various physiological processes. These receptors are activated to different extents by diverse orthosteric ligands and allosteric modulators. However, the mechanisms underlying these variations in signaling activity by allosteric modulators remain largely elusive. Here, we determine the three-dimensional structure of the μ-opioid receptor (MOR), a class A GPCR, in complex with the Gi protein and an allosteric modulator, BMS-986122, using cryogenic electron microscopy. Our results reveal that BMS-986122 binding induces changes in the map densities corresponding to R1673.50 and Y2545.58, key residues in the structural motifs conserved among class A GPCRs. Nuclear magnetic resonance analyses of MOR in the absence of the Gi protein reveal that BMS-986122 binding enhances the formation of the interaction between R1673.50 and Y2545.58, thus stabilizing the fully-activated conformation, where the intracellular half of TM6 is outward-shifted to allow for interaction with the Gi protein. These findings illuminate that allosteric modulators like BMS-986122 can potentiate receptor activation through alterations in the conformational dynamics in the core region of GPCRs. Together, our results demonstrate the regulatory mechanisms of GPCRs, providing insights into the rational development of therapeutics targeting GPCRs.
Collapse
MESH Headings
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Allosteric Regulation
- Humans
- Cryoelectron Microscopy
- Protein Binding
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gi-Go/chemistry
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- HEK293 Cells
- Ligands
- Models, Molecular
- Protein Conformation
Collapse
Affiliation(s)
- Shun Kaneko
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Imai
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
| | | | - Tamao Hisano
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Nobuaki Asao
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mikako Shirouzu
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan
| | - Ichio Shimada
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kanagawa, Japan.
- Graduate School of Integrated Science for Life, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
15
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Hillhouse TM, Partridge KJ, Garrett PI, Honeycutt SC, Porter JH. Effects of (2R,6R)-hydroxynorketamine in assays of acute pain-stimulated and pain-depressed behaviors in mice. PLoS One 2024; 19:e0301848. [PMID: 38640139 PMCID: PMC11029659 DOI: 10.1371/journal.pone.0301848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
Ketamine has been shown to produce analgesia in various acute and chronic pain states; however, abuse liability concerns have limited its utility. The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to produce antidepressant-like effects similar to ketamine without abuse liability concerns. (2R,6R)-HNK produces sustained analgesia in models of chronic pain, but has yet to be evaluated in models of acute pain. The present study evaluated the efficacy of acute (2R,6R)-HNK administration (one injection) in assays of pain-stimulated (52- and 56-degree hot plate test and acetic acid writhing) and pain-depressed behavior (locomotor activity and rearing) in male and female C57BL/6 mice. In assays of pain-stimulated behaviors, (2R,6R)-HNK (1-32 mg/kg) failed to produce antinociception in the 52- and 56-degree hot plate and acetic acid writhing assays. In assays of pain-depressed behaviors, 0.56% acetic acid produced a robust depression of locomotor activity and rearing that was not blocked by pretreatment of (2R,6R)-HNK (3.2-32 mg/kg). The positive controls morphine (hot plate test) and ketoprofen (acetic acid writhing, locomotor activity, and rearing) blocked pain-stimulated and pain-depressed behaviors. Finally, the effects of intermittent (2R,6R)-HNK administration were evaluated in 52-degree hot plate and pain-depressed locomotor activity and rearing. Intermittent administration of (2R,6R)-HNK also did not produce antinociceptive effects in the hot plate or pain-depressed locomotor activity assays. These results suggest that (2R,6R)-HNK is unlikely to have efficacy in treating acute pain; however, the efficacy of (2R,6R)-HNK in chronic pain states should continue to be evaluated.
Collapse
Affiliation(s)
- Todd M. Hillhouse
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin, United States of America
| | - Kaitlyn J. Partridge
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin, United States of America
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Patrick I. Garrett
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Sarah C. Honeycutt
- Department of Psychology, University at Buffalo, Buffalo, New York, United States of America
| | - Joseph H. Porter
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Psychological Sciences, Northern Michigan, Marquette, Michigan, United States of America
| |
Collapse
|
17
|
Auvity S, Vodovar D, Goutal S, Cisternino S, Chevillard L, Soyer A, Bottlaender M, Caillé F, Mégarbane B, Tournier N. Brain PET imaging using 11C-flumazenil and 11C-buprenorphine does not support the hypothesis of a mutual interaction between buprenorphine and benzodiazepines at the neuroreceptor level. J Cereb Blood Flow Metab 2024; 44:449-458. [PMID: 38097513 PMCID: PMC10870960 DOI: 10.1177/0271678x231221040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 02/16/2024]
Abstract
Among opioids, buprenorphine presents a favorable safety profile with a limited risk of respiratory depression. However, fatalities have been reported when buprenorphine is combined to a benzodiazepine. Potentiation of buprenorphine interaction with opioid receptors (ORs) with benzodiazepines, and/or vice versa, is hypothesized to explain this drug-drug interaction (DDI). The mutual DDI between buprenorphine and benzodiazepines was investigated at the neuroreceptor level in nonhuman primates (n = 4 individuals) using brain PET imaging and kinetic modelling. The binding potential (BPND) of benzodiazepine receptor (BzR) was assessed using 11C-flumazenil PET imaging before and after administration of buprenorphine (0.2 mg, i.v.). Moreover, the brain kinetics and receptor binding of buprenorphine were investigated in the same individuals using 11C-buprenorphine PET imaging before and after administration of diazepam (10 mg, i.v.). Outcome parameters were compared using a two-way ANOVA. Buprenorphine did not impact the plasma nor brain kinetics of 11C-flumazenil. 11C-flumazenil BPND was unchanged following buprenorphine exposure, in any brain region (p > 0.05). Similarly, diazepam did not impact the plasma or brain kinetics of 11C-buprenorphine. 11C-buprenorphine volume of distribution (VT) was unchanged following diazepam exposure, in any brain region (p > 0.05). To conclude, our PET imaging findings do not support a neuropharmacokinetic or neuroreceptor-related mechanism of the buprenorphine/benzodiazepine interaction.
Collapse
Affiliation(s)
- Sylvain Auvity
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Dominique Vodovar
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière, Fédération de Toxicologie (APHP), 75010, Paris
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Salvatore Cisternino
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Lucie Chevillard
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Amélie Soyer
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Bruno Mégarbane
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière, Fédération de Toxicologie (APHP), 75010, Paris
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| |
Collapse
|
18
|
Costa AR, Tavares I, Martins I. How do opioids control pain circuits in the brainstem during opioid-induced disorders and in chronic pain? Implications for the treatment of chronic pain. Pain 2024; 165:324-336. [PMID: 37578500 DOI: 10.1097/j.pain.0000000000003026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Brainstem areas involved in descending pain modulation are crucial for the analgesic actions of opioids. However, the role of opioids in these areas during tolerance, opioid-induced hyperalgesia (OIH), and in chronic pain settings remains underappreciated. We conducted a revision of the recent studies performed in the main brainstem areas devoted to descending pain modulation with a special focus on the medullary dorsal reticular nucleus (DRt), as a distinctive pain facilitatory area and a key player in the diffuse noxious inhibitory control paradigm. We show that maladaptive processes within the signaling of the µ-opioid receptor (MOR), which entail desensitization and a switch to excitatory signaling, occur in the brainstem, contributing to tolerance and OIH. In the context of chronic pain, the alterations found are complex and depend on the area and model of chronic pain. For example, the downregulation of MOR and δ-opioid receptor (DOR) in some areas, including the DRt, during neuropathic pain likely contributes to the inefficacy of opioids. However, the upregulation of MOR and DOR, at the rostral ventromedial medulla, in inflammatory pain models, suggests therapeutic avenues to explore. Mechanistically, the rationale for the diversity and complexity of alterations in the brainstem is likely provided by the alternative splicing of opioid receptors and the heteromerization of MOR. In conclusion, this review emphasizes how important it is to consider the effects of opioids at these circuits when using opioids for the treatment of chronic pain and for the development of safer and effective opioids.
Collapse
Affiliation(s)
- Ana Rita Costa
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isaura Tavares
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| | - Isabel Martins
- Department of Biomedicine, Unit of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal
- IBMC-Institute of Molecular and Cell Biology, University of Porto, Porto, Portugal
- I3S- Institute of Investigation and Innovation in Health, University of Porto, Porto, Portugal. Costa is now with the Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden and Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
19
|
Pagare PP, Flammia R, Zhang Y. IUPHAR review: Recent progress in the development of Mu opioid receptor modulators to treat opioid use disorders. Pharmacol Res 2024; 199:107023. [PMID: 38081336 DOI: 10.1016/j.phrs.2023.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
Opioid Use Disorder (OUD) can be described as intense preoccupation with using or obtaining opioids despite the negative consequences associated with their use. As the number of OUD cases in the U.S. increase, so do the number of opioid-related overdose deaths. In 2022, opioid-related overdose became the No. 1 cause of death for individuals in the U.S. between the ages of 25 and 64 years of age. Because of the introduction of highly potent synthetic opioids (e.g. fentanyl) to the illicit drug market, there is an urgent need for therapeutics that successfully reduce the number of overdoses and can help OUD patients maintain sobriety. Most abused opioids stimulate the mu-opioid receptor (MOR) and activation of this receptor can lead to positive (e.g., euphoria) consequences. However, the negative side effects of MOR stimulation can be fatal (e.g., sedation, respiratory depression). Therefore, the MOR is an attractive target for developing medications to treat OUD. Current FDA drugs include MOR agonists that aid in detoxification and relapse prevention, and MOR antagonists that also serve as maintenance therapies or reverse overdose. These medications are limited by their abuse potential, adverse effects, or pharmacological profiles which leaves ample room for research into designing new chemical entities with optimal physiological effects. These includes, orthosteric ligands that target the primary binding site of the MOR, allosteric ligands that positively, negatively, or "silently" modulate receptor function, and lastly, bitopic ligands target both the orthosteric and allosteric sites simultaneously.
Collapse
Affiliation(s)
- Piyusha P Pagare
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States
| | - Rachael Flammia
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23219, United States; Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, 203 East Cary Street, Richmond, VA 23298, United States.
| |
Collapse
|
20
|
Bosquez-Berger T, Gudorf JA, Kuntz CP, Desmond JA, Schlebach JP, VanNieuwenhze MS, Straiker A. Structure-Activity Relationship Study of Cannabidiol-Based Analogs as Negative Allosteric Modulators of the μ-Opioid Receptor. J Med Chem 2023; 66:9466-9494. [PMID: 37437224 PMCID: PMC11299522 DOI: 10.1021/acs.jmedchem.3c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The US faces an unprecedented surge in fatal drug overdoses. Naloxone, the only antidote for opiate overdose, competes at the mu opioid receptor (μOR) orthosteric site. Naloxone struggles against fentanyl-class synthetic opioids that now cause ∼80% of deaths. Negative allosteric modulators (NAMs) targeting secondary sites may noncompetitively downregulate μOR activation. (-)-Cannabidiol ((-)-CBD) is a candidate μOR NAM. To explore its therapeutic potential, we evaluated the structure-activity relationships among CBD analogs to identify NAMs with increased potency. Using a cyclic AMP assay, we characterize reversal of μOR activation by 15 CBD analogs, several of which proved more potent than (-)-CBD. Comparative docking investigations suggest that potent compounds interact with a putative allosteric pocket to stabilize the inactive μOR conformation. Finally, these compounds enhance naloxone displacement of fentanyl from the orthosteric site. Our results suggest that CBD analogs offer considerable potential for the development of next-generation antidotes for opioid overdose.
Collapse
Affiliation(s)
- Taryn Bosquez-Berger
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, Indiana 47405, United States
| | - Jessica A Gudorf
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles P Kuntz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jacob A Desmond
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jonathan P Schlebach
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | | | - Alex Straiker
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Lambert DG. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA OPEN 2023; 6:100141. [PMID: 37588171 PMCID: PMC10430815 DOI: 10.1016/j.bjao.2023.100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 08/18/2023]
Abstract
Opioids are a mainstay in acute pain management and produce their effects and side effects (e.g., tolerance, opioid-use disorder and immune suppression) by interaction with opioid receptors. I will discuss opioid pharmacology in some controversial areas of enquiry of anaesthetic relevance. The main opioid target is the µ (mu,MOP) receptor but other members of the opioid receptor family, δ (delta; DOP) and κ (kappa; KOP) opioid receptors also produce analgesic actions. These are naloxone-sensitive. There is important clinical development relating to the Nociceptin/Orphanin FQ (NOP) receptor, an opioid receptor that is not naloxone-sensitive. Better understanding of the drivers for opioid effects and side effects may facilitate separation of side effects and production of safer drugs. Opioids bind to the receptor orthosteric site to produce their effects and can engage monomer or homo-, heterodimer receptors. Some ligands can drive one intracellular pathway over another. This is the basis of biased agonism (or functional selectivity). Opioid actions at the orthosteric site can be modulated allosterically and positive allosteric modulators that enhance opioid action are in development. As well as targeting ligand-receptor interaction and transduction, modulating receptor expression and hence function is also tractable. There is evidence for epigenetic associations with different types of pain and also substance misuse. As long as the opioid narrative is defined by the 'opioid crisis' the drive to remove them could gather pace. This will deny use where they are effective, and access to morphine for pain relief in low income countries.
Collapse
|
22
|
Chan WKB, Carlson HA, Traynor JR. Application of Mixed-Solvent Molecular Dynamics Simulations for Prediction of Allosteric Sites on G Protein-Coupled Receptors. Mol Pharmacol 2023; 103:274-285. [PMID: 36868791 PMCID: PMC10166447 DOI: 10.1124/molpharm.122.000612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/30/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
The development of small molecule allosteric modulators acting at G protein-coupled receptors (GPCRs) is becoming increasingly attractive. Such compounds have advantages over traditional drugs acting at orthosteric sites on these receptors, in particular target specificity. However, the number and locations of druggable allosteric sites within most clinically relevant GPCRs are unknown. In the present study, we describe the development and application of a mixed-solvent molecular dynamics (MixMD)-based method for the identification of allosteric sites on GPCRs. The method employs small organic probes with druglike qualities to identify druggable hotspots in multiple replicate short-timescale simulations. As proof of principle, we first applied the method retrospectively to a test set of five GPCRs (cannabinoid receptor type 1, C-C chemokine receptor type 2, M2 muscarinic receptor, P2Y purinoceptor 1, and protease-activated receptor 2) with known allosteric sites in diverse locations. This resulted in the identification of the known allosteric sites on these receptors. We then applied the method to the μ-opioid receptor. Several allosteric modulators for this receptor are known, although the binding sites for these modulators are not known. The MixMD-based method revealed several potential allosteric sites on the mu-opioid receptor. Implementation of the MixMD-based method should aid future efforts in the structure-based drug design of drugs targeting allosteric sites on GPCRs. SIGNIFICANCE STATEMENT: Allosteric modulation of G protein-coupled receptors (GPCRs) has the potential to provide more selective drugs. However, there are limited structures of GPCRs bound to allosteric modulators, and obtaining such structures is problematic. Current computational methods utilize static structures and therefore may not identify hidden or cryptic sites. Here we describe the use of small organic probes and molecular dynamics to identify druggable allosteric hotspots on GPCRs. The results reinforce the importance of protein dynamics in allosteric site identification.
Collapse
Affiliation(s)
- Wallace K B Chan
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| | - Heather A Carlson
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| | - John R Traynor
- Department of Pharmacology and Edward F. Domino Research Center (W.K.B.C., J.R.T.) and Department of Medicinal Chemistry (H.A.C., J.R.T.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
24
|
Bateman JT, Saunders SE, Levitt ES. Understanding and countering opioid-induced respiratory depression. Br J Pharmacol 2023; 180:813-828. [PMID: 34089181 PMCID: PMC8997313 DOI: 10.1111/bph.15580] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Respiratory depression is the proximal cause of death in opioid overdose, yet the mechanisms underlying this potentially fatal outcome are not well understood. The goal of this review is to provide a comprehensive understanding of the pharmacological mechanisms of opioid-induced respiratory depression, which could lead to improved therapeutic options to counter opioid overdose, as well as other detrimental effects of opioids on breathing. The development of tolerance in the respiratory system is also discussed, as are differences in the degree of respiratory depression caused by various opioid agonists. Finally, potential future therapeutic agents aimed at reversing or avoiding opioid-induced respiratory depression through non-opioid receptor targets are in development and could provide certain advantages over naloxone. By providing an overview of mechanisms and effects of opioids in the respiratory network, this review will benefit future research on countering opioid-induced respiratory depression. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Jordan T Bateman
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Sandy E Saunders
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
| | - Erica S Levitt
- Department of Pharmacology & Therapeutics, University of Florida, Gainesville, Florida, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
26
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
27
|
Mizuguchi T, Miyano K, Yamauchi R, Yoshida Y, Takahashi H, Yamazaki A, Ono H, Inagaki M, Nonaka M, Uezono Y, Fujii H. The first structure-activity relationship study of oxytocin as a positive allosteric modulator for the µ opioid receptor. Peptides 2023; 159:170901. [PMID: 36347314 DOI: 10.1016/j.peptides.2022.170901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Positive allosteric modulators (PAMs) of G protein-coupled receptors (GPCRs) have drawn attention as novel drug candidates. PAMs can enhance the activities of endogenous agonists which are not only secreted at appropriate times and in parts of the body, but also are immediately metabolized. Therefore, they are expected to show fewer side effects than exogeneous orthosteric ligands. Recently, we have reported that oxytocin (OT) functioned as a PAM of the μ opioid receptor (MOR) which was one of the most potent targets for analgesics. OT is thus thought to be a useful compound for the development of novel analgesics. In this study, several OT analogs were synthesized and evaluated with an intact cell-based assay to investigate the crucial structures of OT for exerting the PAM activity. The assay results indicated that the cyclic structure formed by an intramolecular disulfide bond and the three C-terminal residues containing a small Gly residue of OT were essential for their function as a MOR-PAM. Intriguingly, two analogs having an amide or an ethylene tether instead of the intramolecular disulfide bridge did not have any PAM effects. The results suggested that the disulfide linkage of OT would be a key structure for exerting the PAM activity at the MOR.
Collapse
Affiliation(s)
- Takaaki Mizuguchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kanako Miyano
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Risa Yamauchi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Yoshida
- Laboratory of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hideki Takahashi
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Ami Yamazaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruka Ono
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miku Inagaki
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Miki Nonaka
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuhito Uezono
- Department of Pain Control Research, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Hideaki Fujii
- Laboratory of Medicinal Chemistry, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan; Medicinal Research Laboratories, School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
28
|
Faouzi A, Wang H, Zaidi SA, DiBerto JF, Che T, Qu Q, Robertson MJ, Madasu MK, El Daibani A, Varga BR, Zhang T, Ruiz C, Liu S, Xu J, Appourchaux K, Slocum ST, Eans SO, Cameron MD, Al-Hasani R, Pan YX, Roth BL, McLaughlin JP, Skiniotis G, Katritch V, Kobilka BK, Majumdar S. Structure-based design of bitopic ligands for the µ-opioid receptor. Nature 2023; 613:767-774. [PMID: 36450356 PMCID: PMC10328120 DOI: 10.1038/s41586-022-05588-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Mu-opioid receptor (µOR) agonists such as fentanyl have long been used for pain management, but are considered a major public health concern owing to their adverse side effects, including lethal overdose1. Here, in an effort to design safer therapeutic agents, we report an approach targeting a conserved sodium ion-binding site2 found in µOR3 and many other class A G-protein-coupled receptors with bitopic fentanyl derivatives that are functionalized via a linker with a positively charged guanidino group. Cryo-electron microscopy structures of the most potent bitopic ligands in complex with µOR highlight the key interactions between the guanidine of the ligands and the key Asp2.50 residue in the Na+ site. Two bitopics (C5 and C6 guano) maintain nanomolar potency and high efficacy at Gi subtypes and show strongly reduced arrestin recruitment-one (C6 guano) also shows the lowest Gz efficacy among the panel of µOR agonists, including partial and biased morphinan and fentanyl analogues. In mice, C6 guano displayed µOR-dependent antinociception with attenuated adverse effects, supporting the µOR sodium ion-binding site as a potential target for the design of safer analgesics. In general, our study suggests that bitopic ligands that engage the sodium ion-binding pocket in class A G-protein-coupled receptors can be designed to control their efficacy and functional selectivity profiles for Gi, Go and Gz subtypes and arrestins, thus modulating their in vivo pharmacology.
Collapse
MESH Headings
- Animals
- Mice
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/metabolism
- Arrestins/metabolism
- Cryoelectron Microscopy
- Fentanyl/analogs & derivatives
- Fentanyl/chemistry
- Fentanyl/metabolism
- Ligands
- Morphinans/chemistry
- Morphinans/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/ultrastructure
- Binding Sites
- Nociception
- Drug Design
Collapse
Affiliation(s)
- Abdelfattah Faouzi
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Haoqing Wang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Saheem A Zaidi
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute and Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey F DiBerto
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Qianhui Qu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael J Robertson
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Amal El Daibani
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Balazs R Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Tiffany Zhang
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Claudia Ruiz
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Shan Liu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Samuel T Slocum
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | | | - Ream Al-Hasani
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA
| | - Ying Xian Pan
- Department of Neurology and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, Department of Chemistry, Bridge Institute and Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA.
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
29
|
Sanchez GA, Jutkiewicz EM, Ingram S, Smrcka AV. Coincident Regulation of PLC β Signaling by Gq-Coupled and μ-Opioid Receptors Opposes Opioid-Mediated Antinociception. Mol Pharmacol 2022; 102:269-279. [PMID: 36116788 PMCID: PMC11033930 DOI: 10.1124/molpharm.122.000541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Pain management is an important problem worldwide. The current frontline approach for pain management is the use of opioid analgesics. The primary analgesic target of opioids is the μ-opioid receptor (MOR). Deletion of phospholipase Cβ3 (PLCβ3) or selective inhibition of Gβγ regulation of PLCβ3 enhances the potency of the antinociceptive effects of morphine suggesting a novel strategy for achieving opioid-sparing effects. Here we investigated a potential mechanism for regulation of PLC signaling downstream of MOR in human embryonic kidney 293 cells and found that MOR alone could not stimulate PLC but rather required a coincident signal from a Gq-coupled receptor. Knockout of PLCβ3 or pharmacological inhibition of its upstream regulators, Gβγ or Gq, ex vivo in periaqueductal gray slices increased the potency of the selective MOR agonist [D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate salt in inhibiting presynaptic GABA release. Finally, inhibition of Gq- G protein-coupled receptor coupling in mice enhanced the antinociceptive effects of morphine. These data support a model where Gq and Gβγ-dependent signaling cooperatively regulate PLC activation to decrease MOR-dependent antinociceptive potency. Ultimately, this could lead to identification of new non-MOR targets that would allow for lower-dose utilization of opioid analgesics. SIGNIFICANCE STATEMENT: Previous work demonstrated that deletion of phospholipase Cβ3 (PLCβ3) in mice potentiates μ-opioid receptor (MOR)-dependent antinociception. How PLCβ3 is regulated downstream of MOR had not been clearly defined. We show that PLC-dependent diacylglycerol generation is cooperatively regulated by MOR-Gβγ and Gq-coupled receptor signaling through PLCβ3 and that blockade of either Gq-signaling or Gβγ signaling enhances the potency of opioids in ex vivo brain slices and in vivo. These results reveal potential novel strategies for improving opioid analgesic potency and safety.
Collapse
Affiliation(s)
- Gissell A Sanchez
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Susan Ingram
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| | - Alan V Smrcka
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (G.A.S., E.M.J., A.V.S.) and Department of Neurologic Surgery, Oregon Health Sciences University, Portland, Oregon (S.I.)
| |
Collapse
|
30
|
Ligand-Free Signaling of G-Protein-Coupled Receptors: Relevance to μ Opioid Receptors in Analgesia and Addiction. Molecules 2022; 27:molecules27185826. [PMID: 36144565 PMCID: PMC9503102 DOI: 10.3390/molecules27185826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous G-protein-coupled receptors (GPCRs) display ligand-free basal signaling with potential physiological functions, a target in drug development. As an example, the μ opioid receptor (MOR) signals in ligand-free form (MOR-μ*), influencing opioid responses. In addition, agonists bind to MOR but can dissociate upon MOR activation, with ligand-free MOR-μ* carrying out signaling. Opioid pain therapy is effective but incurs adverse effects (ADRs) and risk of opioid use disorder (OUD). Sustained opioid agonist exposure increases persistent basal MOR-μ* activity, which could be a driving force for OUD and ADRs. Antagonists competitively prevent resting MOR (MOR-μ) activation to MOR-μ*, while common antagonists, such as naloxone and naltrexone, also bind to and block ligand-free MOR-μ*, acting as potent inverse agonists. A neutral antagonist, 6β-naltrexol (6BN), binds to but does not block MOR-μ*, preventing MOR-μ activation only competitively with reduced potency. We hypothesize that 6BN gradually accelerates MOR-μ* reversal to resting-state MOR-μ. Thus, 6BN potently prevents opioid dependence in rodents, at doses well below those blocking antinociception or causing withdrawal. Acting as a ‘retrograde addiction modulator’, 6BN could represent a novel class of therapeutics for OUD. Further studies need to address regulation of MOR-μ* and, more broadly, the physiological and pharmacological significance of ligand-free signaling in GPCRs.
Collapse
|
31
|
Lee YS. Peptidomimetics and Their Applications for Opioid Peptide Drug Discovery. Biomolecules 2022; 12:biom12091241. [PMID: 36139079 PMCID: PMC9496382 DOI: 10.3390/biom12091241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Despite various advantages, opioid peptides have been limited in their therapeutic uses due to the main drawbacks in metabolic stability, blood-brain barrier permeability, and bioavailability. Therefore, extensive studies have focused on overcoming the problems and optimizing the therapeutic potential. Currently, numerous peptide-based drugs are being marketed thanks to new synthetic strategies for optimizing metabolism and alternative routes of administration. This tutorial review briefly introduces the history and role of natural opioid peptides and highlights the key findings on their structure-activity relationships for the opioid receptors. It discusses details on opioid peptidomimetics applied to develop therapeutic candidates for the treatment of pain from the pharmacological and structural points of view. The main focus is the current status of various mimetic tools and the successful applications summarized in tables and figures.
Collapse
Affiliation(s)
- Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
32
|
Zhang J, Song C, Dai J, Li L, Yang X, Chen Z. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor. MedComm (Beijing) 2022; 3:e148. [PMID: 35774845 PMCID: PMC9218544 DOI: 10.1002/mco2.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid abuse and addiction have become a global pandemic, posing tremendous health and social burdens. The rewarding effects and the occurrence of withdrawal symptoms are the two mainstays of opioid addiction. Mu-opioid receptors (MORs), a member of opioid receptors, play important roles in opioid addiction, mediating both the rewarding effects of opioids and opioid withdrawal syndrome (OWS). The underlying mechanism of MOR-mediated opioid rewarding effects and withdrawal syndrome is of vital importance to understand the nature of opioid addiction and also provides theoretical basis for targeting MORs to treat drug addiction. In this review, we first briefly introduce the basic concepts of MORs, including their structure, distribution in the nervous system, endogenous ligands, and functional characteristics. We focused on the brain circuitry and molecular mechanism of MORs-mediated opioid reward and withdrawal. The neuroanatomical and functional elements of the neural circuitry of the reward system underlying opioid addiction were thoroughly discussed, and the roles of MOR within the reward circuitry were also elaborated. Furthermore, we interrogated the roles of MORs in OWS, along with the structural basis and molecular adaptions of MORs-mediated withdrawal syndrome. Finally, current treatment strategies for opioid addiction targeting MORs were also presented.
Collapse
Affiliation(s)
- Jia‐Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Chang‐Geng Song
- Department of NeurologyXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ji‐Min Dai
- Department of Hepatobiliary SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiang‐Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
33
|
Sarasso P, Francesetti G, Roubal J, Gecele M, Ronga I, Neppi-Modona M, Sacco K. Beauty and Uncertainty as Transformative Factors: A Free Energy Principle Account of Aesthetic Diagnosis and Intervention in Gestalt Psychotherapy. Front Hum Neurosci 2022; 16:906188. [PMID: 35911596 PMCID: PMC9325967 DOI: 10.3389/fnhum.2022.906188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Drawing from field theory, Gestalt therapy conceives psychological suffering and psychotherapy as two intentional field phenomena, where unprocessed and chaotic experiences seek the opportunity to emerge and be assimilated through the contact between the patient and the therapist (i.e., the intentionality of contacting). This therapeutic approach is based on the therapist’s aesthetic experience of his/her embodied presence in the flow of the healing process because (1) the perception of beauty can provide the therapist with feedback on the assimilation of unprocessed experiences; (2) the therapist’s attentional focus on intrinsic aesthetic diagnostic criteria can facilitate the modification of rigid psychopathological fields by supporting the openness to novel experiences. The aim of the present manuscript is to review recent evidence from psychophysiology, neuroaesthetic research, and neurocomputational models of cognition, such as the free energy principle (FEP), which support the notion of the therapeutic potential of aesthetic sensibility in Gestalt psychotherapy. Drawing from neuroimaging data, psychophysiology and recent neurocognitive accounts of aesthetic perception, we propose a novel interpretation of the sense of beauty as a self-generated reward motivating us to assimilate an ever-greater spectrum of sensory and affective states in our predictive representation of ourselves and the world and supporting the intentionality of contact. Expecting beauty, in the psychotherapeutic encounter, can help therapists tolerate uncertainty avoiding impulsive behaviours and to stay tuned to the process of change.
Collapse
Affiliation(s)
- Pietro Sarasso
- BraIn Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
- *Correspondence: Pietro Sarasso,
| | - Gianni Francesetti
- International Institute for Gestalt Therapy and Psychopathology, Turin Center for Gestalt Therapy, Turin, Italy
| | - Jan Roubal
- Psychotherapy Training Gestalt Studia, Training in Psychotherapy Integration, Center for Psychotherapy Research in Brno, Masaryk University, Brno, Czechia
| | - Michela Gecele
- International Institute for Gestalt Therapy and Psychopathology, Turin Center for Gestalt Therapy, Turin, Italy
| | - Irene Ronga
- BraIn Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Marco Neppi-Modona
- BraIn Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| | - Katiuscia Sacco
- BraIn Plasticity and Behaviour Changes Research Group, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
34
|
Mohamud A, Zeghal M, Patel S, Laroche G, Blgacim N, Giguère PM. Functional Characterization of Sodium Channel Inhibitors at the Delta-Opioid Receptor. ACS OMEGA 2022; 7:16939-16951. [PMID: 35647460 PMCID: PMC9134235 DOI: 10.1021/acsomega.1c07226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Existing pharmacotherapies acting on the opioid receptor system have been extensively used to treat chronic pain and addictive disorders. Nevertheless, the adverse side effects associated with opioid therapy underscore the need for concerted measures to develop safer analgesics. A promising avenue of research stems from the characterization of a sodium-dependent allosteric regulation site housed within the delta-opioid receptor and several other G protein-coupled receptors (GPCRs), thereby revealing the presence of a cluster of sodium and water molecules lodged in a cavity thought to be present only in the inactive conformation of the receptor. Studies into the structure-function relationship of said pocket demonstrated its critical involvement in the functional control of GPCR signaling. While the sodium pocket has been proposed to be present in the majority of class A GPCRs, the shape of this allosteric cavity appears to have significant structural variation among crystallographically solved GPCRs, making this site optimal for the design of new allosteric modulators that will be selective for opioid receptors. The size of the sodium pocket supports the accommodation of small molecules, and it has been speculated that promiscuous amiloride and 5'-substituted amiloride-related derivatives could target this cavity within many GPCRs, including opioid receptors. Using pharmacological approaches, we have described the selectivities of 5'-substituted amiloride-related derivatives, as well as the hitherto undescribed activity of the NHE1 inhibitor zoniporide toward class A GPCRs. Our investigations into the structural features of the delta-opioid receptor and its ensuing signaling activities suggest a bitopic mode of overlapping interactions involving the orthosteric site and the juxtaposed Na+ pocket, but only at the active or partially active opioid receptor.
Collapse
Affiliation(s)
- Abdulhamid
O. Mohamud
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Manel Zeghal
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Shivani Patel
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Geneviève Laroche
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Nuria Blgacim
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Patrick M. Giguère
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5, Canada
- Brain
and Mind Research Institute, University
of Ottawa, Ottawa, ON K1H8M5, Canada
| |
Collapse
|
35
|
Drakopoulos A, Moianos D, Prifti GM, Zoidis G, Decker M. Opioid ligands addressing unconventional binding sites and more than one opioid receptor subtype. ChemMedChem 2022; 17:e202200169. [PMID: 35560796 DOI: 10.1002/cmdc.202200169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Indexed: 11/10/2022]
Abstract
Opioid receptors (ORs) represent one of the most significant groups of G-protein coupled receptor (GPCR) drug targets and also act as prototypical models for GPCR function. In a constant effort to develop drugs with less side effects, and tools to explore the ORs nature and function, various (poly)pharmacological ligand design approaches have been performed. That is, besides classical ligands, a great number of bivalent ligands (i.e. aiming on two distinct OR subtypes), univalent heteromer-selective ligands and bitopic and allosteric ligands have been synthesized for the ORs. The scope of our review is to present the most important of the aforementioned ligands, highlight their properties and exhibit the current state-of-the-art pallet of promising drug candidates or useful molecular tools for the ORs.
Collapse
Affiliation(s)
- Antonios Drakopoulos
- University of Gothenburg: Goteborgs Universitet, Department of Chemistry and Molecular Biology, Kemigåden 4, 431 45, Göteborg, SWEDEN
| | - Dimitrios Moianos
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Georgia-Myrto Prifti
- National and Kapodistrian University of Athens: Ethniko kai Kapodistriako Panepistemio Athenon, Department of Pharmacy, Panepistimiopolis-Zografou, 15771, Athens, GREECE
| | - Grigoris Zoidis
- National and Kapodistrian University of Athens, Department of Pharmaceutical Chemistry, Panepistimioupolis-Zografou, 15771, Athens, GREECE
| | - Michael Decker
- Julius-Maximilians-Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institute of Pharmacy and Food Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| |
Collapse
|
36
|
Straszak D, Siwek A, Głuch-Lutwin M, Mordyl B, Kołaczkowski M, Pietrzak A, Rahnama-Hezavah M, Drop B, Matosiuk D. Modulation of the MOP Receptor (μ Opioid Receptor) by Imidazo[1,2- a]imidazole-5,6-Diones: In Search of the Elucidation of the Mechanism of Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092930. [PMID: 35566280 PMCID: PMC9100072 DOI: 10.3390/molecules27092930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
The μ-opioid receptors belong to the family of G protein-coupled receptors (GPCRs), and their activation triggers a cascade of intracellular relays with the final effect of analgesia. Classical agonists of this receptor, such as morphine, are the main targets in the treatment of both acute and chronic pain. However, the dangerous side effects, such as respiratory depression or addiction, significantly limit their widespread use. The allosteric centers of the receptors exhibit large structural diversity within particular types and even subtypes. Currently, a considerable interest is aroused by the modulation of μ-opioid receptors. The application of such a technique may result in a reduction in the dose or even discontinuation of classical opiates, thus eliminating the side effects typical of this class of drugs. Our aim is to obtain a series of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1,2-a]imidazole derivatives and provide more information about their activity and selectivity on OP3 (MOP, human mu opioid receptor). The study was based on an observation that some carbonyl derivatives of 1-aryl-2-aminoimidazoline cooperate strongly with morphine or DAMGO in sub-threshold doses, producing similar results to those of normal active doses. To elucidate the possible mechanism of such enhancement, we performed a few in vitro functional tests (involving cAMP and β-arrestin recruitment) and a radioligand binding assay on CHO-K1 cells with the expression of the OP3 receptor. One of the compounds had no orthosteric affinity or intrinsic activity, but inhibited the efficiency of DAMGO. These results allow to conclude that this compound is a negative allosteric modulator (NAM) of the human μ-opioid receptor.
Collapse
Affiliation(s)
- Dominik Straszak
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Barbara Mordyl
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland; (A.S.); (M.G.-L.); (B.M.); (M.K.)
| | - Aldona Pietrzak
- Department of Dermatology, Venereology, and Paediatric Dermatology, Faculty of Medicine, Medical University, Staszica 11, 20-080 Lublin, Poland;
| | - Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University, Chodzki 6, 20-093 Lublin, Poland;
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics, Medical University, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University, Chodzki 4A, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
37
|
Abstract
SignificanceThe allosteric modulators, which bind to nonorthosteric sites to enhance the signaling activities of G-protein-coupled receptors (GPCRs), are new candidates for GPCR-targeting drugs. Our solution NMR analyses of the μ-opioid receptor (MOR) revealed that the MOR activity was determined by a conformational equilibrium between three conformations. Interestingly, an allosteric modulator shifted the equilibrium toward a conformation with the highest activity to a level that cannot be reached by orthosteric ligands alone, leading to the increased activity of MOR. Our NMR analyses also identified the binding site of the allosteric modulator, including the residues contributing to the regulation of the equilibrium. These findings provide insights into the rational developments of novel allosteric modulators.
Collapse
|
38
|
Castroman P, Quiroga O, Mayoral Rojals V, Gómez M, Moka E, Pergolizzi Jr J, Varrassi G. Reimagining How We Treat Acute Pain: A Narrative Review. Cureus 2022; 14:e23992. [PMID: 35547466 PMCID: PMC9084930 DOI: 10.7759/cureus.23992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Acute pain may be influenced by biopsychosocial factors. Conditioned pain modulation, distraction, peripheral nerve stimulation, and cryoneurolysis may be helpful in its treatment. New developments in opioids, such as opioids with bifunctional targets and oliceridine, may be particularly suited for acute pain care. Allosteric modulators can enhance receptor subtype selectivity, offering analgesia with fewer and/or less severe side effects. Neuroinflammation in acute pain is caused by direct insult to the central nervous system and is distinct from neuroinflammation in degenerative disorders. Pharmacologic agents targeting the neuroinflammatory process are limited at this time. Postoperative pain is a prevalent form of acute pain and must be recognized as a global public health challenge. This type of pain may be severe, impede rehabilitation, and is often under-treated. A subset of surgical patients develops chronic postsurgical pain. Acute pain is not just temporally limited pain that often resolves on its own. It is an important subject for further research as acute pain may transition into more damaging and debilitating chronic pain. Reimagining how we treat acute pain will help us better address this urgent unmet medical need.
Collapse
|
39
|
Root-Bernstein R. Biased, Bitopic, Opioid-Adrenergic Tethered Compounds May Improve Specificity, Lower Dosage and Enhance Agonist or Antagonist Function with Reduced Risk of Tolerance and Addiction. Pharmaceuticals (Basel) 2022; 15:214. [PMID: 35215326 PMCID: PMC8876737 DOI: 10.3390/ph15020214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 01/03/2023] Open
Abstract
This paper proposes the design of combination opioid-adrenergic tethered compounds to enhance efficacy and specificity, lower dosage, increase duration of activity, decrease side effects, and reduce risk of developing tolerance and/or addiction. Combinations of adrenergic and opioid drugs are sometimes used to improve analgesia, decrease opioid doses required to achieve analgesia, and to prolong the duration of analgesia. Recent mechanistic research suggests that these enhanced functions result from an allosteric adrenergic binding site on opioid receptors and, conversely, an allosteric opioid binding site on adrenergic receptors. Dual occupancy of the receptors maintains the receptors in their high affinity, most active states; drops the concentration of ligand required for full activity; and prevents downregulation and internalization of the receptors, thus inhibiting tolerance to the drugs. Activation of both opioid and adrenergic receptors also enhances heterodimerization of the receptors, additionally improving each drug's efficacy. Tethering adrenergic drugs to opioids could produce new drug candidates with highly desirable features. Constraints-such as the locations of the opioid binding sites on adrenergic receptors and adrenergic binding sites on opioid receptors, length of tethers that must govern the design of such novel compounds, and types of tethers-are described and examples of possible structures provided.
Collapse
|
40
|
Haque MR, Barlass U, Armstrong A, Shaikh M, Bishehsari F. Novel role of the Mu-opioid receptor in pancreatic cancer: potential link between opioid use and cancer progression. Mol Cell Biochem 2022; 477:1339-1345. [PMID: 35138511 DOI: 10.1007/s11010-022-04377-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Opioids are the most popular drugs for both acute and chronic pain management. The G protein-coupled mu-opioid receptor (MOR) is the therapeutic target for most clinically used opioids, including morphine. A mounting number of publications suggest a relationship between the MOR and possible cancer progression and recurrence extending to managing chronic cancer pain. In this study, we studied the possible link between opioid use and pancreatic cancer (PC) progression. We found increased MOR expression in murine and human PC cell lines, human PC-derived organoids, and in the undifferentiated or poorly differentiated areas of surgically resected PC tissues. Direct stimulation of MOR by morphine (MOR agonist) caused a significant dose-dependent increase in proliferation, invasion, and levels of stemness markers in PC cells. In a co-culture system, MOR stimulation of macrophages also resulted in increased proliferation of PC cells. MOR overexpression increased proliferation and cancer stemness, whereas knock-down of MOR followed opposite results in the PC cells. Morphine induced chemoresistance to conventional chemotherapeutic agents used for PC treatment. Overall, our results suggest that MOR is expressed in pancreatic cancer and may be involved in tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Muhammad R Haque
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, 1725 W Harrison St, Chicago, IL, 60612, USA
| | - Usman Barlass
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, 1725 W Harrison St, Chicago, IL, 60612, USA
| | - Andrew Armstrong
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, 1725 W Harrison St, Chicago, IL, 60612, USA
| | - Maliha Shaikh
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, 1725 W Harrison St, Chicago, IL, 60612, USA
| | - Faraz Bishehsari
- Division of Digestive Diseases, Rush Center for Integrated Microbiome & Chronobiology Research, Rush University Medical Center, 1725 W Harrison St, Chicago, IL, 60612, USA.
| |
Collapse
|
41
|
Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs. Int J Mol Sci 2021; 22:ijms222413353. [PMID: 34948150 PMCID: PMC8707250 DOI: 10.3390/ijms222413353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.
Collapse
|
42
|
Lee DF, Geron M, Scherrer G. A modulator-bound GPCR structure enables allosteric non-opioid analgesia. Nat Struct Mol Biol 2021; 28:871-872. [PMID: 34754105 DOI: 10.1038/s41594-021-00681-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David F Lee
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Pharmacology Curriculum, Biological & Biomedical Sciences Program, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matan Geron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,New York Stem Cell Foundation-Robertson Investigator, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Toddes C, Lefevre EM, Brandner DD, Zugschwert L, Rothwell PE. μ-Opioid Receptor (Oprm1) Copy Number Influences Nucleus Accumbens Microcircuitry and Reciprocal Social Behaviors. J Neurosci 2021; 41:7965-7977. [PMID: 34301826 PMCID: PMC8460143 DOI: 10.1523/jneurosci.2440-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/17/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
The μ-opioid receptor regulates reward derived from both drug use and natural experiences, including social interaction, through actions in the nucleus accumbens. Here, we studied nucleus accumbens microcircuitry and social behavior in male and female mice with heterozygous genetic knockout of the μ-opioid receptor (Oprm1+/-). This genetic condition models the partial reduction of μ-opioid receptor signaling reported in several neuropsychiatric disorders. We first analyzed inhibitory synapses in the nucleus accumbens, using methods that differentiate between medium spiny neurons (MSNs) expressing the D1 or D2 dopamine receptor. Inhibitory synaptic transmission was increased in D2-MSNs of male mutants, but not female mutants, while the expression of gephyrin mRNA and the density of inhibitory synaptic puncta at the cell body of D2-MSNs was increased in mutants of both sexes. Some of these changes were more robust in Oprm1+/- mutants than Oprm1-/- mutants, demonstrating that partial reductions of μ-opioid signaling can have large effects. At the behavioral level, social conditioned place preference and reciprocal social interaction were diminished in Oprm1+/- and Oprm1-/- mutants of both sexes. Interaction with Oprm1 mutants also altered the social behavior of wild-type test partners. We corroborated this latter result using a social preference task, in which wild-type mice preferred interactions with another typical mouse over Oprm1 mutants. Surprisingly, Oprm1-/- mice preferred interactions with other Oprm1-/- mutants, although these interactions did not produce a conditioned place preference. Our results support a role for partial dysregulation of μ-opioid signaling in social deficits associated with neuropsychiatric conditions.SIGNIFICANCE STATEMENT Activation of the μ-opioid receptor plays a key role in the expression of normal social behaviors. In this study, we examined brain function and social behavior of female and male mice, with either partial or complete genetic deletion of μ-opioid receptor expression. We observed abnormal social behavior following both genetic manipulations, as well as changes in the structure and function of synaptic input to a specific population of neurons in the nucleus accumbens, which is an important brain region for social behavior. Synaptic changes were most robust when μ-opioid receptor expression was only partially lost, indicating that small reductions in μ-opioid receptor signaling can have a large impact on brain function and behavior.
Collapse
Affiliation(s)
- Carlee Toddes
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Emilia M Lefevre
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dieter D Brandner
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Scientist Training Program, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lauryn Zugschwert
- Neuroscience Program and Department of Biology, University of St. Thomas, St. Paul, Minnesota 55105
| | - Patrick E Rothwell
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
44
|
Pryce KD, Kang HJ, Sakloth F, Liu Y, Khan S, Toth K, Kapoor A, Nicolais A, Che T, Qin L, Bertherat F, Kaniskan HÜ, Jin J, Cameron MD, Roth BL, Zachariou V, Filizola M. A promising chemical series of positive allosteric modulators of the μ-opioid receptor that enhance the antinociceptive efficacy of opioids but not their adverse effects. Neuropharmacology 2021; 195:108673. [PMID: 34153316 PMCID: PMC8410669 DOI: 10.1016/j.neuropharm.2021.108673] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 01/16/2023]
Abstract
Positive allosteric modulators (PAMs) of the μ-opioid receptor (MOR) have been proposed to exhibit therapeutic potential by maximizing the analgesic properties of clinically used opioid drugs while limiting their adverse effects or risk of overdose as a result of using lower drug doses. We herein report in vitro and in vivo characterization of two small molecules from a chemical series of MOR PAMs that exhibit: (i) MOR PAM activity and receptor subtype selectivity in vitro, (ii) a differential potentiation of the antinociceptive effect of oxycodone, morphine, and methadone in mouse models of pain that roughly correlates with in vitro activity, and (iii) a lack of potentiation of adverse effects associated with opioid administration, such as somatic withdrawal, respiratory depression, and analgesic tolerance. This series of MOR PAMs holds promise for the development of adjuncts to opioid therapy to mitigate against overdose and opioid use disorders.
Collapse
Affiliation(s)
- Kerri D Pryce
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hye Jin Kang
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Farhana Sakloth
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Katalin Toth
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew Nicolais
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Lihuai Qin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feodora Bertherat
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; Mount Sinai Center for Therapeutics Discovery, Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
45
|
Chakraborty S, Uprety R, Daibani AE, Rouzic VL, Hunkele A, Appourchaux K, Eans SO, Nuthikattu N, Jilakara R, Thammavong L, Pasternak GW, Pan YX, McLaughlin JP, Che T, Majumdar S. Kratom Alkaloids as Probes for Opioid Receptor Function: Pharmacological Characterization of Minor Indole and Oxindole Alkaloids from Kratom. ACS Chem Neurosci 2021; 12:2661-2678. [PMID: 34213886 PMCID: PMC8328003 DOI: 10.1021/acschemneuro.1c00149] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dry leaves of kratom (mitragyna speciosa) are anecdotally consumed as pain relievers and antidotes against opioid withdrawal and alcohol use disorders. There are at least 54 alkaloids in kratom; however, investigations to date have focused around mitragynine, 7-hydroxy mitragynine (7OH), and mitragynine pseudoindoxyl (MP). Herein, we probe a few minor indole and oxindole based alkaloids, reporting the receptor affinity, G-protein activity, and βarrestin-2 signaling of corynantheidine, corynoxine, corynoxine B, mitraciliatine, and isopaynantheine at mouse and human opioid receptors. We identify corynantheidine as a mu opioid receptor (MOR) partial agonist, whereas its oxindole derivative corynoxine was an MOR full agonist. Similarly, another alkaloid mitraciliatine was found to be an MOR partial agonist, while isopaynantheine was a KOR agonist which showed reduced βarrestin-2 recruitment. Corynantheidine, corynoxine, and mitraciliatine showed MOR dependent antinociception in mice, but mitraciliatine and corynoxine displayed attenuated respiratory depression and hyperlocomotion compared to the prototypic MOR agonist morphine in vivo when administered supraspinally. Isopaynantheine on the other hand was identified as the first kratom derived KOR agonist in vivo. While these minor alkaloids are unlikely to play the majority role in the biological actions of kratom, they represent excellent starting points for further diversification as well as distinct efficacy and signaling profiles with which to probe opioid actions in vivo.
Collapse
Affiliation(s)
- Soumen Chakraborty
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rajendra Uprety
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amal E Daibani
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Valerie L Rouzic
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Amanda Hunkele
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kevin Appourchaux
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shainnel O Eans
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Nitin Nuthikattu
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Rahul Jilakara
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lisa Thammavong
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Gavril W Pasternak
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ying-Xian Pan
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Jay P McLaughlin
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 032610, United States
| | - Tao Che
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences & Pharmacy at St. Louis and Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
46
|
Do positive allosteric modulators (PAMs) of the MOR exert antinociception with reduced side effects under pathological conditions? Proc Natl Acad Sci U S A 2021; 118:2107784118. [PMID: 34260379 DOI: 10.1073/pnas.2107784118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
47
|
Reply to Zhuang et al.: Potential side effects of positive allosteric modulators of the mu-opioid receptor. Proc Natl Acad Sci U S A 2021; 118:2108493118. [PMID: 34260391 DOI: 10.1073/pnas.2108493118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|