1
|
Martins S, Ferreira C, Mateus AP, Santos CP, Fonseca J, Rosa R, Power DM. Immunological resilience of a temperate catshark to a simulated marine heatwave. J Exp Biol 2024; 227:jeb247684. [PMID: 39422000 DOI: 10.1242/jeb.247684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Marine heatwaves (MHWs) have recently been proposed to be more relevant in driving population changes than the continuous increase in average temperatures associated with climate change. The causal processes underpinning MHW effects in sharks are unclear but may be linked to changes in fitness caused by physiological trade-offs that influence the immune response. Considering the scarcity of data about the immune response of sharks under anomalous warming events, the present study analyzed several fitness indices and characterized the immune response (in the blood, epigonal organ, liver, spleen and intestine) of temperate adult small-spotted catsharks (Scyliorhinus canicula) after a 30 day exposure to a category II MHW. The results indicated that adult small-spotted catsharks have developed coping strategies for MHWs. Specifically, among the 35 parameters investigated, only the gonad-to-body ratio (GBR) and plasma glucose concentration showed significant increases. In contrast, gene expression of igm and tumor necrosis factor receptor (tnfr) in blood cells, and tnfr in the epigonal organ, as well as the number of monocytes, all significantly decreased. Although a decline in immune function in small-spotted catsharks was revealed following MHW exposure, energy mobilization restored homeostasis and indicated a shift in energy allocation towards reproduction. Group resilience may be due to the variable tolerance of individuals, the phenotypic plasticity of cellular immunity, thermal imprinting and/or metabolic capacity of the individuals.
Collapse
Affiliation(s)
- Sandra Martins
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Portugal, 2750-374 Cascais, Portugal
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Cristina Ferreira
- Instituto de Medicina Molecular, João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana Patrícia Mateus
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Catarina Pereira Santos
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Portugal, 2750-374 Cascais, Portugal
| | - Joana Fonseca
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias (FMV-ULHT), 1749-024 Lisboa, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Portugal, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Portugal, 1749-016 Cascais, Portugal
- Sphyrna Association, Boa Vista Island, Sal Rei, 5110, Cape Verde
| | - Deborah M Power
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Ramirez‐Calero S, Gómez‐Gras D, Barreiro A, Bensoussan N, Figuerola‐Ferrando L, Jou M, López‐Sanz À, López‐Sendino P, Medrano A, Montero‐Serra I, Pagès‐Escolà M, Linares C, Ledoux J, Garrabou J. Recurrent Extreme Climatic Events Are Driving Gorgonian Populations to Local Extinction: Low Adaptive Potential to Marine Heatwaves. GLOBAL CHANGE BIOLOGY 2024; 30:e17587. [PMID: 39604289 PMCID: PMC11602694 DOI: 10.1111/gcb.17587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Extreme climatic events (ECEs), such as marine heatwaves (MHWs), are a major threat to biodiversity. Understanding the variability in ecological responses to recurrent ECEs within species and underlying drivers arise as a key issue owing to their implications for conservation and population recovery. Yet, our knowledge on such ecological responses is limited since it has been frequently gathered following "single-event approaches" focused on one particular event. These approaches provide snapshots of ecological responses but fall short of capturing heterogeneity patterns that may occur among recurrent ECEs, questioning current predictions regarding biodiversity trends. Here, we adopt a "multiple events" perspective to characterize the effects of recurrent ECEs on the ecological responses in Paramuricea clavata, a Mediterranean temperate coral threatened by MHWs. Through a common-garden experiment repeated three consecutive years with the same individuals from three populations, we assessed the respective roles of environmental (year effect), genetic (population effect), and phenotypic (population-by-environment interactions effect) components in the ecological response to recurrent heat stress. The environmental component (year) was the main driver underlying the responses of P. clavata colonies across experiments. To build on this result, we showed that: (i) the ecological responses were not related to population (genetic isolation) and individual (multilocus heterozygosity) genetic make-up, (ii) while all the individuals were characterized by a high environmental sensitivity (genotype-by-environment interactions) likely driven by in situ summer thermal regime. We confront our experimental results to in situ monitoring of the same individuals conducted in 2022 following two MHWs (2018, 2022). This confirms that the targeted populations harbor limited adaptive and plastic capacities to on-going recurrent ECEs and that P. clavata might face unavoidable population collapses in shallow Mediterranean waters. Overall, we underscore the need to consider the recurrence of ECEs to assess threats to biodiversity and to forecast its evolution.
Collapse
Affiliation(s)
- Sandra Ramirez‐Calero
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
| | - Daniel Gómez‐Gras
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Aldo Barreiro
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
| | - Nathaniel Bensoussan
- CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UTM 110, University of ToulonUniversity of Aix‐MarseilleMarseillesFrance
- CNRS, Ifremer, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEMUniv BrestPlouzanéFrance
| | - Laura Figuerola‐Ferrando
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Marc Jou
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Àngel López‐Sanz
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
| | - Paula López‐Sendino
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| | - Alba Medrano
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
| | - Ignasi Montero‐Serra
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
| | - Marta Pagès‐Escolà
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
| | - Cristina Linares
- Departament de Biologia Evolutiva, Ecologia i Ciències AmbientalsUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de BarcelonaBarcelonaSpain
| | - Jean‐Baptiste Ledoux
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e AmbientalUniversidade do PortoPortoPortugal
| | - Joaquim Garrabou
- Departament de Biologia MarinaInstitut de Ciències del Mar (CSIC)BarcelonaSpain
| |
Collapse
|
3
|
Sandrelli RM, Porter ES, Gamperl AK. Hyperoxia does not improve the acute upper thermal tolerance of a tropical marine fish (Lutjanus apodus). J Exp Biol 2024; 227:jeb247703. [PMID: 39369300 PMCID: PMC11574356 DOI: 10.1242/jeb.247703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Fish can experience hyperoxia in shallow environments due to photosynthetic activity and this has been suggested to provide them with a metabolic refuge during acute warming. However, this hypothesis has never been tested on a tropical marine species. Thus, we fitted 29°C-acclimated wild schoolmaster snapper (Lutjanus apodus; a species known to experience diel hyperoxia in mangrove creeks and coastal waters) with Transonic® flow probes and exposed them to an acute increase in temperature (at 1°C h-1) in respirometers under normoxia and hyperoxia (150% air saturation), until their critical thermal maximum (CTmax). The CTmax of both groups was ∼39°C, and no differences in maximum cardiac function were recorded as the fish were warmed. However, temperature-induced factorial aerobic scope was significantly greater in fish tested under hyperoxia. These data suggest that hyperoxia will not protect coastal tropical fish species during marine heat waves, despite its effects on metabolic scope/capacity.
Collapse
Affiliation(s)
- Rebeccah M Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Emma S Porter
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL, CanadaA1C 5S7
| |
Collapse
|
4
|
Diaz de Villegas SC, Borbee EM, Abdelbaki PY, Fuess LE. Prior heat stress increases pathogen susceptibility in the model cnidarian Exaiptasia diaphana. Commun Biol 2024; 7:1328. [PMID: 39406834 PMCID: PMC11480339 DOI: 10.1038/s42003-024-07005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Anthropogenic climate change has significantly altered terrestrial and marine ecosystems globally, often in the form of climate-related events such as thermal anomalies and disease outbreaks. Although the isolated effects of these stressors have been well documented, a growing body of literature suggests that stressors often interact, resulting in complex effects on ecosystems. This includes coral reefs where sequential associations between heat stress and disease have had profound impacts. Here we used the model cnidarian Exaiptasia diaphana to investigate mechanisms linking prior heat stress to increased disease susceptibility. We examined anemone pathogen susceptibility and physiology (symbiosis, immunity, and energetics) following recovery from heat stress. We observed significantly increased pathogen susceptibility in anemones previously exposed to heat stress. Notably, prior heat stress reduced anemone energetic reserves (carbohydrate concentration), and activity of multiple immune components. Minimal effects of prior heat stress on symbiont density were observed. Together, results suggest changes in energetic availability might have the strongest effect on pathogen susceptibility and immunity following heat stress. The results presented here provide critical insight regarding the interplay between heat stress recovery and pathogen susceptibility in cnidarians and are an important first step towards understanding temporal associations between these stressors.
Collapse
|
5
|
Guibourd de Luzinais V, Gascuel D, Reygondeau G, Cheung WWL. Large potential impacts of marine heatwaves on ecosystem functioning. GLOBAL CHANGE BIOLOGY 2024; 30:e17437. [PMID: 39054881 DOI: 10.1111/gcb.17437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Ocean warming is driving significant changes in the structure and functioning of marine ecosystems, shifting species' biogeography and phenology, changing body size and biomass and altering the trophodynamics of the system. Particularly, extreme temperature events such as marine heatwaves (MHWs) have been increasing in intensity, duration and frequency. MHWs are causing large-scale impacts on marine ecosystems, such as coral bleaching, mass mortality of seagrass meadows and declines in fish stocks and other marine organisms in recent decades. In this study, we developed and applied a dynamic version of the EcoTroph trophodynamic modelling approach to study the cascading effects of individual MHW on marine ecosystem functioning. We simulated theoretical user-controlled ecosystems and explored the consequences of various assumptions of marine species mortality along the food web, associated with different MHW intensities. We show that an MHW can lead to a significant biomass reduction of all consumers, with the severity of the declines being dependent on species trophic levels (TLs) and biomes, in addition to the characteristics of MHWs. Biomass of higher TLs declines more than lower TLs under an MHW, leading to changes in ecosystem structure. While tropical ecosystems are projected to be sensitive to low-intensity MHWs, polar and temperate ecosystems are expected to be impacted by more intense MHWs. The estimated time to recover from MHW impacts is twice as long for polar ecosystems and one-third longer for temperate biomes compared with tropical biomes. This study highlights the importance of considering extreme weather events in assessing the effects of climate change on the structures and functions of marine ecosystems.
Collapse
Affiliation(s)
- Vianney Guibourd de Luzinais
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Didier Gascuel
- UMR Dynamics and Sustainability of Ecosystems: From Source to Sea (DECOD), Institut Agro, Ifremer, INRAE, Rennes, France
| | - Gabriel Reygondeau
- Rosenstiel School of Marine, Atmospheric, and Earth Science, The University of Miami, Florida, USA
| | - William W L Cheung
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Åsheim ER, Andreassen AH, Morgan R, Silvestre M, Jutfelt F. Acute warming tolerance (CT max) in zebrafish ( Danio rerio) appears unaffected by changes in water salinity. PeerJ 2024; 12:e17343. [PMID: 38948212 PMCID: PMC11214424 DOI: 10.7717/peerj.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/15/2024] [Indexed: 07/02/2024] Open
Abstract
Tolerance against acute warming is an essential trait that can determine how organisms cope during heat waves, yet the mechanisms underlying it remain elusive. Water salinity has previously been suggested to modulate warming tolerance in fish and may therefore provide clues towards these limiting mechanisms. Here, using the critical thermal maximum (CTmax) test, we investigated whether short (2 hours) and long (10 days) term exposure to different water salinities (2 hours: 0-5 ppt, 10 days: 0-3 ppt) affected acute warming tolerance in zebrafish (N = 263). We found that water salinity did not affect the warming tolerance of zebrafish at either time point, indicating that salinity does not affect the mechanism limiting acute warming tolerance in zebrafish at these salinity ranges, and that natural fluctuations in salinity levels might not have a large impact on acute warming tolerance in wild zebrafish.
Collapse
Affiliation(s)
- Eirik R. Åsheim
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anna H. Andreassen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rachael Morgan
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Mireia Silvestre
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Sciences, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Van Wert JC, Birnie-Gauvin K, Gallagher J, Hardison EA, Landfield K, Burkepile DE, Eliason EJ. Despite plasticity, heatwaves are costly for a coral reef fish. Sci Rep 2024; 14:13320. [PMID: 38858427 PMCID: PMC11164959 DOI: 10.1038/s41598-024-63273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is intensifying extreme weather events, including marine heatwaves, which are prolonged periods of anomalously high sea surface temperature that pose a novel threat to aquatic animals. Tropical animals may be especially vulnerable to marine heatwaves because they are adapted to a narrow temperature range. If these animals cannot acclimate to marine heatwaves, the extreme heat could impair their behavior and fitness. Here, we investigated how marine heatwave conditions affected the performance and thermal tolerance of a tropical predatory fish, arceye hawkfish (Paracirrhites arcatus), across two seasons in Moorea, French Polynesia. We found that the fish's daily activities, including recovery from burst swimming and digestion, were more energetically costly in fish exposed to marine heatwave conditions across both seasons, while their aerobic capacity remained the same. Given their constrained energy budget, these rising costs associated with warming may impact how hawkfish prioritize activities. Additionally, hawkfish that were exposed to hotter temperatures exhibited cardiac plasticity by increasing their maximum heart rate but were still operating within a few degrees of their thermal limits. With more frequent and intense heatwaves, hawkfish, and other tropical fishes must rapidly acclimate, or they may suffer physiological consequences that alter their role in the ecosystem.
Collapse
Affiliation(s)
- Jacey C Van Wert
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jordan Gallagher
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Emily A Hardison
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Kaitlyn Landfield
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Erika J Eliason
- Department of Ecology, Evolution & Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
8
|
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance. Int J Vet Sci Med 2024; 12:25-38. [PMID: 38751408 PMCID: PMC11095286 DOI: 10.1080/23144599.2024.2348408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
One of the main challenges in aquaculture is pathogenic bacterial control. Streptococcus iniae stands out for its ability to cause high mortality rates in populations of commercially important fish populations and its recent recognition as an emerging zoonotic pathogen. The rise in identifying over 80 strains some displaying antibiotic resistance coupled with the emerging occurrence of infections in marine mammal species and wild fish underscores the urgent need of understanding pathogenesis, virulence and drug resistance mechanisms of this bacterium. This understanding is crucial to ensure effective control strategies. In this context, the present review conducts a bibliometric analysis to examine research trends related to S. iniae, extending into the mechanisms of infection, virulence, drug resistance and control strategies, whose relevance is highlighted on vaccines and probiotics to strengthen the host immune system. Despite the advances in this field, the need for developing more efficient identification methods is evident, since they constitute the basis for accurate diagnosis and treatment.
Collapse
Affiliation(s)
| | - Luz Edith Casados Vázquez
- CONAHCYT- Universidad de Guanajuato. Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | | | | |
Collapse
|
9
|
De Bonville J, Côté A, Binning SA. Thermal tolerance and survival are modulated by a natural gradient of infection in differentially acclimated hosts. CONSERVATION PHYSIOLOGY 2024; 12:coae015. [PMID: 38629117 PMCID: PMC11020239 DOI: 10.1093/conphys/coae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024]
Abstract
Wild ectotherms are exposed to multiple stressors, including parasites, that can affect their responses to environmental change. Simultaneously, unprecedented warm temperatures are being recorded worldwide, increasing both the average and maximum temperatures experienced in nature. Understanding how ectotherms, such as fishes, will react to the combined stress of parasites and higher average temperatures can help predict the impact of extreme events such as heat waves on populations. The critical thermal method (CTM), which assesses upper (CTmax) and lower (CTmin) thermal tolerance, is often used in acclimated ectotherms to help predict their tolerance to various temperature scenarios. Despite the widespread use of the CTM across taxa, few studies have characterized the response of naturally infected fish to extreme temperature events or how acute thermal stress affects subsequent survival. We acclimated naturally infected pumpkinseed sunfish (Lepomis gibbosus) to four ecologically relevant temperatures (10, 15, 20 and 25°C) and one future warming scenario (30°C) for 3 weeks before measuring CTmax and CTmin. We also assessed individual survival the week following CTmax. Parasites were counted and identified following trials to relate infection intensity to thermal tolerance and survival. Interestingly, trematode parasites causing black spot disease were negatively related to CTmax, suggesting that heavily infected fish are less tolerant to acute warming. Moreover, fish infected with yellow grub parasites showed decreased survival in the days following CTmax implying that the infection load has negative survival consequences on sunfish during extreme warming events. Our findings indicate that, when combined, parasite infection and high prolonged average temperatures can affect fish thermal tolerance and survival, emphasizing the need to better understand the concomitant effects of stressors on health outcomes in wild populations. This is especially true given that some parasite species are expected to thrive in warming waters making host fish species especially at risk.
Collapse
Affiliation(s)
- Jérémy De Bonville
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 1375 Av.Théres̀e-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Ariane Côté
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 1375 Av.Théres̀e-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| | - Sandra A Binning
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 1375 Av.Théres̀e-Lavoie-Roux, Montréal, QC, H2V 0B3, Canada
| |
Collapse
|
10
|
Ren X, Zhao J, Hu J. Non-concordant epigenetic and transcriptional responses to acute thermal stress in western mosquitofish (Gambusia affinis). Mol Ecol 2024:e17332. [PMID: 38529738 DOI: 10.1111/mec.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.
Collapse
Affiliation(s)
- Xingyue Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
11
|
Leathers T, King NG, Foggo A, Smale DA. Marine heatwave duration and intensity interact to reduce physiological tipping points of kelp species with contrasting thermal affinities. ANNALS OF BOTANY 2024; 133:51-60. [PMID: 37946547 PMCID: PMC10921831 DOI: 10.1093/aob/mcad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND AIMS Marine heatwaves (MHWs) are widely recognized as pervasive drivers of ecosystem change, yet our understanding of how different MHW properties mediate ecological responses remains largely unexplored. Understanding MHW impacts on foundation species is particularly important, given their structural role in communities and ecosystems. METHODS We simulated a series of realistic MHWs with different levels of intensity (Control: 14 °C, Moderate: 18 °C, Extreme: 22 °C) and duration (14 or 28 d) and examined responses of two habitat-forming kelp species in the southwest UK. Here, Laminaria digitata reaches its trailing edge and is undergoing a range contraction, whereas Laminaria ochroleuca reaches its leading edge and is undergoing a range expansion. KEY RESULTS For both species, sub-lethal stress responses induced by moderate-intensity MHWs were exacerbated by longer duration. Extreme-intensity MHWs caused dramatic declines in growth and photosynthetic performance, and elevated bleaching, which were again exacerbated by longer MHW duration. Stress responses were most pronounced in L. ochroleuca, where almost complete tissue necrosis was observed by the end of the long-duration MHW. This was unexpected given the greater thermal safety margins assumed with leading edge populations. It is likely that prolonged exposure to sub-lethal thermal stress exceeded a physiological tipping point for L. ochroleuca, presumably due to depletion of internal reserves. CONCLUSIONS Overall, our study showed that exposure to MHW profiles projected to occur in the region in the coming decades can have significant deleterious effects on foundation kelp species, regardless of their thermal affinities and location within respective latitudinal ranges, which would probably have consequences for entire communities and ecosystems.
Collapse
Affiliation(s)
- Tayla Leathers
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
| | - Nathan G King
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
| | - Andy Foggo
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
| |
Collapse
|
12
|
Langangen Ø, Durant JM. Persistence of fish populations to longer, more intense, and more frequent mass mortality events. GLOBAL CHANGE BIOLOGY 2024; 30:e17251. [PMID: 38519869 DOI: 10.1111/gcb.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Over the last decades, mass mortality events have become increasingly common across taxa with sometimes devastating effects on population biomass. In the aquatic environment, fish are sensitive to mass mortality events, particularly at the early life stages that are crucial for population dynamics. However, it has recently been shown for fish, that a single mass mortality event in early life typically does not lead to population collapse. Moreover, the frequency and intensity of extreme events that can cause mass mortality, such as marine heatwaves, are increasing. Here, we show that increasing frequency and intensity of mass mortality events may lead to population collapse. Since the drivers of mass mortality events are diverse, and often linked to climate change, it is challenging to predict the frequency and severity of future mass mortality events. As an alternative, we quantify the probability of population collapse depending on the frequency and intensity as well as the duration of mass mortality events. Based on 39 fish species, we show that the probability of collapse typically increases with increasing frequency, intensity, and duration of the mortality events. In addition, we show that the collapse depends on key traits such as natural mortality, recruitment variation, and density dependence. The presented framework provides quantitative estimates of the sensitivity of fish species to these increasingly common extreme events, which paves the way for potential mitigation actions to alleviate adverse impacts on harvested fish populations across the globe.
Collapse
Affiliation(s)
| | - Joël M Durant
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Marín Navas C, Delgado Bermejo JV, McLean AK, León Jurado JM, Camacho Vallejo ME, Navas González FJ. Modeling Climate Change Effects on Genetic Diversity of an Endangered Horse Breed Using Canonical Correlations. Animals (Basel) 2024; 14:659. [PMID: 38473046 DOI: 10.3390/ani14050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The historical increase in the occurrence of extreme weather events in Spain during the last thirty years makes it a perfect location for the evaluation of climate change. Modeling the effects of climate change on domestic animals' genetic diversity may help to anticipate challenging situations. However, animal populations' short life cycle and patent lack of historical information during extended periods of time drastically compromise the evaluation of climate change effects. Locally adapted breeds' gene pool is the base for their improved resilience and plasticity in response to climate change's extreme climatic conditions. The preservation of these domestic resources offers selection alternatives to breeders who seek such improved adaptability. The Spanish endangered autochthonous Hispano-Arabian horse breed is perfectly adapted to the conditions of the territory where it was created, developed, and widespread worldwide. The possibility to trace genetic diversity in the Hispano-Arabian breed back around seven decades and its global ubiquity make this breed an idoneous reference subject to act as a model for other international populations. Climate change's shaping effects on the genetic diversity of the Hispano-Arabian horse breed's historical population were monitored from 1950 to 2019 and evaluated. Wind speed, gust speed, or barometric pressure have greater repercussions than extreme temperatures on genetic diversity. Extreme climate conditions, rather than average modifications of climate, may push breeders/owners to implement effective strategies in the short to medium term, but the effect will be plausible in the long term due to breed sustainability and enhanced capacity of response to extreme climate events. When extreme climatic conditions occur, breeders opt for mating highly diverse unrelated individuals, avoiding the production of a large number of offspring. People in charge of domestic population conservation act as catalyzers of the regulatory changes occurring during breeds' climate change adaptive process and may identify genes conferring their animals with greater adaptability but still maintaining enhanced performance. This model assists in determining how owners of endangered domestic populations should plan their breeding strategies, seeking the obtention of animals more resilient and adapted to climate-extreme conditions. This efficient alternative is focused on the obtention of increased profitability from this population and in turn ensuring their sustainability.
Collapse
Affiliation(s)
- Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Córdoba, 14071 Córdoba, Spain
| | | | - Amy Katherine McLean
- Department of Animal Science, University of California Davis, Davis, CA 95617, USA
| | - José Manuel León Jurado
- Centro Agropecuario Provincial de Córdoba, Diputación Provincial de Córdoba, 14071 Córdoba, Spain
| | | | | |
Collapse
|
14
|
Moore B, Jolly J, Izumiyama M, Kawai E, Ravasi T, Ryu T. Tissue-specific transcriptional response of post-larval clownfish to ocean warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168221. [PMID: 37923256 DOI: 10.1016/j.scitotenv.2023.168221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenically driven climate change is predicted to increase average sea surface temperatures, as well as the frequency and intensity of marine heatwaves in the future. This increasing temperature is predicted to have a range of negative physiological impacts on multiple life-stages of coral reef fish. Nevertheless, studies of early-life stages remain limited, and tissue-specific transcriptomic studies of post-larval coral reef fish are yet to be conducted. Here, in an aquaria-based study we investigate the tissue-specific (brain, liver, muscle, and digestive tract) transcriptomic response of post-larval (20 dph) Amphiprion ocellaris to temperatures associated with future climate change (+3 °C). Additionally, we utilized metatranscriptomic sequencing to investigate how the microbiome of the digestive tract changes at +3 °C. Our results show that the transcriptional response to elevated temperatures is highly tissue-specific, as the number of differentially expressed genes (DEGs) and gene functions varied amongst the brain (102), liver (1785), digestive tract (380), and muscle (447). All tissues displayed DEGs associated with thermal stress, as 23 heat-shock protein genes were upregulated in all tissues. Our results indicate that post-larval clownfish may experience liver fibrosis-like symptoms at +3 °C as genes associated with extracellular matrix structure, oxidative stress, inflammation, glucose transport, and metabolism were all upregulated. We also observe a shift in the digestive tract microbiome community structure, as Vibrio sp. replace Escherichia coli as the dominant bacteria. This shift is coupled with the dysregulation of various genes involved in immune response in the digestive tract. Overall, this study highlights post-larval clownfish will display tissue-specific transcriptomic responses to future increases in temperature, with many potentially harmful pathways activated at +3 °C.
Collapse
Affiliation(s)
- Billy Moore
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jeffrey Jolly
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Michael Izumiyama
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Erina Kawai
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
15
|
Ravaglioli C, De Marchi L, Anselmi S, Dattolo E, Fontanini D, Pretti C, Procaccini G, Rilov G, Renzi M, Silverman J, Bulleri F. Ocean acidification impairs seagrass performance under thermal stress in shallow and deep water. ENVIRONMENTAL RESEARCH 2024; 241:117629. [PMID: 37967703 DOI: 10.1016/j.envres.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.
Collapse
Affiliation(s)
- Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Lucia De Marchi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy.
| | - Emanuela Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Debora Fontanini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128, Livorno, Italy.
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Monia Renzi
- Dipartimento di Scienze Della Vita, Università di Trieste, Via Giorgieri, 10, 34127, Trieste, Italy.
| | - Jacob Silverman
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy.
| |
Collapse
|
16
|
Kalloniati K, Christou ED, Kournopoulou A, Gittings JA, Theodorou I, Zervoudaki S, Raitsos DE. Long-term warming and human-induced plankton shifts at a coastal Eastern Mediterranean site. Sci Rep 2023; 13:21068. [PMID: 38030672 PMCID: PMC10687065 DOI: 10.1038/s41598-023-48254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Plankton are key ecological indicators for assessing the impacts of human-induced pressures like climate change and waste-water discharge. Here, 26 years (1988-2015) of biweekly in-situ chlorophyll-a concentration, mesozooplankton biomass and remotely-sensed sea surface temperature (SST) data are utilized to investigate long-term changes of plankton biomass and timing of growth (phenology) in relation to warming, in a coastal region of the Saronikos Gulf (Aegean Sea). A Waste-Water Treatment Plant (WWTP) was established in 1995, leading to decreased nutrient concentrations circa 2004. Overall, the results indicate an interplay between warming and changes in ecological status. During higher nutrient input (1989-2004), a temporal mismatch between zooplankton and phytoplankton, and a positive zooplankton growth-SST association, are evident. Conversely, in the warmer, less mesotrophic period 2005-2015, an earlier timing of zooplankton growth (related to copepod abundance) synchronizes with phytoplankton growth, including a secondary autumn growth period. Concurrently, an abrupt negative interannual relationship between SST and mesozooplankton, and a summer biomass decrease (linked with cladoceran abundance) are observed. This work provides evidence that current warming could alter plankton abundance and phenology in nearshore Eastern Mediterranean ecosystems, suggesting shifts in plankton community composition that could trigger potential cascading effects on higher trophic levels.
Collapse
Affiliation(s)
- K Kalloniati
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece.
| | - E D Christou
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 19013, Anavyssos, Attica, Greece
| | - A Kournopoulou
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - J A Gittings
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - I Theodorou
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| | - S Zervoudaki
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), 19013, Anavyssos, Attica, Greece
| | - D E Raitsos
- Department of Biology, National and Kapodistrian University of Athens, 15772, Athens, Greece
| |
Collapse
|
17
|
Li J, Zou Y, Li Q, Zhang J, Bourne DG, Lyu Y, Liu C, Zhang S. A coral-associated actinobacterium mitigates coral bleaching under heat stress. ENVIRONMENTAL MICROBIOME 2023; 18:83. [PMID: 37996910 PMCID: PMC10668361 DOI: 10.1186/s40793-023-00540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The positive effects of exposing corals to microorganisms have been reported though how the benefits are conferred are poorly understood. Here, we isolated an actinobacterial strain (SCSIO 13291) from Pocillopora damicornis with capabilities to synthesize antioxidants, vitamins, and antibacterial and antiviral compounds supported with phenotypic and/or genomic evidence. Strain SCSIO 13291 was labeled with 5 (and - 6)-carboxytetramethylrhodamine, succinimidyl ester and the labeled cell suspension directly inoculated onto the coral polyp tissues when nubbins were under thermal stress in a mesocosm experiment. We then visualized the labelled bacterial cells and analyzed the coral physiological, transcriptome and microbiome to elucidate the effect this strain conferred on the coral holobiont under thermal stress. RESULTS Subsequent microscopic observations confirmed the presence of the bacterium attached to the coral polyps. Addition of the SCSIO 13291 strain reduced signs of bleaching in the corals subjected to heat stress. At the same time, alterations in gene expression, which were involved in reactive oxygen species and light damage mitigation, attenuated apoptosis and exocytosis in addition to metabolite utilization, were observed in the coral host and Symbiodiniaceae populations. In addition, the coral associated bacterial community altered with a more stable ecological network for samples inoculated with the bacterial strain. CONCLUSIONS Our results provide insights into the benefits of a putative actinobacterial probiotic strain that mitigate coral bleaching signs. This study suggests that the inoculation of bacteria can potentially directly benefit the coral holobiont through conferring metabolic activities or through indirect mechanisms of suppling additional nutrient sources.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China.
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Yuanjiao Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Cong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Sanya National Marine Ecosystem Research Station, Chinese Academy of Sciences, Sanya, Hainan, China
| |
Collapse
|
18
|
Sandrelli RM, Gamperl AK. The upper temperature and hypoxia limits of Atlantic salmon (Salmo salar) depend greatly on the method utilized. J Exp Biol 2023; 226:jeb246227. [PMID: 37622446 PMCID: PMC10560559 DOI: 10.1242/jeb.246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
In this study, Atlantic salmon were: (i) implanted with heart rate (fH) data storage tags (DSTs), pharmacologically stimulated to maximum fH, and warmed at 10°C h-1 (i.e. tested using a 'rapid screening protocol'); (ii) fitted with Doppler® flow probes, recovered in respirometers and given a critical thermal maximum (CTmax) test at 2°C h-1; and (iii) implanted with fH DSTs, recovered in a tank with conspecifics for 4 weeks, and had their CTmax determined at 2°C h-1. Fish in respirometers and those free-swimming were also exposed to a stepwise decrease in water oxygen level (100% to 30% air saturation) to determine the oxygen level at which bradycardia occurred. Resting fH was much lower in free-swimming fish than in those in respirometers (∼49 versus 69 beats min-1) and this was reflected in their scope for fH (∼104 versus 71 beats min-1) and CTmax (27.7 versus 25.9°C). Further, the Arrhenius breakpoint temperature and temperature at peak fH for free-swimming fish were considerably greater than for those tested in the respirometers and given a rapid screening protocol (18.4, 18.1 and 14.6°C; and 26.5, 23.2 and 20.2°C, respectively). Finally, the oxygen level at which bradycardia occurred was significantly higher in free-swimming salmon than in those in respirometers (∼62% versus 53% air saturation). These results: highlight the limitations of some lab-based methods of determining fH parameters and thermal tolerance in fishes; and suggest that scope for fH may be a more reliable and predictive measure of a fish's upper thermal tolerance than their peak fH.
Collapse
Affiliation(s)
- Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
19
|
Cowan ZL, Andreassen AH, De Bonville J, Green L, Binning SA, Silva-Garay L, Jutfelt F, Sundin J. A novel method for measuring acute thermal tolerance in fish embryos. CONSERVATION PHYSIOLOGY 2023; 11:coad061. [PMID: 37565236 PMCID: PMC10410291 DOI: 10.1093/conphys/coad061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/01/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023]
Abstract
Aquatic ectotherms are vulnerable to thermal stress, with embryos predicted to be more sensitive than juveniles and adults. When examining the vulnerability of species and life stages to warming, comparable methodology must be used to obtain robust conclusions. Critical thermal methodology is commonly used to characterize acute thermal tolerances in fishes, with critical thermal maximum (CTmax) referring to the acute upper thermal tolerance limit. At this temperature, fish exhibit loss of controlled locomotion due to a temperature-induced collapse of vital physiological functions. While it is relatively easy to monitor behavioural responses and measure CTmax in larval and adult fish, this is more challenging in embryos, leading to a lack of data on this life stage, or that studies rely on potentially incomparable metrics. Here, we present a novel method for measuring CTmax in fish embryos, defined by the temperature at which embryos stop moving. Additionally, we compare this measurement with the temperature of the embryos' last heartbeat, which has previously been proposed as a method for measuring embryonic CTmax. We found that, like other life stages, late-stage embryos exhibited a period of increased activity, peaking approximately 2-3°C before CTmax. Measurements of CTmax based on last movement are more conservative and easier to record in later developmental stages than measurements based on last heartbeat, and they also work well with large and small embryos. Importantly, CTmax measurements based on last movement in embryos are similar to measurements from larvae and adults based on loss of locomotory control. Using last heartbeat as CTmax in embryos likely overestimates acute thermal tolerance, as the heart is still beating when loss of response/equilibrium is reached in larvae/adults. The last movement technique described here allows for comparisons of acute thermal tolerance of embryos between species and across life stages, and as a response variable to treatments.
Collapse
Affiliation(s)
- Zara-Louise Cowan
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, 7491, Norway
| | - Anna H Andreassen
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, 7491, Norway
| | - Jeremy De Bonville
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 1375 Av. Théres̀e-Lavoie-Roux, Montréal, H2V 0B3, Canada
| | - Leon Green
- Department of Biology and Environmental Sciences, Faculty of Natural Sciences, University of Gothenburg, Kristineberg Center, Fiskebäckskil, 451 78, Sweden
| | - Sandra A Binning
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 1375 Av. Théres̀e-Lavoie-Roux, Montréal, H2V 0B3, Canada
| | - Lorena Silva-Garay
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, 7491, Norway
| | - Fredrik Jutfelt
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Høgskoleringen 5, Trondheim, 7491, Norway
- Department of Biology and Environmental Sciences, Faculty of Natural Sciences, University of Gothenburg, Kristineberg Center, Fiskebäckskil, 451 78, Sweden
| | - Josefin Sundin
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, 178 93, Sweden
| |
Collapse
|
20
|
Desforges JE, Birnie-Gauvin K, Jutfelt F, Gilmour KM, Eliason EJ, Dressler TL, McKenzie DJ, Bates AE, Lawrence MJ, Fangue N, Cooke SJ. The ecological relevance of critical thermal maxima methodology for fishes. JOURNAL OF FISH BIOLOGY 2023; 102:1000-1016. [PMID: 36880500 DOI: 10.1111/jfb.15368] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 05/13/2023]
Abstract
Critical thermal maxima methodology (CTM) has been used to infer acute upper thermal tolerance in fishes since the 1950s, yet its ecological relevance remains debated. In this study, the authors synthesize evidence to identify methodological concerns and common misconceptions that have limited the interpretation of critical thermal maximum (CTmax ; value for an individual fish during one trial) in ecological and evolutionary studies of fishes. They identified limitations of, and opportunities for, using CTmax as a metric in experiments, focusing on rates of thermal ramping, acclimation regimes, thermal safety margins, methodological endpoints, links to performance traits and repeatability. Care must be taken when interpreting CTM in ecological contexts, because the protocol was originally designed for ecotoxicological research with standardized methods to facilitate comparisons within study individuals, across species and contexts. CTM can, however, be used in ecological contexts to predict impacts of environmental warming, but only if parameters influencing thermal limits, such as acclimation temperature or rate of thermal ramping, are taken into account. Applications can include mitigating the effects of climate change, informing infrastructure planning or modelling species distribution, adaptation and/or performance in response to climate-related temperature change. The authors' synthesis points to several key directions for future research that will further aid the application and interpretation of CTM data in ecological contexts.
Collapse
Affiliation(s)
- Jessica E Desforges
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Kim Birnie-Gauvin
- Department of Ecology, Evolution & Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Erika J Eliason
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Terra L Dressler
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Michael J Lawrence
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nann Fangue
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, California, USA
| | - Steven J Cooke
- Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Tran LL, Johansen JL. Seasonal variability in resilience of a coral reef fish to marine heatwaves and hypoxia. GLOBAL CHANGE BIOLOGY 2023; 29:2522-2535. [PMID: 36843188 DOI: 10.1111/gcb.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 05/31/2023]
Abstract
Climate change projections indicate more frequent and severe tropical marine heatwaves (MHWs) and accompanying hypoxia year-round. However, most studies have focused on peak summer conditions under the assumption that annual maximum temperatures will induce the greatest physiological consequences. This study challenges this idea by characterizing seasonal MHWs (i.e., mean, maximum, and cumulative intensities, durations, heating rates, and mean annual occurrence) and comparing metabolic traits (i.e., standard metabolic rate (SMR), Q10 of SMR, maximum metabolic rate (MMR), aerobic scope, and critical oxygen tension (Pcrit )) of winter- and summer-acclimatized convict tang (Acanthurus triostegus) to the combined effects of MHWs and hypoxia. Fish were exposed to one of six MHW treatments with seasonally varying maximum intensities (winter: 24.5, 26.5, 28.5°C; summer: 28.5, 30.5, 32.5°C), representing past and future MHWs under IPCC projections (i.e., +0, +2, +4°C). Surprisingly, MHW characteristics did not significantly differ between seasons, yet SMR was more sensitive to winter MHWs (mean Q10 = 2.92) than summer MHWs (mean Q10 = 1.81), despite higher absolute summer temperatures. Concurrently, MMR increased similarly among winter +2 and +4°C treatments (i.e., 26.5, 28.5°C) and all summer MHW treatments, suggesting a ceiling for maximal MMR increase. Aerobic scope did not significantly differ between seasons nor among MHW treatments. While mean Pcrit did not significantly vary between seasons, warming of +4°C during winter (i.e., 28.5°C) significantly increased Pcrit relative to the winter control group. Contrary to the idea of increased sensitivity to MHWs during the warmest time of year, our results reveal heightened sensitivity to the deleterious effects of winter MHWs, and that seasonal acclimatization to warmer summer conditions may bolster metabolic resilience to warming and hypoxia. Consequently, physiological sensitivity to MHWs and hypoxia may extend across larger parts of the year than previously expected, emphasizing the importance of evaluating climate change impacts during cooler seasons when essential fitness-related traits such as reproduction occur in many species.
Collapse
Affiliation(s)
- Leon L Tran
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| | - Jacob L Johansen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, Hawaii, USA
| |
Collapse
|
22
|
Smith KE, Burrows MT, Hobday AJ, King NG, Moore PJ, Sen Gupta A, Thomsen MS, Wernberg T, Smale DA. Biological Impacts of Marine Heatwaves. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:119-145. [PMID: 35977411 DOI: 10.1146/annurev-marine-032122-121437] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Climatic extremes are becoming increasingly common against a background trend of global warming. In the oceans, marine heatwaves (MHWs)-discrete periods of anomalously warm water-have intensified and become more frequent over the past century, impacting the integrity of marine ecosystems globally. We review and synthesize current understanding of MHW impacts at the individual, population, and community levels. We then examine how these impacts affect broader ecosystem services and discuss the current state of research on biological impacts of MHWs. Finally, we explore current and emergent approaches to predicting the occurrence andimpacts of future events, along with adaptation and management approaches. With further increases in intensity and frequency projected for coming decades, MHWs are emerging as pervasive stressors to marine ecosystems globally. A deeper mechanistic understanding of their biological impacts is needed to better predict and adapt to increased MHW activity in the Anthropocene.
Collapse
Affiliation(s)
- Kathryn E Smith
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom; , ,
| | | | | | - Nathan G King
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom; , ,
| | - Pippa J Moore
- Dove Marine Laboratory, School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom;
| | - Alex Sen Gupta
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales, Australia;
| | - Mads S Thomsen
- Marine Ecology Research Group, Centre of Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand;
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Thomas Wernberg
- Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia;
- Institute of Marine Research, His, Norway
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, Plymouth, United Kingdom; , ,
| |
Collapse
|
23
|
Hesketh AV, Harley CDG. Extreme heatwave drives topography-dependent patterns of mortality in a bed-forming intertidal barnacle, with implications for associated community structure. GLOBAL CHANGE BIOLOGY 2023; 29:165-178. [PMID: 36016505 DOI: 10.1111/gcb.16390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Heatwave frequency and intensity will increase as climate change progresses. Intertidal sessile invertebrates, which often form thermally benign microhabitats for associated species, are vulnerable to thermal stress because they have minimal ability to behaviourally thermoregulate. Understanding what factors influence the mortality of biogenic species and how heatwaves might impact their ability to provide habitat is critical. Here, we characterize the community associated with the thatched barnacle, Semibalanus cariosus (Pallass, 1788), in British Columbia (BC), Canada. Then, we investigate what site-level and plot-level environmental factors explained variations in barnacle mortality resulting from an unprecedented regional heatwave in BC, Canada. Furthermore, we used a manipulative shading experiment deployed prior to the heatwave to examine the effect of thermal stress on barnacle survival and recruitment and the barnacle-associated community. We identified 50 taxa inhabiting S. cariosus beds, with variations in community composition between sites. Site-scale variables and algal canopy cover did not predict S. cariosus mortality, but patch-scale variation in substratum orientation did, with more direct solar irradiance corresponding with higher barnacle mortality. The shading experiment demonstrated that S. cariosus survival, barnacle recruitment, and invertebrate community diversity were higher under shades where substratum temperatures were lower. Associated community composition also differed between shaded and non-shaded plots, suggesting S. cariosus was not able to fully buffer acute thermal stress for its associated community. While habitat provisioning by intertidal foundation species is an important source of biodiversity, these species alone may not be enough to prevent substantial community shifts following extreme heatwaves. As heatwaves become more frequent and severe, they may further reduce diversity via the loss of biogenic habitat, and spatial variation in these impacts may be substantial.
Collapse
Affiliation(s)
- Amelia V Hesketh
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher D G Harley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Bregman G, Lalzar M, Livne L, Bigal E, Zemah-Shamir Z, Morick D, Tchernov D, Scheinin A, Meron D. Preliminary study of shark microbiota at a unique mix-species shark aggregation site, in the Eastern Mediterranean Sea. Front Microbiol 2023; 14:1027804. [PMID: 36910211 PMCID: PMC9996248 DOI: 10.3389/fmicb.2023.1027804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Sharks, as apex predators, play an essential ecological role in shaping the marine food web and maintaining healthy and balanced marine ecosystems. Sharks are sensitive to environmental changes and anthropogenic pressure and demonstrate a clear and rapid response. This designates them a "keystone" or "sentinel" group that may describe the structure and function of the ecosystem. As a meta-organism, sharks offer selective niches (organs) for microorganisms that can provide benefits for their hosts. However, changes in the microbiota (due to physiological or environmental changes) can turn the symbiosis into a dysbiosis and may affect the physiology, immunity and ecology of the host. Although the importance of sharks within the ecosystem is well known, relatively few studies have focused on the microbiome aspect, especially with long-term sampling. Our study was conducted at a site of coastal development in Israel where a mixed-species shark aggregation (November-May) is observed. The aggregation includes two shark species, the dusky (Carcharhinus obscurus) and sandbar (Carcharhinus plumbeus) which segregate by sex (females and males, respectively). In order to characterize the bacterial profile and examine the physiological and ecological aspects, microbiome samples were collected from different organs (gills, skin, and cloaca) from both shark species over 3 years (sampling seasons: 2019, 2020, and 2021). The bacterial composition was significantly different between the shark individuals and the surrounding seawater and between the shark species. Additionally, differences were apparent between all the organs and the seawater, and between the skin and gills. The most dominant groups for both shark species were Flavobacteriaceae, Moraxellaceae, and Rhodobacteraceae. However, specific microbial biomarkers were also identified for each shark. An unexpected difference in the microbiome profile and diversity between the 2019-2020 and 2021 sampling seasons, revealed an increase in the potential pathogen Streptococcus. The fluctuations in the relative abundance of Streptococcus between the months of the third sampling season were also reflected in the seawater. Our study provides initial information on shark microbiome in the Eastern Mediterranean Sea. In addition, we demonstrated that these methods were also able to describe environmental episodes and the microbiome is a robust measure for long-term ecological research.
Collapse
Affiliation(s)
- Goni Bregman
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Services Unit, University of Haifa, Haifa, Israel
| | - Leigh Livne
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Eyal Bigal
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Ziv Zemah-Shamir
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Danny Morick
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dan Tchernov
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Aviad Scheinin
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Dalit Meron
- Morris Kahn Marine Research Station, Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
25
|
Brain dysfunction during warming is linked to oxygen limitation in larval zebrafish. Proc Natl Acad Sci U S A 2022; 119:e2207052119. [PMID: 36122217 PMCID: PMC9522358 DOI: 10.1073/pnas.2207052119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the physiological mechanisms that limit animal thermal tolerance is crucial in predicting how animals will respond to increasingly severe heat waves. Despite their importance for understanding climate change impacts, these mechanisms underlying the upper thermal tolerance limits of animals are largely unknown. It has been hypothesized that the upper thermal tolerance in fish is limited by the thermal tolerance of the brain and is ultimately caused by a global brain depolarization. In this study, we developed methods for measuring the upper thermal limit (CTmax) in larval zebrafish (Danio rerio) with simultaneous recordings of brain activity using GCaMP6s calcium imaging in both free-swimming and agar-embedded fish. We discovered that during warming, CTmax precedes, and is therefore not caused by, a global brain depolarization. Instead, the CTmax coincides with a decline in spontaneous neural activity and a loss of neural response to visual stimuli. By manipulating water oxygen levels both up and down, we found that oxygen availability during heating affects locomotor-related neural activity, the neural response to visual stimuli, and CTmax. Our results suggest that the mechanism limiting the upper thermal tolerance in zebrafish larvae is insufficient oxygen availability causing impaired brain function.
Collapse
|
26
|
Court M, Paula JR, Macau M, Otjacques E, Repolho T, Rosa R, Lopes VM. Camouflage and Exploratory Avoidance of Newborn Cuttlefish under Warming and Acidification. BIOLOGY 2022; 11:1394. [PMID: 36290300 PMCID: PMC9598447 DOI: 10.3390/biology11101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Ocean warming and acidification have been shown to elicit deleterious effects on cephalopod mollusks, especially during early ontogeny, albeit effects on behavior remain largely unexplored. This study aimed to evaluate, for the first time, the effect of end-of-the-century projected levels of ocean warming (W; + 3 °C) and acidification (A; 980 µatm pCO2) on Sepia officinalis hatchlings' exploratory behavior and ability to camouflage in different substrate complexities (sand and black and white gravel). Cuttlefish were recorded in open field tests, from which mobility and exploratory avoidance behavior data were obtained. Latency to camouflage was registered remotely, and pixel intensity of body planes and background gravel were extracted from photographs. Hatching success was lowered under A and W combined (AW; 72.7%) compared to control conditions (C; 98.8%). Motion-related behaviors were not affected by the treatments. AW delayed camouflage response in the gravel substrate compared to W alone. Moreover, cuttlefish exhibited a higher contrast and consequently a stronger disruptive pattern under W, with no changes in background matching. These findings suggest that, although climate change may elicit relevant physiological challenges to cuttlefish, camouflage and mobility of these mollusks are not undermined under the ocean of tomorrow.
Collapse
Affiliation(s)
- Mélanie Court
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - José Ricardo Paula
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marta Macau
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Eve Otjacques
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Carnegie Institution for Science, Division of Biosphere Sciences and Engineering, Church Laboratory, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Tiago Repolho
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vanessa Madeira Lopes
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| |
Collapse
|
27
|
Muznebin F, Alfaro AC, Venter L, Young T. Acute thermal stress and endotoxin exposure modulate metabolism and immunity in marine mussels (Perna canaliculus). J Therm Biol 2022; 110:103327. [DOI: 10.1016/j.jtherbio.2022.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/24/2022] [Accepted: 09/09/2022] [Indexed: 10/14/2022]
|
28
|
Meyer ALS, Bentley J, Odoulami RC, Pigot AL, Trisos CH. Risks to biodiversity from temperature overshoot pathways. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210394. [PMID: 35757884 PMCID: PMC9234811 DOI: 10.1098/rstb.2021.0394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Temperature overshoot pathways entail exceeding a specified global warming level (e.g. 1.5°C or 2°C) followed by a decline in warming, achieved through anthropogenically enhanced CO2 removal from the atmosphere. However, risks to biodiversity from temperature overshoot pathways are poorly described. Here, we explore biodiversity risks from overshoot by synthesizing existing knowledge and quantifying the dynamics of exposure and de-exposure to potentially dangerous temperatures for more than 30 000 species for a 2°C overshoot scenario. Our results suggest that climate risk to biodiversity from temperature overshoot pathways will arrive suddenly, but decrease only gradually. Peak exposure for biodiversity occurs around the same time as peak global warming, but the rate of de-exposure lags behind the temperature decline. While the global overshoot period lasts around 60 years, the duration of elevated exposure of marine and terrestrial biodiversity is substantially longer (around 100 and 130 years, respectively), with some ecological communities never returning to pre-overshoot exposure levels. Key biodiversity impacts may be irreversible and reliance on widespread CO2 removal to reduce warming poses additional risks to biodiversity through altered land use. Avoiding any temperature overshoot must be a priority for reducing biodiversity risks from climate change, followed by limiting the magnitude and duration of any overshoot. More integrated models that include direct and indirect impacts from overshoot are needed to inform policy. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Andreas L. S. Meyer
- African Climate and Development Initiative, University of Cape Town, Cape Town 7700, South Africa
| | - Joanne Bentley
- African Climate and Development Initiative, University of Cape Town, Cape Town 7700, South Africa
| | - Romaric C. Odoulami
- African Climate and Development Initiative, University of Cape Town, Cape Town 7700, South Africa
| | - Alex L. Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Christopher H. Trisos
- African Climate and Development Initiative, University of Cape Town, Cape Town 7700, South Africa
- Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
29
|
Abstract
During 1982–2021, the highest sea surface temperature (SST) variability over the North Pacific was in the Kuroshio-Oyashio Extension (KOE) region, with more intense marine heatwaves (MHWs), especially during summertime. In this study, we explored the evolution and driving factors of the strongest summer MHWs based on their cumulative intensity using satellite observations and reanalyzed model results. Strong summer MHWs in 1999, 2008, 2012, and 2016 were initiated and peaked around summer. The more recent summer MHW events in 2018, 2020, and 2021 appeared to be associated with intermittent MHW events in the previous winter that extended to boreal summer. Based on a mixed layer temperature budget analysis from March to their peaks in summer, MHWs in 1999, 2008, 2012, and 2016 were primarily driven by the air-sea heat flux anomalies, with anomalous shortwave radiation due to reduced cloud cover being the dominant factor. Summer MHWs in 2018, 2020, and 2021 were mainly contributed by the ocean memory of winter warming. The northward shift of the Kuroshio Extension axis, the northward intrusion of the anticyclonic eddies, and the decadal warming trend may contribute to the positive sea surface height anomalies and increased upper ocean heat content in the KOE to increase winter SST and precondition the summer MHWs. Understanding MHW variability and the underlying mechanisms will help manage the marine ecosystem of the KOE region, as well as predict climate change impacts.
Collapse
|
30
|
Chan SKN, Suresh S, Munday P, Ravasi T, Bernal MA, Schunter C. The alternative splicing landscape of a coral reef fish during a marine heatwave. Ecol Evol 2022; 12:e8738. [PMID: 35342554 PMCID: PMC8933327 DOI: 10.1002/ece3.8738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/09/2022] Open
Abstract
Alternative splicing is a molecular mechanism that enables a single gene to encode multiple transcripts and proteins by post-transcriptional modification of pre-RNA molecules. Changes in the splicing scheme of genes can lead to modifications of the transcriptome and the proteome. This mechanism can enable organisms to respond to environmental fluctuations. In this study, we investigated patterns of alternative splicing in the liver of the coral reef fish Acanthochromis polyacanthus in response to the 2016 marine heatwave on the Great Barrier Reef. The differentially spliced (DS; n = 40) genes during the onset of the heatwave (i.e., 29.49°C or +1°C from average) were related to essential cellular functions such as the MAPK signaling system, Ca(2+) binding, and homeostasis. With the persistence of the heatwave for a period of one month (February to March), 21 DS genes were detected, suggesting that acute warming during the onset of the heatwave is more influential on alternative splicing than the continued exposure to elevated temperatures. After the heatwave, the water temperature cooled to ~24.96°C, and fish showed differential splicing of genes related to cyto-protection and post-damage recovery (n = 26). Two-thirds of the DS genes detected across the heatwave were also differentially expressed, revealing that the two molecular mechanisms act together in A. polyacanthus to cope with the acute thermal change. This study exemplifies how splicing patterns of a coral reef fish can be modified by marine heatwaves. Alternative splicing could therefore be a potential mechanism to adjust cellular physiological states under thermal stress and aid coral reef fishes in their response to more frequent acute thermal fluctuations in upcoming decades.
Collapse
Affiliation(s)
- Stanley Kin Nok Chan
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Sneha Suresh
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| | - Phillip Munday
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Timothy Ravasi
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Marine Climate Change UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
| | - Moisés A. Bernal
- Department of Biological SciencesCollege of Science and MathematicsAuburn UniversityAuburnAlabamaUSA
| | - Celia Schunter
- Swire Institute of Marine ScienceSchool of Biological SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
31
|
Frada MJ, Keuter S, Koplovitz G, Avrahami Y. Divergent fate of coccolithophores in a warming tropical ecosystem. GLOBAL CHANGE BIOLOGY 2022; 28:1560-1568. [PMID: 34808010 DOI: 10.1111/gcb.16007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Rising ocean temperatures will alter the diversity of marine phytoplankton communities, likely leading to modifications in food-web and biogeochemical dynamics. Here we focus on coccolithophores, a prominent group of calcifying phytoplankton that plays a central role in the global carbon cycle. Using both new (2017-2020) and historical (1975-1976) data from the northern Red Sea, we found that during 'mild summers', the most common coccolithophores - Emiliania huxleyi and Gephyrocapsa ericsonii - co-exist at similar densities. Both species then particularly flourish during subsequent winter periods where nutrient availability is higher due to convective mixing. However, during 'hot summers', which have become progressively the norm over the last decades with average surface temperatures exceeding 27°C for long time-periods, G. ericsonii density markedly declined. Moreover, G. ericsonii remains at low background levels even during winter mixing periods, while E. huxleyi succession and development during winter appears unchanged. Further incubation assays using native assemblages confirmed that G. ericsonii's growth over 27°C is significantly reduced relative to E. huxleyi. Additional factors likely contribute to impair G. ericsonii populations at sea, but temperature is a key factor. Our results illustrate the divergent impact of ongoing ocean warming in tropical phytoplankton species.
Collapse
Affiliation(s)
- Miguel José Frada
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sabine Keuter
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil Koplovitz
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Yoav Avrahami
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
32
|
Fish Composition and Diversity of Four Coral Reefs in the South China Sea Based on Hand-Line Catch. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse10010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve the overall understanding of the fish diversity and spatial patterns of major coral reefs in the South China Sea, fish assemblage composition, dominant species, biodiversity indices, and multivariate analysis of community structure were reported for four major coral reefs based on hand-line survey data in May and September 2018. A total of five orders, 21 families, 45 genera and 121 species of fish were recorded with Perciformes (78.5%) being the most diverse. The highest number (5) of dominant species was found near Chenhang Island while the lowest (2) number was detected at Zhubi Reef. The highest abundance index (7.21) occurred at Zhubi Reef, while the Shannon–Wiener diversity (4.80), Pielou’s evenness (0.81), and Simpson’s dominance (0.95) indexes were all highest at Qiliangyu Island. Based on cluster analysis and non-metric multi-dimensional scaling (NMDS), fish communities varied more spatially than seasonally. Our results led us to hypothesize that the habitat complexity and level of anthropogenic disturbance were the main factors affecting the composition of reef-dwelling fish on each coral reef. Topography was likely responsible for most variation in the spatial pattern of fish diversity.
Collapse
|
33
|
|
34
|
Smith KE, Burrows MT, Hobday AJ, Sen Gupta A, Moore PJ, Thomsen M, Wernberg T, Smale DA. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 2021; 374:eabj3593. [PMID: 34672757 DOI: 10.1126/science.abj3593] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kathryn E Smith
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| | | | | | - Alex Sen Gupta
- Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pippa J Moore
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK
| | - Mads Thomsen
- The Marine Ecology Research Group, Centre of Integrative Ecology, School of Biological Sciences, University of Canterbury, 8041 Christchurch, New Zealand.,Department of Bioscience, Aarhus University, 4000 Roskilde, Denmark
| | - Thomas Wernberg
- University of Western Australia, Oceans Institute and School of Biological Sciences, Crawley, Western Australia 6009, Australia.,Institute of Marine Research, Floedevigen, 4817 His, Norway
| | - Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK
| |
Collapse
|
35
|
Gamperl AK, Zrini ZA, Sandrelli RM. Atlantic Salmon ( Salmo salar) Cage-Site Distribution, Behavior, and Physiology During a Newfoundland Heat Wave. Front Physiol 2021; 12:719594. [PMID: 34504440 PMCID: PMC8421689 DOI: 10.3389/fphys.2021.719594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Climate change is leading to increased water temperatures and reduced oxygen levels at sea-cage sites, and this is a challenge that the Atlantic salmon aquaculture industry must adapt to it if it needs to grow sustainably. However, to do this, the industry must better understand how sea-cage conditions influence the physiology and behavior of the fish. Method: We fitted ~2.5 kg Atlantic salmon on the south coast of Newfoundland with Star-Oddi milli-HRT ACT and Milli-TD data loggers (data storage tags, DSTs) in the summer of 2019 that allowed us to simultaneously record the fish's 3D acceleration (i.e., activity/behavior), electrocardiograms (and thus, heart rate and heart rate variability), depth, and temperature from early July to mid-October. Results: Over the course of the summer/fall, surface water temperatures went from ~10–12 to 18–19.5°C, and then fell to 8°C. The data provide valuable information on how cage-site conditions affected the salmon and their determining factors. For example, although the fish typically selected a temperature of 14–18°C when available (i.e., this is their preferred temperature in culture), and thus were found deeper in the cage as surface water temperatures peaked, they continued to use the full range of depths available during the warmest part of the summer. The depth occupied by the fish and heart rate were greater during the day, but the latter effect was not temperature-related. Finally, while the fish generally swam at 0.4–1.0 body lengths per second (25–60 cm s−1), their activity and the proportion of time spent using non-steady swimming (i.e., burst-and-coast swimming) increased when feeding was stopped at high temperatures. Conclusion: Data storage tags that record multiple parameters are an effective tool to understand how cage-site conditions and management influence salmon (fish) behavior, physiology, and welfare in culture, and can even be used to provide fine-scale mapping of environmental conditions. The data collected here, and that in recent publications, strongly suggest that pathogen (biotic) challenges in combination with high temperatures, not high temperatures + moderate hypoxia (~70% air saturation) by themselves, are the biggest climate-related challenge facing the salmon aquaculture industry outside of Tasmania.
Collapse
Affiliation(s)
- Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Zoe A Zrini
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | | |
Collapse
|
36
|
Tsimara E, Vasilakopoulos P, Koutsidi M, Raitsos DE, Lazaris A, Tzanatos E. An Integrated Traits Resilience Assessment of Mediterranean fisheries landings. J Anim Ecol 2021; 90:2122-2134. [PMID: 34013517 DOI: 10.1111/1365-2656.13533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022]
Abstract
An increasing number of studies have been examining the functional configuration of biological communities or ecosystems using biological traits. Here, we investigated the temporal dynamics and resilience of the traits composition in Mediterranean fisheries landings over 31 years (1985-2015). We transcribed the FAO Mediterranean landings dataset for 101 marine species into a dataset of 23 traits related to the life cycle, distribution, ecology and behaviour. Mediterranean mean Sea Surface Temperature (SST) was evaluated as a potential driver of the traits composition. Trait dynamics were evaluated both individually and holistically by developing an Integrated Traits Resilience Assessment (ITRA). ITRA is a variation of the Integrated Resilience Assessment (IRA), a method to infer resilience dynamics and build stability landscapes of complex natural systems. Changes in landings trait dynamics were documented both for individual traits and for the entire traits 'system', and a relevant regime shift was detected in the second half of the 1990s. The traits system switched to higher optimal temperature, more summer spawning, shorter life span, smaller maximum size, shallower optimal depth and planktivorous diet. This shift was found to be a lagged discontinuous response to sea warming, which gradually eroded the resilience of the original state of the traits system, leading it into a new basin of attraction. The inclusion of ecological/response traits (related to environmental preferences) in our analyses indicates potential mechanisms that explain the observed shift, while changes in functional/effect traits indicate potential impacts on ecosystem functioning. Our findings suggest that changes in the Mediterranean ecosystems are evidently larger than previously thought, with profound implications for the management of this highly impacted sea. .
Collapse
Affiliation(s)
- Eleni Tsimara
- Department of Biology, University of Patras, Patras, Greece
| | | | | | - Dionysios E Raitsos
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexis Lazaris
- Department of Biology, University of Patras, Patras, Greece
| | | |
Collapse
|
37
|
Shlesinger T, van Woesik R. Different population trajectories of two reef-building corals with similar life-history traits. J Anim Ecol 2021; 90:1379-1389. [PMID: 33666226 PMCID: PMC8252767 DOI: 10.1111/1365-2656.13463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures. We investigated the population dynamics of two key reef‐building Merulinid coral species, Dipsastraea favus and Platygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories. Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species. The survival and reproduction rates of both D. favus and P. lamellina were positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favus appears to be increasing whereas P. lamellina appears to be decreasing. As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
38
|
Scharsack JP, Wieczorek B, Schmidt-Drewello A, Büscher J, Franke F, Moore A, Branca A, Witten A, Stoll M, Bornberg-Bauer E, Wicke S, Kurtz J. Climate change facilitates a parasite's host exploitation via temperature-mediated immunometabolic processes. GLOBAL CHANGE BIOLOGY 2021; 27:94-107. [PMID: 33067869 DOI: 10.1111/gcb.15402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 05/09/2023]
Abstract
Global climate change can influence organismic interactions like those between hosts and parasites. Rising temperatures may exacerbate the exploitation of hosts by parasites, especially in ectothermic systems. The metabolic activity of ectotherms is strongly linked to temperature and generally increases when temperatures rise. We hypothesized that temperature change in combination with parasite infection interferes with the host's immunometabolism. We used a parasite, the avian cestode Schistocephalus solidus, which taps most of its resources from the metabolism of an ectothermic intermediate host, the three-spined stickleback. We experimentally exposed sticklebacks to this parasite, and studied liver transcriptomes 50 days after infection at 13°C and 24°C, to assess their immunometabolic responses. Furthermore, we monitored fitness parameters of the parasite and examined immunity and body condition of the sticklebacks at 13°C, 18°C and 24°C after 36, 50 and 64 days of infection. At low temperatures (13°C), S. solidus growth was constrained, presumably also by the more active stickleback's immune system, thus delaying its infectivity for the final host to 64 days. Warmer temperature (18°C and 24°C) enhanced S. solidus growth, and it became infective to the final host already after 36 days. Overall, S. solidus produced many more viable offspring after development at elevated temperatures. In contrast, stickleback hosts had lower body conditions, and their immune system was less active at warm temperature. The stickleback's liver transcriptome revealed that mainly metabolic processes were differentially regulated between temperatures, whereas immune genes were not strongly affected. Temperature effects on gene expression were strongly enhanced in infected sticklebacks, and even in exposed-but-not-infected hosts. These data suggest that the parasite exposure in concert with rising temperature, as to be expected with global climate change, shifted the host's immunometabolism, thus providing nutrients for the enormous growth of the parasite and, at the same time suppressing immune defence.
Collapse
Affiliation(s)
- Jörn P Scharsack
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Bartholomäus Wieczorek
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Alexander Schmidt-Drewello
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
- Institute for Evolution and Biodiversity, Limnology, University of Münster, Münster, Germany
| | - Janine Büscher
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Frederik Franke
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| | - Andrew Moore
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Antoine Branca
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Anika Witten
- Institute for Human Genetics, Core Facility Genomics, University of Münster, Münster, Germany
| | - Monika Stoll
- Institute for Human Genetics, Core Facility Genomics, University of Münster, Münster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Molecular Evolution & Bioinformatics, University of Münster, Münster, Germany
| | - Susann Wicke
- Institute for Evolution and Biodiversity, Plant Evolutionary Genomics, University of Münster, Münster, Germany
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, Animal Evolutionary Ecology, University of Münster, Münster, Germany
| |
Collapse
|
39
|
Morgan R, Finnøen MH, Jensen H, Pélabon C, Jutfelt F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc Natl Acad Sci U S A 2020; 117:33365-33372. [PMID: 33318195 PMCID: PMC7776906 DOI: 10.1073/pnas.2011419117] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Climate change is increasing global temperatures and intensifying the frequency and severity of extreme heat waves. How organisms will cope with these changes depends on their inherent thermal tolerance, acclimation capacity, and ability for evolutionary adaptation. Yet, the potential for adaptation of upper thermal tolerance in vertebrates is largely unknown. We artificially selected offspring from wild-caught zebrafish (Danio rerio) to increase (Up-selected) or decrease (Down-selected) upper thermal tolerance over six generations. Selection to increase upper thermal tolerance was also performed on warm-acclimated fish to test whether plasticity in the form of inducible warm tolerance also evolved. Upper thermal tolerance responded to selection in the predicted directions. However, compared to the control lines, the response was stronger in the Down-selected than in the Up-selected lines in which evolution toward higher upper thermal tolerance was slow (0.04 ± 0.008 °C per generation). Furthermore, the scope for plasticity resulting from warm acclimation decreased in the Up-selected lines. These results suggest the existence of a hard limit in upper thermal tolerance. Considering the rate at which global temperatures are increasing, the observed rates of adaptation and the possible hard limit in upper thermal tolerance suggest a low potential for evolutionary rescue in tropical fish living at the edge of their thermal limits.
Collapse
Affiliation(s)
- Rachael Morgan
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway;
| | - Mette H Finnøen
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Christophe Pélabon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
40
|
Rates of marine warming onset affect reef fish mortality. Commun Biol 2020; 3:654. [PMID: 33144629 PMCID: PMC7642310 DOI: 10.1038/s42003-020-01388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
While much of the work examining the ecological effects of marine warming events focuses on the magnitude and duration of elevated temperatures, a recent study from Amatzia Genin and colleagues investigates how the rate of onset of warming affects the mortality of reef fish in the Red Sea. These authors document fish mortality following two warming events with dramatic increases in temperature and report that piscivores and benthic grazers were disproportionately represented among the found carcasses. Many of these fish were infected with a bacterial pathogen following the warming event. This study points to the rate of warming increase as a critical parameter to be considered when assessing the ecological effects of marine warming events, including those for which the peak temperature is not anomalous.
Collapse
|
41
|
Feidantsis K, Michaelidis B, Raitsos DΕ, Vafidis D. Seasonal cellular stress responses of commercially important invertebrates at different habitats of the North Aegean Sea. Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110778. [PMID: 32745528 DOI: 10.1016/j.cbpa.2020.110778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/22/2023]
Abstract
In many aquatic species, the negative effect of temperature variations has a significant impact on physiological performance since beyond Tp (upper pejus) and Tc (critical temperatures), according to the oxygen- and capacity-limited thermal tolerance (OCLTT), transition to hypoxemia and mitochondrial metabolism triggers the increase in reactive oxygen species (ROS) production. However, climate change may have different spatial impact, and as a result, areas with more favorable climatic conditions (refugia) can be identified. The aim of the present study, based on cellular stress responses, is the demarcation of these areas and the preservation of commercially important marine species. Under this prism, individuals of the species Callinectes sapidus (blue crab), Sepia officinalis (common cuttlefish), Holothuria tubulosa (sea cucumber) and Venus verrucosa (clam) from Thermaikos, Pagasitikos and Vistonikos gulf were collected seasonally. The results showed an increase in the levels of several stress indicators exhibiting the triggering of Heat Shock Response, MAPK activation, apoptotic phenomena and increased ubiquitilination during the summer sampling in relation to the spring and autumn samplings concerning blue crab and clam, while no changes were observed for common cuttlefish and sea cucumber. It seems that these cellular responses consist a cytoprotective mechanism against environmental thermal stress. Regarding collection sites, for all examined species, higher cellular stress levels were observed in Pagasitikos, and lower in Vistonikos gulf. This analysis of biochemical and molecular markers is expected to provide a clearer picture for the definition of "refugia" for the above species.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38445 Nea Ionia, Volos, Greece.
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dionysios Ε Raitsos
- Department of Zoology-Marine Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Dimitris Vafidis
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38445 Nea Ionia, Volos, Greece
| |
Collapse
|