1
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2024; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Tighanimine K. Lipid remodeling in context of cellular senescence. Biochimie 2024; 227:47-52. [PMID: 39299535 DOI: 10.1016/j.biochi.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Cellular senescence is a response that irreversibly arrests stressed cells thus providing a potent tumor suppressor mechanism. In parallel, senescent cells exhibit an immunogenic secretome called SASP (senescence-associated secretory phenotype) that impairs tissue homeostasis and is involved in numerous age-related diseases. Senescence establishment is achieved through the unfolding of a profound transcriptional reprogramming together with morphological changes. These alterations are accompanied by important metabolic adaptations characterized by biosynthetic pathways reshuffling and lipid remodeling. In this mini-review we highlight the intricate links between lipid metabolism and the senescence program and we discuss the potential interventions on lipid pathways that can alleviate the senescence burden.
Collapse
Affiliation(s)
- Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| |
Collapse
|
5
|
Zhu J, Wu C, Yang L. Cellular senescence in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2024; 13:55. [PMID: 39568081 PMCID: PMC11577763 DOI: 10.1186/s40035-024-00447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/12/2024] [Indexed: 11/22/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders, characterized by the accumulation of Aβ and abnormal tau hyperphosphorylation. Despite substantial efforts in development of drugs targeting Aβ and tau pathologies, effective therapeutic strategies for AD remain elusive. Recent attention has been paid to the significant role of cellular senescence in AD progression. Mounting evidence suggests that interventions targeting cellular senescence hold promise in improving cognitive function and ameliorating hallmark pathologies in AD. This narrative review provides a comprehensive summary and discussion of the physiological roles, characteristics, biomarkers, and commonly employed in vivo and in vitro models of cellular senescence, with a particular focus on various cell types in the brain, including astrocytes, microglia, oligodendrocyte precursor cells, neurons, and endothelial cells. The review further delves into factors influencing cellular senescence in AD and emphasizes the significance of targeting cellular senescence as a promising approach for AD treatment, which includes the utilization of senolytics and senomorphics.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Tangavelou K, Bhaskar K. The Mechanistic Link Between Tau-Driven Proteotoxic Stress and Cellular Senescence in Alzheimer's Disease. Int J Mol Sci 2024; 25:12335. [PMID: 39596399 PMCID: PMC11595124 DOI: 10.3390/ijms252212335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
In Alzheimer's disease (AD), tau dissociates from microtubules (MTs) due to hyperphosphorylation and misfolding. It is degraded by various mechanisms, including the 20S proteasome, chaperone-mediated autophagy (CMA), 26S proteasome, macroautophagy, and aggrephagy. Neurofibrillary tangles (NFTs) form upon the impairment of aggrephagy, and eventually, the ubiquitin chaperone valosin-containing protein (VCP) and heat shock 70 kDa protein (HSP70) are recruited to the sites of NFTs for the extraction of tau for the ubiquitin-proteasome system (UPS)-mediated degradation. However, the impairment of tau degradation in neurons allows tau to be secreted into the extracellular space. Secreted tau can be monomers, oligomers, and paired helical filaments (PHFs), which are seeding competent pathological tau that can be endocytosed/phagocytosed by healthy neurons, microglia, astrocytes, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes, often causing proteotoxic stress and eventually triggers senescence. Senescent cells secrete various senescence-associated secretory phenotype (SASP) factors, which trigger cellular atrophy, causing decreased brain volume in human AD. However, the molecular mechanisms of proteotoxic stress and cellular senescence are not entirely understood and are an emerging area of research. Therefore, this comprehensive review summarizes pertinent studies that provided evidence for the sequential tau degradation, failure, and the mechanistic link between tau-driven proteotoxic stress and cellular senescence in AD.
Collapse
Affiliation(s)
- Karthikeyan Tangavelou
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Hetz C, Dillin A. Central role of the ER proteostasis network in healthy aging. Trends Cell Biol 2024:S0962-8924(24)00209-5. [PMID: 39547881 DOI: 10.1016/j.tcb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Aging trajectories vary among individuals, characterized by progressive functional decline, often leading to disease states. One of the central hallmarks of aging is the deterioration of proteostasis, where the function of the endoplasmic reticulum (ER) is dramatically affected. ER stress is monitored and adjusted by the unfolded protein response (UPR); a signaling pathway that mediates adaptive processes to restore proteostasis. Studies in multiple model organisms (yeast, worms, flies, and mice) in addition to human tissue indicates that adaptive UPR signaling contributes to healthy aging. Strategies to improve ER proteostasis using small molecules and gene therapy reduce the decline of organ function during normal aging in mammals. This article reviews recent advances in understanding the significance of the ER proteostasis network to normal aging and its relationship with other hallmarks of aging such as senescence.
Collapse
Affiliation(s)
- Claudio Hetz
- The Buck Institute for Research in Aging, Novato, CA 94945, USA; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
8
|
Zhao P, Chang J, Chen Y, Sun X, Ma X, Zhou C, Zhou L, Wang Y, Yang Y. Cellular Senescence-Related Long Non-coding RNA Signatures Predict Prognosis in Juvenile Osteosarcoma. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:430-452. [PMID: 39723224 PMCID: PMC11666862 DOI: 10.1007/s43657-023-00132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 12/28/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor and is frequently diagnosed in juvenile. Cellular senescence is a fundamental hallmark of osteosarcoma and plays a vital role in the initiation and progression of aging and tumorigenesis. Long non-coding RNAs (lncRNAs) are implicated in tumorigenesis. In this study, six cellular senescence-related lncRNAs with independent prognostic significance in juvenile osteosarcoma patients were identified through univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis. Prognostic significance was further confirmed by Kaplan-Meier (KM) survival curves, co-expression interaction networks, and sankey diagrams. A prognostic model of cellular senescence-related genes in juvenile osteosarcoma patients was then constructed using multivariate Cox regression analysis based on these six genes. High- and low-risk groups were identified according to the median risk score calculated by the prognostic model. The favorable prognostic significance of this model was demonstrated through survival curves, receiver operating characteristic (ROC) curves, distribution scatter plots and lncRNA expression heatmaps. Furthermore, cellular senescence-related lncRNAs were validated by enrichment analysis, immunological correlation analysis, m6A correlation analysis, and drug sensitivity correlation analysis. These findings are important for improving the prognosis of juvenile osteosarcoma patients and understanding the mechanisms underlying cellular senescence in juvenile osteosarcoma development.
Collapse
Affiliation(s)
- Peng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - YeKai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Xingyuan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Xiaoping Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Chujie Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Lei Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| |
Collapse
|
9
|
Greenberg EF, Voorbach MJ, Smith A, Reuter DR, Zhuang Y, Wang JQ, Wooten DW, Asque E, Hu M, Hoft C, Duggan R, Townsend M, Orsi K, Dalecki K, Amberg W, Duggan L, Knight H, Spina JS, He Y, Marsh K, Zhao V, Ybarra S, Mollon J, Fang Y, Vasanthakumar A, Westmoreland S, Droescher M, Finnema SJ, Florian H. Navitoclax safety, tolerability, and effect on biomarkers of senescence and neurodegeneration in aged nonhuman primates. Heliyon 2024; 10:e36483. [PMID: 39253182 PMCID: PMC11382177 DOI: 10.1016/j.heliyon.2024.e36483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Alzheimer's disease (AD) is the most common global dementia and is universally fatal. Most late-stage AD disease-modifying therapies are intravenous and target amyloid beta (Aβ), with only modest effects on disease progression: there remains a high unmet need for convenient, safe, and effective therapeutics. Senescent cells (SC) and the senescence-associated secretory phenotype (SASP) drive AD pathology and increase with AD severity. Preclinical senolytic studies have shown improvements in neuroinflammation, tau, Aβ, and CNS damage; most were conducted in transgenic rodent models with uncertain human translational relevance. In this study, aged cynomolgus monkeys had significant elevation of biomarkers of senescence, SASP, and neurological damage. Intermittent treatment with the senolytic navitoclax induced modest reversible thrombocytopenia; no serious drug-related toxicity was noted. Navitoclax reduced several senescence and SASP biomarkers, with CSF concentrations sufficient for senolysis. Finally, navitoclax reduced TSPO-PET frontal cortex binding and showed trends of improvement in CSF biomarkers of neuroinflammation, neuronal damage, and synaptic dysfunction. Overall, navitoclax administration was safe and well tolerated in aged monkeys, inducing trends of biomarker changes relevant to human neurodegenerative disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- AbbVie Inc., North Chicago, IL, United States
| | - Carolin Hoft
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Ryan Duggan
- AbbVie Inc., North Chicago, IL, United States
| | - Matthew Townsend
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA, 02139, United States
| | - Karin Orsi
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | | | - Willi Amberg
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Lori Duggan
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Heather Knight
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Joseph S Spina
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Yupeng He
- AbbVie Inc., North Chicago, IL, United States
| | | | - Vivian Zhao
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Suzanne Ybarra
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | - Jennifer Mollon
- AbbVie Deutschland GmbH & Co. KG, Statistical Sciences and Analytics, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Yuni Fang
- AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA, 94080, United States
| | | | - Susan Westmoreland
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| | - Mathias Droescher
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | | | | |
Collapse
|
10
|
Scanlan RL, Pease L, O'Keefe H, Martinez-Guimera A, Rasmussen L, Wordsworth J, Shanley D. Systematic transcriptomic analysis and temporal modelling of human fibroblast senescence. FRONTIERS IN AGING 2024; 5:1448543. [PMID: 39267611 PMCID: PMC11390594 DOI: 10.3389/fragi.2024.1448543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach. Here we systematically collected 119 transcriptomic datasets related to human fibroblasts, forming an online database describing the relevant variables for each study allowing users to filter for variables and genes of interest. Our own analysis of the database identified 28 genes significantly up- or downregulated across four senescence types (DNA damage induced senescence (DDIS), oncogene induced senescence (OIS), replicative senescence, and bystander induced senescence) compared to proliferating controls. We also found gene expression patterns of conventional senescence markers were highly specific and reliable for different senescence inducers, cell lines, and timepoints. Our comprehensive data supported several observations made in existing studies using single datasets, including stronger p53 signalling in DDIS compared to OIS. However, contrary to some early observations, both p16 and p21 mRNA levels rise quickly, depending on senescence type, and persist for at least 8-11 days. Additionally, little evidence was found to support an initial TGFβ-centric SASP. To support our transcriptomic analysis, we computationally modelled temporal protein changes of select core senescence proteins during DDIS and OIS, as well as perform knockdown interventions. We conclude that while universal biomarkers of senescence are difficult to identify, conventional senescence markers follow predictable profiles and construction of a framework for studying senescence could lead to more reproducible data and understanding of senescence heterogeneity.
Collapse
Affiliation(s)
- R-L Scanlan
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Pease
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - H O'Keefe
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - A Martinez-Guimera
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Wordsworth
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - D Shanley
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
11
|
Llewellyn J, Hubbard SJ, Swift J. Translation is an emerging constraint on protein homeostasis in ageing. Trends Cell Biol 2024; 34:646-656. [PMID: 38423854 DOI: 10.1016/j.tcb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Proteins are molecular machines that provide structure and perform vital transport, signalling and enzymatic roles. Proteins expressed by cells require tight regulation of their concentration, folding, localisation, and modifications; however, this state of protein homeostasis is continuously perturbed by tissue-level stresses. While cells in healthy tissues are able to buffer against these perturbations, for example, by expression of chaperone proteins, protein homeostasis is lost in ageing, and can lead to protein aggregation characteristic of protein folding diseases. Here, we review reports of a progressive disconnect between transcriptomic and proteomic regulation during cellular ageing. We discuss how age-associated changes to cellular responses to specific stressors in the tissue microenvironment are exacerbated by loss of ribosomal proteins, ribosomal pausing, and mistranslation.
Collapse
Affiliation(s)
- Jack Llewellyn
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - Simon J Hubbard
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| | - Joe Swift
- Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK; Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
12
|
Huo S, Tang X, Chen W, Gan D, Guo H, Yao Q, Liao R, Huang T, Wu J, Yang J, Xiao G, Han X. Epigenetic regulations of cellular senescence in osteoporosis. Ageing Res Rev 2024; 99:102235. [PMID: 38367814 DOI: 10.1016/j.arr.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/27/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis (OP) is a prevalent age-related disease that is characterized by a decrease in bone mineral density (BMD) and systemic bone microarchitectural disorders. With age, senescent cells accumulate and exhibit the senescence-associated secretory phenotype (SASP) in bone tissue, leading to the imbalance of bone homeostasis, osteopenia, changes in trabecular bone structure, and increased bone fragility. Cellular senescence in the bone microenvironment involves osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells (BMSCs), whose effects on bone homeostasis are regulated by epigenetics. Therefore, the epigenetic regulatory mechanisms of cellular senescence have received considerable attention as potential targets for preventing and treating osteoporosis. In this paper, we systematically review the mechanisms of aging-associated epigenetic regulation in osteoporosis, emphasizing the impact of epigenetics on cellular senescence, and summarize three current methods of targeting cellular senescence, which is helpful better to understand the pathogenic mechanisms of cellular senescence in osteoporosis and provides strategies for the development of epigenetic drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shaochuan Huo
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Xinzheng Tang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China
| | - Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Donghao Gan
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Guo
- Liuzhou Traditional Chinese Medicine Hospital (Liuzhou Zhuang Medical Hospital), Liuzhou 545001, China
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongdong Liao
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tingting Huang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Junxian Wu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China
| | - Junxing Yang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xia Han
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen 518000, China; Shenzhen Research Institute of Guangzhou University of Traditional Medicine (Futian), Shenzhen 518000, China.
| |
Collapse
|
13
|
Ma C, Liu Y, Fu Z. Implications of endoplasmic reticulum stress and autophagy in aging and cardiovascular diseases. Front Pharmacol 2024; 15:1413853. [PMID: 39119608 PMCID: PMC11306071 DOI: 10.3389/fphar.2024.1413853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The average lifespan of humans has been increasing, resulting in a rapidly rising percentage of older individuals and high morbidity of aging-associated diseases, especially cardiovascular diseases (CVDs). Diverse intracellular and extracellular factors that interrupt homeostatic functions in the endoplasmic reticulum (ER) induce ER stress. Cells employ a dynamic signaling pathway of unfolded protein response (UPR) to buffer ER stress. Recent studies have demonstrated that ER stress triggers various cellular processes associated with aging and many aging-associated diseases, including CVDs. Autophagy is a conserved process involving lysosomal degradation and recycling of cytoplasmic components, proteins, organelles, and pathogens that invade the cytoplasm. Autophagy is vital for combating the adverse influence of aging on the heart. The present report summarizes recent studies on the mechanism of ER stress and autophagy and their overlap in aging and on CVD pathogenesis in the context of aging. It also discusses possible therapeutic interventions targeting ER stress and autophagy that might delay aging and prevent or treat CVDs.
Collapse
Affiliation(s)
- Chenguang Ma
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- 32295 Troops of P.L.A, Liaoyang, China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Hipp MS, Hartl FU. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J Mol Biol 2024; 436:168615. [PMID: 38759929 DOI: 10.1016/j.jmb.2024.168615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Eukaryotic cells are equipped with an intricate proteostasis network (PN), comprising nearly 3,000 components dedicated to preserving proteome integrity and sustaining protein homeostasis. This protective system is particularly important under conditions of external and intrinsic cell stress, where inherently dynamic proteins may unfold and lose functionality. A decline in proteostasis capacity is associated with the aging process, resulting in a reduced folding efficiency of newly synthesized proteins and a deficit in the cellular capacity to degrade misfolded proteins. A critical consequence of PN insufficiency is the accumulation of cytotoxic protein aggregates that underlie various age-related neurodegenerative conditions and other pathologies. By interfering with specific proteostasis components, toxic aggregates place an excessive burden on the PN's ability to maintain proteome integrity. This initiates a feed-forward loop, wherein the generation of misfolded and aggregated proteins ultimately leads to proteostasis collapse and cellular demise.
Collapse
Affiliation(s)
- Mark S Hipp
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV Groningen, the Netherlands; Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, the Netherlands; School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
15
|
Paredes F, Williams HC, Liu X, Holden C, Bogan B, Wang Y, Crotty KM, Yeligar SM, Elorza AA, Lin Z, Rezvan A, San Martin A. The mitochondrial protease ClpP is a druggable target that controls VSMC phenotype by a SIRT1-dependent mechanism. Redox Biol 2024; 73:103203. [PMID: 38823208 PMCID: PMC11169483 DOI: 10.1016/j.redox.2024.103203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans. This interaction limits the protease's activity, and reduced Poldip2 levels lead to ClpXP complex activation. This finding prompted the hypothesis that ClpXP complex activity within the mitochondria may regulate the VSMC phenotype. Employing gain-of-function and loss-of-function strategies, we demonstrated that ClpXP activity significantly influences the VSMC phenotype. Notably, both genetic and pharmacological activation of ClpXP inhibits VSMC plasticity and fosters a quiescent, differentiated, and anti-inflammatory VSMC phenotype. The pharmacological activation of ClpP using TIC10, currently in phase III clinical trials for cancer, successfully replicates this phenotype both in vitro and in vivo and markedly reduces aneurysm development in a mouse model of elastase-induced aortic aneurysms. Our mechanistic exploration indicates that ClpP activation regulates the VSMC phenotype by modifying the cellular NAD+/NADH ratio and activating Sirtuin 1. Our findings reveal the crucial role of mitochondrial proteostasis in the regulation of the VSMC phenotype and propose the ClpP protease as a novel, actionable target for manipulating the VSMC phenotype.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Xuesong Liu
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Claire Holden
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Bethany Bogan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Yu Wang
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Kathryn M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Samantha M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States; Atlanta Veterans Affairs Health Care System, Decatur, GA, United States
| | - Alvaro A Elorza
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Zhiyong Lin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Amir Rezvan
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, United States; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
16
|
Tufail M, Huang YQ, Hu JJ, Liang J, He CY, Wan WD, Jiang CH, Wu H, Li N. Cellular Aging and Senescence in Cancer: A Holistic Review of Cellular Fate Determinants. Aging Dis 2024:AD.2024.0421. [PMID: 38913050 DOI: 10.14336/ad.2024.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S. Crosstalk between protein misfolding and endoplasmic reticulum stress during ageing and their role in age-related disorders. Biochimie 2024; 221:159-181. [PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P. O. Box 2440, Saudi Arabia.
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
18
|
Liu W, Xia S, Yao F, Huo J, Qian J, Liu X, Bai L, Song Y, Qian J. Deactivation of the Unfolded Protein Response Aggravated Renal AA Amyloidosis in HSF1 Deficiency Mice. Mol Cell Biol 2024; 44:165-177. [PMID: 38758542 PMCID: PMC11123510 DOI: 10.1080/10985549.2024.2347937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Shunjie Xia
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Yixing People’s Hospital, Yixing City, China
| | - Fang Yao
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jia Huo
- Department of Osteopathy, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junqiao Qian
- Department of Oral Surgery, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Xiaomeng Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Langning Bai
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yu Song
- Department of Biochemistry, Hebei Medical University, Shijiazhuang, China
| | - Jinze Qian
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
19
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
20
|
Bitencourt TC, Vargas JE, Silva AO, Fraga LR, Filippi‐Chiela E. Subcellular structure, heterogeneity, and plasticity of senescent cells. Aging Cell 2024; 23:e14154. [PMID: 38553952 PMCID: PMC11019148 DOI: 10.1111/acel.14154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/17/2024] Open
Abstract
Cellular senescence is a state of permanent growth arrest. It can be triggered by telomere shortening (replicative senescence) or prematurely induced by stresses such as DNA damage, oncogene overactivation, loss of tumor suppressor genes, oxidative stress, tissue factors, and others. Advances in techniques and experimental designs have provided new evidence about the biology of senescent cells (SnCs) and their importance in human health and disease. This review aims to describe the main aspects of SnCs phenotype focusing on alterations in subcellular compartments like plasma membrane, cytoskeleton, organelles, and nuclei. We also discuss the heterogeneity, dynamics, and plasticity of SnCs' phenotype, including the SASP, and pro-survival mechanisms. We advance on the multiple layers of phenotypic heterogeneity of SnCs, such as the heterogeneity between inducers, tissues and within a population of SnCs, discussing the relevance of these aspects to human health and disease. We also raise the main challenges as well alternatives to overcome them. Ultimately, we present open questions and perspectives in understanding the phenotype of SnCs from the perspective of basic and applied questions.
Collapse
Affiliation(s)
- Thais Cardoso Bitencourt
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| | | | - Andrew Oliveira Silva
- Faculdade Estácio RSPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Programa de Pós‐Graduação Em Medicina: Ciências MédicasUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
| | - Eduardo Filippi‐Chiela
- Programa de Pós‐Graduação Em Biologia Celular e MolecularUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
- Centro de Pesquisa ExperimentalHospital de Clínicas de Porto AlegrePorto AlegreRio Grande do SulBrazil
- Departamento de Ciências MorfológicasUniversidade Federal Do Rio Grande Do SulPorto AlegreRio Grande do SulBrazil
- Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreRio Grande do SulBrazil
| |
Collapse
|
21
|
Magkouta S, Veroutis D, Pousias A, Papaspyropoulos A, Giannetti K, Pippa N, Lougiakis N, Kambas K, Lagopati N, Polyzou A, Georgiou M, Chountoulesi M, Pispas S, Foutadakis S, Kyrodimos E, Pouli N, Marakos P, Kotsinas A, Verginis P, Valakos D, Vatsellas G, Petty R, Thanos D, Demaria M, Evangelou K, Di Micco R, Gorgoulis VG. One-step rapid tracking and isolation of senescent cells in cellular systems, tissues, or animal models via GLF16. STAR Protoc 2024; 5:102929. [PMID: 38460134 PMCID: PMC10943059 DOI: 10.1016/j.xpro.2024.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 03/11/2024] Open
Abstract
Identification and isolation of senescent cells is challenging, rendering their detailed analysis an unmet need. We describe a precise one-step protocol to fluorescently label senescent cells, for flow cytometry and fluorescence microscopy, implementing a fluorophore-conjugated Sudan Black-B analog, GLF16. Also, a micelle-based approach allows identification of senescent cells in vivo and in vitro, enabling live-cell sorting for downstream analyses and live in vivo tracking. Our protocols are applicable to cellular systems, tissues, or animal models where senescence is present. For complete details on the use and execution of this protocol, please refer to Magkouta et al.1.
Collapse
Affiliation(s)
- Sophia Magkouta
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Marianthi Simou and G.P. Livanos Labs, 1st Department of Critical Care and Pulmonary Services, School of Medicine, National & Kapodistrian University of Athens, ''Evangelismos'' Hospital, 10676 Athens, Greece
| | - Dimitris Veroutis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Athanasios Pousias
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Nikolaos Lougiakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | | | - Nefeli Lagopati
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Georgiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Maria Chountoulesi
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spyros Foutadakis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Efthymios Kyrodimos
- First ENT Department, Hippocration Hospital, National Kapodistrian University of Athens, 11527 Athens, GR, Greece
| | - Nicole Pouli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Panagiotis Marakos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panayotis Verginis
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, University of Crete Medical School, 70013 Heraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece
| | - Dimitrios Valakos
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Giannis Vatsellas
- Greek Genome Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Russell Petty
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Greek Genome Center, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, Groningen 9713 AV, The Netherlands
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK; Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK.
| |
Collapse
|
22
|
Rad AN, Grillari J. Current senolytics: Mode of action, efficacy and limitations, and their future. Mech Ageing Dev 2024; 217:111888. [PMID: 38040344 DOI: 10.1016/j.mad.2023.111888] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Senescence is a cellular state characterized by its near-permanent halted cell cycle and distinct secretory phenotype. Although senescent cells have a variety of beneficial physiological functions, progressive accumulation of these cells due to aging or other conditions has been widely shown to provoke deleterious effects on the normal functioning of the same or higher-level biological organizations. Recently, erasing senescent cells in vivo, using senolytics, could ameliorate diseases identified with an elevated number of senescent cells. Since then, researchers have struggled to develop new senolytics each with different selectivity and potency. In this review, we have gathered and classified the proposed senolytics and discussed their mechanisms of action. Moreover, we highlight the heterogeneity of senolytics regarding their effect sizes, and cell type specificity as well as comment on the exploited strategies to improve these features. Finally, we suggest some prospective routes for the novel methods for ablation of senescent cells.
Collapse
Affiliation(s)
- Amirhossein Nayeri Rad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P.O. Box 71468-64685, Shiraz, Iran.
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
23
|
Solano LE, D’Sa NM, Nikolaidis N. PRRGO: A Tool for Visualizing and Mapping Globally Expressed Genes in Public Gene Expression Omnibus RNA-Sequencing Studies to PageRank-scored Gene Ontology Terms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.21.576540. [PMID: 38328158 PMCID: PMC10849496 DOI: 10.1101/2024.01.21.576540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We herein report PageRankeR Gene Ontology (PRRGO), a downloadable web application that can integrate differentially expressed gene (DEG) data from the gene expression omnibus (GEO) GEO2R web tool with the gene ontology (GO) database [1]. Unlike existing tools, PRRGO computes the PageRank for the entire GO network and can generate both interactive GO networks on the web interface and comma-separated values (CSV) files containing the DEG statistics categorized by GO term. These hierarchical and tabular GO-DEG data are especially conducive to hypothesis generation and overlap studies with the use of PageRank data, which can provide a metric of GO term centrality. We verified the tool for accuracy and reliability across nine independent heat shock (HS) studies for which the RNA-seq data was publicly available on GEO and found that the tool produced increasing concordance between study DEGs, GO terms, and select HS-specific GO terms.
Collapse
Affiliation(s)
- Luis E. Solano
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA
| | - Nicholas M. D’Sa
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850
- University of California, Irvine, Irvine, CA
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850
| |
Collapse
|
24
|
Tenchov R, Sasso JM, Wang X, Zhou QA. Aging Hallmarks and Progression and Age-Related Diseases: A Landscape View of Research Advancement. ACS Chem Neurosci 2024; 15:1-30. [PMID: 38095562 PMCID: PMC10767750 DOI: 10.1021/acschemneuro.3c00531] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/04/2024] Open
Abstract
Aging is a dynamic, time-dependent process that is characterized by a gradual accumulation of cell damage. Continual functional decline in the intrinsic ability of living organisms to accurately regulate homeostasis leads to increased susceptibility and vulnerability to diseases. Many efforts have been put forth to understand and prevent the effects of aging. Thus, the major cellular and molecular hallmarks of aging have been identified, and their relationships to age-related diseases and malfunctions have been explored. Here, we use data from the CAS Content Collection to analyze the publication landscape of recent aging-related research. We review the advances in knowledge and delineate trends in research advancements on aging factors and attributes across time and geography. We also review the current concepts related to the major aging hallmarks on the molecular, cellular, and organismic level, age-associated diseases, with attention to brain aging and brain health, as well as the major biochemical processes associated with aging. Major age-related diseases have been outlined, and their correlations with the major aging features and attributes are explored. We hope this review will be helpful for apprehending the current knowledge in the field of aging mechanisms and progression, in an effort to further solve the remaining challenges and fulfill its potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
25
|
Payea MJ, Dar SA, Anerillas C, Martindale JL, Belair C, Munk R, Malla S, Fan J, Piao Y, Yang X, Rehman A, Banskota N, Abdelmohsen K, Gorospe M, Maragkakis M. Senescence suppresses the integrated stress response and activates a stress-enhanced secretory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536613. [PMID: 37609272 PMCID: PMC10441410 DOI: 10.1101/2023.04.12.536613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Senescence is a state of indefinite cell cycle arrest associated with aging, cancer, and age-related diseases. Here, using label-based mass spectrometry, ribosome profiling and nanopore direct RNA sequencing, we explore the coordinated interaction of translational and transcriptional programs of human cellular senescence. We find that translational deregulation and a corresponding maladaptive integrated stress response (ISR) is a hallmark of senescence that desensitizes senescent cells to stress. We present evidence that senescent cells maintain high levels of eIF2α phosphorylation, typical of ISR activation, but translationally repress production of the stress response transcription factor 4 (ATF4) by ineffective bypass of the inhibitory upstream open reading frames. Surprisingly, ATF4 translation remains inhibited even after acute proteotoxic and amino acid starvation stressors, resulting in a highly diminished stress response. Furthermore, absent a response, stress augments the senescence secretory phenotype, thus intensifying a proinflammatory state that exacerbates disease. Our results reveal a novel mechanism that senescent cells exploit to evade an adaptive stress response and remain viable.
Collapse
Affiliation(s)
- Matthew J Payea
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Showkat A Dar
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Cedric Belair
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jinshui Fan
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Abid Rehman
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nirad Banskota
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Manolis Maragkakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
26
|
Papaspyropoulos A, Hazapis O, Altulea A, Polyzou A, Verginis P, Evangelou K, Fousteri M, Papantonis A, Demaria M, Gorgoulis V. Decoding of translation-regulating entities reveals heterogeneous translation deficiency patterns in cellular senescence. Aging Cell 2023; 22:e13893. [PMID: 37547972 PMCID: PMC10497830 DOI: 10.1111/acel.13893] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/04/2023] [Indexed: 08/08/2023] Open
Abstract
Cellular senescence constitutes a generally irreversible proliferation barrier, accompanied by macromolecular damage and metabolic rewiring. Several senescence types have been identified based on the initiating stimulus, such as replicative (RS), stress-induced (SIS) and oncogene-induced senescence (OIS). These senescence subtypes are heterogeneous and often develop subset-specific phenotypes. Reduced protein synthesis is considered a senescence hallmark, but whether this trait pertains to various senescence subtypes and if distinct molecular mechanisms are involved remain largely unknown. Here, we analyze large published or experimentally produced RNA-seq and Ribo-seq datasets to determine whether major translation-regulating entities such as ribosome stalling, the presence of uORFs/dORFs and IRES elements may differentially contribute to translation deficiency in senescence subsets. We show that translation-regulating mechanisms may not be directly relevant to RS, however uORFs are significantly enriched in SIS. Interestingly, ribosome stalling, uORF/dORF patterns and IRES elements comprise predominant mechanisms upon OIS, strongly correlating with Notch pathway activation. Our study provides for the first time evidence that major translation dysregulation mechanisms/patterns occur during cellular senescence, but at different rates depending on the stimulus type. The degree at which those mechanisms accumulate directly correlates with translation deficiency levels. Our thorough analysis contributes to elucidating crucial and so far unknown differences in the translation machinery between senescence subsets.
Collapse
Affiliation(s)
- Angelos Papaspyropoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
| | - Orsalia Hazapis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Abdullah Altulea
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center GroningenGroningenThe Netherlands
| | - Aikaterini Polyzou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | | | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
| | - Maria Fousteri
- Institute for Fundamental Biomedical ResearchBiomedical Sciences Research Center “Alexander Fleming”VariGreece
| | - Argyris Papantonis
- Institute of PathologyUniversity Medical Center GöttingenGöttingenGermany
- Center for Molecular Medicine CologneUniversity of CologneCologneGermany
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA)University Medical Center GroningenGroningenThe Netherlands
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of MedicineNational Kapodistrian University of Athens (NKUA)AthensGreece
- Biomedical Research FoundationAcademy of AthensAthensGreece
- Clinical Molecular PathologyMedical School, University of DundeeDundeeUK
- Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterUK
- Center for New Biotechnologies and Precision MedicineMedical School, National and Kapodistrian University of AthensAthensGreece
- Faculty of Health and Medical SciencesUniversity of SurreySurreyUK
| |
Collapse
|
27
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals targets of senolytic therapy in the aged murine skeleton. Nat Commun 2023; 14:4587. [PMID: 37524694 PMCID: PMC10390564 DOI: 10.1038/s41467-023-40393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we apply mass cytometry by time-of-flight using carefully validated antibodies to analyze senescent cells at single-cell resolution. We use multiple criteria to identify senescent mesenchymal cells that are growth-arrested and resistant to apoptosis. These p16 + Ki67-BCL-2+ cells are highly enriched for senescence-associated secretory phenotype and DNA damage markers, are strongly associated with age, and their percentages are increased in late osteoblasts/osteocytes and CD24high osteolineage cells. Moreover, both late osteoblasts/osteocytes and CD24high osteolineage cells are robustly cleared by genetic and pharmacologic senolytic therapies in aged mice. Following isolation, CD24+ skeletal cells exhibit growth arrest, senescence-associated β-galactosidase positivity, and impaired osteogenesis in vitro. These studies thus provide an approach using multiplexed protein profiling to define senescent mesenchymal cells in vivo and identify specific skeletal cell populations cleared by senolytics.
Collapse
Affiliation(s)
- Madison L Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jennifer L Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stephanie J Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - David G Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
28
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
29
|
Pandey S, Mangmool S, Parichatikanond W. Multifaceted Roles of GLP-1 and Its Analogs: A Review on Molecular Mechanisms with a Cardiotherapeutic Perspective. Pharmaceuticals (Basel) 2023; 16:836. [PMID: 37375783 DOI: 10.3390/ph16060836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes is one of the chronic metabolic disorders which poses a multitude of life-debilitating challenges, including cardiac muscle impairment, which eventually results in heart failure. The incretin hormone glucagon-like peptide-1 (GLP-1) has gained distinct recognition in reinstating glucose homeostasis in diabetes, while it is now largely accepted that it has an array of biological effects in the body. Several lines of evidence have revealed that GLP-1 and its analogs possess cardioprotective effects by various mechanisms related to cardiac contractility, myocardial glucose uptake, cardiac oxidative stress and ischemia/reperfusion injury, and mitochondrial homeostasis. Upon binding to GLP-1 receptor (GLP-1R), GLP-1 and its analogs exert their effects via adenylyl cyclase-mediated cAMP elevation and subsequent activation of cAMP-dependent protein kinase(s) which stimulates the insulin release in conjunction with enhanced Ca2+ and ATP levels. Recent findings have suggested additional downstream molecular pathways stirred by long-term exposure of GLP-1 analogs, which pave the way for the development of potential therapeutic molecules with longer lasting beneficial effects against diabetic cardiomyopathies. This review provides a comprehensive overview of the recent advances in the understanding of the GLP-1R-dependent and -independent actions of GLP-1 and its analogs in the protection against cardiomyopathies.
Collapse
Affiliation(s)
- Sudhir Pandey
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
30
|
Khetpal S, Ghosh D, Roostaeian J. Innovations in Skin and Soft Tissue Aging-A Systematic Literature Review and Market Analysis of Therapeutics and Associated Outcomes. Aesthetic Plast Surg 2023:10.1007/s00266-023-03322-1. [PMID: 37154849 PMCID: PMC10390368 DOI: 10.1007/s00266-023-03322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Skin and soft tissue aging has been an important topic of discussion among plastic surgeons and their patients. While botulinum toxin, facial fillers, chemical peels, and surgical lifts preside as the mainstay of treatment to restore appearance of youth, emergent technologies, such as CRISPR-Cas9, proteostasis, flap biology, and stem cell therapies, have gained traction in addressing the aging process of skin and soft tissue. Several studies have introduced these advancements, but it remains unclear how safe and effective these therapeutics are in facial rejuvenation, and how they may fit in the existent treatment workflow for soft tissue aging. MATERIALS/METHODS A systematic literature review was conducted to identify and assess therapeutics utilized in addressing skin and soft tissue aging. Variables collected included year of publication, journal, article title, organization of study, patient sample, treatment modality, associated outcomes. In addition, we performed a market analysis of companies involved in promoting technologies and therapeutics within this space. PitchBook (Seattle, WA), a public market database, was utilized to classify companies, and record the amount of venture capital funding allocated to these categories. RESULTS Initial review yielded four hundred and two papers. Of these, thirty-five were extracted after applying inclusion and exclusion criteria. Though previous literature regards CRISPR-Cas9 technology as the most favorable anti-aging innovation, after reviewing the current literature, stem cell therapies utilizing recipient chimerism appeared to be the superior skin anti-aging technique when accounting for possible disadvantages of various techniques. The psychosocial and cosmetic outcomes from using cell therapy to modulate allograft survival and tolerance may confer more long-term proposed benefits than the technologies in CRISPR-Cas9, flap biology innovations, and autologous platelet-rich plasma use. Market analysis yielded a total of 87 companies, which promoted innovations in technology, biotechnology, biopharmaceuticals, cell-based therapies, and genetic therapy. CONCLUSION This review provides physicians and patients with relevant, usable information regarding how therapeutics can impact treatment regimen for facial aesthetics and skin rejuvenation. Furthermore, the goal of this research is to elucidate the varying therapeutics to restore appearance of youth, present associated outcomes, and in doing so, present plastic surgeons and their colleagues with greater insight on the role of these therapeutics and technologies in clinical practice. Future studies can further assess the safety and efficacy of these innovations and discuss how these may fit within surgical plans among patients seeking rejuvenation procedures. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Sumun Khetpal
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California Los Angeles, 200 Medical Plaza, Suite 460, Los Angeles, CA, 90095, USA
| | - Durga Ghosh
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California Los Angeles, 200 Medical Plaza, Suite 460, Los Angeles, CA, 90095, USA
| | - Jason Roostaeian
- Division of Plastic and Reconstructive Surgery, David Geffen School of Medicine, University of California Los Angeles, 200 Medical Plaza, Suite 460, Los Angeles, CA, 90095, USA.
| |
Collapse
|
31
|
Homolak J. Targeting the microbiota-mitochondria crosstalk in neurodegeneration with senotherapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:339-383. [PMID: 37437983 DOI: 10.1016/bs.apcsb.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Neurodegenerative diseases are a group of age-related disorders characterized by a chronic and progressive loss of function and/or structure of synapses, neurons, and glial cells. The etiopathogenesis of neurodegenerative diseases is characterized by a complex network of intricately intertwined pathophysiological processes that are still not fully understood. Safe and effective disease-modifying treatments are urgently needed, but still not available. Accumulating evidence suggests that gastrointestinal dyshomeostasis and microbial dysbiosis might play an important role in neurodegeneration by acting as either primary or secondary pathophysiological factors. The research on the role of microbiota in neurodegeneration is in its early phase; however, accumulating evidence suggests that dysbiosis might promote neurodegenerative diseases by disrupting mitochondrial function and inducing mitochondrial dysfunction-associated senescence (MiDAS), possibly due to bidirectional crosstalk based on the common evolutionary origin of mitochondria and bacteria. Cellular senescence is an onco-supressive homeostatic mechanism that results in an irreversible cell cycle arrest upon exposure to noxious stimuli. Senescent cells resist apoptosis via senescent cell anti-apoptotic pathways (SCAPs) and transition into a state known as senescence-associated secretory phenotype (SASP) that generates a cytotoxic proinflammatory microenvironment. Cellular senescence results in the adoption of a detrimental vicious cycle driven by dysbiosis, mitochondrial dysfunction, inflammation, and oxidative stress - a pathophysiological positive feedback loop that results in neuroinflammation and neurodegeneration. Detrimental effects of MiDAS might be prevented and abolished by mitochondria-targeted senotherapeutics, a group of drugs specifically designed to alleviate senescence by inhibiting SCAPs (senolytics), or inhibiting SASP (senomorphics).
Collapse
Affiliation(s)
- Jan Homolak
- Department of Pharmacology, University of Zagreb School of Medicine, Zagreb, Croatia; Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
32
|
Shadfar S, Parakh S, Jamali MS, Atkin JD. Redox dysregulation as a driver for DNA damage and its relationship to neurodegenerative diseases. Transl Neurodegener 2023; 12:18. [PMID: 37055865 PMCID: PMC10103468 DOI: 10.1186/s40035-023-00350-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 04/15/2023] Open
Abstract
Redox homeostasis refers to the balance between the production of reactive oxygen species (ROS) as well as reactive nitrogen species (RNS), and their elimination by antioxidants. It is linked to all important cellular activities and oxidative stress is a result of imbalance between pro-oxidants and antioxidant species. Oxidative stress perturbs many cellular activities, including processes that maintain the integrity of DNA. Nucleic acids are highly reactive and therefore particularly susceptible to damage. The DNA damage response detects and repairs these DNA lesions. Efficient DNA repair processes are therefore essential for maintaining cellular viability, but they decline considerably during aging. DNA damage and deficiencies in DNA repair are increasingly described in age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Furthermore, oxidative stress has long been associated with these conditions. Moreover, both redox dysregulation and DNA damage increase significantly during aging, which is the biggest risk factor for neurodegenerative diseases. However, the links between redox dysfunction and DNA damage, and their joint contributions to pathophysiology in these conditions, are only just emerging. This review will discuss these associations and address the increasing evidence for redox dysregulation as an important and major source of DNA damage in neurodegenerative disorders. Understanding these connections may facilitate a better understanding of disease mechanisms, and ultimately lead to the design of better therapeutic strategies based on preventing both redox dysregulation and DNA damage.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Sonam Parakh
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
33
|
Petrocelli JJ, de Hart NM, Lang MJ, Yee EM, Ferrara PJ, Fix DK, Chaix A, Funai K, Drummond MJ. Cellular senescence and disrupted proteostasis induced by myotube atrophy are prevented with low-dose metformin and leucine cocktail. Aging (Albany NY) 2023; 15:1808-1832. [PMID: 36947713 PMCID: PMC10085594 DOI: 10.18632/aging.204600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/24/2023]
Abstract
Aging coincides with the accumulation of senescent cells within skeletal muscle that produce inflammatory products, known as the senescence-associated secretory phenotype, but the relationship of senescent cells to muscle atrophy is unclear. Previously, we found that a metformin + leucine (MET+LEU) treatment had synergistic effects in aged mice to improve skeletal muscle structure and function during disuse atrophy. Therefore, the study's purpose was to determine the mechanisms by which MET+LEU exhibits muscle atrophy protection in vitro and if this occurs through cellular senescence. C2C12 myoblasts differentiated into myotubes were used to determine MET+LEU mechanisms during atrophy. Additionally, aged mouse single myofibers and older human donor primary myoblasts were individually isolated to determine the translational potential of MET+LEU on muscle cells. MET+LEU (25 + 125 μM) treatment increased myotube differentiation and prevented myotube atrophy. Low concentration (0.1 + 0.5 μM) MET+LEU had unique effects to prevent muscle atrophy and increase transcripts related to protein synthesis and decrease transcripts related to protein breakdown. Myotube atrophy resulted in dysregulated proteostasis that was reversed with MET+LEU and individually with proteasome inhibition (MG-132). Inflammatory and cellular senescence transcriptional pathways and respective transcripts were increased following myotube atrophy yet reversed with MET+LEU treatment. Dasatinib + quercetin (D+Q) senolytic prevented myotube atrophy similar to MET+LEU. Finally, MET+LEU prevented loss in myotube size in alternate in vitro models of muscle atrophy as well as in aged myofibers while, in human primary myotubes, MET+LEU prevented reductions in myonuclei fusion. These data support that MET+LEU has skeletal muscle cell-autonomous properties to prevent atrophy by reversing senescence and improving proteostasis.
Collapse
Affiliation(s)
- Jonathan J. Petrocelli
- Department of Physical Therapy and Athletic, University of Utah, Salt Lake City, UT 84112, USA
| | - Naomi M.M.P. de Hart
- Department of Physical Therapy and Athletic, University of Utah, Salt Lake City, UT 84112, USA
| | - Marisa J. Lang
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Elena M. Yee
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Patrick J. Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Dennis K. Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Katsuhiko Funai
- Department of Physical Therapy and Athletic, University of Utah, Salt Lake City, UT 84112, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic, University of Utah, Salt Lake City, UT 84112, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
34
|
Majeed Y, Madani AY, Altamimi AI, Courjaret R, Vakayil M, Fountain SJ, Machaca K, Mazloum NA. STAT1- and NFAT-independent amplification of purinoceptor function integrates cellular senescence with interleukin-6 production in preadipocytes. Br J Pharmacol 2023; 180:609-627. [PMID: 36321760 DOI: 10.1111/bph.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND PURPOSE Senescent preadipocytes promote adipose tissue dysfunction by secreting pro-inflammatory factors, although little is known about the mechanisms regulating their production. We investigated if up-regulated purinoceptor function sensitizes senescent preadipocytes to cognate agonists and how such sensitization regulates inflammation. EXPERIMENTAL APPROACH Etoposide was used to trigger senescence in 3T3-L1 preadipocytes. CRISPR/Cas9 technology or pharmacology allowed studies of transcription factor function. Fura-2 imaging was used for calcium measurements. Interleukin-6 levels were quantified using quantitative PCR and ELISA. Specific agonists and antagonists supported studies of purinoceptor coupling to interleukin-6 production. Experiments in MS1 VEGF angiosarcoma cells and adipose tissue samples from obese mice complemented preadipocyte experiments. KEY RESULTS DNA damage-induced senescence up-regulated purinoceptor expression levels in preadipocytes and MS1 VEGF angiosarcoma cells. ATP-evoked Ca2+ release was potentiated in senescent preadipocytes. ATP enhanced interleukin-6 production, an effect mimicked by ADP but not UTP, in a calcium-independent manner. Senescence-associated up-regulation and activation of the adenosine A3 receptor also enhanced interleukin-6 production. However, nucleotide hydrolysis was not essential because exposure to ATPγS also enhanced interleukin-6 secretion. Pharmacological experiments suggested coupling of P2X ion channels and P2Y12 -P2Y13 receptors to downstream interleukin-6 production. Interleukin-6 signalling exacerbated inflammation during senescence and compromised adipogenesis. CONCLUSIONS AND IMPLICATIONS We report a previously uncharacterized link between cellular senescence and purinergic signalling in preadipocytes and endothelial cancer cells, raising the possibility that up-regulated purinoceptors play key modulatory roles in senescence-associated conditions like obesity and cancer. There is potential for exploitation of specific purinoceptor antagonists as therapeutics in inflammatory disorders.
Collapse
Affiliation(s)
- Yasser Majeed
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Aisha Y Madani
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Ahmed I Altamimi
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Muneera Vakayil
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Samuel J Fountain
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Nayef A Mazloum
- Department of Microbiology and Immunology, Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| |
Collapse
|
35
|
Lin ZC, Hsu CY, Hwang E, Wang PW, Fang JY. The role of cytokines/chemokines in an aging skin immune microenvironment. Mech Ageing Dev 2023; 210:111761. [PMID: 36496171 DOI: 10.1016/j.mad.2022.111761] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Reversing or slowing down the skin aging process is one of the most intriguing areas of focus across the social and scientific communities around the world. While aging is considered a universal and inevitable natural process of physiological decline, the aging of the skin is the most apparent visual representation of an individual's health. Aging skin may be objectively defined by epidermal thinning; increased transepidermal water loss; decreased cutaneous barrier function; loss of elasticity, laxity, and textured appearance; and gradual deterioration of the epidermal immune environment. As the largest structure of the immune system and of the body as a whole, the skin is the most vulnerable barrier of defense against the environment. The skin reflects an individual's exposures, lifestyle habits, and overall health. From an immunological perspective, cytokines and chemokines act as a central character in the communicating of the immunity in skin aging. These cell signaling proteins serve as the intercellular communication link. This review aims to elucidate how cell-cell crosstalk through cytokines and chemokines, and the interplay between host cells, infiltrating immune cells, and exogenous factors contribute to the overall aging skin.
Collapse
Affiliation(s)
- Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ching-Yun Hsu
- Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Jia-You Fang
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.
| |
Collapse
|
36
|
Chen H, Sun HM, Wu B, Sun TY, Han LZ, Wang G, Shang YF, Yang S, Zhou DS. Artesunate delays the dysfunction of age-related intestinal epithelial barrier by mitigating endoplasmic reticulum stress/unfolded protein response. Mech Ageing Dev 2023; 210:111760. [PMID: 36476344 DOI: 10.1016/j.mad.2022.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The impairment of the intestinal epithelial barrier and subsequent bacterial translocation are common in aging individuals, contributory to several local and systematic disorders. However, the underlying mechanism of the age-related degeneration has not been fully understood. In this study, we demonstrated that the intestinal KIT signaling declined and de-activated with aging, parallel with epithelial barrier dysfunction. Endoplasmic reticulum stress (ERS)/unfolded protein response (UPR) was obviously increased during aging. The ERS and its downstream IRE1α were highly activated in the aging colonic epithelium. Furthermore, by the use of Tunicamycin (Tm)-induced ERS mouse and cell models, we uncovered that the activity of the ERS/IRE1α accelerated the protein degradation of KIT via ubiquitin-proteasome pathway. The deficiency of KIT signaling further reduced the transcription of the tight junction protein Claudin-3. Of significance, Artesunate (ART) could be capable of ameliorating the detrimental effect of ERS/IRE1α, indicated by the re-gained KIT and Claudin-3 expressions and the restoration of the intestinal epithelial barrier. In conclusion, our present study provided novel evidence elucidating the ERS/IRE1α-induced loss of KIT and Claudin-3 in the aging colonic epithelium and also shed light on the protective effect of Artesunate on the intestinal epithelial barrier by blocking ERS/IRE1α activity during aging.
Collapse
Affiliation(s)
- Hong Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hai-Mei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Ting-Yi Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China
| | - Li-Zhuang Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Guan Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yun-Fei Shang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China.
| | - De-Shan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, China.
| |
Collapse
|
37
|
Abstract
During aging, animals experience a decline in proteostasis activity, including loss of stress-response activation, culminating in the accumulation of misfolded proteins and toxic aggregates, which are causal in the onset of some chronic diseases. Finding genetic and pharmaceutical treatments that can increase organismal proteostasis and lengthen life is an ongoing goal of current research. The regulation of stress responses by cell non-autonomous mechanisms appears to be a potent way to impact organismal healthspan. In this Review, we cover recent findings in the intersection of proteostasis and aging, with a special focus on articles and preprints published between November 2021 and October 2022. A significant number of papers published during this time increased our understanding of how cells communicate with each other during proteotoxic stress. Finally, we also draw attention to emerging datasets that can be explored to generate new hypotheses that explain age-related proteostasis collapse.
Collapse
Affiliation(s)
- Maximilian A. Thompson
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Evandro A. De-Souza
- Neurobiology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
38
|
Doolittle ML, Saul D, Kaur J, Rowsey JL, Vos SJ, Pavelko KD, Farr JN, Monroe DG, Khosla S. Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of senolytic therapy in the aged murine skeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523760. [PMID: 36711531 PMCID: PMC9882155 DOI: 10.1101/2023.01.12.523760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Senescence drives organismal aging, yet the deep characterization of senescent cells in vivo remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using carefully validated antibodies to analyze senescent cells at single-cell resolution. We used multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant to apoptosis (p16+/Ki67-/BCL-2+; "p16KB" cells). These cells were highly enriched for senescence-associated secretory phenotype (SASP) and DNA damage markers and were strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited growth arrest, SA-βgal positivity, and impaired osteogenesis in vitro . These studies thus provide a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal cells in vivo and identify a highly inflammatory, senescent CD24+ osteolineage population cleared by senolytics.
Collapse
Affiliation(s)
- Madison L. Doolittle
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Dominik Saul
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
- Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany
| | - Japneet Kaur
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Jennifer L. Rowsey
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Stephanie J. Vos
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Joshua N. Farr
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - David G. Monroe
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
39
|
Abstract
The proteasome is a multi-subunit proteolytic complex that functions to degrade normal proteins for physiological regulation and to eliminate abnormal proteins for cellular protection. Generally, the proteasome targets substrate proteins that are marked by attachment of multiple ubiquitin molecules. In various types of cells in an organism, damage to proteins occurs both from internal sources such as reactive oxygen species and from external ones such as UV radiation from the sun. The proteasome functions to protect the cells by degrading damaged proteins. With ageing, however, the capacity of the proteasome to degrade damaged proteins is reduced as indicated by evidence gathered by many studies. Studies on ageing in muscle, skin, and brain show that with age catalytic activity of the proteasome is decreased and the expression of proteasome subunits is altered. Age-related accumulation of damaged or misfolded proteins causes further reduction of proteasome activity. Abnormal proteins also accumulate as a result of age-related neurodegenerative diseases. Deficits in proteasome activity might be responsible for accumulation of protein aggregates and thus contribute to the pathology. Results from several studies suggest a link between the proteasome and longevity. This chapter reviews the various ways in which the proteasome is associated with the ageing process and examines evidence gathered from investigations on cultured cells, model organisms, and humans.
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA.
| | - Lindsey M Duke
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | - Logan E Timm
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| | - Hannah Nobles
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, USA
| |
Collapse
|
40
|
Hadar S, Meller A, Saida N, Shalgi R. Stress-induced transcriptional readthrough into neighboring genes is linked to intron retention. iScience 2022; 25:105543. [PMID: 36505935 PMCID: PMC9732411 DOI: 10.1016/j.isci.2022.105543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/10/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Exposure to certain stresses leads to readthrough transcription. Using polyA-selected RNA-seq in mouse fibroblasts subjected to heat shock, oxidative, or osmotic stress, we found that readthrough transcription can proceed into proximal downstream genes, in a phenomenon previously termed "read-in." We found that read-in genes share distinctive genomic characteristics; they are GC-rich and extremely short , with genomic features conserved in human. Using ribosome profiling, we found that read-in genes show significantly reduced translation. Strikingly, read-in genes demonstrate marked intron retention, mostly in their first introns, which could not be explained solely by their short introns and GC-richness, features often associated with intron retention. Finally, we revealed H3K36me3 enrichment upstream to read-in genes. Moreover, demarcation of exon-intron junctions by H3K36me3 was absent in read-in first introns. Our data portray a relationship between read-in and intron retention, suggesting they may have co-evolved to facilitate reduced translation of read-in genes during stress.
Collapse
Affiliation(s)
- Shani Hadar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Anatoly Meller
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Naseeb Saida
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
41
|
Bulovaite E, Qiu Z, Kratschke M, Zgraj A, Fricker DG, Tuck EJ, Gokhale R, Koniaris B, Jami SA, Merino-Serrais P, Husi E, Mendive-Tapia L, Vendrell M, O'Dell TJ, DeFelipe J, Komiyama NH, Holtmaat A, Fransén E, Grant SGN. A brain atlas of synapse protein lifetime across the mouse lifespan. Neuron 2022; 110:4057-4073.e8. [PMID: 36202095 PMCID: PMC9789179 DOI: 10.1016/j.neuron.2022.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/01/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022]
Abstract
The lifetime of proteins in synapses is important for their signaling, maintenance, and remodeling, and for memory duration. We quantified the lifetime of endogenous PSD95, an abundant postsynaptic protein in excitatory synapses, at single-synapse resolution across the mouse brain and lifespan, generating the Protein Lifetime Synaptome Atlas. Excitatory synapses have a wide range of PSD95 lifetimes extending from hours to several months, with distinct spatial distributions in dendrites, neurons, and brain regions. Synapses with short protein lifetimes are enriched in young animals and in brain regions controlling innate behaviors, whereas synapses with long protein lifetimes accumulate during development, are enriched in the cortex and CA1 where memories are stored, and are preferentially preserved in old age. Synapse protein lifetime increases throughout the brain in a mouse model of autism and schizophrenia. Protein lifetime adds a further layer to synapse diversity and enriches prevailing concepts in brain development, aging, and disease.
Collapse
Affiliation(s)
- Edita Bulovaite
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Zhen Qiu
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Maximilian Kratschke
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Adrianna Zgraj
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - David G Fricker
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Eleanor J Tuck
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Ragini Gokhale
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Babis Koniaris
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK
| | - Shekib A Jami
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Elodie Husi
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Marc Vendrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Integrative Center for Learning and Memory, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, UPM, 28223 Madrid, Spain; Instituto Cajal, CSIC, 28002 Madrid, Spain
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Anthony Holtmaat
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Erik Fransén
- Department of Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044 Stockholm, Sweden; Science for Life Laboratory, KTH Royal Institute of Technology, 171 65 Solna, Sweden
| | - Seth G N Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
42
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
43
|
Dissecting aggregation and seeding dynamics of α-Syn polymorphs using the phasor approach to FLIM. Commun Biol 2022; 5:1345. [PMID: 36477485 PMCID: PMC9729209 DOI: 10.1038/s42003-022-04289-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Synucleinopathies are a heterogenous group of neurodegenerative diseases characterized by the progressive accumulation of pathological α-synuclein (α-Syn). The importance of structural polymorphism of α-Syn assemblies for distinct synucleinopathies and their progression is increasingly recognized. However, the underlying mechanisms are poorly understood. Here we use fluorescence lifetime imaging microscopy (FLIM) to investigate seeded aggregation of α-Syn in a biosensor cell line. We show that conformationally distinct α-Syn polymorphs exhibit characteristic fluorescence lifetimes. FLIM further revealed that α-Syn polymorphs were differentially processed by cellular clearance pathways, yielding fibrillar species with increased seeding capacity. Thus, FLIM is not only a powerful tool to distinguish different amyloid structures, but also to monitor the dynamic process of amyloid remodeling by the cellular environment. Our data suggest that the accumulation of highly seeding competent degradation products for particular polymorphs may account for accelerated disease progression in some patients.
Collapse
|
44
|
Roos-Mattjus P, Sistonen L. Interplay between mammalian heat shock factors 1 and 2 in physiology and pathology. FEBS J 2022; 289:7710-7725. [PMID: 34478606 DOI: 10.1111/febs.16178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/17/2021] [Accepted: 09/02/2021] [Indexed: 01/14/2023]
Abstract
The heat-shock factors (HSFs) belong to an evolutionary conserved family of transcription factors that were discovered already over 30 years ago. The HSFs have been shown to a have a broad repertoire of target genes, and they also have crucial functions during normal development. Importantly, HSFs have been linked to several disease states, such as neurodegenerative disorders and cancer, highlighting their importance in physiology and pathology. However, it is still unclear how HSFs are regulated and how they choose their specific target genes under different conditions. Posttranslational modifications and interplay among the HSF family members have been shown to be key regulatory mechanisms for these transcription factors. In this review, we focus on the mammalian HSF1 and HSF2, including their interplay, and provide an updated overview of the advances in understanding how HSFs are regulated and how they function in multiple processes of development, aging, and disease. We also discuss HSFs as therapeutic targets, especially the recently reported HSF1 inhibitors.
Collapse
Affiliation(s)
- Pia Roos-Mattjus
- Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.,Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| |
Collapse
|
45
|
Mizumoto T, Yoshizawa T, Sato Y, Ito T, Tsuyama T, Satoh A, Araki S, Tsujita K, Tamura M, Oike Y, Yamagata K. SIRT7 Deficiency Protects against Aging-Associated Glucose Intolerance and Extends Lifespan in Male Mice. Cells 2022; 11:cells11223609. [PMID: 36429037 PMCID: PMC9688483 DOI: 10.3390/cells11223609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are evolutionarily conserved nicotinamide adenine dinucleotide-dependent lysine deacetylases/deacylases that regulate fundamental biological processes including aging. In this study, we reveal that male Sirt7 knockout (KO) mice exhibited an extension of mean and maximum lifespan and a delay in the age-associated mortality rate. In addition, aged male Sirt7 KO mice displayed better glucose tolerance with improved insulin sensitivity compared with wild-type (WT) mice. Fibroblast growth factor 21 (FGF21) enhances insulin sensitivity and extends lifespan when it is overexpressed. Serum levels of FGF21 were markedly decreased with aging in WT mice. In contrast, this decrease was suppressed in Sirt7 KO mice, and the serum FGF21 levels of aged male Sirt7 KO mice were higher than those of WT mice. Activating transcription factor 4 (ATF4) stimulates Fgf21 transcription, and the hepatic levels of Atf4 mRNA were increased in aged male Sirt7 KO mice compared with WT mice. Our findings indicate that the loss of SIRT7 extends lifespan and improves glucose metabolism in male mice. High serum FGF21 levels might be involved in the beneficial effect of SIRT7 deficiency.
Collapse
Affiliation(s)
- Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaaki Ito
- Department of Medical Technology, Faculty of Health Science, Kumamoto Health Science University, Kumamoto 861-5598, Japan
| | - Tomonori Tsuyama
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Akiko Satoh
- Department of Integrative Physiology, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
- Department of Integrative Physiology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenichi Tsujita
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masaru Tamura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN BioResource Research Center, Tsukuba-shi 305-0074, Japan
| | - Yuichi Oike
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Correspondence: ; Tel.: +81-96-373-5068; Fax: +81-96-364-6940
| |
Collapse
|
46
|
De-Souza EA, Cummins N, Taylor RC. IRE-1 endoribonuclease activity declines early in C. elegans adulthood and is not rescued by reduced reproduction. FRONTIERS IN AGING 2022; 3:1044556. [PMID: 36389122 PMCID: PMC9649906 DOI: 10.3389/fragi.2022.1044556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
The proteome of a cell helps to define its functional specialization. Most proteins must be translated and properly folded to ensure their biological function, but with aging, animals lose their ability to maintain a correctly folded proteome. This leads to the accumulation of protein aggregates, decreased stress resistance, and the onset of age-related disorders. The unfolded protein response of the endoplasmic reticulum (UPRER) is a central protein quality control mechanism, the function of which is known to decline with age. Here, we show that age-related UPRER decline in Caenorhabditis elegans occurs at the onset of the reproductive period and is caused by a failure in IRE-1 endoribonuclease activities, affecting both the splicing of xbp-1 mRNA and regulated Ire1 dependent decay (RIDD) activity. Animals with a defect in germline development, previously shown to rescue the transcriptional activity of other stress responses during aging, do not show restored UPRER activation with age. This underlines the mechanistic difference between age-associated loss of UPRER activation and that of other stress responses in this system, and uncouples reproductive status from the activity of somatic maintenance pathways. These observations may aid in the development of strategies that aim to overcome the proteostasis decline observed with aging.
Collapse
Affiliation(s)
| | | | - Rebecca C. Taylor
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
47
|
Huang Y, Shin JE, Xu AM, Yao C, Joung S, Wu M, Zhang R, Shin B, Foley J, Mahov SB, Modes ME, Ebinger JE, Driver M, Braun JG, Jefferies CA, Parimon T, Hayes C, Sobhani K, Merchant A, Gharib SA, Jordan SC, Cheng S, Goodridge HS, Chen P. Evidence of premature lymphocyte aging in people with low anti-spike antibody levels after BNT162b2 vaccination. iScience 2022; 25:105209. [PMID: 36188190 PMCID: PMC9510055 DOI: 10.1016/j.isci.2022.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
SARS-CoV-2 vaccines have unquestionably blunted the overall impact of the COVID-19 pandemic, but host factors such as age, sex, obesity, and other co-morbidities can affect vaccine efficacy. We identified individuals in a relatively healthy population of healthcare workers (CORALE study cohort) who had unexpectedly low peak anti-spike receptor binding domain (S-RBD) antibody levels after receiving the BNT162b2 vaccine. Compared to matched controls, "low responders" had fewer spike-specific antibody-producing B cells after the second and third/booster doses. Moreover, their spike-specific T cell receptor (TCR) repertoire had less depth and their CD4+ and CD8+T cell responses to spike peptide stimulation were less robust. Single cell transcriptomic evaluation of peripheral blood mononuclear cells revealed activation of aging pathways in low responder B and CD4+T cells that could underlie their attenuated anti-S-RBD antibody production. Premature lymphocyte aging may therefore contribute to a less effective humoral response and could reduce vaccination efficacy.
Collapse
Affiliation(s)
- Yapei Huang
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliana E. Shin
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander M. Xu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandy Joung
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Min Wu
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ruan Zhang
- Comprehensive Transplant Center, Transplant Immunology Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bongha Shin
- Comprehensive Transplant Center, Transplant Immunology Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joslyn Foley
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simeon B. Mahov
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew E. Modes
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph E. Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew Driver
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jonathan G. Braun
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A. Jefferies
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chelsea Hayes
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kimia Sobhani
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Akil Merchant
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Hematology and Cellular Therapy, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sina A. Gharib
- Computational Medicine Core at Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA 98109, USA
| | - Stanley C. Jordan
- Comprehensive Transplant Center, Transplant Immunology Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Helen S. Goodridge
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Research Division of Immunology in the Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
48
|
Iuliano L, Dalla E, Picco R, Mallavarapu S, Minisini M, Malavasi E, Brancolini C. Proteotoxic stress-induced apoptosis in cancer cells: understanding the susceptibility and enhancing the potency. Cell Death Dis 2022; 8:407. [PMID: 36195608 PMCID: PMC9531228 DOI: 10.1038/s41420-022-01202-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022]
Abstract
Leiomyosarcoma (LMS) is aggressive cancer with few therapeutic options. LMS cells are more sensitive to proteotoxic stress compared to normal smooth muscle cells. We used small compound 2c to induce proteotoxic stress and compare the transcriptomic adaptations of immortalized human uterine smooth muscle cells (HUtSMC) and LMS cells SK-UT-1. We found that the expression of the heat shock proteins (HSPs) gene family is upregulated with higher efficiency in normal cells. In contrast, the upregulation of BH3-only proteins is higher in LMS cells. HSF1, the master regulator of HSP transcription, is sequestered into transcriptionally incompetent nuclear foci only in LMS cells, which explains the lower HSP upregulation. We also found that several compounds can enhance the cell death response to proteotoxic stress. Specifically, when low doses were used, an inhibitor of salt-inducible kinases (SIKs) and the inhibitor of IRE1α, a key element of the unfolded protein response (UPR), support proteotoxic-induced cell death with strength in LMS cells and without effects on the survival of normal cells. Overall, our data provide an explanation for the higher susceptibility of LMS cells to proteotoxic stress and suggest a potential option for co-treatment strategies.
Collapse
Affiliation(s)
- Luca Iuliano
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Showmeya Mallavarapu
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Eleonora Malavasi
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P. le Kolbe 4 - 33100, Udine, Italy.
| |
Collapse
|
49
|
Morrow CS, Arndt ZP, Klosa PC, Peng B, Zewdie EY, Benayoun BA, Moore DL. Adult fibroblasts use aggresomes only in distinct cell-states. Sci Rep 2022; 12:15001. [PMID: 36056070 PMCID: PMC9440096 DOI: 10.1038/s41598-022-19055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The aggresome is a protein turnover system in which proteins are trafficked along microtubules to the centrosome for degradation. Despite extensive focus on aggresomes in immortalized cell lines, it remains unclear if the aggresome is conserved in all primary cells and all cell-states. Here we examined the aggresome in primary adult mouse dermal fibroblasts shifted into four distinct cell-states. We found that in response to proteasome inhibition, quiescent and immortalized fibroblasts formed aggresomes, whereas proliferating and senescent fibroblasts did not. Using this model, we generated a resource to provide a characterization of the proteostasis networks in which the aggresome is used and transcriptomic features associated with the presence or absence of aggresome formation. Using this resource, we validate a previously reported role for p38 MAPK signaling in aggresome formation and identify TAK1 as a novel driver of aggresome formation upstream of p38 MAPKs. Together, our data demonstrate that the aggresome is a non-universal protein degradation system which can be used cell-state specifically and provide a resource for studying aggresome formation and function.
Collapse
Affiliation(s)
| | - Zachary P Arndt
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Payton C Klosa
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Bo Peng
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Eden Y Zewdie
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
50
|
L'Hôte V, Mann C, Thuret JY. From the divergence of senescent cell fates to mechanisms and selectivity of senolytic drugs. Open Biol 2022; 12:220171. [PMID: 36128715 PMCID: PMC9490338 DOI: 10.1098/rsob.220171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Senescence is a cellular stress response that involves prolonged cell survival, a quasi-irreversible proliferative arrest and a modification of the transcriptome that sometimes includes inflammatory gene expression. Senescent cells are resistant to apoptosis, and if not eliminated by the immune system they may accumulate and lead to chronic inflammation and tissue dysfunction. Senolytics are drugs that selectively induce cell death in senescent cells, but not in proliferative or quiescent cells, and they have proved a viable therapeutic approach in multiple mouse models of pathologies in which senescence is implicated. As the catalogue of senolytic compounds is expanding, novel survival strategies of senescent cells are uncovered, and variations in sensitivity to senolysis between different types of senescent cells emerge. We propose herein a mechanistic classification of senolytic drugs, based on the level at which they target senescent cells: directly disrupting BH3 protein networks that are reorganized upon senescence induction; downregulating survival-associated pathways essential to senescent cells; or modulating homeostatic processes whose regulation is challenged in senescence. With this approach, we highlight the important diversity of senescent cells in terms of physiology and pathways of apoptosis suppression, and we describe possible avenues for the development of more selective senolytics.
Collapse
Affiliation(s)
- Valentin L'Hôte
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Carl Mann
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| | - Jean-Yves Thuret
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette cedex, France
| |
Collapse
|