1
|
Xu HP, Zhan F, Wang H, Lin J, Niu H. Down-regulation of RTEL1 Improves M1/M2 Macrophage Polarization by Promoting SFRP2 in Fibroblasts-derived Exosomes to Alleviate COPD. Cell Biochem Biophys 2024; 82:2129-2139. [PMID: 38805113 DOI: 10.1007/s12013-024-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease worldwide. Macrophage polarization plays a substantial role in the pathogenesis of COPD. This study is aimed to explore the regulatory mechanism of regulator of telomere elongation 1 (RTEL1) in COPD. COPD model mouse was conducted by cigarette smoke (CS). The pathological features of lung in mice were observed by histological staining. After extracting exosomes, macrophages were co-cultured with fibroblasts-derived exosomes. Then, the effects of RTEL1 and exosomal secreted frizzled-related protein 2 (SFRP2) on macrophage proliferation, inflammation, apoptosis, and M1, M2 macrophage polarization (iNOS and CD206) were evaluated by cell counting kit-8, EdU assay, enzyme-linked immuno sorbent assay, and western blotting, respectively. CS-induced COPD model mouse was successfully constructed. Through in vitro experiments, knockdown of RTEL1 inhibited macrophage proliferation, inflammation (MMP9, IL-1β and TNF-α), and promoted apoptosis (Bax, cleaved-caspase3, Bcl-2) in CS extract-induced lung fibroblasts. Meanwhile, RTEL1 knockdown promoted M1 and suppressed M2 macrophage polarization in COPD. Additionally, silencing SFRP2 in fibroblasts-derived exosomes reversed the effects of RTEL1 knockdown on proliferation, inflammation, apoptosis, and M1, M2 macrophage polarization. Collectively, down-regulation of RTEL1 improved M1/M2 macrophage polarization by promoting SFRP2 in fibroblasts-derived exosomes to alleviate CS-induced COPD.
Collapse
Affiliation(s)
- He-Ping Xu
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China.
| | - Feng Zhan
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Hong Wang
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Jie Lin
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| | - Huan Niu
- Department of Emergency Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan Province, China
| |
Collapse
|
2
|
Saito T, Fujino N, Kyogoku Y, Yamada M, Okutomo K, Ono Y, Konno S, Endo T, Itakura K, Matsumoto S, Sano H, Aizawa H, Numakura T, Onodera K, Okada Y, Hussell T, Ichinose M, Sugiura H. Identification of Siglec-1-negative alveolar macrophages with proinflammatory phenotypes in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L672-L686. [PMID: 38530936 DOI: 10.1152/ajplung.00303.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD) orchestrate persistent inflammation in the airway. However, subpopulations of AMs participating in chronic inflammation have been poorly characterized. We previously reported that Siglec-1 expression on AMs, which is important for bacteria engulfment, was decreased in COPD. Here, we show that Siglec-1-negative AMs isolated from COPD lung tissues exhibit a proinflammatory phenotype and are associated with poor clinical outcomes in patients with COPD. Using flow cytometry, we segregated three subsets of AMs based on the expression of Siglec-1 and their side scattergram (SSC) and forward scattergram (FSC) properties: Siglec-1+SSChiFSChi, Siglec-1-SSChiFSChi, and Siglec-1-SSCloFSClo subsets. The Siglec-1-SSCloFSClo subset number was increased in COPD. RNA sequencing revealed upregulation of multiple proinflammatory signaling pathways and emphysema-associated matrix metalloproteases in the Siglec-1-SSCloFSClo subset. Gene set enrichment analysis indicated that the Siglec-1-SSCloFSClo subset adopted intermediate phenotypes between monocytes and mature alveolar macrophages. Functionally, these cells produced TNF-α, IL-6, and IL-8 at baseline, and these cytokines were significantly increased in response to viral RNA. The increase in Siglec-1-negative AMs in induced sputum is associated with future exacerbation risk and lung function decline in patients with COPD. Collectively, the novel Siglec-1-SSCloFSClo subset of AMs displays proinflammatory properties, and their emergence in COPD airways may be associated with poor clinical outcomes.NEW & NOTEWORTHY Alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD) orchestrate persistent inflammation in the airway. We find that Siglec-1-negative alveolar macrophages have a wide range of proinflammatory landscapes and a protease-expressing phenotype. Moreover, this subset is associated with the pathogenesis of COPD and responds to viral stimuli.
Collapse
Affiliation(s)
- Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Okutomo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinao Ono
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichi Konno
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuto Endo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichiro Matsumoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Aizawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuhiro Onodera
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | | | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Kim GD, Lim EY, Shin HS. Macrophage Polarization and Functions in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:5631. [PMID: 38891820 PMCID: PMC11172060 DOI: 10.3390/ijms25115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the major leading cause of mortality worldwide, is a progressive and irreversible respiratory condition characterized by peripheral airway and lung parenchymal inflammation, accompanied by fibrosis, emphysema, and airflow limitation, and has multiple etiologies, including genetic variance, air pollution, and repetitive exposure to harmful substances. However, the precise mechanisms underlying the pathogenesis of COPD have not been identified. Recent multiomics-based evidence suggests that the plasticity of alveolar macrophages contributes to the onset and progression of COPD through the coordinated modulation of numerous transcription factors. Therefore, this review focuses on understanding the mechanisms and functions of macrophage polarization that regulate lung homeostasis in COPD. These findings may provide a better insight into the distinct role of macrophages in COPD pathogenesis and perspective for developing novel therapeutic strategies targeting macrophage polarization.
Collapse
Affiliation(s)
- Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (G.-D.K.); (E.Y.L.)
| | - Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (G.-D.K.); (E.Y.L.)
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (G.-D.K.); (E.Y.L.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Xia H, Lin J, Wang Y, Yu J, Wang H, Cheng C, Yang Y, Bian T, Wu Y, Liu Q. Stenotrophomonas maltophilia contributes to smoking-related emphysema through IRF1-triggered PANoptosis of alveolar epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123913. [PMID: 38582189 DOI: 10.1016/j.envpol.2024.123913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Cigarette smoke (CS), the main source of indoor air pollution and the primary risk factor for respiratory diseases, contains chemicals that can perturb microbiota through antibiotic effects. Although smoking induces a disturbance of microbiota in the lower respiratory tract, whether and how it contributes to initiation or promotion of emphysema are not well clarified. Here, we demonstrated an aberrant microbiome in lung tissue of patients with smoking-related COPD. We found that Stenotrophomonas maltophilia (S. maltophilia) was expanded in lung tissue of patients with smoking-related COPD. We revealed that S. maltophilia drives PANoptosis in alveolar epithelial cells and represses formation of alveolar organoids through IRF1 (interferon regulatory factor 1). Mechanistically, IRF1 accelerated transcription of ZBP1 (Z-DNA Binding Protein 1) in S. maltophilia-infected alveolar epithelial cells. Elevated ZBP1 served as a component of the PANoptosome, which triggered PANoptosis in these cells. By using of alveolar organoids infected by S. maltophilia, we found that targeting of IRF1 mitigated S. maltophilia-induced injury of these organoids. Moreover, the expansion of S. maltophilia and the expression of IRF1 negatively correlated with the progression of emphysema. Thus, the present study provides insights into the mechanism of lung dysbiosis in smoking-related COPD, and presents a potential target for mitigation of COPD progression.
Collapse
Affiliation(s)
- Haibo Xia
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jinyan Yu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yi Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tao Bian
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Yan Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, Jiangsu, People's Republic of China
| | - Qizhan Liu
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China; Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Sun K, Sun Y, Du X, Zhang X, Ma Z, Gao Y, Liang X. Lnc-Clic5 as a sponge for miR-212-5p to inhibit cow barn PM 2.5-induced apoptosis in rat alveolar macrophages. Toxicology 2024; 504:153797. [PMID: 38583737 DOI: 10.1016/j.tox.2024.153797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Particulate matter 2.5 (PM2.5) is a highly hazardous airborne particulate matter that poses a significant risk to humans and animals. Urban airborne particulate matter contributes to the increased incidence and mortality of respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), in humans. However, the specific mechanism by which PM2.5 affects animals in barn environments is yet to be elucidated. In this study, we investigated the effect of exposure to cow barn PM2.5 on rat alveolar macrophages (NR8383) and found that it induced apoptosis via the miR-212-5p/RASSF1 pathway. We found that lnc-Clic5 expression was downregulated in NR8383 cells exposed to cow barn PM2.5. Lnc-Clic5 plays a competitive endogenous RNA (ceRNA) regulatory role by sponging miR-212-5p to attenuate the regulation of RASSF1. Moreover, lnc-Clic5 overexpression inhibited NR8383 apoptosis by targeting the miR-212-5p/RASSF1 pathway. Co-treatment with miR-212-5p and lnc-Clic5 in the presence of cow barn PM2.5 revealed that lnc-Clic5 reversed NR8383 cell apoptosis induced by PM2.5 when miR-212-5p was overexpressed. These findings contribute to the study of ncRNAs and ceRNAs regulating PM2.5-induced apoptosis in animal farms, provide therapeutic targets for lung macrophage apoptosis, and may be useful for further evaluating the toxicological effects of PM2.5 in farmhouses on the respiratory systems of humans and animals.
Collapse
Affiliation(s)
- Ke Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yize Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiqing Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xiaojun Liang
- Ningxia Academy of Agriculture and Forestry, Yinchuan 750002, China.
| |
Collapse
|
6
|
Pang X, Liu X. Immune Dysregulation in Chronic Obstructive Pulmonary Disease. Immunol Invest 2024; 53:652-694. [PMID: 38573590 DOI: 10.1080/08820139.2024.2334296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease whose incidence increase with age and is characterised by chronic inflammation and significant immune dysregulation. Inhalation of toxic substances cause oxidative stress in the lung tissue as well as airway inflammation, under the recruitment of chemokines, immune cells gathered and are activated to play a defensive role. However, persistent inflammation damages the immune system and leads to immune dysregulation, which is mainly manifested in the reduction of the body's immune response to antigens, and immune cells function are impaired, further destroy the respiratory defensive system, leading to recurrent lower respiratory infections and progressive exacerbation of the disease, thus immune dysregulation play an important role in the pathogenesis of COPD. This review summarizes the changes of innate and adaptive immune-related cells during the pathogenesis of COPD, aiming to control COPD airway inflammation and improve lung tissue remodelling by regulating immune dysregulation, for further reducing the risk of COPD progression and opening new avenues of therapeutic intervention in COPD.
Collapse
Affiliation(s)
- Xichen Pang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoju Liu
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Wu MH, Hsieh YH, Lin CL, Ying TH, Hsia SM, Hsieh SC, Lee CH, Lin CL. Licochalcone A induces endoplasmic reticulum stress-mediated apoptosis of endometrial cancer cells via upregulation of GRP78 expression. ENVIRONMENTAL TOXICOLOGY 2024; 39:2961-2969. [PMID: 38308464 DOI: 10.1002/tox.24156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Licochalcone A (LicA), a natural compound extracted from licorice root, has been shown to exert a variety of anticancer activities. Whether LicA has such effects on endometrial cancer (EMC) is unclear. This study aims to investigate the antitumor effects of LicA on EMC. Our results show that LicA significantly reduced the viability and induced apoptosis of EMC cells and EMC-7 cells from EMC patients. LicA was also found to induce endoplasmic reticulum (ER) stress, leading to increased expression of ER-related proteins (GRP78/PERK/IRE1α/CHOP) in EMC cell lines. Suppression of GRP78 expression in human EMC cells treated with LicA significantly attenuated the effects of LicA, resulting in reduced ER-stress mediated cell apoptosis and decreased expression of ER- and apoptosis-related proteins. Our findings demonstrate that LicA induces apoptosis in EMC cells through the GRP78-mediated ER-stress pathway, emphasizing the potential of LicA as an anticancer therapy for EMC.
Collapse
Affiliation(s)
- Min-Hua Wu
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Tsung-Ho Ying
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Shu-Ching Hsieh
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Hsing Lee
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of China Medical University, Taichung, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chu-Liang Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Chen M, Lv J, Guo N, Ji T, Fang Y, Wang Z, He X. Crtc1 deficiency protects against sepsis-associated acute lung injury through activating akt signaling pathway. J Inflamm (Lond) 2024; 21:12. [PMID: 38644501 PMCID: PMC11034098 DOI: 10.1186/s12950-024-00385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Interplay between systemic inflammation and programmed cell death contributes to the pathogenesis of acute lung injury (ALI). cAMP-regulated transcriptional coactivator 1 (CRTC1) has been involved in the normal function of the pulmonary system, but its role in ALI remains unclear. METHODS AND RESULTS We generated a Crtc1 knockout (KO; Crtc1-/-) mouse line. Sepsis-induced ALI was established by cecal ligation and puncture (CLP) for 24 h. The data showed that Ctrc1 KO substantially ameliorated CLP-induced ALI phenotypes, including improved lung structure destruction, reduced pulmonary vascular permeability, diminished levels of proinflammatory cytokines and chemokines, compared with the wildtype mice. Consistently, in lipopolysaccharide (LPS)-treated RAW264.7 cells, Crtc1 knockdown significantly inhibited the expression of inflammatory effectors, including TNF-α, IL-1β, IL-6 and CXCL1, whereas their expressions were significantly enhanced by Crtc1 overexpression. Moreover, both Crtc1 KO in mice and its knockdown in RAW264.7 cells dramatically reduced TUNEL-positive cells and the expression of pro-apoptotic proteins. In contrast, Crtc1 overexpression led to an increase in the pro-apoptotic proteins and LPS-induced TUNEL-positive cells. Mechanically, we found that the phosphorylation of Akt was significantly enhanced by Crtc1 knockout or knockdown, but suppressed by Crtc1 overexpression. Administration of Triciribine, an Akt inhibitor, substantially blocked the protection of Crtc1 knockdown on LPS-induced inflammation and cell death in RAW264.7 cells. CONCLUSIONS Our study demonstrates that CRTC1 contribute to the pathological processes of inflammation and apoptosis in sepsis-induced ALI, and provides mechanistic insights into the molecular function of CRTC1 in the lung. Targeting CRTC1 would be a promising strategy to treat sepsis-induced ALI in clinic.
Collapse
Affiliation(s)
- Meng Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, China
- Department of Anesthesiology, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, 430070, Wuhan, Hubei, China
| | - Jian Lv
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, 518057, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Ningning Guo
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, 518057, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Tuo Ji
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, 430079, Wuhan, China
| | - Yu Fang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, 518057, Shenzhen, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China
| | - Zhihua Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, 518057, Shenzhen, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 100037, Beijing, China.
| | - Xianghu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Gao G, Zhou Z. Isthmin-1: A critical regulator of branching morphogenesis and metanephric mesenchyme condensation during early kidney development. Bioessays 2024; 46:e2300189. [PMID: 38161234 DOI: 10.1002/bies.202300189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Isthmin-1 (Ism1) was first described to be syn-expressed with Fgf8 in Xenopus. However, its biological role has not been elucidated until recent years. Despite of accumulated evidence that Ism1 participates in angiogenesis, tumor invasion, macrophage apoptosis, and glucose metabolism, the cognate receptors for Ism1 remain largely unknown. Ism1 deficiency in mice results in renal agenesis (RA) with a transient loss of Gdnf transcription and impaired mesenchyme condensation at E11.5. Ism1 binds to and activates Integrin α8β1 to positively regulate Gdnf/Ret signaling, thus promoting mesenchyme condensation and ureteric epithelium branching morphogenesis. Here, we propose the hypothesis underlying the mechanism by which Ism1 regulates branching morphogenesis during early kidney development.
Collapse
Affiliation(s)
- Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Reproductive Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
10
|
Reddy KD, Bizymi N, Schweikert A, Ananth S, Lim CX, Lodge KM, Joannes A, Ubags N, van der Does AM, Cloonan SM, Mailleux A, Mansouri N, Reynaert NL, Heijink IH, Cuevas-Ocaña S. ERS International Congress 2023: highlights from the Basic and Translational Sciences Assembly. ERJ Open Res 2024; 10:00875-2023. [PMID: 38686182 PMCID: PMC11057505 DOI: 10.1183/23120541.00875-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 05/02/2024] Open
Abstract
Early career members of Assembly 3 (Basic and Translational Sciences) of the European Respiratory Society (ERS) summarise the key messages discussed during six selected sessions that took place at the ERS International Congress 2023 in Milan, Italy. Aligned with the theme of the congress, the first session covered is "Micro- and macro-environments and respiratory health", which is followed by a summary of the "Scientific year in review" session. Next, recent advances in experimental methodologies and new technologies are discussed from the "Tissue modelling and remodelling" session and a summary provided of the translational science session, "What did you always want to know about omics analyses for clinical practice?", which was organised as part of the ERS Translational Science initiative's aims. The "Lost in translation: new insights into cell-to-cell crosstalk in lung disease" session highlighted how next-generation sequencing can be integrated with laboratory methods, and a final summary of studies is presented from the "From the transcriptome landscape to innovative preclinical models in lung diseases" session, which links the transcriptome landscape with innovative preclinical models. The wide range of topics covered in the selected sessions and the high quality of the research discussed demonstrate the strength of the basic and translational science being presented at the international respiratory conference organised by the ERS.
Collapse
Affiliation(s)
- Karosham Diren Reddy
- Epigenetics of Chronic Lung Disease Group, Forschungszentrum Borstel Leibniz Lungenzentrum, Borstel, Germany
- Division of Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- These authors contributed equally
| | - Nikoleta Bizymi
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, Heraklion, Greece
- These authors contributed equally
| | - Anja Schweikert
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
- These authors contributed equally
| | - Sachin Ananth
- London North West University Healthcare NHS Trust, London, UK
- These authors contributed equally
| | - Clarice X. Lim
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Lung Health, Clinic Penzing, Vienna, Austria
- These authors contributed equally
| | - Katharine M. Lodge
- National Heart and Lung Institute, Imperial College London, London, UK
- These authors contributed equally
| | - Audrey Joannes
- Université de Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, Rennes, France
| | - Niki Ubags
- Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anne M. van der Does
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne M. Cloonan
- School of Medicine, Trinity Biosciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Arnaud Mailleux
- Université Paris Cité, Inserm, Physiopathologie et épidémiologie des maladies respiratoires, Paris, France
| | - Nahal Mansouri
- Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Niki L. Reynaert
- Department of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Sara Cuevas-Ocaña
- Biodiscovery Institute, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Liu YB, Hong JR, Jiang N, Jin L, Zhong WJ, Zhang CY, Yang HH, Duan JX, Zhou Y. The Role of Mitochondrial Quality Control in Chronic Obstructive Pulmonary Disease. J Transl Med 2024; 104:100307. [PMID: 38104865 DOI: 10.1016/j.labinv.2023.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health care use worldwide with heterogeneous pathogenesis. Mitochondria, the powerhouses of cells responsible for oxidative phosphorylation and energy production, play essential roles in intracellular material metabolism, natural immunity, and cell death regulation. Therefore, it is crucial to address the urgent need for fine-tuning the regulation of mitochondrial quality to combat COPD effectively. Mitochondrial quality control (MQC) mainly refers to the selective removal of damaged or aging mitochondria and the generation of new mitochondria, which involves mitochondrial biogenesis, mitochondrial dynamics, mitophagy, etc. Mounting evidence suggests that mitochondrial dysfunction is a crucial contributor to the development and progression of COPD. This article mainly reviews the effects of MQC on COPD as well as their specific regulatory mechanisms. Finally, the therapeutic approaches of COPD via MQC are also illustrated.
Collapse
Affiliation(s)
- Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jie-Ru Hong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Nan Jiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ling Jin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Hu M, Zhang X, Gao YP, Hu YX, Teng T, Wang SS, Tang QZ. Isthmin-1 Improves Aging-Related Cardiac Dysfunction in Mice through Enhancing Glycolysis and SIRT1 Deacetylase Activity. Aging Dis 2024; 15:2682-2696. [PMID: 38300636 PMCID: PMC11567257 DOI: 10.14336/ad.2024.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Aging-related cardiac dysfunction poses a major risk factor of mortality for elderly populations, however, efficient treatment for aging-related cardiac dysfunction is far from being known. Isthmin-1 (ISM1) is a novel adipokine that promotes glucose uptake and acts indispensable roles in restraining inflammatory and fibrosis. The present study aims to investigate the potential role and molecular mechanism of ISM1 in aging-related cardiac dysfunction. Aged and matched young mice were overexpressed or silenced with ISM1 to investigate the role of ISM1 in aging-related cardiac dysfunction. Moreover, H9C2 cells were stimulated with D-galactose (D-gal) to examine the role of ISM1 in vitro. Herein, we found that cardiac-specific overexpression of ISM1 significantly mitigated insulin resistance by promoting glucose uptake in aging mice. ISM1 overexpression alleviated while ISM1 silencing deteriorated cellular senescence, cardiac inflammation, and dysfunction in natural and accelerated cardiac aging. Mechanistically, ISM1 promoted glycolysis and activated Sirtuin-1 (SIRT1) through increasing glucose uptake. ISM1 increased glucose uptake via translocating GLUT4 to the surface, thereby enhancing glycolytic flux and hexosamine biosynthetic pathway (HBP) flux, ultimately leading to increased SIRT1 activity through O-GlcNAc modification. ISM1 may serve as a novel potential therapeutic target for preventing aging-related cardiac disease in elderly populations. ISM1 prevents aging-related cardiac dysfunction by promoting glycolysis and enhancing SIRT1 deacetylase activity, making it a promising therapeutic target for aging-related cardiac disease.
Collapse
Affiliation(s)
- Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Xin Zhang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yi-Peng Gao
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Yu-Xin Hu
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Sha-Sha Wang
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, China.
| |
Collapse
|
13
|
Li S, Hu G, Kuang L, Zhou T, Jiang H, Pang F, Li J, Chen X, Bao J, Li W, Li C, Li M, Wang L, Zhang D, Zhang J, Yang Z, Jin H. Unraveling the mechanism of ethyl acetate extract from Prismatomeris connata Y. Z. Ruan root in treating pulmonary fibrosis: insights from bioinformatics, network pharmacology, and experimental validation. Front Immunol 2024; 14:1330055. [PMID: 38259493 PMCID: PMC10801734 DOI: 10.3389/fimmu.2023.1330055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Pulmonary fibrosis is a terminal lung disease characterized by fibroblast proliferation, extracellular matrix accumulation, inflammatory damage, and tissue structure destruction. The pathogenesis of this disease, particularly idiopathic pulmonary fibrosis (IPF), remains unknown. Macrophages play major roles in organ fibrosis diseases, including pulmonary fibrosis. The phenotype and polarization of macrophages are closely associated with pulmonary fibrosis. A new direction in research on anti-pulmonary fibrosis is focused on developing drugs that maintain the stability of the pulmonary microenvironment. Methods We obtained gene sequencing data and clinical information for patients with IPF from the GEO datasets GSE110147, GSE15197, GSE24988, GSE31934, GSE32537, GSE35145, GSE53845, GSE49072, GSE70864, and GSE90010. We performed GO, KEGG enrichment analysis and GSEA analysis, and conducted weighted gene co-expression network analysis. In addition, we performed proteomic analysis of mouse lung tissue. To verify the results of bioinformatics analysis and proteomic analysis, mice were induced by intratracheal instillation of bleomycin (BLM), and gavaged for 14 days after modeling. Respiratory function of mice in different groups was measured. Lung tissues were retained for histopathological examination, Western Blot and real-time quantitative PCR, etc. In addition, lipopolysaccharide, interferon-γ and interleukin-4 were used to induce RAW264.7 cells for 12h in vitro to establish macrophage inflammation and polarization model. At the same time, HG2 intervention was given. The phenotype transformation and cytokine secretion of macrophages were investigated by Western Blot, RT-qPCR and flow cytometry, etc. Results Through bioinformatics analysis and experiments involving bleomycin-induced pulmonary fibrosis in mice, we confirmed the importance of macrophage polarization in IPF. The analysis revealed that macrophage polarization in IPF involves a change in the phenotypic spectrum. Furthermore, experiments demonstrated high expression of M2-type macrophage-associated biomarkers and inducible nitric oxide synthase, thus indicating an imbalance in M1/M2 polarization of pulmonary macrophages in mice with pulmonary fibrosis. Discussion Our investigation revealed that the ethyl acetate extract (HG2) obtained from the roots of Prismatomeris connata Y. Z. Ruan exhibits therapeutic efficacy against bleomycin-induced pulmonary fibrosis. HG2 modulates macrophage polarization, alterations in the TGF-β/Smad pathway, and downstream protein expression in the context of pulmonary fibrosis. On the basis of our findings, we believe that HG2 has potential as a novel traditional Chinese medicine component for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Sizheng Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang Hu
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Lian Kuang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Zhou
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Jiang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Pang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jie Bao
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| | - Wanfang Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| | - Chuangjun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Menglin Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lulu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zengyan Yang
- Section of Science & Technology, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi, China
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Medical Products Administration (NMPA) Key Laboratory of Safety Research and Evaluation of Innovative Drug, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- R&D Department, Beijing Union-Genius Pharmaceutical Technology Development Co. Ltd., Beijing, China
| |
Collapse
|
14
|
Liu N, Li M, Pang H, Tiantian T, Li X, Su Y, Jin M, Wu H, Qian C, Sun M. Bioinformatics-driven discovery of silica nanoparticles induces apoptosis and renal damage via the unfolded protein response in NRK-52E cells and rat kidney. Comput Biol Med 2024; 168:107816. [PMID: 38064850 DOI: 10.1016/j.compbiomed.2023.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/03/2023] [Indexed: 01/10/2024]
Abstract
Silica nanoparticles (SiNPs) are nanomaterials with widespread applications in drug delivery and disease diagnosis. Despite their utility, SiNPs can cause chronic kidney disease, hindering their clinical translation. The molecular mechanisms underlying SiNP-induced renal toxicity are complex and require further investigation. To address this challenge, we employed bioinformatics tools to predict the potential mechanisms underlying renal damage caused by SiNPs. We identified 1627 upregulated differentially expressed genes (DEGs) and 1334 downregulated DEGs. Functional enrichment analysis and protein-protein interaction network revealed that SiNP-induced renal damage is associated with apoptosis. Subsequently, we verified that SiNPs induced apoptosis in an in vitro model of NRK-52E cells via the unfolded protein response (UPR) in a dose-dependent manner. Furthermore, in an in vivo rat model, high-dose SiNP administration via tracheal drip caused hyalinization of the renal tubules, renal interstitial lymphocytic infiltration, and collagen fiber accumulation. Concurrently, we observed an increase in UPR-related protein levels at the onset of renal damage. Thus, our study confirmed that SiNPs induce apoptosis and renal damage through the UPR, adding to the theoretical understanding of SiNP-related kidney damage and offering a potential target for preventing and treating kidney injuries in SiNP clinical applications.
Collapse
Affiliation(s)
- Naimeng Liu
- Breast Surgery Department, General Surgery Center, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Meng Li
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Huan Pang
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Tian Tiantian
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Xinyue Li
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Yanchi Su
- School of Artificial Intelligence, Jilin University, No.2699 Qianjin Street, Changchun, China.
| | - Minghua Jin
- School of Public Health Jilin University, NO.1163 Xinmin Street, Changchun, China.
| | - Hao Wu
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Chuyue Qian
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| | - Mindan Sun
- Department of Nephrology, The First Hospital of Jilin University, Street Xinmin 1, Changchun, China.
| |
Collapse
|
15
|
Liang JY, Wei HJ, Tang YY. Isthmin: A multifunctional secretion protein. Cytokine 2024; 173:156423. [PMID: 37979212 DOI: 10.1016/j.cyto.2023.156423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Isthmin is a polypeptide secreted by adipocytes that was first detected in Xenopus gastrula embryos. Recent studies have focused on the biological functions of isthmin in growth and development, angiogenesis, and metabolism. Distinct spatiotemporal expression of isthmin-1 (ISM-1) was observed during growth and development. ISM-1 plays an important role in the occurrence and development of cancer by regulating cell proliferation, migration, angiogenesis, and immune microenvironments. Moreover, ISM-1, as a newly identified insulin-like adipokine, increases adipocyte glucose uptake and inhibits hepatic lipid synthesis. However, the biological function of ISM-1 remains largely unknown. In this review, we highlight the structure and physiological functions of isthmin and explore its application potential, contributing to a better understanding of its function and providing prevention and treatment strategies for various diseases.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Physiology, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Hai-Jun Wei
- Department of Physiology, Hunan Polytechnic of Environment and Biology, Hengyang 421001, Hunan, PR China
| | - Yi-Yun Tang
- Department of Physiology, Hengyang Medical School, University of South China, 28 W Changsheng Road, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
16
|
Imamoto T, Kawasaki T, Sato H, Tatsumi K, Ishii D, Yoshioka K, Hasegawa Y, Ohara O, Suzuki T. Different Transcriptome Features of Peripheral Blood Mononuclear Cells in Non-Emphysematous Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 25:66. [PMID: 38203236 PMCID: PMC10779039 DOI: 10.3390/ijms25010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Non-emphysematous chronic obstructive pulmonary disease (COPD), which is defined based on chest computed tomography findings, presented different transcriptome features of peripheral blood mononuclear cells (PBMCs) compared with emphysematous COPD. Enrichment analysis of transcriptomic data in COPD demonstrated that the "Hematopoietic cell lineage" pathway in Kyoto Encyclopedia of Genes and Genomes pathway analysis was highly upregulated, suggesting that cellular dynamic dysregulation in COPD lungs is affected by pathologically modified PBMCs. The differentially expressed genes (DEGs) upregulated in PBMCs reflected the disease state of non-emphysematous COPD. Upregulated DEGs such as XCL1, PRKCZ, TMEM102, CD200R1, and AQP1 activate T lymphocytes and eosinophils. Upregulating keratan sulfate biosynthesis and metabolic processes is associated with protection against the destruction of the distal airways. ITGA3 upregulation augments interactions with extracellular matrix proteins, and COL6A1 augments the profibrotic mast cell phenotype during alveolar collagen VI deposition. Upregulating HSPG2, PDGFRB, and PAK4 contributes to the thickening of the airway wall, and upregulating SERPINF1 expression explains the better-preserved vascular bed. Therefore, gene expression and pathway analysis in PBMCs in patients with non-emphysematous COPD represented type 2 immune responses and airway remodeling features. Therefore, these patients have asthmatic potential despite no clinical signs of asthma, in contrast to those with emphysematous COPD.
Collapse
Affiliation(s)
- Takuro Imamoto
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hironori Sato
- Department of Pediatrics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Daisuke Ishii
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Keiichiro Yoshioka
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | - Takuji Suzuki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Synergy Institute for Futuristic Mucosal Vaccine Research and Development, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
17
|
Tee JH, Vijayakumar U, Shanmugasundaram M, Lam TYW, Liao W, Yang Y, Wong WSF, Ge R. Isthmin-1 attenuates allergic Asthma by stimulating adiponectin expression and alveolar macrophage efferocytosis in mice. Respir Res 2023; 24:269. [PMID: 37932719 PMCID: PMC10626717 DOI: 10.1186/s12931-023-02569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Allergic asthma is a common respiratory disease that significantly impacts human health. Through in silico analysis of human lung RNASeq, we found that asthmatic lungs display lower levels of Isthmin-1 (ISM1) expression than healthy lungs. ISM1 is an endogenous anti-inflammatory protein that is highly expressed in mouse lungs and bronchial epithelial cells, playing a crucial role in maintaining lung homeostasis. However, how ISM1 influences asthma remains unclear. This study aims to investigate the potential involvement of ISM1 in allergic airway inflammation and uncover the underlying mechanisms. METHODS We investigated the pivotal role of ISM1 in airway inflammation using an ISM1 knockout mouse line (ISM1-/-) and challenged them with house dust mite (HDM) extract to induce allergic-like airway/lung inflammation. To examine the impact of ISM1 deficiency, we analyzed the infiltration of immune cells into the lungs and cytokine levels in bronchoalveolar lavage fluid (BALF) using flow cytometry and multiplex ELISA, respectively. Furthermore, we examined the therapeutic potential of ISM1 by administering recombinant ISM1 (rISM1) via the intratracheal route to rescue the effects of ISM1 reduction in HDM-challenged mice. RNA-Seq, western blot, and fluorescence microscopy techniques were subsequently used to elucidate the underlying mechanisms. RESULTS ISM1-/- mice showed a pronounced worsening of allergic airway inflammation and hyperresponsiveness upon HDM challenge. The heightened inflammation in ISM1-/- mice correlated with enhanced lung cell necroptosis, as indicated by higher pMLKL expression. Intratracheal delivery of rISM1 significantly reduced the number of eosinophils in BALF and goblet cell hyperplasia. Mechanistically, ISM1 stimulates adiponectin secretion by type 2 alveolar epithelial cells partially through the GRP78 receptor and enhances adiponectin-facilitated apoptotic cell clearance via alveolar macrophage efferocytosis. Reduced adiponectin expression under ISM1 deficiency also contributed to intensified necroptosis, prolonged inflammation, and heightened severity of airway hyperresponsiveness. CONCLUSIONS This study revealed for the first time that ISM1 functions to restrain airway hyperresponsiveness to HDM-triggered allergic-like airway/lung inflammation in mice, consistent with its persistent downregulation in human asthma. Direct administration of rISM1 into the airway alleviates airway inflammation and promotes immune cell clearance, likely by stimulating airway adiponectin production. These findings suggest that ISM1 has therapeutic potential for allergic asthma.
Collapse
Affiliation(s)
- Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Udhaya Vijayakumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, A*STAR, Singapore, 138668, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), National University of Singapore, Singapore, 138602, Singapore.
- Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore, 117600, Singapore.
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
18
|
Peng Y, Li Y, Yang Y, Shi T, Liu R, Luan Y, Yin C. The Role and Potential Regulatory Mechanism of STING Modulated Macrophage Apoptosis and Differentiation in Severe Acute Pancreatitis-Associated Lung Injury. J Interferon Cytokine Res 2023; 43:455-468. [PMID: 37819622 DOI: 10.1089/jir.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
This study aims to investigate the role of STING in promoting macrophage apoptosis and regulating macrophage polarization in severe acute pancreatitis (SAP)-associated lung injury in vitro and in vivo. A murine model was established by intraperitoneal injection of caerulein and lipopolysaccharide (LPS). Meanwhile, ANA-1 cells were stimulated with LPS to induce apoptosis in vitro. More primary alveolar macrophages underwent apoptosis and M1 macrophage polarization in the SAP group compared with the control group, which was reversed by inhibiting STING. When ANA-1 cells were induced into M2-type macrophages, the reduction of M1 macrophage markers was accompanied by a decrease of LPS-induced apoptosis. Finally, the inhibitory effect of C-176 on STING ameliorates lung injury and inflammation by adjusting macrophage polarization and rescuing apoptosis. Therefore, inhibiting STING could be a new therapeutic strategy for treating acute pancreatitis-associated lung injury.
Collapse
Affiliation(s)
- Yiqiu Peng
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yuxi Yang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tingjuan Shi
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
19
|
Bedford R, Smith G, Rothwell E, Martin S, Medhane R, Casentieri D, Daunt A, Freiberg G, Hollings M. A multi-organ, lung-derived inflammatory response following in vitro airway exposure to cigarette smoke and next-generation nicotine delivery products. Toxicol Lett 2023; 387:35-49. [PMID: 37774809 DOI: 10.1016/j.toxlet.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Despite increasing use of in vitro models that closely resemble in vivo human biology, their application in understanding downstream effects of airway toxicity, such as inflammation, are at an early stage. In this study, we used various assays to examine the inflammatory response induced in MucilAir™ tissues and A549 cells exposed to three products known to induce toxicity. Reduced barrier integrity was observed in tissues following exposure to each product, with reduced viability and increased cytotoxicity also shown. Similar changes in viability were also observed in A549 cells. Furthermore, whole cigarette smoke (CS) induced downstream phenotypic THP-1 changes and endothelial cell adhesion, an early marker of atherosclerosis. In contrast, exposure to next-generation delivery product (NGP) aerosol did not induce this response. Cytokine, histological and RNA analysis highlighted increased biomarkers linked to inflammatory pathways and immune cell differentiation following exposure to whole cigarette smoke, including GM-CSF, IL-1β, cleaved caspase-3 and cytochrome P450 enzymes. As a result of similar observations in human airway inflammation, we propose that our exposure platform could act as a representative model for studying such events in vitro. Furthermore, this model could be used to test the inflammatory or anti-inflammatory impact posed by inhaled compounds delivered to the lung.
Collapse
Affiliation(s)
- R Bedford
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| | - G Smith
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - E Rothwell
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - S Martin
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - R Medhane
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - D Casentieri
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - A Daunt
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - G Freiberg
- Labcorp Early Development Laboratories Limited, Eye, UK
| | - M Hollings
- Labcorp Early Development Laboratories Limited, Harrogate, UK.
| |
Collapse
|
20
|
Xu M, Feng R, Feng R, Yin X, Zhang L, Wang C, Liu J. Glomerular filtration rate in patients with type 2 diabetes mellitus: is serum isthmin-1 level a possible link? BMJ Open Diabetes Res Care 2023; 11:e003402. [PMID: 37640504 PMCID: PMC10462937 DOI: 10.1136/bmjdrc-2023-003402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
INTRODUCTION Isthmin-1 (Ism-1) is a novel adipokine. However, little is known regarding the association between Ism-1 and type 2 diabetes mellitus (T2DM). This study aimed to investigate the relationship between serum Ism-1 levels and glomerular filtration rate (GFR) in patients with T2DM. RESEARCH DESIGN AND METHODS A total of 209 patients with T2DM were recruited into this retrospective study. Clinical data were collected. Fasting blood samples were collected for serum Ism-1 testing using ELISA kits. Based on the estimated glomerular filtration rate (eGFR), participants were divided into the normal eGFR group (n=167) and the decreased eGFR group (n=42). The relationship between Ism-1 and eGFR was assessed using linear and binary logistic regression analyses. Receiver operating characteristic (ROC) curve analysis was employed to examine the predictive efficacy of Ism-1 for distinguishing patients with eGFR <60 mL/min/1.73 m2. RESULTS Compared with patients with normal eGFR, serum Ism-1 levels were increased in patients with decreased eGFR (p<0.001). Serum Ism-1 levels were negatively correlated with eGFR in patients with T2DM even after multiple adjustments (p<0.001). For each 0.1 ng/mL increment of Ism-1, the odds of having an eGFR <60 mL/min/1.73 m2 increased by 54.5% (OR=1.545; p<0.001) in patients with T2DM. ROC analysis showed that higher serum Ism-1 levels (>1.297 ng/mL) had predictive efficacy in patients with eGFR <60 mL/min/1.73 m2, with an area under the curve of 0.908. CONCLUSIONS Serum Ism-1 levels were inversely associated with eGFR, and high Ism-1 levels may be used as a potential biomarker for predicting kidney function impairment in patients with T2DM.
Collapse
Affiliation(s)
- Mingyue Xu
- Department of Endocrinology, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, 250012, P.R. China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong Province, P.R. China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, P.R. China
| | - Ruiying Feng
- Department of Endocrinology, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, 250012, P.R. China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong Province, P.R. China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, P.R. China
| | - Ruoqi Feng
- Department of Endocrinology, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, 250012, P.R. China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong Province, P.R. China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, P.R. China
| | - Xiaofei Yin
- Department of Endocrinology, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, 250012, P.R. China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong Province, P.R. China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, P.R. China
| | - Lei Zhang
- Shandong Provincial Institute for Endemic Disease Control, Jinan, 250014, Shandong Province, P.R. China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, 250012, P.R. China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong Province, P.R. China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, P.R. China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, 250012, P.R. China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong Province, P.R. China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, 250012, Shandong Province, P.R. China
| |
Collapse
|
21
|
Liao J, Li Y, Gui X, Zhang Y, Hu X, Cheng L, Hu W, Bai F. Serum Isthmin-1 Was Increased in Type 2 Diabetic Patients but Not in Diabetic Sensorimotor Peripheral Neuropathy. Diabetes Metab Syndr Obes 2023; 16:2013-2024. [PMID: 37427082 PMCID: PMC10327676 DOI: 10.2147/dmso.s411127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2023] Open
Abstract
Purpose This study aimed to investigate the relationship between serum isthmin-1 (ISM1) and type 2 diabetes mellitus (T2DM), and the alteration of serum ISM1 level in both diabetic sensorimotor peripheral neuropathy (DSPN) and diabetic adults with obesity. Patients and Methods We recruited 180 participants (120 T2DM and 60 controls) in the cross-sectional study. First, we compared the serum ISM1 concentration in diabetic patients and non-diabetic controls. Secondly, according to DSPN, patients were divided into DSPN and non-DSPN groups. Last, patients were categorized as lean T2DM (15 males, 15 females), overweight T2DM (35 males, 19 females), and obese T2DM groups (23 males, 13 females) according to gender and body mass index (BMI). All participants were collected with clinical characteristics and biochemical profiles. Serum ISM1 was detected in all subjects by ELISA. Results Higher serum ISM1 [7.78 ng/mL (IQR: 6.33-9.06) vs 5.22 (3.86-6.04), P <0.001] was observed in diabetic patients compared to non-diabetic controls. Binary logistic regression analysis showed that serum ISM1 was a risk factor for type 2 diabetes after adjustment (OR=4.218, 95% CI: 1.843-9.653, P=0.001). Compared to the non-DSPN group, serum ISM1 level was not changed significantly in patients who suffered from DSPN. Diabetic females with obesity had lower level of serum ISM1 (7.10±1.29 ng/mL) when compared to the lean T2DM (8.42±1.36 ng/mL, P <0.05) and the overweight T2DM (8.33±1.27 ng/mL, P <0.05). However, serum ISM1 was not changed significantly in male groups or all patients together. Conclusion Serum ISM1 was a risk factor for type 2 diabetes, and it was associated with diabetic adults with obesity while there was sexual dimorphism. However, serum ISM1 levels were not correlated with DSPN.
Collapse
Affiliation(s)
- Jiaxin Liao
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Yuting Li
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Xiaoting Gui
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Yong Zhang
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Xu Hu
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Liang Cheng
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Wen Hu
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Feng Bai
- Department of Endocrinology, The Huai’an Hospital Affiliated to Xuzhou Medical University and The Second People’s Hospital of Huai’an, Xuzhou Medical University, Huai’an, People’s Republic of China
| |
Collapse
|
22
|
Wang Y, Li K, Zhao W, Liu Y, Li T, Yang HQ, Tong Z, Song N. Integrated multi-omics analyses reveal the altered transcriptomic characteristics of pulmonary macrophages in immunocompromised hosts with Pneumocystis pneumonia. Front Immunol 2023; 14:1179094. [PMID: 37359523 PMCID: PMC10289015 DOI: 10.3389/fimmu.2023.1179094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction With the extensive use of immunosuppressants, immunosuppression-associated pneumonitis including Pneumocystis jirovecii pneumonia (PCP) has received increasing attention. Though aberrant adaptive immunity has been considered as a key reason for opportunistic infections, the characteristics of innate immunity in these immunocompromised hosts remain unclear. Methods In this study, wild type C57BL/6 mice or dexamethasone-treated mice were injected with or without Pneumocystis. Bronchoalveolar lavage fluids (BALFs) were harvested for the multiplex cytokine and metabolomics analysis. The single-cell RNA sequencing (scRNA-seq) of indicated lung tissues or BALFs was performed to decipher the macrophages heterogeneity. Mice lung tissues were further analyzed via quantitative polymerase chain reaction (qPCR) or immunohistochemical staining. Results We found that the secretion of both pro-inflammatory cytokines and metabolites in the Pneumocystis-infected mice are impaired by glucocorticoids. By scRNA-seq, we identified seven subpopulations of macrophages in mice lung tissues. Among them, a group of Mmp12+ macrophages is enriched in the immunocompetent mice with Pneumocystis infection. Pseudotime trajectory showed that these Mmp12+ macrophages are differentiated from Ly6c+ classical monocytes, and highly express pro-inflammatory cytokines elevated in BALFs of Pneumocystis-infected mice. In vitro, we confirmed that dexamethasone impairs the expression of Lif, Il1b, Il6 and Tnf, as well as the fungal killing capacity of alveolar macrophage (AM)-like cells. Moreover, in patients with PCP, we found a group of macrophages resembled the aforementioned Mmp12+ macrophages, and these macrophages are inhibited in the patient receiving glucocorticoid treatment. Additionally, dexamethasone simultaneously impaired the functional integrity of resident AMs and downregulated the level of lysophosphatidylcholine, leading to the suppressed antifungal capacities. Conclusion We reported a group of Mmp12+ macrophages conferring protection during Pneumocystis infection, which can be dampened by glucocorticoids. This study provides multiple resources for understanding the heterogeneity and metabolic changes of innate immunity in immunocompromised hosts, and also suggests that the loss of Mmp12+ macrophages population contributes to the pathogenesis of immunosuppression-associated pneumonitis.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kang Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weichao Zhao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Respiratory Medicine, Strategic Support Force Medical Center, Beijing, China
| | - Yalan Liu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hu-Qin Yang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nan Song
- Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Gao G, Li X, Jiang Z, Osorio L, Tang YL, Yu X, Jin G, Zhou Z. Isthmin-1 (Ism1) modulates renal branching morphogenesis and mesenchyme condensation during early kidney development. Nat Commun 2023; 14:2378. [PMID: 37185772 PMCID: PMC10130008 DOI: 10.1038/s41467-023-37992-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The outgrowth of epithelial bud followed by reiterated bifurcations during renal development is driven by the ligand-receptor interactions between the epithelium and the surrounding mesenchyme. Here, by exploring ligand-receptor interactions in E10.5 and E11.5 kidneys by single cell RNA-seq, we find that Isthmin1 (Ism1), a secreted protein, resembles Gdnf expression and modulates kidney branching morphogenesis. Mice deficient for Ism1 exhibit defective ureteric bud bifurcation and impaired metanephric mesenchyme condensation in E11.5 embryos, attributable to the compromised Gdnf/Ret signaling, ultimately leading to renal agenesis and hypoplasia/dysplasia. By HRP-induced proximity labelling, we further identify integrin α8β1 as a receptor of Ism1 in E11.5 kidney and demonstrate that Ism1 promoted cell-cell adhesion through interacting with Integrin α8β1, the receptor whose activation is responsible for Gdnf expression and mesenchyme condensation. Taken together, our work reveals Ism1 as a critical regulator of cell-cell interaction that modulates Gdnf/Ret signaling during early kidney development.
Collapse
Affiliation(s)
- Ge Gao
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaoping Li
- Department of Hepatic Surgery and Liver Transplantation Center of the Third Affiliated Hospital, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Zhixin Jiang
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Liliana Osorio
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Ying Lam Tang
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China
| | - Xueqing Yu
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Guoxiang Jin
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China
| | - Zhongjun Zhou
- Guangdong Cardiovascular Institute, Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, China.
- School of Biomedical Sciences, LKS Faculty of medicine, The University of Hong Kong, Hong Kong, China.
- Reproductive Medical Center, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
24
|
Angeles-Floriano T, Sanjuan-Méndez A, Rivera-Torruco G, Parra-Ortega I, Lopez-Martinez B, Martinez-Castro J, Marin-Santiago S, Alcántara-Hernández C, Martínez-Martínez A, Márquez-González H, Klünder-Klünder M, Olivar-López V, Zaragoza-Ojeda M, Arenas-Huertero F, Torres-Aguilar H, Medina-Contreras O, Zlotnik A, Valle-Rios R. Leukocyte surface expression of the endoplasmic reticulum chaperone GRP78 is increased in severe COVID-19. J Leukoc Biol 2023; 113:1-10. [PMID: 36822163 DOI: 10.1093/jleuko/qiac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 01/12/2023] Open
Abstract
Hyperinflammation present in individuals with severe COVID-19 has been associated with an exacerbated cytokine production and hyperactivated immune cells. Endoplasmic reticulum stress leading to the unfolded protein response has been recently reported as an active player in inducing inflammatory responses. Once unfolded protein response is activated, GRP78, an endoplasmic reticulum-resident chaperone, is translocated to the cell surface (sGRP78), where it is considered a cell stress marker; however, its presence has not been evaluated in immune cells during disease. Here we assessed the presence of sGRP78 on different cell subsets in blood samples from severe or convalescent COVID-19 patients. The frequency of CD45+sGRP78+ cells was higher in patients with the disease compared to convalescent patients. The latter showed similar frequencies to healthy controls. In patients with COVID-19, the lymphoid compartment showed the highest presence of sGRP78+ cells versus the myeloid compartment. CCL2, TNF-α, C-reactive protein, and international normalized ratio measurements showed a positive correlation with the frequency of CD45+sGRP78+ cells. Finally, gene expression microarray data showed that activated T and B cells increased the expression of GRP78, and peripheral blood mononuclear cells from healthy donors acquired sGRP78 upon activation with ionomycin and PMA. Thus, our data highlight the association of sGRP78 on immune cells in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tania Angeles-Floriano
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Adriana Sanjuan-Méndez
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Programa de Maestría en Biomedicina Experimental, Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca City, Mexico
| | - Guadalupe Rivera-Torruco
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico.,Departamento de Fisiología y Neurociencias, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Israel Parra-Ortega
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida Lopez-Martinez
- Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jesús Martinez-Castro
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | - Sergio Marin-Santiago
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | | | - Araceli Martínez-Martínez
- Departamento de Medicina Interna, Centro Médico Lic, Adolfo López Mateos de Toluca, Toluca City, Mexico
| | - Horacio Márquez-González
- Departamento de Investigación Clínica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Miguel Klünder-Klünder
- Subdirección de Investigación, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Victor Olivar-López
- Departamento de Urgencias Pediátricas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Honorio Torres-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca City, Mexico
| | - Oscar Medina-Contreras
- Unidad de Investigación Epidemiológica en Endocrinología y Nutrición, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Albert Zlotnik
- Department of Physiology and Biophysics, University of California, Irvine, CA, United States
| | - Ricardo Valle-Rios
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.,Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
25
|
Isthmin-A Multifaceted Protein Family. Cells 2022; 12:cells12010017. [PMID: 36611811 PMCID: PMC9818725 DOI: 10.3390/cells12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Isthmin (ISM) is a secreted protein family with two members, namely ISM1 and ISM2, both containing a TSR1 domain followed by an AMOP domain. Its broad expression pattern suggests diverse functions in developmental and physiological processes. Over the past few years, multiple studies have focused on the functional analysis of the ISM protein family in several events, including angiogenesis, metabolism, organ homeostasis, immunity, craniofacial development, and cancer. Even though ISM was identified two decades ago, we are still short of understanding the roles of the ISM protein family in embryonic development and other pathological processes. To address the role of ISM, functional studies have begun but unresolved issues remain. To elucidate the regulatory mechanism of ISM, it is crucial to determine its interactions with other ligands and receptors that lead to the activation of downstream signalling pathways. This review provides a perspective on the gene organization and evolution of the ISM family, their links with developmental and physiological functions, and key questions for the future.
Collapse
|
26
|
Wu J, Zhao X, Xiao C, Xiong G, Ye X, Li L, Fang Y, Chen H, Yang W, Du X. The role of lung macrophages in chronic obstructive pulmonary disease. Respir Med 2022; 205:107035. [PMID: 36343504 DOI: 10.1016/j.rmed.2022.107035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) as a common, preventable and treatable chronic respiratory disease in clinic, gets continuous deterioration and we can't take effective intervention at present. Lung macrophages (LMs) are closely related to the occurrence and development of COPD, but the specific mechanism is not completely clear. In this review we will focus on the role of LMs and potential avenues for therapeutic targeting for LMs in COPD.
Collapse
Affiliation(s)
- Jianli Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xia Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guosheng Xiong
- Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiulin Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Lin Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Xiaohua Du
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
27
|
Zhao M, Banhos Danneskiold-Samsøe N, Ulicna L, Nguyen Q, Voilquin L, Lee DE, White JP, Jiang Z, Cuthbert N, Paramasivam S, Bielczyk-Maczynska E, Van Rechem C, Svensson KJ. Phosphoproteomic mapping reveals distinct signaling actions and activation of muscle protein synthesis by Isthmin-1. eLife 2022; 11:e80014. [PMID: 36169399 PMCID: PMC9592085 DOI: 10.7554/elife.80014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
The secreted protein isthmin-1 (Ism1) mitigates diabetes by increasing adipocyte and skeletal muscle glucose uptake by activating the PI3K-Akt pathway. However, while both Ism1 and insulin converge on these common targets, Ism1 has distinct cellular actions suggesting divergence in downstream intracellular signaling pathways. To understand the biological complexity of Ism1 signaling, we performed phosphoproteomic analysis after acute exposure, revealing overlapping and distinct pathways of Ism1 and insulin. We identify a 53% overlap between Ism1 and insulin signaling and Ism1-mediated phosphoproteome-wide alterations in ~450 proteins that are not shared with insulin. Interestingly, we find several unknown phosphorylation sites on proteins related to protein translation, mTOR pathway, and, unexpectedly, muscle function in the Ism1 signaling network. Physiologically, Ism1 ablation in mice results in altered proteostasis, including lower muscle protein levels under fed and fasted conditions, reduced amino acid incorporation into proteins, and reduced phosphorylation of the key protein synthesis effectors Akt and downstream mTORC1 targets. As metabolic disorders such as diabetes are associated with accelerated loss of skeletal muscle protein content, these studies define a non-canonical mechanism by which this antidiabetic circulating protein controls muscle biology.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| | | | - Livia Ulicna
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Quennie Nguyen
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Laetitia Voilquin
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| | - David E Lee
- Duke Molecular Physiology Institute, Duke University School of MedicineDurhamUnited States
- Department of Medicine, Duke University School of MedicineDurhamUnited States
| | - James P White
- Duke Molecular Physiology Institute, Duke University School of MedicineDurhamUnited States
- Department of Medicine, Duke University School of MedicineDurhamUnited States
- Duke Center for the Study of Aging and Human Development, Duke University School of MedicineDurhamUnited States
| | - Zewen Jiang
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Department of Laboratory Medicine, University of California, San FranciscoSan FranciscoUnited States
- Diabetes Center, University of California, San FranciscoSan FranciscoUnited States
| | - Nickeisha Cuthbert
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Shrika Paramasivam
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Ewa Bielczyk-Maczynska
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of MedicineStanfordUnited States
| | - Capucine Van Rechem
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Katrin J Svensson
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
- Stanford Diabetes Research Center, Stanford University School of MedicineStanfordUnited States
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
28
|
Aegerter H, Lambrecht BN, Jakubzick CV. Biology of lung macrophages in health and disease. Immunity 2022; 55:1564-1580. [PMID: 36103853 DOI: 10.1016/j.immuni.2022.08.010] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
Tissue-resident alveolar and interstitial macrophages and recruited macrophages are critical players in innate immunity and maintenance of lung homeostasis. Until recently, assessing the differential functional contributions of tissue-resident versus recruited macrophages has been challenging because they share overlapping cell surface markers, making it difficult to separate them using conventional methods. This review describes how scRNA-seq and spatial transcriptomics can separate these subpopulations and help unravel the complexity of macrophage biology in homeostasis and disease. First, we provide a guide to identifying and distinguishing lung macrophages from other mononuclear phagocytes in humans and mice. Second, we outline emerging concepts related to the development and function of the various lung macrophages in the alveolar, perivascular, and interstitial niches. Finally, we describe how different tissue states profoundly alter their functions, including acute and chronic lung disease, cancer, and aging.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
29
|
Hu M, Zhang X, Hu C, Teng T, Tang QZ. A brief overview about the adipokine: Isthmin-1. Front Cardiovasc Med 2022; 9:939757. [PMID: 35958402 PMCID: PMC9360543 DOI: 10.3389/fcvm.2022.939757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Isthmin-1 is a secreted protein with multiple capability; however, it truly attracts our attention since the definition as an adipokine in 2021, which exerts indispensable roles in various pathophysiological processes through the endocrine or autocrine manners. In this review, we summarize recent knowledge of isthmin-1, including its distribution, structure, receptor and potential function.
Collapse
Affiliation(s)
- Min Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Xin Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Can Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Teng Teng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
- *Correspondence: Qi-Zhu Tang
| |
Collapse
|
30
|
Nguyen N, Xu S, Lam TYW, Liao W, Wong WSF, Ge R. ISM1 suppresses LPS-induced acute lung injury and post-injury lung fibrosis in mice. Mol Med 2022; 28:72. [PMID: 35752760 PMCID: PMC9233842 DOI: 10.1186/s10020-022-00500-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are clinical syndromes characterized by acute lung inflammation, pulmonary edema and hypoxemia, with up to 50% mortality rate without effective pharmacological therapy. Following the acute inflammation, repair and remodeling occurs which in some cases resulting in lung fibrosis. The pathophysiology of ALI/ARDS remains incompletely understood. Lipopolysaccharide (LPS)-induced ALI in mice have been widely used as a model to study human ALI/ARDS. Isthmin 1 (ISM1) is a secreted protein highly abundant in mouse lung. We have previously reported that upon intratracheal LPS instillation, ISM1 expression in the lung is further upregulated. Recently, we also reported that ISM1 is an anti-inflammatory protein in the lung with Ism1-/- mice presenting spontaneous chronic low-grade lung inflammation and obvious emphysema at young adult stage. However, what role ISM1 plays in ALI/ARDS and lung fibrosis remain unclear. Methods Using Ism1-/- mice and intratracheal LPS-induced ALI, and local delivery of recombinant ISM1 (rISM1), we investigated the role ISM1 plays in ALI and post-ALI lung fibrosis using flow cytometry, Western blot, antibody array, immunohistochemistry (IHC), immunofluorescent and other histological staining. Results We reveal that ISM1 deficiency in mice led to an intensified acute lung inflammation upon intratracheal LPS challenge, with a heightened leukocyte infiltration including neutrophils and monocyte-derived alveolar macrophages, as well as upregulation of multiple pro-inflammatory cytokines/chemokines including tumor necrosis factor α (TNF-α). Although innate immune cells largely subsided to the baseline by day 7 post-LPS challenge in both wild-type and Ism1−/− mice, Ism1−/− lung showed increased post-ALI fibrosis from day 9 post-LPS treatment with increased myofibroblasts, excessive collagen accumulation and TGF-β upregulation. The heightened lung fibrosis remained on day 28 post-LPS. Moreover, intranasal delivered recombinant ISM1 (rISM1) effectively suppressed LPS-induced acute lung inflammation and ALI, and rISM1 suppressed LPS-induced NF-κB activation in cultured mouse alveolar macrophages. Conclusion Together with our previous report, this work further established ISM1 as an endogenous anti-inflammation protein in the lung, restraining excessive host inflammatory response to LPS-triggered ALI and suppressing post-ALI lung fibrosis likely through suppressing NF-κB activation and pro-inflammatory cytokine/chemokine production. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00500-w.
Collapse
Affiliation(s)
- Ngan Nguyen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Terence Yin Weng Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Republic of Singapore.,Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore, 138602, Republic of Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Republic of Singapore.,Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore, 138602, Republic of Singapore.,Drug Discovery and Optimization Platform, National University Health System, Singapore, 117600, Republic of Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore.
| |
Collapse
|
31
|
Chen J, Lynn EG, Yousof TR, Sharma H, MacDonald ME, Byun JH, Shayegan B, Austin RC. Scratching the Surface—An Overview of the Roles of Cell Surface GRP78 in Cancer. Biomedicines 2022; 10:biomedicines10051098. [PMID: 35625836 PMCID: PMC9138746 DOI: 10.3390/biomedicines10051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
The 78 kDa glucose-regulated protein (GRP78) is considered an endoplasmic reticulum (ER)-resident molecular chaperone that plays a crucial role in protein folding homeostasis by regulating the unfolded protein response (UPR) and inducing numerous proapoptotic and autophagic pathways within the eukaryotic cell. However, in cancer cells, GRP78 has also been shown to migrate from the ER lumen to the cell surface, playing a role in several cellular pathways that promote tumor growth and cancer cell progression. There is another insidious consequence elicited by cell surface GRP78 (csGRP78) on cancer cells: the accumulation of csGRP78 represents a novel neoantigen leading to the production of anti-GRP78 autoantibodies that can bind csGRP78 and further amplify these cellular pathways to enhance cell growth and mitigate apoptotic cell death. This review examines the current body of literature that delineates the mechanisms by which ER-resident GRP78 localizes to the cell surface and its consequences, as well as potential therapeutics that target csGRP78 and block its interaction with anti-GRP78 autoantibodies, thereby inhibiting further amplification of cancer cell progression.
Collapse
Affiliation(s)
- Jack Chen
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Edward G. Lynn
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Tamana R. Yousof
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Hitesh Sharma
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Melissa E. MacDonald
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Jae Hyun Byun
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
| | - Bobby Shayegan
- Department of Surgery, Division of Urology, The Research Institute of St. Joe′s Hamilton, McMaster University, ON L8N 4A6, Canada;
| | - Richard C. Austin
- Department of Medicine, Division of Nephrology, St. Joseph′s Healthcare Hamilton, Hamilton Center for Kidney Research, McMaster University, Hamilton, ON L8N 4A6, Canada; (J.C.); (E.G.L.); (T.R.Y.); (H.S.); (M.E.M.); (J.H.B.)
- Correspondence: ; Tel.: +1-905-522-1155 (ext. 35175)
| |
Collapse
|