1
|
Montoya-Garcia A, Guerrero-Fonseca IM, Chanez-Paredes SD, Hernandez-Almaraz KB, Leon-Vega II, Silva-Olivares A, Betanzos A, Mondragon-Castelan M, Mondragon-Flores R, Salinas-Lara C, Vargas-Robles H, Schnoor M. Arpin deficiency increases actomyosin contractility and vascular permeability. eLife 2024; 12:RP90692. [PMID: 39298260 PMCID: PMC11412691 DOI: 10.7554/elife.90692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Citlaltepetl Salinas-Lara
- Laboratorio de Patogénesis Molecular, Facultad de Estudios Superiores de Iztacala, Tlalnepantla de Baz, Mexico
| | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
2
|
Kaya-Tilki E, Öztürk AA, Engür-Öztürk S, Dikmen M. Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells. Sci Rep 2024; 14:19837. [PMID: 39191829 PMCID: PMC11349893 DOI: 10.1038/s41598-024-70791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis.
Collapse
Affiliation(s)
- Elif Kaya-Tilki
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.
| | - Ahmet Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Selin Engür-Öztürk
- Department of Pharmacy Services, Tavas Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Miriş Dikmen
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
3
|
Shah FH, Lee HW. Endothelial and macrophage interactions in the angiogenic niche. Cytokine Growth Factor Rev 2024; 78:64-76. [PMID: 39019663 DOI: 10.1016/j.cytogfr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The interactions between vascular cells, especially endothelial cells, and macrophages play a pivotal role in maintaining the subtle balance of vascular biology, which is crucial for angiogenesis in both healthy and diseased states. These cells are central to ensuring a harmonious balance between tissue repair and preventing excessive angiogenic activity, which could lead to pathological conditions. Recent advances in sophisticated genetic engineering vivo models and novel sequencing approaches, such as single-cell RNA-sequencing, in immunobiology have significantly enhanced our understanding of the gene expression and behavior of macrophages. These insights offer new perspectives on the role macrophages play not only in development but also across various health conditions. In this review, we explore the complex interactions between multiple types of macrophages and endothelium, focusing on their impact on new blood vessel formation. By understanding these intricate interactions, we aim to provide insights into new methods for managing angiogenesis in various diseases, thereby offering hope for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
4
|
Malchow J, Eberlein J, Li W, Hogan BM, Okuda KS, Helker CSM. Neural progenitor-derived Apelin controls tip cell behavior and vascular patterning. SCIENCE ADVANCES 2024; 10:eadk1174. [PMID: 38968355 PMCID: PMC11225789 DOI: 10.1126/sciadv.adk1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
During angiogenesis, vascular tip cells guide nascent vascular sprouts to form a vascular network. Apelin, an agonist of the G protein-coupled receptor Aplnr, is enriched in vascular tip cells, and it is hypothesized that vascular-derived Apelin regulates sprouting angiogenesis. We identify an apelin-expressing neural progenitor cell population in the dorsal neural tube. Vascular tip cells exhibit directed elongation and migration toward and along the apelin-expressing neural progenitor cells. Notably, restoration of neural but not vascular apelin expression in apelin mutants remedies the angiogenic defects of mutants. By functional analyses, we show the requirement of Apelin signaling for tip cell behaviors, like filopodia formation and cell elongation. Through genetic interaction studies and analysis of transgenic activity reporters, we identify Apelin signaling as a modulator of phosphoinositide 3-kinase and extracellular signal-regulated kinase signaling in tip cells in vivo. Our results suggest a previously unidentified neurovascular cross-talk mediated by Apelin signaling that is important for tip cell function during sprouting angiogenesis.
Collapse
Affiliation(s)
- Julian Malchow
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Jean Eberlein
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Wei Li
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
| | - Benjamin M. Hogan
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Kazuhide S. Okuda
- Organogenesis and Cancer Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria 3000, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Christian S. M. Helker
- Faculty of Biology, Cell Signaling and Dynamics, Philipps-University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Marburg, Germany
| |
Collapse
|
5
|
LoPilato RK, Kroeger H, Mohan SK, Lauderdale JD, Grimsey N, Haltiwanger RS. Two NOTCH1 O-fucose sites have opposing functions in mouse retinal angiogenesis. Glycobiology 2023; 33:661-672. [PMID: 37329502 PMCID: PMC10560083 DOI: 10.1093/glycob/cwad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023] Open
Abstract
Previous in vitro studies demonstrated that Fringe glycosylation of the NOTCH1 extracellular domain at O-fucose residues in Epidermal Growth Factor-like Repeats (EGFs) 6 and 8 is a significant contributor to suppression of NOTCH1 activation by JAG1 or enhancement of NOTCH1 activation by DLL1, respectively. In this study, we sought to evaluate the significance of these glycosylation sites in a mammalian model by generating 2 C57BL/6J mouse lines carrying NOTCH1 point mutations, which eliminate O-fucosylation and Fringe activity at EGFs 6 (T232V) or 8 (T311V). We assessed changes to morphology during retinal angiogenesis, a process in which expression of Notch1, Jag1, Dll4, Lfng, Mfng, and Rfng genes coordinate cell-fate decisions to grow vessel networks. In the EGF6 O-fucose mutant (6f/6f) retinas, we observed reduced vessel density and branching, suggesting that this mutant is a Notch1 hypermorph. This finding agrees with prior cell-based studies showing that the 6f mutation increased JAG1 activation of NOTCH1 during co-expression with inhibitory Fringes. Although we predicted that the EGF8 O-fucose mutant (8f/8f) would not complete embryonic development due to the direct involvement of the O-fucose in engaging ligand, the 8f/8f mice were viable and fertile. In the 8f/8f retina, we measured increased vessel density consistent with established Notch1 hypomorphs. Overall, our data support the importance of NOTCH1 O-fucose residues for pathway function and confirms that single O-glycan sites are rich in signaling instructions for mammalian development.
Collapse
Affiliation(s)
- Rachel K LoPilato
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Heike Kroeger
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, United States
| | - Sneha K Mohan
- Neuroscience Division of Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, United States
| | - James D Lauderdale
- Department of Cellular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, United States
- Neuroscience Division of Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA 30602, United States
| | - Neil Grimsey
- Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
6
|
Fonseca CG, Silvério V, Barata D, Giese W, Gerhardt H, Cardoso S, Franco CA. A 96-wells fluidic system for high-throughput screenings under laminar high wall shear stress conditions. MICROSYSTEMS & NANOENGINEERING 2023; 9:114. [PMID: 37719414 PMCID: PMC10504069 DOI: 10.1038/s41378-023-00589-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/14/2023] [Accepted: 07/26/2023] [Indexed: 09/19/2023]
Abstract
The ability of endothelial cells to respond to blood flow is fundamental for the correct formation and maintenance of a functional and hierarchically organized vascular network. Defective flow responses, in particular related to high flow conditions, have been associated with atherosclerosis, stroke, arteriovenous malformations, and neurodegenerative diseases. Yet, the molecular mechanisms involved in high flow response are still poorly understood. Here, we described the development and validation of a 96-wells fluidic system, with interchangeable cell culture and fluidics, to perform high-throughput screenings under laminar high-flow conditions. We demonstrated that endothelial cells in our newly developed 96-wells fluidic system respond to fluid flow-induced shear stress by aligning along the flow direction and increasing the levels of KLF2 and KLF4. We further demonstrate that our 96-wells fluidic system allows for efficient gene knock-down compatible with automated liquid handling for high-throughput screening platforms. Overall, we propose that this modular 96-well fluidic system is an excellent platform to perform genome-wide and/or drug screenings to identify the molecular mechanisms involved in the responses of endothelial cells to high wall shear stress.
Collapse
Affiliation(s)
- Catarina Gonçalves Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Silvério
- INESC Microsistemas and Nanotecnologias, INESC-MN, Lisboa, Portugal
- Department of Physics, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - David Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Wolfgang Giese
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Susana Cardoso
- INESC Microsistemas and Nanotecnologias, INESC-MN, Lisboa, Portugal
- Department of Physics, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Claudio Areias Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisbon, Portugal
| |
Collapse
|
7
|
Yıldız E, Ketenci Gencer F, Timur B, Laleli Koc B, Timur H. Is maternal serum endocan level a novel marker in gestational diabetes mellitus? J Obstet Gynaecol Res 2023; 49:2310-2316. [PMID: 37394770 DOI: 10.1111/jog.15733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
AIM To determine whether there was a significant difference between serum endocan levels of pregnant women with and without gestational diabetes mellitus (GDM). METHODS A total of 90 pregnant women, 45 with gestational diabetes and 45 healthy pregnant women, between 24 and 28 gestational weeks, were included in this prospective case-control study. The pregnant women were screened for gestational diabetes using a two-step protocol. Serum endocan levels were measured using a commercially available enzyme-linked immunosorbent assay (ELISA) kit. A p-value of <0.05 was considered statistically significant. RESULTS Serum endocan level was significantly higher in the GDM group than in healthy controls (168.46 ± 160.6 vs. 105.66 ± 26.52 pg/mL, respectively; p < 0.001). Serum endocan concentrations were positively correlated with the results of 50 g oral glucose challenge test (GCT) (p < 0.001). Receiver operating characteristic curve analysis showed that endocan with a cut-off point of 133.9 ng/dL indicated women with GDM with a sensitivity of 55.6% and specificity of 88.9% (area under the curve [AUC]: 0.737, 95% CI: 0.634-0.824). The overall differential performance of endocan according to the GDM groups was determined as 73.7% (p < 0.001). Maternal serum endocan level was positively correlated with fasting glucose, postprandial glucose, and glycated hemoglobin (HbA1c) (p < 0.001). CONCLUSIONS Elevated endocan levels in gestational diabetes were correlated with fasting glucose, postprandial glucose, HbA1c, and oral glucose tolerance test (OGTT) results. Despite the low sensitivity of 55.6% and the high specificity of 88.9%, we found a high differential performance rate indicating that serum endocan levels were important for the pathophysiology of GDM and should be investigated for the possibility of being a novel marker in larger populations.
Collapse
Affiliation(s)
- Elif Yıldız
- Department of Obstetrics and Gynecology, Gaziosmanpaşa Training and Research Hospital, İstanbul, Turkey
| | - Fatma Ketenci Gencer
- Department of Obstetrics and Gynecology, Gaziosmanpaşa Training and Research Hospital, İstanbul, Turkey
| | - Burcu Timur
- Department of Obstetrics and Gynecology, Ordu University Training and Research Hospital, Ordu, Turkey
| | - Bergen Laleli Koc
- Department of Obstetrics and Gynecology, Division of Perinatology, Ankara City Hospital, Ankara, Turkey
| | - Hakan Timur
- Department of Obstetrics and Gynecology, Division of Perinatology, Ordu University Training and Research Hospital, Ordu, Turkey
| |
Collapse
|
8
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Ferre-Torres J, Noguera-Monteagudo A, Lopez-Canosa A, Romero-Arias JR, Barrio R, Castaño O, Hernandez-Machado A. Modelling of chemotactic sprouting endothelial cells through an extracellular matrix. Front Bioeng Biotechnol 2023; 11:1145550. [PMID: 37362221 PMCID: PMC10285466 DOI: 10.3389/fbioe.2023.1145550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Sprouting angiogenesis is a core biological process critical to vascular development. Its accurate simulation, relevant to multiple facets of human health, is of broad, interdisciplinary appeal. This study presents an in-silico model replicating a microfluidic assay where endothelial cells sprout into a biomimetic extracellular matrix, specifically, a large-pore, low-concentration fibrin-based porous hydrogel, influenced by chemotactic factors. We introduce a novel approach by incorporating the extracellular matrix and chemotactic factor effects into a unified term using a single parameter, primarily focusing on modelling sprouting dynamics and morphology. This continuous model naturally describes chemotactic-induced sprouting with no need for additional rules. In addition, we extended our base model to account for matrix sensing and degradation, crucial aspects of angiogenesis. We validate our model via a hybrid in-silico experimental method, comparing the model predictions with experimental results derived from the microfluidic setup. Our results underscore the intricate relationship between the extracellular matrix structure and angiogenic sprouting, proposing a promising method for predicting the influence of the extracellular matrix on angiogenesis.
Collapse
Affiliation(s)
- Josep Ferre-Torres
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
| | | | - Adrian Lopez-Canosa
- Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Spain
| | - J Roberto Romero-Arias
- Institute for Research in Applied Mathematics and Systems, National Autonomous University of Mexico , Mexico City, Mexico
| | - Rafael Barrio
- Institute of Physics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Oscar Castaño
- Electronics and Biomedical Engineering, University of Barcelona (UB), Barcelona, Spain
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), Barcelona, Spain
| | - Aurora Hernandez-Machado
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
10
|
Prostaglandin E 2-Transporting Pathway and Its Roles via EP2/EP4 in Cultured Human Dental Pulp. J Endod 2023; 49:410-418. [PMID: 36758673 DOI: 10.1016/j.joen.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Prostaglandin E2 (PGE2) exerts biological actions through its transport pathway involving intracellular synthesis, extracellular transport, and receptor binding. This study aimed to determine the localization of the components of the PGE2-transporting pathway in human dental pulp and explore the relevance of PGE2 receptors (EP2/EP4) to angiogenesis and dentinogenesis. METHODS Protein localization of microsomal PGE2 (mPGES)synthase, PGE2 transporters (multidrug resistance-associated protein-4 [MRP4] and prostaglandin transporter [PGT]), and EP2/EP4 was analyzed using double immunofluorescence staining. Tooth slices from human third molars were cultured with or without butaprost (EP2 agonist) or rivenprost (EP4 agonist) for 1 week. Morphometric analysis of endothelial cell filopodia was performed to evaluate angiogenesis, and real-time polymerase chain reaction was performed to evaluate angiogenesis and odontoblast differentiation markers. RESULTS MRP4 and PGT were colocalized with mPGES and EP2/EP4 in odontoblasts and endothelial cells. Furthermore, MRP4 was colocalized with mPGES and EP4 in human leukocyte antigen-DR-expressing dendritic cells. In the tooth slice culture, EP2/EP4 agonists induced significant increases in the number and length of filopodia and mRNA expression of angiogenesis markers (vascular endothelial growth factor and fibroblast growth factor-2) and odontoblast differentiation markers (dentin sialophosphoprotein and collagen type 1). CONCLUSIONS PGE2-producing enzyme (mPGES), transporters (MRP4 and PGT), and PGE2-specific receptors (EP2/EP4) were immunolocalized in various cellular components of the human dental pulp. EP2/EP4 agonists promoted endothelial cell filopodia generation and upregulated angiogenesis- and odontoblast differentiation-related genes, suggesting that PGE2 binding to EP2/EP4 is associated with angiogenic and dentinogenic responses.
Collapse
|
11
|
Radler MR, Liu X, Peng M, Doyle B, Toyo-Oka K, Spiliotis ET. Pyramidal neuron morphogenesis requires a septin network that stabilizes filopodia and suppresses lamellipodia during neurite initiation. Curr Biol 2023; 33:434-448.e8. [PMID: 36538929 PMCID: PMC9905282 DOI: 10.1016/j.cub.2022.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022]
Abstract
Pyramidal neurons are a major cell type of the forebrain, consisting of a pyramidally shaped soma with axonal and apicobasal dendritic processes. It is poorly understood how the neuronal soma develops its pyramidal morphology, while generating neurites of the proper shape and orientation. Here, we discovered that the spherical somata of immature neurite-less neurons possess a circumferential wreath-like network of septin filaments, which promotes neuritogenesis by balancing the protrusive activity of lamellipodia and filopodia. In embryonic rat hippocampal and mouse cortical neurons, the septin wreath network consists of curvilinear filaments that contain septins 5, 7, and 11 (Sept5/7/11). The Sept5/7/11 wreath network demarcates a zone of myosin II enrichment and Arp2/3 diminution at the base of filopodial actin bundles. In Sept7-depleted neurons, cell bodies are enlarged with hyperextended lamellae and abnormally shaped neurites that originate from lamellipodia. This phenotype is accompanied by diminished myosin II and filopodia lifetimes and increased Arp2/3 and lamellipodial activity. Inhibition of Arp2/3 rescues soma and neurite phenotypes, indicating that the septin wreath network suppresses the extension of lamellipodia, facilitating the formation of neurites from the filopodia of a consolidated soma. We show that this septin function is critical for developing a pyramidally shaped soma with properly distributed and oriented dendrites in cultured rat hippocampal neurons and in vivo in mouse perinatal cortical neurons. Therefore, the somatic septin cytoskeleton provides a key morphogenetic mechanism for neuritogenesis and the development of pyramidal neurons.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Xiaonan Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Megan Peng
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Brenna Doyle
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Sveeggen TM, Abbey CA, Smith RL, Salinas ML, Chapkin RS, Bayless KJ. Annexin A2 modulates phospholipid membrane composition upstream of Arp2 to control angiogenic sprout initiation. FASEB J 2023; 37:e22715. [PMID: 36527391 PMCID: PMC10586062 DOI: 10.1096/fj.202201088r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The intersection of protein and lipid biology is of growing importance for understanding how cells address structural challenges during adhesion and migration. While protein complexes engaged with the cytoskeleton play a vital role, support from the phospholipid membrane is crucial for directing localization and assembly of key protein complexes. During angiogenesis, dramatic cellular remodeling is necessary for endothelial cells to shift from a stable monolayer to invasive structures. However, the molecular dynamics between lipids and proteins during endothelial invasion are not defined. Here, we utilized cell culture, immunofluorescence, and lipidomic analyses to identify a novel role for the membrane binding protein Annexin A2 (ANXA2) in modulating the composition of specific membrane lipids necessary for cortical F-actin organization and adherens junction stabilization. In the absence of ANXA2, there is disorganized cortical F-actin, reduced junctional Arp2, excess sprout initiation, and ultimately failed sprout maturation. Furthermore, we observed reduced filipin III labeling of membrane cholesterol in cells with reduced ANXA2, suggesting there is an alteration in phospholipid membrane dynamics. Lipidomic analyses revealed that 42 lipid species were altered with loss of ANXA2, including an accumulation of phosphatidylcholine (16:0_16:0). We found that supplementation of phosphatidylcholine (16:0_16:0) in wild-type endothelial cells mimicked the ANXA2 knock-down phenotype, indicating that ANXA2 regulated the phospholipid membrane upstream of Arp2 recruitment and organization of cortical F-actin. Altogether, these data indicate a novel role for ANXA2 in coordinating events at endothelial junctions needed to initiate sprouting and show that proper lipid modulation is a critical component of these events.
Collapse
Affiliation(s)
- Timothy M. Sveeggen
- Texas A&M Health Science Center, Texas, Bryan, USA
- Interdisciplinary Graduate Program in Genetics, Texas A&M University, College Station, Texas, USA
| | | | | | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, USA
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas, USA
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
13
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
14
|
Barbacena P, Dominguez-Cejudo M, Fonseca CG, Gómez-González M, Faure LM, Zarkada G, Pena A, Pezzarossa A, Ramalho D, Giarratano Y, Ouarné M, Barata D, Fortunato IC, Misikova LH, Mauldin I, Carvalho Y, Trepat X, Roca-Cusachs P, Eichmann A, Bernabeu MO, Franco CA. Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina. Dev Cell 2022; 57:2321-2333.e9. [PMID: 36220082 PMCID: PMC9552591 DOI: 10.1016/j.devcel.2022.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022]
Abstract
Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.
Collapse
Affiliation(s)
- Pedro Barbacena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Dominguez-Cejudo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina G Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Georgia Zarkada
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andreia Pena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| | - Daniela Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ylenia Giarratano
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Marie Ouarné
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - David Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isabela C Fortunato
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ian Mauldin
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK; School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Yulia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Université de Paris, PARCC, INSERM, 75006 Paris, France
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK; The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisbon, Portugal.
| |
Collapse
|
15
|
Ren J, Zhang S, Pan Y, Jin M, Li J, Luo Y, Sun X, Li G. Diabetic retinopathy: Involved cells, biomarkers, and treatments. Front Pharmacol 2022; 13:953691. [PMID: 36016568 PMCID: PMC9396039 DOI: 10.3389/fphar.2022.953691] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic retinopathy (DR), a leading cause of vision loss and blindness worldwide, is caused by retinal neurovascular unit dysfunction, and its cellular pathology involves at least nine kinds of retinal cells, including photoreceptors, horizontal and bipolar cells, amacrine cells, retinal ganglion cells, glial cells (Müller cells, astrocytes, and microglia), endothelial cells, pericytes, and retinal pigment epithelial cells. Its mechanism is complicated and involves loss of cells, inflammatory factor production, neovascularization, and BRB impairment. However, the mechanism has not been completely elucidated. Drug treatment for DR has been gradually advancing recently. Research on potential drug targets relies upon clear information on pathogenesis and effective biomarkers. Therefore, we reviewed the recent literature on the cellular pathology and the diagnostic and prognostic biomarkers of DR in terms of blood, protein, and clinical and preclinical drug therapy (including synthesized molecules and natural molecules). This review may provide a theoretical basis for further DR research.
Collapse
Affiliation(s)
- Jiahui Ren
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yunfeng Pan
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Meiqi Jin
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Jiaxin Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| | - Guang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicine Utilization, Kunming, China
- *Correspondence: Yun Luo, ; Xiaobo Sun , ; Guang Li,
| |
Collapse
|
16
|
Ardoña HAM, Zimmerman JF, Shani K, Kim SH, Eweje F, Bitounis D, Parviz D, Casalino E, Strano M, Demokritou P, Parker KK. Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NANOIMPACT 2022; 26:100401. [PMID: 35560286 PMCID: PMC9812361 DOI: 10.1016/j.impact.2022.100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 05/14/2023]
Abstract
Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material. Among the most promising engineered nanomaterials to date are graphene-family nanomaterials (GFNs), which are 2-D nanomaterials (2DNMs) with unique electrical and mechanical properties. Beyond engineering new nanomaterial properties, employing safety-by-design through considering the consequences of cell-material interactions is essential for exploring their applicability in the biomedical realm. In this study, we asked the effect of GFNs on the endothelial barrier function and cellular architecture of vascular endothelial cells. Using micropatterned cell pairs as a reductionist in vitro model of the endothelium, the progression of cytoskeletal reorganization as a function of GFN surface chemistry and time was quantitatively monitored. Here, we show that the surface oxidation of GFNs (graphene, reduced graphene oxide, partially reduced graphene oxide, and graphene oxide) differentially affect the endothelial barrier at multiple scales; from the biochemical pathways that influence the development of cellular protrusions to endothelial barrier integrity. More oxidized GFNs induce higher endothelial permeability and the increased formation of cytoplasmic protrusions such as filopodia. We found that these changes in cytoskeletal organization, along with barrier function, can be potentiated by the effect of GFNs on the Rho/Rho-associated kinase (ROCK) pathway. Specifically, GFNs with higher surface oxidation elicit stronger ROCK2 inhibitory behavior as compared to pristine graphene sheets. Overall, findings from these studies offer a new perspective towards systematically controlling the surface-dependent effects of GFNs on cytoskeletal organization via ROCK2 inhibition, providing insight for implementing safety-by-design principles in GFN manufacturing towards their targeted biomedical applications.
Collapse
Affiliation(s)
- Herdeline Ann M Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Su-Hwan Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Feyisayo Eweje
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Evan Casalino
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA.
| |
Collapse
|
17
|
Korkmazhan E, Kennard AS, Garzon-Coral C, Vasquez CG, Dunn AR. Tether-guided lamellipodia enable rapid wound healing. Biophys J 2022; 121:1029-1037. [PMID: 35167863 PMCID: PMC8943750 DOI: 10.1016/j.bpj.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/15/2021] [Accepted: 02/03/2022] [Indexed: 11/20/2022] Open
Abstract
Adhesion between animal cells and the underlying extracellular matrix is challenged during wounding, cell division, and a variety of pathological processes. How cells recover adhesion in the immediate aftermath of detachment from the extracellular matrix remains incompletely understood, due in part to technical limitations. Here, we used acute chemical and mechanical perturbations to examine how epithelial cells respond to partial delamination events. In both cases, we found that cells extended lamellipodia to establish readhesion within seconds of detachment. These lamellipodia were guided by sparse membrane tethers whose tips remained attached to their original points of adhesion, yielding lamellipodia that appear to be qualitatively distinct from those observed during cell migration. In vivo measurements in the context of a zebrafish wound assay showed a similar behavior, in which membrane tethers guided rapidly extending lamellipodia. In the case of mechanical wounding events, cells selectively extended tether-guided lamellipodia in the direction opposite of the pulling force, resulting in the rapid reestablishment of contact with the substrate. We suggest that membrane tether-guided lamellipodial respreading may represent a general mechanism to reestablish tissue integrity in the face of acute disruption.
Collapse
Affiliation(s)
- Elgin Korkmazhan
- Graduate Program in Biophysics, Stanford University, Stanford, California; Department of Chemical Engineering, Stanford University, Stanford, California
| | - Andrew S Kennard
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | - Carlos Garzon-Coral
- Department of Chemical Engineering, Stanford University, Stanford, California
| | - Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, California
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California.
| |
Collapse
|
18
|
Dynamics of Endothelial Engagement and Filopodia Formation in Complex 3D Microscaffolds. Int J Mol Sci 2022; 23:ijms23052415. [PMID: 35269558 PMCID: PMC8910162 DOI: 10.3390/ijms23052415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022] Open
Abstract
The understanding of endothelium–extracellular matrix interactions during the initiation of new blood vessels is of great medical importance; however, the mechanobiological principles governing endothelial protrusive behaviours in 3D microtopographies remain imperfectly understood. In blood capillaries submitted to angiogenic factors (such as vascular endothelial growth factor, VEGF), endothelial cells can transiently transdifferentiate in filopodia-rich cells, named tip cells, from which angiogenesis processes are locally initiated. This protrusive state based on filopodia dynamics contrasts with the lamellipodia-based endothelial cell migration on 2D substrates. Using two-photon polymerization, we generated 3D microstructures triggering endothelial phenotypes evocative of tip cell behaviour. Hexagonal lattices on pillars (“open”), but not “closed” hexagonal lattices, induced engagement from the endothelial monolayer with the generation of numerous filopodia. The development of image analysis tools for filopodia tracking allowed to probe the influence of the microtopography (pore size, regular vs. elongated structures, role of the pillars) on orientations, engagement and filopodia dynamics, and to identify MLCK (myosin light-chain kinase) as a key player for filopodia-based protrusive mode. Importantly, these events occurred independently of VEGF treatment, suggesting that the observed phenotype was induced through microtopography. These microstructures are proposed as a model research tool for understanding endothelial cell behaviour in 3D fibrillary networks.
Collapse
|
19
|
Gautreau AM, Fregoso FE, Simanov G, Dominguez R. Nucleation, stabilization, and disassembly of branched actin networks. Trends Cell Biol 2021; 32:421-432. [PMID: 34836783 PMCID: PMC9018471 DOI: 10.1016/j.tcb.2021.10.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Arp2/3 complex is an actin filament nucleation and branching machinery conserved in all eukaryotes from yeast to human. Arp2/3 complex branched networks generate pushing forces that drive cellular processes ranging from membrane remodeling to cell and organelle motility. Several molecules regulate these processes by directly inhibiting or activating Arp2/3 complex and by stabilizing or disassembling branched networks. Here, we review recent advances in our understanding of Arp2/3 complex regulation, including high-resolution cryoelectron microscopy (cryo-EM) structures that illuminate the mechanisms of Arp2/3 complex activation and branch formation, and novel cellular pathways of branch formation, stabilization, and debranching. We also identify major gaps in our understanding of Arp2/3 complex inhibition and branch stabilization and disassembly.
Collapse
Affiliation(s)
- Alexis M Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - Fred E Fregoso
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gleb Simanov
- Laboratoire de Biologie Structurale de la Cellule, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Barrera-Velázquez M, Ríos-Barrera LD. Crosstalk between basal extracellular matrix adhesion and building of apical architecture during morphogenesis. Biol Open 2021; 10:bio058760. [PMID: 34842274 PMCID: PMC8649640 DOI: 10.1242/bio.058760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissues build complex structures like lumens and microvilli to carry out their functions. Most of the mechanisms used to build these structures rely on cells remodelling their apical plasma membranes, which ultimately constitute the specialised compartments. In addition to apical remodelling, these shape changes also depend on the proper attachment of the basal plasma membrane to the extracellular matrix (ECM). The ECM provides cues to establish apicobasal polarity, and it also transduces forces that allow apical remodelling. However, physical crosstalk mechanisms between basal ECM attachment and the apical plasma membrane remain understudied, and the ones described so far are very diverse, which highlights the importance of identifying the general principles. Here, we review apicobasal crosstalk of two well-established models of membrane remodelling taking place during Drosophila melanogaster embryogenesis: amnioserosa cell shape oscillations during dorsal closure and subcellular tube formation in tracheal cells. We discuss how anchoring to the basal ECM affects apical architecture and the mechanisms that mediate these interactions. We analyse this knowledge under the scope of other morphogenetic processes and discuss what aspects of apicobasal crosstalk may represent widespread phenomena and which ones are used to build subsets of specialised compartments.
Collapse
Affiliation(s)
- Mariana Barrera-Velázquez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
- Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Luis Daniel Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| |
Collapse
|
21
|
From remodeling to quiescence: The transformation of the vascular network. Cells Dev 2021; 168:203735. [PMID: 34425253 DOI: 10.1016/j.cdev.2021.203735] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
The vascular system is essential for embryogenesis, healing, and homeostasis. Dysfunction or deregulated blood vessel function contributes to multiple diseases, including diabetic retinopathy, cancer, hypertension, or vascular malformations. A balance between the formation of new blood vessels, vascular remodeling, and vessel quiescence is fundamental for tissue growth and function. Whilst the major mechanisms contributing to the formation of new blood vessels have been well explored in recent years, vascular remodeling and quiescence remain poorly understood. In this review, we highlight the cellular and molecular mechanisms responsible for vessel remodeling and quiescence during angiogenesis. We further underline how impaired remodeling and/or destabilization of vessel networks can contribute to vascular pathologies. Finally, we speculate how addressing the molecular mechanisms of vascular remodeling and stabilization could help to treat vascular-related disorders.
Collapse
|
22
|
Phng LK, Belting HG. Endothelial cell mechanics and blood flow forces in vascular morphogenesis. Semin Cell Dev Biol 2021; 120:32-43. [PMID: 34154883 DOI: 10.1016/j.semcdb.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
The vertebrate cardiovascular system is made up by a hierarchically structured network of highly specialised blood vessels. This network emerges during early embryogenesis and evolves in size and complexity concomitant with embryonic growth and organ formation. Underlying this plasticity are actin-driven endothelial cell behaviours, which allow endothelial cells to change their shape and move within the vascular network. In this review, we discuss the cellular and molecular mechanisms involved in vascular network formation and how these intrinsic mechanisms are influenced by haemodynamic forces provided by pressurized blood flow. While most of this review focusses on in vivo evidence from zebrafish embryos, we also mention complementary findings obtained in other experimental systems.
Collapse
Affiliation(s)
- Li-Kun Phng
- Laboratory for Vascular Morphogenesis, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Basel 4056, Switzerland.
| |
Collapse
|