1
|
Sepúlveda Chavera GF, Belmonte Schwarzbaum E, Valderrama Saez N, Arismendi Macuer M, Huanca-Mamani W. Phenological and Fungal Interactions of Malesherbia auristipulata Ricardi (Passifloraceae) in the Atacama Desert: Adaptations and Conservation in an Extreme Ecosystem. PLANTS (BASEL, SWITZERLAND) 2024; 13:3035. [PMID: 39519952 PMCID: PMC11548299 DOI: 10.3390/plants13213035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Malesherbia auristipulata is an endemic plant species of the Atacama Desert, with unique morphological and physiological adaptations. This research was conducted at Cuesta El Águila, Arica and Parinacota Region, Chile. Adult and juvenile plants were monitored, recording their growth, flowering, and fruiting phases. Additionally, plant community species were identified. For the study of endophytic mycoflora, samples of seeds, roots, stems, and leaves were collected, disinfected, and cultivated in specific media. The isolated fungi were analyzed morphologically and molecularly, determining their distribution in different plant organs. The diversity of endophytic fungi associated with M. auristipulata and the associated fungal community was determined. The presence of endophytic fungi varied depending on the organ studied, suggesting dynamic interactions in the structure of its fungal community. Among the identified endophytic fungi, Alternaria sorghi, A. alstroemeriae, and Fusarium nurragi stand out for their presence in the root and stem of the plant. Of particular interest is the presence of F. circinatum in the leaves. This study provides valuable information for the conservation of M. auristipulata and other organisms in the Atacama Desert, highlighting the importance of ecological interactions in the resilience of plants to extreme environmental conditions.
Collapse
Affiliation(s)
- German F. Sepúlveda Chavera
- Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 100190, Chile; (N.V.S.); (M.A.M.); (W.H.-M.)
| | - Eliana Belmonte Schwarzbaum
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 100190, Chile;
| | - Nicolas Valderrama Saez
- Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 100190, Chile; (N.V.S.); (M.A.M.); (W.H.-M.)
| | - Mabel Arismendi Macuer
- Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 100190, Chile; (N.V.S.); (M.A.M.); (W.H.-M.)
| | - Wilson Huanca-Mamani
- Departamento de Recursos Ambientales, Facultad de Ciencias Agronómicas, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica 100190, Chile; (N.V.S.); (M.A.M.); (W.H.-M.)
| |
Collapse
|
2
|
Rappaport HB, Oliverio AM. Lessons from Extremophiles: Functional Adaptations and Genomic Innovations across the Eukaryotic Tree of Life. Genome Biol Evol 2024; 16:evae160. [PMID: 39101574 PMCID: PMC11299111 DOI: 10.1093/gbe/evae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
From hydrothermal vents, to glaciers, to deserts, research in extreme environments has reshaped our understanding of how and where life can persist. Contained within the genomes of extremophilic organisms are the blueprints for a toolkit to tackle the multitude of challenges of survival in inhospitable environments. As new sequencing technologies have rapidly developed, so too has our understanding of the molecular and genomic mechanisms that have facilitated the success of extremophiles. Although eukaryotic extremophiles remain relatively understudied compared to bacteria and archaea, an increasing number of studies have begun to leverage 'omics tools to shed light on eukaryotic life in harsh conditions. In this perspective paper, we highlight a diverse breadth of research on extremophilic lineages across the eukaryotic tree of life, from microbes to macrobes, that are collectively reshaping our understanding of molecular innovations at life's extremes. These studies are not only advancing our understanding of evolution and biological processes but are also offering a valuable roadmap on how emerging technologies can be applied to identify cellular mechanisms of adaptation to cope with life in stressful conditions, including high and low temperatures, limited water availability, and heavy metal habitats. We shed light on patterns of molecular and organismal adaptation across the eukaryotic tree of life and discuss a few promising research directions, including investigations into the role of horizontal gene transfer in eukaryotic extremophiles and the importance of increasing phylogenetic diversity of model systems.
Collapse
Affiliation(s)
- H B Rappaport
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
3
|
Wróbel A, Klichowska E, Nowak A, Nobis M. Alpine Extremophytes in Evolutionary Turmoil: Complex Diversification Patterns and Demographic Responses of a Halophilic Grass in a Central Asian Biodiversity Hotspot. Syst Biol 2024; 73:263-278. [PMID: 38141222 PMCID: PMC11282368 DOI: 10.1093/sysbio/syad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023] Open
Abstract
Diversification and demographic responses are key processes shaping species evolutionary history. Yet we still lack a full understanding of ecological mechanisms that shape genetic diversity at different spatial scales upon rapid environmental changes. In this study, we examined genetic differentiation in an extremophilic grass Puccinellia pamirica and factors affecting its population dynamics among the occupied hypersaline alpine wetlands on the arid Pamir Plateau in Central Asia. Using genomic data, we found evidence of fine-scale population structure and gene flow among the localities established across the high-elevation plateau as well as fingerprints of historical demographic expansion. We showed that an increase in the effective population size could coincide with the Last Glacial Period, which was followed by the species demographic decline during the Holocene. Geographic distance plays a vital role in shaping the spatial genetic structure of P. pamirica alongside with isolation-by-environment and habitat fragmentation. Our results highlight a complex history of divergence and gene flow in this species-poor alpine region during the Late Quaternary. We demonstrate that regional climate specificity and a shortage of nonclimate data largely impede predictions of future range changes of the alpine extremophile using ecological niche modeling. This study emphasizes the importance of fine-scale environmental heterogeneity for population dynamics and species distribution shifts.
Collapse
Affiliation(s)
- Anna Wróbel
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ewelina Klichowska
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| | - Arkadiusz Nowak
- Botanical Garden, Center for Biological Diversity Conservation, Polish Academy of Sciences, Prawdziwka 2, 02-973 Warszawa, Poland
- Botanical Garden of the Wrocław University, Sienkiewicza 23, 50-335 Wrocław, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Gajardo HA, Morales M, Larama G, Luengo-Escobar A, López D, Machado M, Nunes-Nesi A, Reyes-Díaz M, Planchais S, Savouré A, Gago J, Bravo LA. Physiological, transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert. PLANTA 2024; 260:55. [PMID: 39020000 DOI: 10.1007/s00425-024-04484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
MAIN CONCLUSIONS In contrast to Neltuma species, S. tamarugo exhibited higher stress tolerance, maintaining photosynthetic performance through enhanced gene expression and metabolites. Differentially accumulated metabolites include chlorophyll and carotenoids and accumulation of non-nitrogen osmoprotectants. Plant species have developed different adaptive strategies to live under extreme environmental conditions. Hypothetically, extremophyte species present a unique configuration of physiological functions that prioritize stress-tolerance mechanisms while carefully managing resource allocation for photosynthesis. This could be particularly challenging under a multi-stress environment, where the synthesis of multiple and sequential molecular mechanisms is induced. We explored this hypothesis in three phylogenetically related woody species co-occurring in the Atacama Desert, Strombocarpa tamarugo, Neltuma alba, and Neltuma chilensis, by analyzing their leaf dehydration and freezing tolerance and by characterizing their photosynthetic performance under natural growth conditions. Besides, the transcriptomic profiling, biochemical analyses of leaf pigments, and metabolite analysis by untargeted metabolomics were conducted to study gene expression and metabolomic landscape within this challenging multi-stress environment. S. tamarugo showed a higher photosynthetic capacity and leaf stress tolerance than the other species. In this species, a multifactorial response was observed, which involves high photochemical activity associated with a higher content of chlorophylls and β-carotene. The oxidative damage of the photosynthetic apparatus is probably attenuated by the synthesis of complex antioxidant molecules in the three species, but S. tamarugo showed the highest antioxidant capacity. Comparative transcriptomic and metabolomic analyses among the species showed the differential expression of genes involved in the biosynthetic pathways of key stress-related metabolites. Moreover, the synthesis of non-nitrogen osmoprotectant molecules, such as ciceritol and mannitol in S. tamarugo, would allow the nitrogen allocation to support its high photosynthetic capacity without compromising leaf dehydration tolerance and freezing stress avoidance.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Melanie Morales
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Giovanni Larama
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ana Luengo-Escobar
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Dariel López
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Mariana Machado
- Departamento de Biología Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biología Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Séverine Planchais
- Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, UPEC, CNRS, IRD, INRAE, 75005, Paris, France
| | - Arnould Savouré
- Institute of Ecology and Environmental Sciences of Paris (iEES), Sorbonne Université, UPEC, CNRS, IRD, INRAE, 75005, Paris, France
| | - Jorge Gago
- Research Group On Plant Biology Under Mediterranean Conditions, Departament de Biologia, Universitat de Les Illes Balears/Institute of Agro-Environmental Research and Water Economy-INAGEA, Carretera de Valldemossa, 07122, Palma, Spain
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
5
|
Laurent‐Webb L, Maurice K, Perez‐Lamarque B, Bourceret A, Ducousso M, Selosse M. Seed or soil: Tracing back the plant mycobiota primary sources. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13301. [PMID: 38924368 PMCID: PMC11194045 DOI: 10.1111/1758-2229.13301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Plants host diverse communities of fungi (the mycobiota), playing crucial roles in their development. The assembly processes of the mycobiota, however, remain poorly understood, in particular, whether it is transmitted by parents through the seeds (vertical transmission) or recruited in the environment (horizontal transmission). Here we attempt to quantify the relative contributions of horizontal and vertical transmission in the mycobiota assembly of a desert shrub, Haloxylon salicornicum, by comparing the mycobiota of in situ bulk soil and seeds to that of (i) in situ adult individuals and (ii) in vitro-germinated seedlings in soil collected in situ. We show that the mycobiota are partially vertically transmitted through the seeds to seedlings, whereas bulk soil has a limited contribution to the seedling's mycobiota. In adults, root and bulk soil mycobiota tend to resemble each other, suggesting a compositional turnover in plant mycobiota during plant development due to horizontal transmission. Thus, the mycobiota are transmitted both horizontally and vertically depending on the plant tissue and developmental stage. Understanding the respective contribution of these transmission pathways to the plant mycobiota is fundamental to deciphering potential coevolutionary processes between plants and fungi. Our findings particularly emphasize the importance of vertical transmission in desert ecosystems.
Collapse
Affiliation(s)
- Liam Laurent‐Webb
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Benoît Perez‐Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Amélia Bourceret
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
| | | | - Marc‐André Selosse
- Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRSSorbonne Université, EPHEParisFrance
- Faculty of BiologyUniversity of GdanskGdanskPoland
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
6
|
Amaral DT, Bonatelli IAS, Romeiro-Brito M, Telhe MC, Moraes EM, Zappi DC, Taylor NP, Franco FF. Comparative transcriptome analysis reveals lineage- and environment-specific adaptations in cacti from the Brazilian Atlantic Forest. PLANTA 2024; 260:4. [PMID: 38775846 DOI: 10.1007/s00425-024-04442-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Natural selection influenced adaptive divergence between Cereus fernambucensis and Cereus insularis, revealing key genes governing abiotic stress responses and supporting neoteny in C. insularis. Uncovering the molecular mechanisms driving adaptive divergence in traits related to habitat adaptation remains a central challenge. In this study, we focused on the cactus clade, which includes Cereus sericifer F.Ritter, Cereus fernambucensis Lem., and Cereus insularis Hemsley. These allopatric species inhabit distinct relatively drier regions within the Brazilian Atlantic Forest, each facing unique abiotic conditions. We leveraged whole transcriptome data and abiotic variables datasets to explore lineage-specific and environment-specific adaptations in these species. Employing comparative phylogenetic methods, we identified genes under positive selection (PSG) and examined their association with non-synonymous genetic variants and abiotic attributes through a PhyloGWAS approach. Our analysis unveiled signatures of selection in all studied lineages, with C. fernambucensis northern populations and C. insularis showing the most PSGs. These PSGs predominantly govern abiotic stress regulation, encompassing heat tolerance, UV stress response, and soil salinity adaptation. Our exclusive observation of gene expression tied to early developmental stages in C. insularis supports the hypothesis of neoteny in this species. We also identified genes associated with abiotic variables in independent lineages, suggesting their role as environmental filters on genetic diversity. Overall, our findings suggest that natural selection played a pivotal role in the geographic range of these species in response to environmental and biogeographic transitions.
Collapse
Affiliation(s)
- Danilo T Amaral
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André, São Paulo, Brazil
| | - Isabel A S Bonatelli
- Departamento de Ecologia e Biologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Monique Romeiro-Brito
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Milena C Telhe
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Evandro M Moraes
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Daniela Cristina Zappi
- Programa de Pós-Graduação em Botânica, Instituto de Ciências Biológicas, Universidade de Brasília (UNB), Brasília, Brazil
| | - Nigel Paul Taylor
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil
| | - Fernando F Franco
- Departamento de Biologia, Centro de Ciências Humanas e Biológicas, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP 264, Sorocaba, 18052-780, Brazil.
| |
Collapse
|
7
|
Becklin KM, Betancourt JL, Braasch J, Dézerald O, Díaz FP, González AL, Harbert R, Holmgren CA, Hornsby AD, Latorre C, Matocq MD, Smith FA. New uses for ancient middens: bridging ecological and evolutionary perspectives. Trends Ecol Evol 2024; 39:479-493. [PMID: 38553315 DOI: 10.1016/j.tree.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 05/12/2024]
Abstract
Rodent middens provide a fine-scale spatiotemporal record of plant and animal communities over the late Quaternary. In the Americas, middens have offered insight into biotic responses to past environmental changes and historical factors influencing the distribution and diversity of species. However, few studies have used middens to investigate genetic or ecosystem level responses. Integrating midden studies with neoecology and experimental evolution can help address these gaps and test mechanisms underlying eco-evolutionary patterns across biological and spatiotemporal scales. Fully realizing the potential of middens to answer cross-cutting ecological and evolutionary questions and inform conservation goals in the Anthropocene will require a collaborative research community to exploit existing midden archives and mount new campaigns to leverage midden records globally.
Collapse
Affiliation(s)
- Katie M Becklin
- Biology Department, Syracuse University, Syracuse, NY 13244, USA.
| | - Julio L Betancourt
- US Geological Survey, Science and Decisions Center, Reston, VA 20192, USA
| | - Joseph Braasch
- Department of Biology, Rutgers University, Camden, NJ 08103, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08103, USA
| | - Olivier Dézerald
- DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France
| | - Francisca P Díaz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Institute of Ecology and Biodiversity (IEB), Santiago, Chile; Millennium Nucleus of Applied Historical Ecology for Arid Forests (AFOREST), Santiago, Chile
| | - Angélica L González
- Department of Biology, Rutgers University, Camden, NJ 08103, USA; Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08103, USA
| | - Robert Harbert
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Camille A Holmgren
- Department of Geosciences, SUNY Buffalo State University, Buffalo, NY 14222, USA
| | - Angela D Hornsby
- Philip L. Wright Zoological Museum, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Claudio Latorre
- Institute of Ecology and Biodiversity (IEB), Santiago, Chile; Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Ecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marjorie D Matocq
- Program in Ecology, Evolution, and Conservation Biology, Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557, USA
| | - Felisa A Smith
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
8
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
9
|
Kimotho RN, Maina S. Unraveling plant-microbe interactions: can integrated omics approaches offer concrete answers? JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1289-1313. [PMID: 37950741 PMCID: PMC10901211 DOI: 10.1093/jxb/erad448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Advances in high throughput omics techniques provide avenues to decipher plant microbiomes. However, there is limited information on how integrated informatics can help provide deeper insights into plant-microbe interactions in a concerted way. Integrating multi-omics datasets can transform our understanding of the plant microbiome from unspecified genetic influences on interacting species to specific gene-by-gene interactions. Here, we highlight recent progress and emerging strategies in crop microbiome omics research and review key aspects of how the integration of host and microbial omics-based datasets can be used to provide a comprehensive outline of complex crop-microbe interactions. We describe how these technological advances have helped unravel crucial plant and microbial genes and pathways that control beneficial, pathogenic, and commensal plant-microbe interactions. We identify crucial knowledge gaps and synthesize current limitations in our understanding of crop microbiome omics approaches. We highlight recent studies in which multi-omics-based approaches have led to improved models of crop microbial community structure and function. Finally, we recommend holistic approaches in integrating host and microbial omics datasets to achieve precision and efficiency in data analysis, which is crucial for biotic and abiotic stress control and in understanding the contribution of the microbiota in shaping plant fitness.
Collapse
Affiliation(s)
- Roy Njoroge Kimotho
- Hebei Key Laboratory of Soil Ecology, Key Laboratory of Agricultural Water Resources, Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Solomon Maina
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales 2568, Australia
| |
Collapse
|
10
|
Sumbur B, Zhou M, Dorjee T, Bing J, Ha S, Xu X, Zhou Y, Gao F. Chemical and Transcriptomic Analyses of Leaf Cuticular Wax Metabolism in Ammopiptanthus mongolicus under Osmotic Stress. Biomolecules 2024; 14:227. [PMID: 38397464 PMCID: PMC10886927 DOI: 10.3390/biom14020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Plant cuticular wax forms a hydrophobic structure in the cuticle layer covering epidermis as the first barrier between plants and environments. Ammopiptanthus mongolicus, a leguminous desert shrub, exhibits high tolerances to multiple abiotic stress. The physiological, chemical, and transcriptomic analyses of epidermal permeability, cuticular wax metabolism and related gene expression profiles under osmotic stress in A. mongolicus leaves were performed. Physiological analyses revealed decreased leaf epidermal permeability under osmotic stress. Chemical analyses revealed saturated straight-chain alkanes as major components of leaf cuticular wax, and under osmotic stress, the contents of total wax and multiple alkane components significantly increased. Transcriptome analyses revealed the up-regulation of genes involved in biosynthesis of very-long-chain fatty acids and alkanes and wax transportation under osmotic stress. Weighted gene co-expression network analysis identified 17 modules and 6 hub genes related to wax accumulation, including 5 enzyme genes coding KCS, KCR, WAX2, FAR, and LACS, and an ABCG transporter gene. Our findings indicated that the leaf epidermal permeability of A. mongolicus decreased under osmotic stress to inhibit water loss via regulating the expression of wax-related enzyme and transporter genes, further promoting cuticular wax accumulation. This study provided new evidence for understanding the roles of cuticle lipids in abiotic stress tolerance of desert plants.
Collapse
Affiliation(s)
- Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Minqi Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Sijia Ha
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiaojing Xu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (M.Z.); (T.D.); (S.H.); (X.X.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
11
|
Díaz FP, Dussarrat T, Carrasco-Puga G, Colombié S, Prigent S, Decros G, Bernillon S, Cassan C, Flandin A, Guerrero PC, Gibon Y, Rolin D, Cavieres LA, Pétriacq P, Latorre C, Gutiérrez RA. Ecological and metabolic implications of the nurse effect of Maihueniopsis camachoi in the Atacama Desert. THE NEW PHYTOLOGIST 2024; 241:1074-1087. [PMID: 37984856 DOI: 10.1111/nph.19415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Plant-plant positive interactions are key drivers of community structure. Yet, the underlying molecular mechanisms of facilitation processes remain unexplored. We investigated the 'nursing' effect of Maihueniopsis camachoi, a cactus that thrives in the Atacama Desert between c. 2800 and 3800 m above sea level. We hypothesised that an important protective factor is thermal amelioration of less cold-tolerant species with a corresponding impact on molecular phenotypes. To test this hypothesis, we compared plant cover and temperatures within the cactus foliage with open areas and modelled the effect of temperatures on plant distribution. We combined eco-metabolomics and machine learning to test the molecular consequences of this association. Multiple species benefited from the interaction with M. camachoi. A conspicuous example was the extended distribution of Atriplex imbricata to colder elevations in association with M. camachoi (400 m higher as compared to plants in open areas). Metabolomics identified 93 biochemical markers predicting the interaction status of A. imbricata with 79% accuracy, independently of year. These findings place M. camachoi as a key species in Atacama plant communities, driving local biodiversity with an impact on molecular phenotypes of nursed species. Our results support the stress-gradient hypothesis and provide pioneer insights into the metabolic consequences of facilitation.
Collapse
Affiliation(s)
- Francisca P Díaz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, 2362807, Valparaíso, Chile
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Thomas Dussarrat
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Gabriela Carrasco-Puga
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Sophie Colombié
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Sylvain Prigent
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Guillaume Decros
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Stéphane Bernillon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Cédric Cassan
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Amélie Flandin
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Pablo C Guerrero
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 7800003, Concepción, Chile
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos, 8331150, Santiago, Chile
| | - Yves Gibon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Dominique Rolin
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Lohengrin A Cavieres
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 7800003, Concepción, Chile
| | - Pierre Pétriacq
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Claudio Latorre
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- Departamento de Ecología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| | - Rodrigo A Gutiérrez
- Institute of Ecology and Biodiversity, Chile (IEB), Las Palmeras 3425, Ñuñoa, 7800003, Santiago, Chile
- ANID Millennium Institute Center for Genome Regulation and ANID Millennium Institute for Integrative Biology (iBio), Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Libertador Bernardo O'Higgins 340, 8331150, Santiago, Chile
| |
Collapse
|
12
|
Rodríguez V, Bartholomäus A, Witzgall K, Riveras-Muñoz N, Oses R, Liebner S, Kallmeyer J, Rach O, Mueller CW, Seguel O, Scholten T, Wagner D. Microbial impact on initial soil formation in arid and semiarid environments under simulated climate change. Front Microbiol 2024; 15:1319997. [PMID: 38298893 PMCID: PMC10827993 DOI: 10.3389/fmicb.2024.1319997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
The microbiota is attributed to be important for initial soil formation under extreme climate conditions, but experimental evidence for its relevance is scarce. To fill this gap, we investigated the impact of in situ microbial communities and their interrelationship with biocrust and plants compared to abiotic controls on soil formation in initial arid and semiarid soils. Additionally, we assessed the response of bacterial communities to climate change. Topsoil and subsoil samples from arid and semiarid sites in the Chilean Coastal Cordillera were incubated for 16 weeks under diurnal temperature and moisture variations to simulate humid climate conditions as part of a climate change scenario. Our findings indicate that microorganism-plant interaction intensified aggregate formation and stabilized soil structure, facilitating initial soil formation. Interestingly, microorganisms alone or in conjunction with biocrust showed no discernible patterns compared to abiotic controls, potentially due to water-masking effects. Arid soils displayed reduced bacterial diversity and developed a new community structure dominated by Proteobacteria, Actinobacteriota, and Planctomycetota, while semiarid soils maintained a consistently dominant community of Acidobacteriota and Proteobacteria. This highlighted a sensitive and specialized bacterial community in arid soils, while semiarid soils exhibited a more complex and stable community. We conclude that microorganism-plant interaction has measurable impacts on initial soil formation in arid and semiarid regions on short time scales under climate change. Additionally, we propose that soil and climate legacies are decisive for the present soil microbial community structure and interactions, future soil development, and microbial responses.
Collapse
Affiliation(s)
- Victoria Rodríguez
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | | | - Kristina Witzgall
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Nicolás Riveras-Muñoz
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | - Romulo Oses
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copiapó, Chile
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
| | - Oliver Rach
- GFZ German Research Centre for Geosciences, Section Geomorphology, Potsdam, Germany
| | - Carsten W. Mueller
- Institute for Ecology, Chair of Soil Science, Technische Universitaet Berlin, Berlin, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Oscar Seguel
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Thomas Scholten
- Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
13
|
Ferguson S, Jones A, Murray K, Andrew RL, Schwessinger B, Bothwell H, Borevitz J. Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus. Gigascience 2024; 13:giae029. [PMID: 38869149 PMCID: PMC11170218 DOI: 10.1093/gigascience/giae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024] Open
Abstract
Structural variations (SVs) play a significant role in speciation and adaptation in many species, yet few studies have explored the prevalence and impact of different categories of SVs. We conducted a comparative analysis of long-read assembled reference genomes of closely related Eucalyptus species to identify candidate SVs potentially influencing speciation and adaptation. Interspecies SVs can be either fixed differences or polymorphic in one or both species. To describe SV patterns, we employed short-read whole-genome sequencing on over 600 individuals of Eucalyptus melliodora and Eucalyptus sideroxylon, along with recent high-quality genome assemblies. We aligned reads and genotyped interspecies SVs predicted between species reference genomes. Our results revealed that 49,756 of 58,025 and 39,536 of 47,064 interspecies SVs could be typed with short reads in E. melliodora and E. sideroxylon, respectively. Focusing on inversions and translocations, symmetric SVs that are readily genotyped within both populations, 24 were found to be structural divergences, 2,623 structural polymorphisms, and 928 shared structural polymorphisms. We assessed the functional significance of fixed interspecies SVs by examining differences in estimated recombination rates and genetic differentiation between species, revealing a complex history of natural selection. Shared structural polymorphisms displayed enrichment of potentially adaptive genes. Understanding how different classes of genetic mutations contribute to genetic diversity and reproductive barriers is essential for understanding how organisms enhance fitness, adapt to changing environments, and diversify. Our findings reveal the prevalence of interspecies SVs and elucidate their role in genetic differentiation, adaptive evolution, and species divergence within and between populations.
Collapse
Affiliation(s)
- Scott Ferguson
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Ashley Jones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Kevin Murray
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, 72076 Germany
| | - Rose L Andrew
- Botany & N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| | - Helen Bothwell
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
- Warnell School of Forestry & Natural Resources, University of Georgia, Athens 30602 GA, United States
| | - Justin Borevitz
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, 2600 Australia
| |
Collapse
|
14
|
Araya M, Villarreal P, Moyano T, Santos ARO, Díaz FP, Bustos-Jarufe A, Urbina K, Del Pino JE, Groenewald M, Gutiérrez RA, Rosa CA, Cubillos FA. Nakazawaea atacamensis f.a., sp. nov. a novel nonconventional fermentative ascomycetous yeast species from the Atacama Desert. Yeast 2024; 41:52-63. [PMID: 38146767 DOI: 10.1002/yea.3920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/27/2023] Open
Abstract
In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T . The Mycobank number is MB 849680.
Collapse
Affiliation(s)
- Macarena Araya
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo Villarreal
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Tomás Moyano
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana R O Santos
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisca P Díaz
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Instituto de Geografía, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), Santiago, Chile
| | | | - Kamila Urbina
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Javier E Del Pino
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Rodrigo A Gutiérrez
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Institute of Ecology and Biodiversity, Santiago, Chile
| | - Carlos A Rosa
- Departamento de Microbiologia, ICB, C.P. 486, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Millennium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
15
|
Sun X, Amelung W, Klumpp E, Walk J, Mörchen R, Böhm C, Moradi G, May SM, Tamburini F, Wang Y, Bol R. Fog controls biological cycling of soil phosphorus in the Coastal Cordillera of the Atacama Desert. GLOBAL CHANGE BIOLOGY 2024; 30:e17068. [PMID: 38273559 DOI: 10.1111/gcb.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
Soils in hyper-arid climates, such as the Chilean Atacama Desert, show indications of past and present forms of life despite extreme water limitations. We hypothesize that fog plays a key role in sustaining life. In particular, we assume that fog water is incorporated into soil nutrient cycles, with the inland limit of fog penetration corresponding to the threshold for biological cycling of soil phosphorus (P). We collected topsoil samples (0-10 cm) from each of 54 subsites, including sites in direct adjacency (<10 cm) and in 1 m distance to plants, along an aridity gradient across the Coastal Cordillera. Satellite-based fog detection revealed that Pacific fog penetrates up to 10 km inland, while inland sites at 10-23 km from the coast rely solely on sporadic rainfall for water supply. To assess biological P cycling we performed sequential P fractionation and determined oxygen isotope of HCl-extractable inorganicP δ 18 O HCl - P i $$ \mathrm{P}\ \left({\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}}\right) $$ . Total P (Pt ) concentration exponentially increased from 336 mg kg-1 to a maximum of 1021 mg kg-1 in inland areas ≥10 km. With increasing distance from the coast, soilδ 18 O HCl - P i $$ {\updelta}^{18}{\mathrm{O}}_{\mathrm{HCl}-{\mathrm{P}}_{\mathrm{i}}} $$ values declined exponentially from 16.6‰ to a constant 9.9‰ for locations ≥10 km inland. Biological cycling of HCl-Pi near the coast reached a maximum of 76%-100%, which could only be explained by the fact that fog water predominately drives biological P cycling. In inland regions, with minimal rainfall (<5 mm) as single water source, only 24 ± 14% of HCl-Pi was biologically cycled. We conclude that biological P cycling in the hyper-arid Atacama Desert is not exclusively but mainly mediated by fog, which thus controls apatite dissolution rates and related occurrence and spread of microbial life in this extreme environment.
Collapse
Affiliation(s)
- Xiaolei Sun
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
- Institute for Environmental Research, Biology 5, RWTH Aachen University, Aachen, Germany
| | - Wulf Amelung
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
- Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Erwin Klumpp
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
| | - Janek Walk
- Department of Geography and Regional Research, University of Vienna, Vienna, Austria
| | - Ramona Mörchen
- Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Christoph Böhm
- Institute for Geophysics and Meteorology, University of Cologne, Albertus-Magnus-Platz, Cologne, Germany
| | - Ghazal Moradi
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
- Institute for Environmental Research, Biology 5, RWTH Aachen University, Aachen, Germany
| | - Simon Matthias May
- Institute of Geography, University Cologne, Albertus-Magnus-Platz, Cologne, Germany
| | | | - Ye Wang
- Institute of Crop Science and Resource Conservation (INRES)-Soil Science and Soil Ecology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany
| | - Roland Bol
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, Jülich, Germany
- School of Natural Sciences, Environment Centre Wales, Bangor University, Bangor, UK
| |
Collapse
|
16
|
Sumbur B, Gao F, Liu Q, Feng D, Bing J, Dorjee T, Li X, Sun H, Zhou Y. The Characterization of R2R3-MYB Genes in Ammopiptanthus nanus Uncovers That the miR858-AnaMYB87 Module Mediates the Accumulation of Anthocyanin under Osmotic Stress. Biomolecules 2023; 13:1721. [PMID: 38136592 PMCID: PMC10741500 DOI: 10.3390/biom13121721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
R2R3-MYB transcription factors (TFs) participate in the modulation of plant development, secondary metabolism, and responses to environmental stresses. Ammopiptanthus nanus, a leguminous dryland shrub, tolerates a high degree of environmental stress, including drought and low-temperature stress. The systematic identification, structural analysis, evolutionary analysis, and gene profiling of R2R3-MYB TFs under cold and osmotic stress in A. nanus were performed. Up to 137 R2R3-MYB TFs were identified and clustered into nine clades, with most A. nanus R2R3-MYB members belonging to clade VIII. Tandem and segmental duplication events drove the expansion of the A. nanus R2R3-MYB family. Expression profiling revealed that multiple R2R3-MYB genes significantly changed under osmotic and cold stress conditions. MiR858 and miR159 targeted 88 R2R3-MYB genes. AnaMYB87, an miR858-targeted clade VIII R2R3-MYB TF, was up-regulated under both osmotic and cold stress. A transient expression assay in apples showed that the overexpression of AnaMYB87 promoted anthocyanin accumulation. A luciferase reporter assay in tobacco demonstrated that AnaMYB87 positively affected the transactivation of the dihydroflavonol reductase gene, indicating that the miR858-MYB87 module mediates anthocyanin accumulation under osmotic stress by regulating the dihydroflavonol reductase gene in A. nanus. This study provides new data to understand the roles of R2R3-MYB in plant stress responses.
Collapse
Affiliation(s)
- Batu Sumbur
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Fei Gao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qi Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Dandan Feng
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jie Bing
- College of Life Sciences, Beijing Normal University, Beijing 100080, China;
| | - Tashi Dorjee
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xuting Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Huigai Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yijun Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; (B.S.); (F.G.); (Q.L.); (D.F.); (T.D.); (X.L.)
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
17
|
Gonçalves OS, Creevey CJ, Santana MF. Designing a synthetic microbial community through genome metabolic modeling to enhance plant-microbe interaction. ENVIRONMENTAL MICROBIOME 2023; 18:81. [PMID: 37974247 PMCID: PMC10655421 DOI: 10.1186/s40793-023-00536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Manipulating the rhizosphere microbial community through beneficial microorganism inoculation has gained interest in improving crop productivity and stress resistance. Synthetic microbial communities, known as SynComs, mimic natural microbial compositions while reducing the number of components. However, achieving this goal requires a comprehensive understanding of natural microbial communities and carefully selecting compatible microorganisms with colonization traits, which still pose challenges. In this study, we employed multi-genome metabolic modeling of 270 previously described metagenome-assembled genomes from Campos rupestres to design a synthetic microbial community to improve the yield of important crop plants. RESULTS We used a targeted approach to select a minimal community (MinCom) encompassing essential compounds for microbial metabolism and compounds relevant to plant interactions. This resulted in a reduction of the initial community size by approximately 4.5-fold. Notably, the MinCom retained crucial genes associated with essential plant growth-promoting traits, such as iron acquisition, exopolysaccharide production, potassium solubilization, nitrogen fixation, GABA production, and IAA-related tryptophan metabolism. Furthermore, our in-silico selection for the SymComs, based on a comprehensive understanding of microbe-microbe-plant interactions, yielded a set of six hub species that displayed notable taxonomic novelty, including members of the Eremiobacterota and Verrucomicrobiota phyla. CONCLUSION Overall, the study contributes to the growing body of research on synthetic microbial communities and their potential to enhance agricultural practices. The insights gained from our in-silico approach and the selection of hub species pave the way for further investigations into the development of tailored microbial communities that can optimize crop productivity and improve stress resilience in agricultural systems.
Collapse
Affiliation(s)
- Osiel S Gonçalves
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Christopher J Creevey
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Mateus F Santana
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Hakobyan A, Velte S, Sickel W, Quandt D, Stoll A, Knief C. Tillandsia landbeckii phyllosphere and laimosphere as refugia for bacterial life in a hyperarid desert environment. MICROBIOME 2023; 11:246. [PMID: 37936139 PMCID: PMC10631034 DOI: 10.1186/s40168-023-01684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The lack of water is a major constraint for microbial life in hyperarid deserts. Consequently, the abundance and diversity of microorganisms in common habitats such as soil are strongly reduced, and colonization occurs primarily by specifically adapted microorganisms that thrive in particular refugia to escape the harsh conditions that prevail in these deserts. We suggest that plants provide another refugium for microbial life in hyperarid deserts. We studied the bacterial colonization of Tillandsia landbeckii (Bromeliaceae) plants, which occur in the hyperarid regions of the Atacama Desert in Chile, one of the driest and oldest deserts on Earth. RESULTS We detected clear differences between the bacterial communities being plant associated to those of the bare soil surface (PERMANOVA, R2 = 0.187, p = 0.001), indicating that Tillandsia plants host a specific bacterial community, not only dust-deposited cells. Moreover, the bacterial communities in the phyllosphere were distinct from those in the laimosphere, i.e., on buried shoots (R2 = 0.108, p = 0.001), indicating further habitat differentiation within plant individuals. The bacterial taxa detected in the phyllosphere are partly well-known phyllosphere colonizers, but in addition, some rather unusual taxa (subgroup2 Acidobacteriae, Acidiphilum) and insect endosymbionts (Wolbachia, "Candidatus Uzinura") were found. The laimosphere hosted phyllosphere-associated as well as soil-derived taxa. The phyllosphere bacterial communities showed biogeographic patterns across the desert (R2 = 0.331, p = 0.001). These patterns were different and even more pronounced in the laimosphere (R2 = 0.467, p = 0.001), indicating that different factors determine community assembly in the two plant compartments. Furthermore, the phyllosphere microbiota underwent temporal changes (R2 = 0.064, p = 0.001). CONCLUSIONS Our data demonstrate that T. landbeckii plants host specific bacterial communities in the phyllosphere as well as in the laimosphere. Therewith, these plants provide compartment-specific refugia for microbial life in hyperarid desert environments. The bacterial communities show biogeographic patterns and temporal variation, as known from other plant microbiomes, demonstrating environmental responsiveness and suggesting that bacteria inhabit these plants as viable microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Anna Hakobyan
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
| | - Stefanie Velte
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
| | - Wiebke Sickel
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
- Institute of Biodiversity, Johann Heinrich Von Thünen Institute, Brunswick, Germany
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas Ceaza, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - Claudia Knief
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
19
|
Gonçalves OS, Santana MF. Uncovering the Secrets of Slow-Growing Bacteria in Tropical Savanna Soil Through Isolation and Genomic Analysis. MICROBIAL ECOLOGY 2023; 86:2687-2702. [PMID: 37507488 DOI: 10.1007/s00248-023-02275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
One gram of soil holds ten billion bacteria of thousands of different species, but most remain unknown, and one of the serious issues is intrinsic to slow-growing bacteria. In this study, we aimed to isolate and characterize slow-growing bacteria from Brazilian Cerrado soil. Over a period of 4 weeks, we conducted an incubation process and selected a total of 92 isolates. These isolates, consisting mostly of slow-growing bacteria, have the ability to thrive in low-water conditions and possess features that promote plant growth. To identify the isolated bacteria, we performed 16S rRNA sequencing analysis and found that the slow-growing strains were genetically similar to known bacterial species but also belonged to a novel group of species. The new strains identified were Caballeronia sp., Neobacillus sp., Bradyrhizobium sp., and high GC Gram-positive species. Furthermore, we conducted growth experiments using various culture media and temperature conditions. These experiments revealed an extended lag phase for five strains, indicating their slow growth characteristics. Genomic analysis of these five slow-growing bacteria showed their potential to participate in biogeochemical cycles, metabolize various carbohydrates, encode proteins with a role in promoting plant growth and have biosynthetic potential for secondary metabolites. Taken together, our findings reveal the untapped potential of slow-growing bacteria in tropical savanna soils.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Eco-evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Stevenson DW, Ramakrishnan S, de Santis Alves C, Coelho LA, Kramer M, Goodwin S, Ramos OM, Eshel G, Sondervan VM, Frangos S, Zumajo-Cardona C, Jenike K, Ou S, Wang X, Lee YP, Loke S, Rossetto M, McPherson H, Nigris S, Moschin S, Little DP, Katari MS, Varala K, Kolokotronis SO, Ambrose B, Croft LJ, Coruzzi GM, Schatz M, McCombie WR, Martienssen RA. The genome of the Wollemi pine, a critically endangered "living fossil" unchanged since the Cretaceous, reveals extensive ancient transposon activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554647. [PMID: 37662366 PMCID: PMC10473749 DOI: 10.1101/2023.08.24.554647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.
Collapse
Affiliation(s)
| | | | - Cristiane de Santis Alves
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Laís Araujo Coelho
- Department of Epidemiology and Biostatistics, School of Public Health; Institute for Genomics in Health; Division of Infectious Diseases, Department of Medicine, and Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203-2098, USA
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Gil Eshel
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | | | - Samantha Frangos
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | | | - Katherine Jenike
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Shujun Ou
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaojin Wang
- Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Yin Peng Lee
- Charles River Laboratories Australia, 17-19 Hi-Tech Ct, Kilsyth VIC 3137, Australia
| | - Stella Loke
- Charles River Laboratories Australia, 17-19 Hi-Tech Ct, Kilsyth VIC 3137, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Royal Botanic Garden Sydney, Sydney, NSW 2000, Australia
| | - Hannah McPherson
- National Herbarium of New South Wales, Australian Botanic Garden, Mount Annan, NSW 2567, Australia
| | - Sebastiano Nigris
- Dipartimento di Biologia, Università degli studi di Padova, via U. Bassi 58/B, 35131 Padova, Italy; and Botanical Garden, Università degli studi di Padova, via Orto Botanico 15, 35123 Padova, Italy
| | - Silvia Moschin
- Dipartimento di Biologia, Università degli studi di Padova, via U. Bassi 58/B, 35131 Padova, Italy; and Botanical Garden, Università degli studi di Padova, via Orto Botanico 15, 35123 Padova, Italy
| | - Damon P. Little
- The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Manpreet S. Katari
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | - Kranthi Varala
- Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Sergios-Orestis Kolokotronis
- Department of Epidemiology and Biostatistics, School of Public Health; Institute for Genomics in Health; Division of Infectious Diseases, Department of Medicine, and Department of Cell Biology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203-2098, USA
| | - Barbara Ambrose
- The New York Botanical Garden, 2900 Southern Boulevard, Bronx, NY 10458, USA
| | - Larry J. Croft
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Gloria M. Coruzzi
- Center for Genomics & Systems Biology, New York University, New York, NY 10003, USA
| | - Michael Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Robert A. Martienssen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
21
|
Tan B, Chen S. Defining Mechanisms of C 3 to CAM Photosynthesis Transition toward Enhancing Crop Stress Resilience. Int J Mol Sci 2023; 24:13072. [PMID: 37685878 PMCID: PMC10487458 DOI: 10.3390/ijms241713072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Global climate change and population growth are persistently posing threats to natural resources (e.g., freshwater) and agricultural production. Crassulacean acid metabolism (CAM) evolved from C3 photosynthesis as an adaptive form of photosynthesis in hot and arid regions. It features the nocturnal opening of stomata for CO2 assimilation, diurnal closure of stomata for water conservation, and high water-use efficiency. To cope with global climate challenges, the CAM mechanism has attracted renewed attention. Facultative CAM is a specialized form of CAM that normally employs C3 or C4 photosynthesis but can shift to CAM under stress conditions. It not only serves as a model for studying the molecular mechanisms underlying the CAM evolution, but also provides a plausible solution for creating stress-resilient crops with facultative CAM traits. This review mainly discusses the recent research effort in defining the C3 to CAM transition of facultative CAM plants, and highlights challenges and future directions in this important research area with great application potential.
Collapse
Affiliation(s)
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
22
|
Contreras-Díaz R, Carevic FS, van den Brink L. Comparative analysis of the complete mitogenome of Geoffroea decorticans: a native tree surviving in the Atacama Desert. Front Genet 2023; 14:1226052. [PMID: 37636265 PMCID: PMC10448962 DOI: 10.3389/fgene.2023.1226052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Chañar (Geoffroea decorticans (Gill., ex Hook. & Arn.) Burkart) has been highly significant for indigenous people in the Atacama Desert for over 3,000 years. Through evolutionary processes, the G. decorticans mitogenome likely underwent changes facilitating its adaptation to the extreme conditions of the Atacama Desert. Here, we compare the mitochondrial genome of G. decorticans with those of other Papilionoideae family species. The complete mitogenome of G. decorticans was sequenced and assembled, making it the first in the genus Geoffroea. The mitogenome contained 383,963 base pairs, consisting of 33 protein coding genes, 21 transfer RNA genes, and 3 ribosomal RNA genes. The Chañar mitogenome is relatively compact, and has two intact genes (sdh4 and nad1) which were not observed in most other species. Additionally, Chañar possessed the highest amount of mitochondrial DNA of plastid origin among angiosperm species. The phylogenetic analysis of the mitogenomes of Chañar and 12 other taxa displayed a high level of consistency in taxonomic classification, when compared to those of the plastid genome. Atp8 was subjected to positive selection, while the ccmFc and rps1 were subjected to neutral selection. This study provides valuable information regarding its ability to survive the extreme environmental conditions of the Atacama Desert.
Collapse
Affiliation(s)
- Roberto Contreras-Díaz
- Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), CRIDESAT, Universidad de Atacama, Copiapó, Chile
| | - Felipe S. Carevic
- Laboratorio de Ecología Vegetal, Facultad de Recursos Naturales Renovables, Núcleo Milenio de Ecología Histórica Aplicada para los Bosques Áridos (AFOREST), Universidad Arturo Prat, Iquique, Chile
| | - Liesbeth van den Brink
- Institute of Evolution and Ecology, Plant Ecology Group, Universität Tübingen, Tübingen, Germany
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, ECOBIOSIS, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
23
|
Mandakovic D, Aguado-Norese C, García-Jiménez B, Hodar C, Maldonado JE, Gaete A, Latorre M, Wilkinson MD, Gutiérrez RA, Cavieres LA, Medina J, Cambiazo V, Gonzalez M. Testing the stress gradient hypothesis in soil bacterial communities associated with vegetation belts in the Andean Atacama Desert. ENVIRONMENTAL MICROBIOME 2023; 18:24. [PMID: 36978149 PMCID: PMC10052861 DOI: 10.1186/s40793-023-00486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Soil microorganisms are in constant interaction with plants, and these interactions shape the composition of soil bacterial communities by modifying their environment. However, little is known about the relationship between microorganisms and native plants present in extreme environments that are not affected by human intervention. Using high-throughput sequencing in combination with random forest and co-occurrence network analyses, we compared soil bacterial communities inhabiting the rhizosphere surrounding soil (RSS) and the corresponding bulk soil (BS) of 21 native plant species organized into three vegetation belts along the altitudinal gradient (2400-4500 m a.s.l.) of the Talabre-Lejía transect (TLT) in the slopes of the Andes in the Atacama Desert. We assessed how each plant community influenced the taxa, potential functions, and ecological interactions of the soil bacterial communities in this extreme natural ecosystem. We tested the ability of the stress gradient hypothesis, which predicts that positive species interactions become increasingly important as stressful conditions increase, to explain the interactions among members of TLT soil microbial communities. RESULTS Our comparison of RSS and BS compartments along the TLT provided evidence of plant-specific microbial community composition in the RSS and showed that bacterial communities modify their ecological interactions, in particular, their positive:negative connection ratios in the presence of plant roots at each vegetation belt. We also identified the taxa driving the transition of the BS to the RSS, which appear to be indicators of key host-microbial relationships in the rhizosphere of plants in response to different abiotic conditions. Finally, the potential functions of the bacterial communities also diverge between the BS and the RSS compartments, particularly in the extreme and harshest belts of the TLT. CONCLUSIONS In this study, we identified taxa of bacterial communities that establish species-specific relationships with native plants and showed that over a gradient of changing abiotic conditions, these relationships may also be plant community specific. These findings also reveal that the interactions among members of the soil microbial communities do not support the stress gradient hypothesis. However, through the RSS compartment, each plant community appears to moderate the abiotic stress gradient and increase the efficiency of the soil microbial community, suggesting that positive interactions may be context dependent.
Collapse
Affiliation(s)
- Dinka Mandakovic
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Constanza Aguado-Norese
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Beatriz García-Jiménez
- Center for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
- Present Address: Biome Makers Inc., West Sacramento, CA USA
| | - Christian Hodar
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Jonathan E. Maldonado
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022 Santiago, Chile
| | - Alexis Gaete
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Mauricio Latorre
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de La Ingeniería, Universidad de O’Higgins, Rancagua, Chile
| | - Mark D. Wilkinson
- Center for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Rodrigo A. Gutiérrez
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Instituto de Biología Integrativa, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lohengrin A. Cavieres
- Instituto de Ecología y Biodiversidad (IEB), 4070386 Concepción, Chile
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4070386 Concepción, Chile
| | - Joaquín Medina
- Center for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM)/Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Verónica Cambiazo
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| | - Mauricio Gonzalez
- Millennium Institute Center for Genome Regulation, Santiago, Chile
- Bioinformatic and Gene Expression Laboratory, INTA-Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
25
|
Eshel G, Duppen N, Wang G, Oh D, Kazachkova Y, Herzyk P, Amtmann A, Gordon M, Chalifa‐Caspi V, Oscar MA, Bar‐David S, Marshall‐Colon A, Dassanayake M, Barak S. Positive selection and heat-response transcriptomes reveal adaptive features of the Brassicaceae desert model, Anastatica hierochuntica. THE NEW PHYTOLOGIST 2022; 236:1006-1026. [PMID: 35909295 PMCID: PMC9804903 DOI: 10.1111/nph.18411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.
Collapse
Affiliation(s)
- Gil Eshel
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Nick Duppen
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Guannan Wang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Dong‐Ha Oh
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Yana Kazachkova
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Anna Amtmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Michal Gordon
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Vered Chalifa‐Caspi
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Michelle Arland Oscar
- Blaustein Center for Scientific CooperationBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Shirli Bar‐David
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Amy Marshall‐Colon
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| |
Collapse
|
26
|
Procter M, Kundu B, Sudalaimuthuasari N, AlMaskari RS, Saeed EE, Hazzouri KM, Amiri KMA. Microbiome of Citrullus colocynthis (L.) Schrad. Reveals a Potential Association with Non-Photosynthetic Cyanobacteria. Microorganisms 2022; 10:microorganisms10102083. [PMID: 36296358 PMCID: PMC9607294 DOI: 10.3390/microorganisms10102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Citrullus colocynthis grows in the sandy desert soil of the Arabian Peninsula with limited access to water, aside from occasional precipitation or dew. Understanding its ability to produce water-filled fruit and nutrient-rich seeds despite the harsh environment, can be useful for agricultural applications. However, information regarding the microbiome of C. colocynthis is lacking. We hypothesized that C. colocynthis associates with bacteria that aid its survival, like what has been observed in other desert plants. Here, we used 16S rRNA gene data to gain insight into the microbiome of C. colocynthis to identify its associated bacteria. In total, 9818 and 6983 OTUs were generated from root, soil, and leaf samples combined. Overall, bulk soils had the highest alpha diversity, followed by rhizosphere and root zone soils. Furthermore, C. colocynthis is associated with known plant-growth-promoting bacteria (including Acidobacteria, Bacterioidetes, and Actinobacteria), and interestingly a class of non-photosynthetic Cyanobacteria (Melainabacteria) that is more abundant on the inside and outside of the root surface than control samples, suggesting its involvement in the rhizophagy process. This study will provide a foundation for functional studies to further understand how C. colocynthis-microbes interactions help them grow in the desert, paving the path for possible agricultural applications.
Collapse
Affiliation(s)
- Miranda Procter
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Biduth Kundu
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Raja S. AlMaskari
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Esam E. Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
- Correspondence: (K.M.H.); (K.M.A.A.)
| | - Khaled M. A. Amiri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
- Correspondence: (K.M.H.); (K.M.A.A.)
| |
Collapse
|
27
|
Maldonado JE, Gaete A, Mandakovic D, Aguado-Norese C, Aguilar M, Gutiérrez RA, González M. Partners to survive: Hoffmannseggia doellii root-associated microbiome at the Atacama Desert. THE NEW PHYTOLOGIST 2022; 234:2126-2139. [PMID: 35274744 DOI: 10.1111/nph.18080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The discovery and characterization of plant species adapted to extreme environmental conditions have become increasingly important. Hoffmannseggia doellii is a perennial herb endemic to the Chilean Atacama Desert that grows in the western Andes between 2800 and 3600 m above sea level. Its growing habitat is characterized by high radiation and low water and nutrient availability. Under these conditions, H. doellii can grow, reproduce, and develop an edible tuberous root. We characterized the H. doellii soil-associated microbiomes to understand the biotic factors that could influence their surprising ability to survive. We found an increased number of observed species and higher phylogenetic diversity of bacteria and fungi on H. doellii root soils compared with bare soil (BS) along different sites and to soil microbiomes of other plant species. Also, the H. doellii-associated microbiome had a higher incidence of overall positive interactions and fungal within-kingdom interactions than their corresponding BS network. These findings suggest a microbial diversity soil modulation mechanism that may be a characteristic of highly tolerant plants to diverse and extreme environments. Furthermore, since H. doellii is related to important cultivated crops, our results create an opportunity for future studies on climate change adaptation of crop plants.
Collapse
Affiliation(s)
- Jonathan E Maldonado
- FONDAP Center for Genome Regulation, Santiago, 8370415, Chile
- Departamento de Genética Molecular y Microbiología, ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 7500565, Chile
- Laboratorio de Multiómica Vegetal y Bioinformática, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, 9170022, Chile
| | - Alexis Gaete
- FONDAP Center for Genome Regulation, Santiago, 8370415, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, 7830490, Chile
| | - Dinka Mandakovic
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, 8580745, Chile
| | - Constanza Aguado-Norese
- FONDAP Center for Genome Regulation, Santiago, 8370415, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, 7830490, Chile
| | - Melissa Aguilar
- FONDAP Center for Genome Regulation, Santiago, 8370415, Chile
- Departamento de Genética Molecular y Microbiología, ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 7500565, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Santiago, 8370415, Chile
- Departamento de Genética Molecular y Microbiología, ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 7500565, Chile
| | - Mauricio González
- FONDAP Center for Genome Regulation, Santiago, 8370415, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, 7830490, Chile
| |
Collapse
|
28
|
Dussarrat T, Prigent S, Latorre C, Bernillon S, Flandin A, Díaz FP, Cassan C, Van Delft P, Jacob D, Varala K, Joubes J, Gibon Y, Rolin D, Gutiérrez RA, Pétriacq P. Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. THE NEW PHYTOLOGIST 2022; 234:1614-1628. [PMID: 35288949 PMCID: PMC9324839 DOI: 10.1111/nph.18095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning-based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty-nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.
Collapse
Affiliation(s)
- Thomas Dussarrat
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
| | - Sylvain Prigent
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Claudio Latorre
- Departamento de EcologíaPontificia Universidad Católica de ChileAv Libertador Bernardo O'Higgins 340SantiagoChile
- Institute of Ecology and Biodiversity (IEB)Las Palmeras3425ÑuñoaSantiagoChile
| | - Stéphane Bernillon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Amélie Flandin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Francisca P. Díaz
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Cédric Cassan
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Pierre Van Delft
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Daniel Jacob
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Kranthi Varala
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIN47907USA
- Center for Plant BiologyPurdue UniversityWest LafayetteIN47907USA
| | - Jérôme Joubes
- Laboratoire de Biogenèse Membranaire, CNRSUniv. Bordeaux, UMR 5200Villenave d'OrnonFrance
| | - Yves Gibon
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Dominique Rolin
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y MicrobiologíaPontificia Universidad Católica de ChileFONDAP Center for Genome Regulation and Millenium Institute for Integrative Biology (iBio)Av Libertador Bernardo O'Higgins 340SantiagoChile
| | - Pierre Pétriacq
- Univ. BordeauxINRAEUMR1332 BFP, 33882Villenave d'OrnonFrance
- Bordeaux MetabolomeMetaboHUBPHENOME‐EMPHASIS33140Villenave d'OrnonFrance
| |
Collapse
|
29
|
Wylie S, Li H. Historical and Scientific Evidence for the Origin and Cultural Importance to Australia's First-Nations Peoples of the Laboratory Accession of Nicotiana benthamiana, a Model for Plant Virology. Viruses 2022; 14:771. [PMID: 35458501 PMCID: PMC9027518 DOI: 10.3390/v14040771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023] Open
Abstract
Nicotiana benthamiana is an indigenous plant species distributed across northern Australia. The laboratory accession (LAB) of N. benthamiana has become widely adopted as a model host for plant viruses, and it is distinct from other accessions morphologically, physiologically, and by having an attenuation-of-function mutation in the RNA-dependent RNA polymerase 1 (NbRdr1) gene, referred to as NbRdr1m. Recent historical evidence suggested LAB was derived from a 1936 collection by John Cleland at The Granites of the Northern Territory, although no scientific evidence was provided. We provide scientific evidence and further historical evidence supporting the origin of LAB as The Granites. Analysis of a herbarium specimen of N. benthamiana collected by Cleland in 1936 revealed that The Granites population contains plants heterozygous for the NbRdr1 locus, having both the functional NbRdr1 and the mutant NbRdr1m alleles. N. benthamiana was an important cultural asset actively utilised as the narcotic Pituri (chewing tobacco) by the Warlpiri Aboriginal people at the site, who prevented women of child-bearing age from consuming it. We propose that Aboriginal people selected some of the unique traits of LAB that have subsequently facilitated its adoption as a model plant, such as lack of seed dormancy, fast maturity, low nornicotine content, and gracility.
Collapse
Affiliation(s)
- Steve Wylie
- Plant Biotechnology Research Group (Virology), Western Australian State Agricultural Biotechnology Centre, Murdoch University, 90 South Street, Murdoch 6150, Australia;
| | | |
Collapse
|
30
|
Gómez-Silva B, Batista-García RA. The Atacama Desert: A Biodiversity Hotspot and Not Just a Mineral-Rich Region. Front Microbiol 2022; 13:812842. [PMID: 35222336 PMCID: PMC8865075 DOI: 10.3389/fmicb.2022.812842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benito Gómez-Silva
- Laboratory of Biochemistry, Biomedical Department, Health Sciences Faculty and Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|