1
|
Jiang S, Liu Z, Zhao S, Li J, Bu C, Li T, Yu D, Gao S, Liu X, Duan G, Cui D, Li S. Tethering of cellulose synthase complex to the plasma membrane relies on the isoform of EXO70A1 in Arabidopsis. Sci Rep 2024; 14:31245. [PMID: 39732998 DOI: 10.1038/s41598-024-82606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions. Previous research in Arabidopsis has shown that generally disrupting exocyst function leads to various defects in cellulose synthase (CESA) complex (CSC) trafficking. In this study, we utilized real-time imaging combined with genetic approaches to explore the role of EXO70A1, a member of the EXO70 family in Arabidopsis, in CSC trafficking. The exo70a1 mutant exhibited a decrease in crystalline cellulose content and a reduced density of functional CSCs in the PM. Moreover, the delivery of tdTomato-CESA6 from the cortex to the PM was compromised in the mutant, leading to the accumulation of CSC vesicles at the cell cortex. However, the velocity of tdTomato-CESA6 in the PM was unaffected in exo70a1. These findings suggest that EXO70A1 has a specific role in tethering CSCs to the PM.
Collapse
Affiliation(s)
- Su Jiang
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
| | - Zhendong Liu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Shuju Zhao
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Juan Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Can Bu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Tonghui Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Dali Yu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Shan Gao
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Xiaonan Liu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Shipeng Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
| |
Collapse
|
2
|
Zhang Q, Shen L, Lin F, Liao Q, Xiao S, Zhang W. Anionic phospholipid-mediated transmembrane transport and intracellular membrane trafficking in plant cells. THE NEW PHYTOLOGIST 2024. [PMID: 39639545 DOI: 10.1111/nph.20329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Cellular membranes primarily consist of proteins and lipids. These proteins perform cellular functions such as metabolic regulation, environmental and hormonal signal sensing, and nutrient transport. There is increasing experimental evidence that certain lipids, particularly anionic phospholipids, can act as signaling molecules. Specific examples of functional regulation by anionic phospholipids in plant cells have been reported for transporters, channels, and even receptors. By regulating the structure and activity of membrane-integral proteins, these phospholipids mediate the transport of phytohormones and ions, and elicit physiological responses to developmental and environmental cues. Phospholipids also control membrane protein abundance and lipid composition and abundance by facilitating vesicular trafficking. In this review, we discuss recent research that elucidates the mechanisms by which membrane-integral transporters and channels are controlled via phospholipid signaling, as well as the regulation of membrane protein accumulation by phospholipids through coordinated removal, recycling, and degradation processes.
Collapse
Affiliation(s)
- Qun Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Like Shen
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Lin
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Liao
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenhua Zhang
- College of Life Sciences, National Center for Soybean Improvement, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Laboratory, Nanjing, 210095, China
| |
Collapse
|
3
|
Du Y, Wang L, Perez-Castro L, Conacci-Sorrell M, Sieber M. Non-cell autonomous regulation of cell-cell signaling and differentiation by mitochondrial ROS. J Cell Biol 2024; 223:e202401084. [PMID: 39535785 PMCID: PMC11561560 DOI: 10.1083/jcb.202401084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondrial reactive oxygen species (ROS) function intrinsically within cells to induce cell damage, regulate transcription, and cause genome instability. However, we know little about how mitochondrial ROS production non-cell autonomously impacts cell-cell signaling. Here, we show that mitochondrial dysfunction inhibits the plasma membrane localization of cell surface receptors that drive cell-cell communication during oogenesis. Within minutes, we found that mitochondrial ROS impairs exocyst membrane binding and leads to defective endosomal recycling. This endosomal defect impairs the trafficking of receptors, such as the Notch ligand Delta, during oogenesis. Remarkably, we found that overexpressing RAB11 restores ligand trafficking and rescues the developmental defects caused by ROS production. ROS production from adjacent cells acutely initiates a transcriptional response associated with growth and migration by suppressing Notch signaling and inducing extra cellualr matrix (ECM) remodeling. Our work reveals a conserved rapid response to ROS production that links mitochondrial dysfunction to the non-cell autonomous regulation of cell-cell signaling.
Collapse
Affiliation(s)
- Yipeng Du
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
4
|
Lim CJ, Seo HJ, Yin H, Cho NH, Yang HW, Park TH, Kim YJ, Kim WT, Seo DH. MpPUB9, a U-box E3 ubiquitin ligase, acts as a positive regulator by promoting the turnover of MpEXO70.1 under high salinity in Marchantia polymorpha. THE NEW PHYTOLOGIST 2024; 244:2343-2363. [PMID: 39387122 PMCID: PMC11579444 DOI: 10.1111/nph.20169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Marchantia polymorpha, occupying a basal position in the monophyletic assemblage of land plants, displays a notable expansion of plant U-box (PUB) proteins compared with those in animals. We elucidated the roles of MpPUB9 in regulating salt stress tolerance in M. polymorpha. MpPUB9 expression was rapidly induced by high salinity and dehydration. MpPUB9 possessed an intact U-box domain in the N-terminus. MpPUB9-Citrine localized to punctate structures and was peripherally associated with microsomal membranes. Phenotypic analyses demonstrate that the hyponastic and epinastic thallus growth phenotypes, which were induced by the overexpression and suppression of MpPUB9, may provoke salt stress-resistant and -susceptible phenotypes, respectively. MpPUB9 was also found to directly interact with the exocyst protein MpEXO70.1, leading to its ubiquitination. Under high-salinity conditions, though the stability of MpPUB9 was dramatically increased, MpEXO70.1 showed slightly faster turnover rates. Transcriptome analyses showed that salt treatment and the overexpression of MpPUB9 co-upregulated the genes related to the modulation of H2O2 and cell wall organization. Overall, our results suggest that MpPUB9 plays a crucial role in the positive regulation of salt stress tolerance, resulting from its interaction with MpEXO70.1 and modulating turnover of the protein under high-salt conditions via the coordination of UPS with autophagy.
Collapse
Affiliation(s)
- Cheol Jin Lim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Hyeon Ji Seo
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Haijing Yin
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Na Hyun Cho
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Hee Woong Yang
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Tae Hyeon Park
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Yun Ju Kim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Woo Taek Kim
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| | - Dong Hye Seo
- Department of Systems Biology and Division of Life ScienceYonsei UniversitySeoul03722Korea
- Institute of Life Science and BiotechnologyYonsei UniversitySeoul03722Korea
| |
Collapse
|
5
|
Meek S, Hernandez AC, Oliva B, Gallego O. The exocyst in context. Biochem Soc Trans 2024; 52:2113-2122. [PMID: 39377315 PMCID: PMC11555703 DOI: 10.1042/bst20231401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The exocyst is a hetero-octameric complex involved in the exocytosis arm of cellular trafficking. Specifically, it tethers secretory vesicles to the plasma membrane, but it is also a main convergence point for many players of exocytosis: regulatory proteins, motor proteins, lipids and Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor (SNARE) proteins are all connected physically by the exocyst. Despite extensive knowledge about its structure and interactions, the exocyst remains an enigma precisely because of its increasingly broad and flexible role across the exocytosis process. To solve the molecular mechanism of such a multi-tasking complex, dynamical structures with self, other proteins, and environment should be described. And to do this, interrogation within contexts increasingly close to native conditions is needed. Here we provide a perspective on how different experimental contexts have been used to study the exocyst, and those that could be used in the future. This review describes the structural breakthroughs on the isolated in vitro exocyst, followed by the use of membrane reconstitution assays for revealing in vitro exocyst functionality. Next, it moves to in situ cell contexts, reviewing imaging techniques that have been, and that ideally could be, used to look for near-native structure and organization dynamics. Finally, it looks at the exocyst structure in situ within evolutionary contexts, and the potential of structure prediction therein. From in vitro, to in situ, cross-context investigation of exocyst structure has begun, and will be critical for functional mechanism elucidation.
Collapse
Affiliation(s)
- Sasha Meek
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Altair C. Hernandez
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Baldomero Oliva
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Oriol Gallego
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| |
Collapse
|
6
|
Pukhovaya EM, Ramalho JJ, Weijers D. Polar targeting of proteins - a green perspective. J Cell Sci 2024; 137:jcs262068. [PMID: 39330548 DOI: 10.1242/jcs.262068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.
Collapse
Affiliation(s)
- Evgeniya M Pukhovaya
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
7
|
Škrabálková E, Pejchar P, Potocký M. Exploring lipid-protein interactions in plant membranes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5251-5266. [PMID: 38708855 PMCID: PMC11389841 DOI: 10.1093/jxb/erae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Once regarded as mere membrane building blocks, lipids are now recognized as diverse and intricate players that mold the functions, identities, and responses of cellular membranes. Although the interactions of lipids with integral and peripheral membrane proteins are crucial for their localization, activity, and function, how proteins bind lipids is still far from being thoroughly explored. Describing and characterizing these dynamic protein-lipid interactions is thus essential to understanding the membrane-associated processes. Here we review the current range of experimental techniques employed to study plant protein-lipid interactions, integrating various methods. We summarize the principles, advantages, and limitations of classical in vitro biochemical approaches, including protein-lipid overlays and various liposome binding assays, and complement them with in vivo microscopic techniques centered around the use of genetically encoded lipid sensors and pharmacological or genetic membrane lipid manipulation tools. We also highlight several emerging techniques still awaiting their advancement into plant membrane research and emphasize the need to use complementary experimental strategies as key for elucidating the mechanistic roles of protein-lipid interactions in plant cell biology.
Collapse
Affiliation(s)
- Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
8
|
Neubergerová M, Pleskot R. Plant protein-lipid interfaces studied by molecular dynamics simulations. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5237-5250. [PMID: 38761107 DOI: 10.1093/jxb/erae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The delineation of protein-lipid interfaces is essential for understanding the mechanisms of various membrane-associated processes crucial to plant development and growth, including signalling, trafficking, and membrane transport. Due to their highly dynamic nature, the precise characterization of lipid-protein interactions by experimental techniques is challenging. Molecular dynamics simulations provide a powerful computational alternative with a spatial-temporal resolution allowing the atomistic-level description. In this review, we aim to introduce plant scientists to molecular dynamics simulations. We describe different steps of performing molecular dynamics simulations and provide a broad survey of molecular dynamics studies investigating plant protein-lipid interfaces. Our aim is also to illustrate that combining molecular dynamics simulations with artificial intelligence-based protein structure determination opens up unprecedented possibilities for future investigations of dynamic plant protein-lipid interfaces.
Collapse
Affiliation(s)
- Michaela Neubergerová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
9
|
Singh D, Liu Y, Zhu YH, Zhang S, Naegele S, Wu JQ. Septins function in exocytosis via physical interactions with the exocyst complex in fission yeast cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602728. [PMID: 39026698 PMCID: PMC11257574 DOI: 10.1101/2024.07.09.602728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Septins can function as scaffolds for protein recruitment, membrane-bound diffusion barriers, or membrane curvature sensors. Septins are important for cytokinesis, but their exact roles are still obscure. In fission yeast, four septins (Spn1 to Spn4) accumulate at the rim of the division plane as rings. The octameric exocyst complex, which tethers exocytic vesicles to the plasma membrane, exhibits a similar localization and is essential for plasma membrane deposition during cytokinesis. Without septins, the exocyst spreads across the division plane but absent from the rim during septum formation. These results suggest that septins and the exocyst physically interact for proper localization. Indeed, we predicted six pairs of direct interactions between septin and exocyst subunits by AlphaFold2 ColabFold, most of them are confirmed by co-immunoprecipitation and yeast two-hybrid assays. Exocyst mislocalization results in mistargeting of secretory vesicles and their cargos, which leads to cell-separation delay in septin mutants. Our results indicate that septins guide the targeting of exocyst complex on the plasma membrane for vesicle tethering during cytokinesis through direct physical interactions.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Sha Zhang
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Shelby Naegele
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
10
|
Shinoda S, Sakai Y, Matsui T, Uematsu M, Koyama-Honda I, Sakamaki JI, Yamamoto H, Mizushima N. Syntaxin 17 recruitment to mature autophagosomes is temporally regulated by PI4P accumulation. eLife 2024; 12:RP92189. [PMID: 38831696 PMCID: PMC11152571 DOI: 10.7554/elife.92189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
During macroautophagy, cytoplasmic constituents are engulfed by autophagosomes. Lysosomes fuse with closed autophagosomes but not with unclosed intermediate structures. This is achieved in part by the late recruitment of the autophagosomal SNARE syntaxin 17 (STX17) to mature autophagosomes. However, how STX17 recognizes autophagosome maturation is not known. Here, we show that this temporally regulated recruitment of STX17 depends on the positively charged C-terminal region of STX17. Consistent with this finding, mature autophagosomes are more negatively charged compared with unclosed intermediate structures. This electrostatic maturation of autophagosomes is likely driven by the accumulation of phosphatidylinositol 4-phosphate (PI4P) in the autophagosomal membrane. Accordingly, dephosphorylation of autophagosomal PI4P prevents the association of STX17 to autophagosomes. Furthermore, molecular dynamics simulations support PI4P-dependent membrane insertion of the transmembrane helices of STX17. Based on these findings, we propose a model in which STX17 recruitment to mature autophagosomes is temporally regulated by a PI4P-driven change in the surface charge of autophagosomes.
Collapse
Affiliation(s)
- Saori Shinoda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto UniversityKyotoJapan
| | - Takahide Matsui
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Masaaki Uematsu
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Jun-ichi Sakamaki
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduated School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
11
|
Huebbers JW, Caldarescu GA, Kubátová Z, Sabol P, Levecque SCJ, Kuhn H, Kulich I, Reinstädler A, Büttgen K, Manga-Robles A, Mélida H, Pauly M, Panstruga R, Žárský V. Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew. THE PLANT CELL 2024; 36:1007-1035. [PMID: 38124479 PMCID: PMC10980356 DOI: 10.1093/plcell/koad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.
Collapse
Affiliation(s)
- Jan W Huebbers
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - George A Caldarescu
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Sophie C J Levecque
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Hannah Kuhn
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Kim Büttgen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Alba Manga-Robles
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Hugo Mélida
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Universidad de León, 24071 León, Spain
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic
- Institute of Experimental Botany of the Czech Academy of Sciences, Laboratory of Cell Biology, Rozvojová 263, 165 02 Prague 6 Lysolaje, Czech Republic
| |
Collapse
|
12
|
Niedziółka SM, Datta S, Uśpieński T, Baran B, Skarżyńska W, Humke EW, Rohatgi R, Niewiadomski P. The exocyst complex and intracellular vesicles mediate soluble protein trafficking to the primary cilium. Commun Biol 2024; 7:213. [PMID: 38378792 PMCID: PMC10879184 DOI: 10.1038/s42003-024-05817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
The efficient transport of proteins into the primary cilium is a crucial step for many signaling pathways. Dysfunction of this process can lead to the disruption of signaling cascades or cilium assembly, resulting in developmental disorders and cancer. Previous studies on the protein delivery to the cilium were mostly focused on the membrane-embedded receptors. In contrast, how soluble proteins are delivered into the cilium is poorly understood. In our work, we identify the exocyst complex as a key player in the ciliary trafficking of soluble Gli transcription factors. In line with the known function of the exocyst in intracellular vesicle transport, we demonstrate that soluble proteins, including Gli2/3 and Lkb1, can use the endosome recycling machinery for their delivery to the primary cilium. Finally, we identify GTPases: Rab14, Rab18, Rab23, and Arf4 that are involved in vesicle-mediated Gli protein ciliary trafficking. Our data pave the way for a better understanding of ciliary transport and uncover transport mechanisms inside the cell.
Collapse
Affiliation(s)
- S M Niedziółka
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - S Datta
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - T Uśpieński
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - B Baran
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - W Skarżyńska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - E W Humke
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- IGM Biosciences, Inc, Mountain View, CA, USA
| | - R Rohatgi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - P Niewiadomski
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
13
|
Kato M, Watari M, Tsuge T, Zhong S, Gu H, Qu LJ, Fujiwara T, Aoyama T. Redundant function of the Arabidopsis phosphatidylinositol 4-phosphate 5-kinase genes PIP5K4-6 is essential for pollen germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:212-225. [PMID: 37828913 DOI: 10.1111/tpj.16490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) is a key enzyme producing the signaling lipid phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2 ] in eukaryotes. Although PIP5K genes are reported to be involved in pollen tube germination and growth, the essential roles of PIP5K in these processes remain unclear. Here, we performed a comprehensive genetic analysis of the Arabidopsis thaliana PIP5K4, PIP5K5, and PIP5K6 genes and revealed that their redundant function is essential for pollen germination. Pollen with the pip5k4pip5k5pip5k6 triple mutation was sterile, while pollen germination efficiency and pollen tube growth were reduced in the pip5k6 single mutant and further reduced in the pip5k4pip5k6 and pip5k5pip5k6 double mutants. YFP-fusion proteins, PIP5K4-YFP, PIP5K5-YFP, and PIP5K6-YFP, which could rescue the sterility of the triple mutant pollen, preferentially localized to the tricolpate aperture area and the future germination site on the plasma membrane prior to germination. Triple mutant pollen grains under the germination condition, in which spatiotemporal localization of the PtdIns(4,5)P2 fluorescent marker protein 2xmCHERRY-2xPHPLC as seen in the wild type was abolished, exhibited swelling and rupture of the pollen wall, but neither the conspicuous protruding site nor site-specific deposition of cell wall materials for germination. These data indicate that PIP5K4-6 and their product PtdIns(4,5)P2 are essential for pollen germination, possibly through the establishment of the germination polarity in a pollen grain.
Collapse
Affiliation(s)
- Mariko Kato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Machiko Watari
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Sheng Zhong
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Hongya Gu
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Li-Jia Qu
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Takashi Fujiwara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
14
|
van Hooren M, Darwish E, Munnik T. Stress- and phospholipid signalling responses in Arabidopsis PLC4-KO and -overexpression lines under salt- and osmotic stress. PHYTOCHEMISTRY 2023; 216:113862. [PMID: 37734512 DOI: 10.1016/j.phytochem.2023.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
Several drought and salt tolerant phenotypes have been reported when overexpressing (OE) phospholipase C (PLC) genes across plant species. In contrast, a negative role for Arabidopsis PLC4 in salinity stress was recently proposed, showing that roots of PLC4-OE seedlings were more sensitive to NaCl while plc4 knock-out (KO) mutants were more tolerant. To investigate this apparent contradiction, and to analyse the phospholipid signalling responses associated with salinity stress, we performed root growth- and phospholipid analyses on plc4-KO and PLC4-OE seedlings subjected to salinity (NaCl) or osmotic (sorbitol) stress and compared these with wild type (WT). Only very minor differences between PLC4 mutants and WT were observed, which even disappeared after normalization of the data, while in soil, PLC4-OE plants were clearly more drought tolerant than WT plants, as was found earlier when overexpressing Arabidopsis PLC2, -3, -5, -7 or -9. We conclude that PLC4 plays no opposite role in salt-or osmotic stress and rather behaves like the other Arabidopsis PLCs.
Collapse
Affiliation(s)
- Max van Hooren
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands
| | - Essam Darwish
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, 1000, BE, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
De la Concepcion JC. The exocyst complex is an evolutionary battleground in plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102482. [PMID: 37924562 DOI: 10.1016/j.pbi.2023.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/06/2023]
Abstract
Exocytosis is a conserved trafficking pathway that transports secretory vesicles to the extracellular space, replenishes the plasma membrane and is essential for establishing cell polarity. Its spatiotemporal regulation is mediated by an evolutionary conserved octameric tethering complex, the exocyst. In plants, certain subunits of this complex have diversified and acquired multiple functions, including a central role in defense against pathogens and pests. Here, I review the latest evidence suggesting the dramatic expansion and functional diversification of the exocyst subunit Exo70 is likely driven by a coevolutionary arms race, in which Exo70 proteins are repeatedly targeted by effectors from multiple pathogens and, in turn, are monitored by plant immune receptors for pathogen perception.
Collapse
|
16
|
Wang Y, Guo X, Xu Y, Sun R, Cai X, Zhou Z, Qin T, Tao Y, Li B, Hou Y, Wang Q, Liu F. Genome-wide association study for boll weight in Gossypium hirsutum races. Funct Integr Genomics 2023; 23:331. [PMID: 37940771 DOI: 10.1007/s10142-023-01261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
High yield has always been an essential target in almost all of the cotton breeding programs. Boll weight (BW) is a key component of cotton yield. Numerous linkage mapping and genome-wide association studies (GWAS) have been performed to understand the genetic mechanism of BW, but information on the markers/genes controlling BW remains limited. In this study, we conducted a GWAS for BW using 51,268 high-quality single-nucleotide polymorphisms (SNPs) and 189 Gossypium hirsutum accessions across five different environments. A total of 55 SNPs significantly associated with BW were detected, of which 29 and 26 were distributed in the A and D subgenomes, respectively. Five SNPs were simultaneously detected in two environments. For TM5655, TM8662, TM36371, and TM50258, the BW grouped by alleles of each SNP was significantly different. The ± 550 kb regions around these four key SNPs contained 262 genes. Of them, Gh_A02G1473, Gh_A10G1765, and Gh_A02G1442 were expressed highly at 0 to 1 days post-anthesis (dpa), - 3 to 0 dpa, and - 3 to 0 dpa in ovule of TM-1, respectively. They were presumed as the candidate genes for fiber cell differentiation, initiation, or elongation based on gene annotation of their homologs. Overall, these results supplemented valuable information for dissecting the genetic architecture of BW and might help to improve cotton yield through molecular marker-assisted selection breeding and molecular design breeding.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinlei Guo
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Runrun Sun
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory / National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Tengfei Qin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ye Tao
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Baihui Li
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Henan International Joint Laboratory of Functional Genomics and Molecular Breeding of Cotton, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory / National Nanfan Research Institute of Chinese Academy of Agriculture Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
Khoso MA, Zhang H, Khoso MH, Poudel TR, Wagan S, Papiashvili T, Saha S, Ali A, Murtaza G, Manghwar H, Liu F. Synergism of vesicle trafficking and cytoskeleton during regulation of plant growth and development: A mechanistic outlook. Heliyon 2023; 9:e21976. [PMID: 38034654 PMCID: PMC10682163 DOI: 10.1016/j.heliyon.2023.e21976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
The cytoskeleton is a fundamental component found in all eukaryotic organisms, serving as a critical factor in various essential cyto-biological mechanisms, particularly in the locomotion and morphological transformations of plant cells. The cytoskeleton is comprised of three main components: microtubules (MT), microfilaments (MF), and intermediate filaments (IF). The cytoskeleton plays a crucial role in the process of cell wall formation and remodeling throughout the growth and development of cells. It is a highly organized and regulated network composed of filamentous components. In the basic processes of intracellular transport, such as mitosis, cytokinesis, and cell polarity, the plant cytoskeleton plays a crucial role according to recent studies. The major flaws in the organization of the cytoskeletal framework are at the root of the aberrant organogenesis currently observed in plant mutants. The regulation of protein compartmentalization and abundance within cells is predominantly governed by the process of vesicle/membrane transport, which plays a crucial role in several signaling cascades.The regulation of membrane transport in eukaryotic cells is governed by a diverse array of proteins. Recent developments in genomics have provided new tools to study the evolutionary relationships between membrane proteins in different plant species. It is known that members of the GTPases, COP, SNAREs, Rabs, tethering factors, and PIN families play essential roles in vesicle transport between plant, animal, and microbial species. This Review presents the latest research on the plant cytoskeleton, focusing on recent developments related to the cytoskeleton and summarizing the role of various proteins in vesicle transport. In addition, the report predicts future research direction of plant cytoskeleton and vesicle trafficking, potential research priorities, and provides researchers with specific pointers to further investigate the significant link between cytoskeleton and vesicle trafficking.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Mir Hassan Khoso
- Department of Biochemistry, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, Pakistan
| | - Tika Ram Poudel
- Feline Research Center of National Forestry and Grassland Administration, College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Sindho Wagan
- Laboratory of Pest Physiology Biochemistry and Molecular Toxicology Department of Forest Protection Northeast Forestry University Harbin 150040, China
| | - Tamar Papiashvili
- School of Economics and Management Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Sudipta Saha
- School of Forestry, Department of Silviculture, Northeast Forestry University, Harbin 150040, China
| | - Abid Ali
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Department of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology Harbin Medical University China, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| | - Fen Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332000, China
| |
Collapse
|
18
|
Liu DA, Tao K, Wu B, Yu Z, Szczepaniak M, Rames M, Yang C, Svitkina T, Zhu Y, Xu F, Nan X, Guo W. A phosphoinositide switch mediates exocyst recruitment to multivesicular endosomes for exosome secretion. Nat Commun 2023; 14:6883. [PMID: 37898620 PMCID: PMC10613218 DOI: 10.1038/s41467-023-42661-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Exosomes are secreted to the extracellular milieu when multivesicular endosomes (MVEs) dock and fuse with the plasma membrane. However, MVEs are also known to fuse with lysosomes for degradation. How MVEs are directed to the plasma membrane for exosome secretion rather than to lysosomes is unclear. Here we report that a conversion of phosphatidylinositol-3-phosphate (PI(3)P) to phosphatidylinositol-4-phosphate (PI(4)P) catalyzed sequentially by Myotubularin 1 (MTM1) and phosphatidylinositol 4-kinase type IIα (PI4KIIα) on the surface of MVEs mediates the recruitment of the exocyst complex. The exocyst then targets the MVEs to the plasma membrane for exosome secretion. We further demonstrate that disrupting PI(4)P generation or exocyst function blocked exosomal secretion of Programmed death-ligand 1 (PD-L1), a key immune checkpoint protein in tumor cells, and led to its accumulation in lysosomes. Together, our study suggests that the PI(3)P to PI(4)P conversion on MVEs and the recruitment of the exocyst direct the exocytic trafficking of MVEs for exosome secretion.
Collapse
Affiliation(s)
- Di-Ao Liu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kai Tao
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
| | - Bin Wu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ziyan Yu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Malwina Szczepaniak
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
| | - Matthew Rames
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 2720 S. Moody Ave., Portland, OR, 97201, USA
| | - Changsong Yang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Tatyana Svitkina
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yueyao Zhu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology & Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, 19104, USA
| | - Fengyuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaolin Nan
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health and Science University, 2730 S. Moody Ave, Portland, OR, 97201, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 2720 S. Moody Ave., Portland, OR, 97201, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Kotsaridis K, Michalopoulou VA, Tsakiri D, Kotsifaki D, Kefala A, Kountourakis N, Celie PHN, Kokkinidis M, Sarris PF. The functional and structural characterization of Xanthomonas campestris pv. campestris core effector XopP revealed a new kinase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:100-111. [PMID: 37344990 DOI: 10.1111/tpj.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
Exo70B1 is a protein subunit of the exocyst complex with a crucial role in a variety of cell mechanisms, including immune responses against pathogens. The calcium-dependent kinase 5 (CPK5) of Arabidopsis thaliana (hereafter Arabidopsis), phosphorylates AtExo70B1 upon functional disruption. We previously reported that, the Xanthomonas campestris pv. campestris effector XopP compromises AtExo70B1, while bypassing the host's hypersensitive response, in a way that is still unclear. Herein we designed an experimental approach, which includes biophysical, biochemical, and molecular assays and is based on structural and functional predictions, utilizing AplhaFold and DALI online servers, respectively, in order to characterize the in vivo XccXopP function. The interaction between AtExo70B1 and XccXopP was found very stable in high temperatures, while AtExo70B1 appeared to be phosphorylated at XccXopP-expressing transgenic Arabidopsis. XccXopP revealed similarities with known mammalian kinases and phosphorylated AtExo70B1 at Ser107, Ser111, Ser248, Thr309, and Thr364. Moreover, XccXopP protected AtExo70B1 from AtCPK5 phosphorylation. Together these findings show that XccXopP is an effector, which not only functions as a novel serine/threonine kinase upon its host target AtExo70B1 but also protects the latter from the innate AtCPK5 phosphorylation, in order to bypass the host's immune responses. Data are available via ProteomeXchange with the identifier PXD041405.
Collapse
Affiliation(s)
- Konstantinos Kotsaridis
- Department of Biology, University of Crete, Heraklion, 714 09, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Vassiliki A Michalopoulou
- Department of Biology, University of Crete, Heraklion, 714 09, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Dimitra Tsakiri
- Department of Biology, University of Crete, Heraklion, 714 09, Crete, Greece
| | - Dina Kotsifaki
- Department of Biology, University of Crete, Heraklion, 714 09, Crete, Greece
| | - Aikaterini Kefala
- Department of Biology, University of Crete, Heraklion, 714 09, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Nikos Kountourakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Patrick H N Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michael Kokkinidis
- Department of Biology, University of Crete, Heraklion, 714 09, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | - Panagiotis F Sarris
- Department of Biology, University of Crete, Heraklion, 714 09, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
20
|
Wallner ES, Dolan L, Bergmann DC. Arabidopsis stomatal lineage cells establish bipolarity and segregate differential signaling capacity to regulate stem cell potential. Dev Cell 2023; 58:1643-1656.e5. [PMID: 37607546 DOI: 10.1016/j.devcel.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/04/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023]
Abstract
Cell polarity combined with asymmetric cell divisions (ACDs) generates cellular diversity. In the Arabidopsis stomatal lineage, a single cortical polarity domain marked by BASL orients ACDs and is segregated to the larger daughter to enforce cell fate. We discovered a second, oppositely positioned polarity domain defined by OCTOPUS-LIKE (OPL) proteins, which forms prior to ACD and is segregated to the smaller (meristemoid) daughter. Genetic and misexpression analyses show that OPLs promote meristemoid-amplifying divisions and delay stomatal fate progression. Polarity mediates OPL segregation into meristemoids but is not required for OPL function. OPL localization and activity are largely independent of other stomatal polarity genes and of the brassinosteroid signaling components associated with OPLs in other contexts. While OPLs are unique to seed plants, ectopic expression in the liverwort Marchantia suppressed epidermal fate progression, suggesting that OPLs engage ancient and broadly conserved pathways to regulate cell division and cell fate.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Gregor Mendel Institute, Dr.-Bohr-Gasse 3, 1030 Wien, Austria; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| | - Liam Dolan
- Gregor Mendel Institute, Dr.-Bohr-Gasse 3, 1030 Wien, Austria
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA; Howard Hughes Medical Institute, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Li X, Zhu P, Chen YJ, Huang L, Wang D, Newton DT, Hsu CC, Lin G, Tao WA, Staiger CJ, Zhang C. The EXO70 inhibitor Endosidin2 alters plasma membrane protein composition in Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1171957. [PMID: 37324680 PMCID: PMC10264680 DOI: 10.3389/fpls.2023.1171957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
To sustain normal growth and allow rapid responses to environmental cues, plants alter the plasma membrane protein composition under different conditions presumably by regulation of delivery, stability, and internalization. Exocytosis is a conserved cellular process that delivers proteins and lipids to the plasma membrane or extracellular space in eukaryotes. The octameric exocyst complex contributes to exocytosis by tethering secretory vesicles to the correct site for membrane fusion; however, whether the exocyst complex acts universally for all secretory vesicle cargo or just for specialized subsets used during polarized growth and trafficking is currently unknown. In addition to its role in exocytosis, the exocyst complex is also known to participate in membrane recycling and autophagy. Using a previously identified small molecule inhibitor of the plant exocyst complex subunit EXO70A1, Endosidin2 (ES2), combined with a plasma membrane enrichment method and quantitative proteomic analysis, we examined the composition of plasma membrane proteins in the root of Arabidopsis seedlings, after inhibition of the ES2-targetted exocyst complex, and verified our findings by live imaging of GFP-tagged plasma membrane proteins in root epidermal cells. The abundance of 145 plasma membrane proteins was significantly reduced following short-term ES2 treatments and these likely represent candidate cargo proteins of exocyst-mediated trafficking. Gene Ontology analysis showed that these proteins play diverse functions in cell growth, cell wall biosynthesis, hormone signaling, stress response, membrane transport, and nutrient uptake. Additionally, we quantified the effect of ES2 on the spatial distribution of EXO70A1 with live-cell imaging. Our results indicate that the plant exocyst complex mediates constitutive dynamic transport of subsets of plasma membrane proteins during normal root growth.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Yen-Ju Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - David T. Newton
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Guang Lin
- Department of Mathematics, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
22
|
Konishi N, Mitani-Ueno N, Yamaji N, Ma JF. Polar localization of a rice silicon transporter requires isoleucine at both C- and N-termini as well as positively charged residues. THE PLANT CELL 2023; 35:2232-2250. [PMID: 36891818 PMCID: PMC10226592 DOI: 10.1093/plcell/koad073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 05/30/2023]
Abstract
Silicon (Si) is important for stable and high yields in rice (Oryza sativa), a typical Si hyperaccumulator. The high Si accumulation is achieved by the cooperation of 2 Si transporters, LOW SILICON 1 (OsLsi1) and OsLsi2, which are polarly localized in cells of the root exodermis and endodermis. However, the mechanism underlying their polar localization is unknown. Here, we identified amino acid residues critical for the polar localization of OsLsi1. Deletion of both N- and C-terminal regions resulted in the loss of its polar localization. Furthermore, the deletion of the C-terminus inhibited its trafficking from the endoplasmic reticulum to the plasma membrane. Detailed site-directed mutagenesis analysis showed that Ile18 at the N-terminal region and Ile285 at the C-terminal region were essential for the polar localization of OsLsi1. Moreover, a cluster of positively charged residues at the C-terminal region is also required for polar localization. Phosphorylation and Lys modifications of OsLsi1 are unlikely to be involved in its polar localization. Finally, we showed that the polar localization of OsLsi1 is required for the efficient uptake of Si. Our study not only identified critical residues required for the polar localization of OsLsi1, but also provided experimental evidence for the importance of transporter polarity for efficient nutrient uptake.
Collapse
Affiliation(s)
- Noriyuki Konishi
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki 710-0046, Japan
| | | |
Collapse
|
23
|
Zarreen F, Kumar K, Chakraborty S. Phosphoinositides in plant-pathogen interaction: trends and perspectives. STRESS BIOLOGY 2023; 3:4. [PMID: 37676371 PMCID: PMC10442044 DOI: 10.1007/s44154-023-00082-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/15/2023] [Indexed: 09/08/2023]
Abstract
Phosphoinositides are important regulatory membrane lipids, with a role in plant development and cellular function. Emerging evidence indicates that phosphoinositides play crucial roles in plant defence and are also utilized by pathogens for infection. In this review, we highlight the role of phosphoinositides in plant-pathogen interaction and the implication of this remarkable convergence in the battle against plant diseases.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kamal Kumar
- Molecular Virology Laboratory, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
24
|
Barbosa ICR, De Bellis D, Flückiger I, Bellani E, Grangé-Guerment M, Hématy K, Geldner N. Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci. Nat Commun 2023; 14:1626. [PMID: 36959183 PMCID: PMC10036488 DOI: 10.1038/s41467-023-37265-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Casparian strips (CS) are aligned bands of lignin-impregnated cell walls, building an extracellular diffusion barrier in roots. Their structure profoundly differs from tight junctions (TJ), analogous structures in animals. Nonetheless, CS membrane domain (CSD) proteins 1-5 (CASP1-5) are homologues of occludins, TJ components. CASP-marked membranes display cell wall (matrix) adhesion and membrane protein exclusion. A full CASP knock-out now reveals CASPs are not needed for localized lignification, since correctly positioned lignin microdomains still form in the mutant. Ultra-structurally, however, these microdomains are disorganized, showing excessive cell wall growth, lack of exclusion zone and matrix adhesion, and impaired exocyst dynamics. Proximity-labelling identifies a Rab-GTPase subfamily, known exocyst activators, as potential CASP-interactors and demonstrate their localization and function at the CSD. We propose that CASP microdomains displace initial secretory foci by excluding vesicle tethering factors, thereby ensuring rapid fusion of microdomains into a membrane-cell wall band that seals the extracellular space.
Collapse
Affiliation(s)
- Inês Catarina Ramos Barbosa
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Damien De Bellis
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Isabelle Flückiger
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Etienne Bellani
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mathieu Grangé-Guerment
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Kian Hématy
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
- Institut Jean-Pierre Bourgin, INRAe, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Niko Geldner
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
25
|
Lace B, Su C, Invernot Perez D, Rodriguez-Franco M, Vernié T, Batzenschlager M, Egli S, Liu CW, Ott T. RPG acts as a central determinant for infectosome formation and cellular polarization during intracellular rhizobial infections. eLife 2023; 12:80741. [PMID: 36856086 PMCID: PMC9991063 DOI: 10.7554/elife.80741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Host-controlled intracellular accommodation of nitrogen-fixing bacteria is essential for the establishment of a functional Root Nodule Symbiosis (RNS). In many host plants, this occurs via transcellular tubular structures (infection threads - ITs) that extend across cell layers via polar tip-growth. Comparative phylogenomic studies have identified RPG (RHIZOBIUM-DIRECTED POLAR GROWTH) among the critical genetic determinants for bacterial infection. In Medicago truncatula, RPG is required for effective IT progression within root hairs but the cellular and molecular function of the encoded protein remains elusive. Here, we show that RPG resides in the protein complex formed by the core endosymbiotic components VAPYRIN (VPY) and LUMPY INFECTION (LIN) required for IT polar growth, co-localizes with both VPY and LIN in IT tip- and perinuclear-associated puncta of M. truncatula root hairs undergoing infection and is necessary for VPY recruitment into these structures. Fluorescence Lifetime Imaging Microscopy (FLIM) of phosphoinositide species during bacterial infection revealed that functional RPG is required to sustain strong membrane polarization at the advancing tip of the IT. In addition, loss of RPG functionality alters the cytoskeleton-mediated connectivity between the IT tip and the nucleus and affects the polar secretion of the cell wall modifying enzyme NODULE PECTATE LYASE (NPL). Our results integrate RPG into a core host machinery required to support symbiont accommodation, suggesting that its occurrence in plant host genomes is essential to co-opt a multimeric protein module committed to endosymbiosis to sustain IT-mediated bacterial infection.
Collapse
Affiliation(s)
- Beatrice Lace
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | - Chao Su
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | | | | | - Tatiana Vernié
- LRSV, Université de Toulouse, CNRS, UPS, INP ToulouseCastanet-TolosanFrance
| | | | - Sabrina Egli
- University of Freiburg, Faculty of BiologyFreiburgGermany
| | - Cheng-Wu Liu
- School of Life Sciences, Division of Life Sciences and Medicine, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of ChinaHefeiChina
| | - Thomas Ott
- University of Freiburg, Faculty of BiologyFreiburgGermany
- CIBSS – Centre of Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| |
Collapse
|
26
|
Shi Y, Luo C, Xiang Y, Qian D. Rab GTPases, tethers, and SNAREs work together to regulate Arabidopsis cell plate formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1120841. [PMID: 36844074 PMCID: PMC9950755 DOI: 10.3389/fpls.2023.1120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cell plates are transient structures formed by the fusion of vesicles at the center of the dividing plane; furthermore, these are precursors to new cell walls and are essential for cytokinesis. Cell plate formation requires a highly coordinated process of cytoskeletal rearrangement, vesicle accumulation and fusion, and membrane maturation. Tethering factors have been shown to interact with the Ras superfamily of small GTP binding proteins (Rab GTPases) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are essential for cell plate formation during cytokinesis and are fundamental for maintaining normal plant growth and development. In Arabidopsis thaliana, members of the Rab GTPases, tethers, and SNAREs are localized in cell plates, and mutations in the genes encoding these proteins result in typical cytokinesis-defective phenotypes, such as the formation of abnormal cell plates, multinucleated cells, and incomplete cell walls. This review highlights recent findings on vesicle trafficking during cell plate formation mediated by Rab GTPases, tethers, and SNAREs.
Collapse
|
27
|
Structural determinants of REMORIN nanodomain formation in anionic membranes. Biophys J 2022:S0006-3495(22)03964-9. [PMID: 36582138 DOI: 10.1016/j.bpj.2022.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Remorins are a family of multigenic plasma membrane phosphoproteins involved in biotic and abiotic plant interaction mechanisms, partnering in molecular signaling cascades. Signaling activity of remorins depends on their phosphorylation states and subsequent clustering into nanosized membrane domains. The presence of a coiled-coil domain and a C-terminal domain is crucial to anchor remorins to negatively charged membrane domains; however, the exact role of the N-terminal intrinsically disordered domain (IDD) on protein clustering and lipid interactions is largely unknown. Here, we combine chemical biology and imaging approaches to study the partitioning of group 1 remorin into anionic model membranes mimicking the inner leaflet of the plant plasma membrane. Using reconstituted membranes containing a mix of saturated and unsaturated phosphatidylcholine, phosphatidylinositol phosphates, and sterol, we investigate the clustering of remorins to the membrane and monitor the formation of nanosized membrane domains. REM1.3 promoted membrane nanodomain organization on the exposed external leaflet of both spherical lipid vesicles and flat supported lipid bilayers. Our results reveal that REM1.3 drives a mechanism allowing lipid reorganization, leading to the formation of remorin-enriched nanodomains. Phosphorylation of the N-terminal IDD by the calcium protein kinase CPK3 influences this clustering and can lead to the formation of smaller and more disperse domains. Our work reveals the phosphate-dependent involvement of the N-terminal IDD in the remorin-membrane interaction process by driving structural rearrangements at lipid-water interfaces.
Collapse
|
28
|
De la Concepcion JC, Fujisaki K, Bentham AR, Cruz Mireles N, Sanchez de Medina Hernandez V, Shimizu M, Lawson DM, Kamoun S, Terauchi R, Banfield MJ. A blast fungus zinc-finger fold effector binds to a hydrophobic pocket in host Exo70 proteins to modulate immune recognition in rice. Proc Natl Acad Sci U S A 2022; 119:e2210559119. [PMID: 36252011 PMCID: PMC9618136 DOI: 10.1073/pnas.2210559119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Exocytosis plays an important role in plant-microbe interactions, in both pathogenesis and symbiosis. Exo70 proteins are integral components of the exocyst, an octameric complex that mediates tethering of vesicles to membranes in eukaryotes. Although plant Exo70s are known to be targeted by pathogen effectors, the underpinning molecular mechanisms and the impact of this interaction on infection are poorly understood. Here, we show the molecular basis of the association between the effector AVR-Pii of the blast fungus Maganaporthe oryzae and rice Exo70 alleles OsExo70F2 and OsExo70F3, which is sensed by the immune receptor pair Pii via an integrated RIN4/NOI domain. The crystal structure of AVR-Pii in complex with OsExo70F2 reveals that the effector binds to a conserved hydrophobic pocket in Exo70, defining an effector/target binding interface. Structure-guided and random mutagenesis validates the importance of AVR-Pii residues at the Exo70 binding interface to sustain protein association and disease resistance in rice when challenged with fungal strains expressing effector mutants. Furthermore, the structure of AVR-Pii defines a zinc-finger effector fold (ZiF) distinct from the MAX (Magnaporthe Avrs and ToxB-like) fold previously described for a majority of characterized M. oryzae effectors. Our data suggest that blast fungus ZiF effectors bind a conserved Exo70 interface to manipulate plant exocytosis and that these effectors are also baited by plant immune receptors, pointing to new opportunities for engineering disease resistance.
Collapse
Affiliation(s)
| | - Koki Fujisaki
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - Adam R. Bentham
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Neftaly Cruz Mireles
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | | | - Motoki Shimizu
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
| | - David M. Lawson
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, NR4 7UH, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, 024-0003, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8501, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
29
|
Michalopoulou VA, Mermigka G, Kotsaridis K, Mentzelopoulou A, Celie PHN, Moschou PN, Jones JDG, Sarris PF. The host exocyst complex is targeted by a conserved bacterial type-III effector that promotes virulence. THE PLANT CELL 2022; 34:3400-3424. [PMID: 35640532 PMCID: PMC9421483 DOI: 10.1093/plcell/koac162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/23/2022] [Indexed: 05/30/2023]
Abstract
For most Gram-negative bacteria, pathogenicity largely depends on the type-III secretion system that delivers virulence effectors into eukaryotic host cells. The subcellular targets for the majority of these effectors remain unknown. Xanthomonas campestris, the causal agent of black rot disease of crucifers such as Brassica spp., radish, and turnip, delivers XopP, a highly conserved core-effector protein produced by X. campestris, which is essential for virulence. Here, we show that XopP inhibits the function of the host-plant exocyst complex by direct targeting of Exo70B, a subunit of the exocyst complex, which plays a significant role in plant immunity. XopP interferes with exocyst-dependent exocytosis and can do this without activating a plant NOD-like receptor that guards Exo70B in Arabidopsis. In this way, Xanthomonas efficiently inhibits the host's pathogen-associated molecular pattern (PAMP)-triggered immunity by blocking exocytosis of pathogenesis-related protein-1A, callose deposition, and localization of the FLAGELLIN SENSITIVE2 (FLS2) immune receptor to the plasma membrane, thus promoting successful infection. Inhibition of exocyst function without activating the related defenses represents an effective virulence strategy, indicating the ability of pathogens to adapt to host defenses by avoiding host immunity responses.
Collapse
Affiliation(s)
- Vassiliki A Michalopoulou
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Glykeria Mermigka
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | - Konstantinos Kotsaridis
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
| | | | - Patrick H N Celie
- Division of Biochemistry, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Panagiotis N Moschou
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Uppsala S-75007, Sweden
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Heraklion, Crete 714 09, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete 70013, Greece
- Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
30
|
Marković V, Jaillais Y. Phosphatidylinositol 4-phosphate: a key determinant of plasma membrane identity and function in plants. THE NEW PHYTOLOGIST 2022; 235:867-874. [PMID: 35586972 DOI: 10.1111/nph.18258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidylinositol 4-phosphate (PI4P) is an anionic phospholipid which has been described as a master regulator of the Golgi apparatus in eukaryotic cells. However, recent evidence suggests that PI4P mainly accumulates at the plasma membrane in all plant cells analyzed so far. In addition, many functions that are typically attributed to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) in animal and yeast cells are also supported by PI4P in plants. For example, PI4P is the key anionic lipid that powers the strong electrostatic properties of the plasma membrane. Phosphatidylinositol 4-phosphate is also required for the establishment of stable membrane contacts between the endoplasmic reticulum and the plasma membrane, for exocytosis and to support signaling pathways. Thus, we propose that PI4P has a prominent role in specifying the identity of the plasma membrane and in supporting some of its key functions and should be considered a hallmark lipid of this compartment.
Collapse
Affiliation(s)
- Vedrana Marković
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, F-69342, Lyon, France
| |
Collapse
|
31
|
Kocholata M, Maly J, Martinec J, Auer Malinska H. Plant extracellular vesicles and their potential in human health research, the practical approach. Physiol Res 2022; 71:327-339. [PMID: 35904344 DOI: 10.33549/physiolres.934886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles are small membrane particles (30-1000 nm) released by Bacteria, Eukaryotes and Archaea. They have been shown to play an important role in intracellular and intercellular communication, within and between kingdoms via transport of bioactive molecules. Thus, they can be involved in altering gene expression and regulation of physiological and pathological processes of the recipient. Their unique properties make extracellular vesicles a perfect candidate vector for targeted drug delivery or a biomarker. For a long time, animal and mainly mammal extracellular vesicles have been used in research. But for plants, there had been speculations about the existence of nanovesicles due to the presence of a cell wall. Today, awareness of plant extracellular vesicles is on the rise and their research has proved they have various functions, such as protein secretion, transport of bioactive molecules or defense against pathogens. Further potential of plant extracellular vesicles is stressed in this review.
Collapse
Affiliation(s)
- M Kocholata
- Centre for Nanomaterials and Biotechnologies, Faculty of Science, Jan Evangelista Purkyne University in Usti nad Labem, Usti nad Labem, Czech Republic.
| | | | | | | |
Collapse
|
32
|
Žárský V. Exocyst functions in plants - secretion and autophagy. FEBS Lett 2022; 596:2324-2334. [PMID: 35729750 DOI: 10.1002/1873-3468.14430] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022]
Abstract
Tethering complexes mediate vesicle-target compartment contact. Octameric complex exocyst initiates vesicle exocytosis at specific cytoplasmic membrane domains. Plant exocyst is possibly stabilized at the membrane by a direct interaction between SEC3 and EXO70A. Land plants evolved three basic membrane-targeting EXO70 subfamilies, the evolution of which resulted in several types of exocyst with distinct functions within the same cell. Surprisingly, some of these EXO70-exocyst versions are implicated in autophagy as is animal exocyst or are involved in host defense, cell-wall fortification and secondary metabolites transport. Interestingly, EXO70Ds act as selective autophagy receptors in the regulation of cytokinin signalling pathway. Secretion of double membrane autophagy-related structures formed with the contribution of EXO70s to the apoplast hints at the possibility of secretory autophagy in plants.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague, Czech Republic.,Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová 263, 165 02, Prague, Czech Republic
| |
Collapse
|
33
|
Batystová K, Synek L, Klejchová M, Janková Drdová E, Sabol P, Potocký M, Žárský V, Hála M. Diversification of SEC15a and SEC15b isoforms of an exocyst subunit in seed plants is manifested in their specific roles in Arabidopsis sporophyte and male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1382-1396. [PMID: 35306706 DOI: 10.1111/tpj.15744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The exocyst complex is an octameric evolutionarily conserved tethering complex engaged in the regulation of polarized secretion in eukaryotic cells. Here, we focus on the systematic comparison of two isoforms of the SEC15 exocyst subunit, SEC15a and SEC15b. We infer that SEC15 gene duplication and diversification occurred in the common ancestor of seed plants (Spermatophytes). In Arabidopsis, SEC15a represents the main SEC15 isoform in the male gametophyte, and localizes to the pollen tube tip at the plasma membrane. Although pollen tubes of sec15a mutants are impaired, sporophytes show no phenotypic deviations. Conversely, SEC15b is the dominant isoform in the sporophyte and localizes to the plasma membrane in root and leaf cells. Loss-of-function sec15b mutants exhibit retarded elongation of hypocotyls and root hairs, a loss of apical dominance, dwarfed plant stature and reduced seed coat mucilage formation. Surprisingly, the sec15b mutants also exhibit compromised pollen tube elongation in vitro, despite its very low expression in pollen, suggesting a non-redundant role for the SEC15b isoform there. In pollen tubes, SEC15b localizes to distinct cytoplasmic structures. Reciprocally to this, SEC15a also functions in the sporophyte, where it accumulates at plasmodesmata. Importantly, although overexpressed SEC15a could fully complement the sec15b phenotypic deviations in the sporophyte, the pollen-specific overexpression of SEC15b was unable to fully compensate for the loss of SEC15a function in pollen. We conclude that the SEC15a and SEC15b isoforms evolved in seed plants, with SEC15a functioning mostly in pollen and SEC15b functioning mostly in the sporophyte.
Collapse
Affiliation(s)
- Klára Batystová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Lukáš Synek
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Martina Klejchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Edita Janková Drdová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| |
Collapse
|
34
|
Heilmann M, Heilmann I. Regulators regulated: Different layers of control for plasma membrane phosphoinositides in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102218. [PMID: 35504191 DOI: 10.1016/j.pbi.2022.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The membranes of plant cells serve diverse physiological roles, which are defined largely by the localized and dynamic recruitment of proteins. Signaling lipids, such as phosphoinositides, can aid protein recruitment to the plasma membrane via specific recognition of their head groups and influence vesicular trafficking, cytoskeletal dynamics and other processes, with ramifications for plant tissue architecture and development. Phosphoinositide abundance is dynamically regulated. Recent advances indicate various levels of control during development or upon environmental triggers, including transcriptional or posttranslational regulation of enzymes balancing biogenesis and degradation, or the nano-organization of membranes into self-organizing physiologically distinct microenvironments. As patterns of interlinked mechanisms emerge, the horizons of what we do not understand become more and more defined.
Collapse
Affiliation(s)
- Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany.
| |
Collapse
|
35
|
Lin F, Zheng J, Xie Y, Jing W, Zhang Q, Zhang W. Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. J Genet Genomics 2022; 49:726-734. [DOI: 10.1016/j.jgg.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
36
|
Pang L, Ma Z, Zhang X, Huang Y, Li R, Miao Y, Li R. The small GTPase RABA2a recruits SNARE proteins to regulate the secretory pathway in parallel with the exocyst complex in Arabidopsis. MOLECULAR PLANT 2022; 15:398-418. [PMID: 34798312 DOI: 10.1016/j.molp.2021.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 05/22/2023]
Abstract
Delivery of proteins to the plasma membrane occurs via secretion, which requires tethering, docking, priming, and fusion of vesicles. In yeast and mammalian cells, an evolutionarily conserved RAB GTPase activation cascade functions together with the exocyst and SNARE proteins to coordinate vesicle transport with fusion at the plasma membrane. However, it is unclear whether this is the case in plants. In this study, we show that the small GTPase RABA2a recruits and interacts with the VAMP721/722-SYP121-SNAP33 SNARE ternary complex for membrane fusion. Through immunoprecipitation coupled with mass spectrometry analysis followed by the validatation with a series of biochemical assays, we identified the SNARE proteins VAMP721 and SYP121 as the interactors and downstream effectors of RABA2a. Further expreiments showed that RABA2a interacts with all members of the SNARE complex in its GTP-bound form and modulates the assembly of the VAMP721/722-SYP121-SNAP33 SNARE ternary complex. Intriguingly, we did not observe the interaction of the exocyst subunits with either RABA2a or theSNARE proteins in several different experiments. Neither RABA2a inactivation affects the subcellular localization or assembly of the exocystnor the exocyst subunit mutant exo84b shows the disrupted RABA2a-SNARE association or SNARE assembly, suggesting that the RABA2a-SNARE- and exocyst-mediated secretory pathways are largely independent. Consistently, our live imaging experiments reveal that the two sets of proteins follow non-overlapping trafficking routes, and genetic and cell biologyanalyses indicate that the two pathways select different cargos. Finally, we demonstrate that the plant-specific RABA2a-SNARE pathway is essential for the maintenance of potassium homeostasis in Arabisopsis seedlings. Collectively, our findings imply that higher plants might have generated different endomembrane sorting pathways during evolution and may enable the highly conserved endomembrane proteins to participate in plant-specific trafficking mechanisms for adaptation to the changing environment.
Collapse
Affiliation(s)
- Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanzhi Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruili Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
37
|
Scholz P, Pejchar P, Fernkorn M, Škrabálková E, Pleskot R, Blersch K, Munnik T, Potocký M, Ischebeck T. DIACYLGLYCEROL KINASE 5 regulates polar tip growth of tobacco pollen tubes. THE NEW PHYTOLOGIST 2022; 233:2185-2202. [PMID: 34931304 DOI: 10.1111/nph.17930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Pollen tubes require a tightly regulated pectin secretion machinery to sustain the cell wall plasticity required for polar tip growth. Involved in this regulation at the apical plasma membrane are proteins and signaling molecules, including phosphoinositides and phosphatidic acid (PA). However, the contribution of diacylglycerol kinases (DGKs) is not clear. We transiently expressed tobacco DGKs in pollen tubes to identify a plasma membrane (PM)-localized isoform, and then to study its effect on pollen tube growth, pectin secretion and lipid signaling. In order to potentially downregulate DGK5 function, we overexpressed an inactive variant. Only one of eight DGKs displayed a confined localization at the apical PM. We could demonstrate its enzymatic activity and that a kinase-dead variant was inactive. Overexpression of either variant led to differential perturbations including misregulation of pectin secretion. One mode of regulation could be that DGK5-formed PA regulates phosphatidylinositol 4-phosphate 5-kinases, as overexpression of the inactive DGK5 variant not only led to a reduction of PA but also of phosphatidylinositol 4,5-bisphosphate levels and suppressed related growth phenotypes. We conclude that DGK5 is an additional player of polar tip growth that regulates pectin secretion probably in a common pathway with PI4P 5-kinases.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Přemysl Pejchar
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Max Fernkorn
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
- Department of Experimental Plant Biology, Charles University, Prague, 12844, Czech Republic
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Katharina Blersch
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, 48143, Germany
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1000 BE, the Netherlands
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, 37077, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, Münster, 48143, Germany
| |
Collapse
|
38
|
Ortmannová J, Sekereš J, Kulich I, Šantrůček J, Dobrev P, Žárský V, Pečenková T. Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:742-755. [PMID: 34664667 DOI: 10.1093/jxb/erab457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In the reaction to non-adapted Blumeria graminis f. sp. hordei (Bgh), Arabidopsis thaliana leaf epidermal cells deposit cell wall reinforcements called papillae or seal fungal haustoria in encasements, both of which involve intensive exocytosis. A plant syntaxin, SYP121/PEN1, has been found to be of key importance for the timely formation of papillae, and the vesicle tethering complex exocyst subunit EXO70B2 has been found to contribute to their morphology. Here, we identify a specific role for the EXO70B2-containing exocyst complex in the papillae membrane domains important for callose deposition and GFP-SYP121 delivery to the focal attack sites, as well as its contribution to encasement formation. The mRuby2-EXO70B2 co-localizes with the exocyst core subunit SEC6 and GFP-SYP121 in the membrane domain of papillae, and EXO70B2 and SYP121 proteins have the capacity to directly interact. The exo70B2/syp121 double mutant produces a reduced number of papillae and haustorial encasements in response to Bgh, indicating an additive role of the exocyst in SYP121-coordinated non-host resistance. In summary, we report cooperation between the plant exocyst and a SNARE protein in penetration resistance against non-adapted fungal pathogens.
Collapse
Affiliation(s)
- Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Juraj Sekereš
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Jiří Šantrůček
- Laboratory of Applied Proteomics, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petre Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Charles University in Prague, Faculty of Science, Viničná 5, 128 44, Prague 2, Czech Republic
| | - Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 165 02, Prague 6, Czech Republic
| |
Collapse
|
39
|
Distinct mechanisms orchestrate the contra-polarity of IRK and KOIN, two LRR-receptor-kinases controlling root cell division. Nat Commun 2022; 13:235. [PMID: 35017541 PMCID: PMC8752632 DOI: 10.1038/s41467-021-27913-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022] Open
Abstract
In plants, cell polarity plays key roles in coordinating developmental processes. Despite the characterization of several polarly localized plasma membrane proteins, the mechanisms connecting protein dynamics with cellular functions often remain unclear. Here, we introduce a polarized receptor, KOIN, that restricts cell divisions in the Arabidopsis root meristem. In the endodermis, KOIN polarity is opposite to IRK, a receptor that represses endodermal cell divisions. Their contra-polar localization facilitates dissection of polarity mechanisms and the links between polarity and function. We find that IRK and KOIN are recognized, sorted, and secreted through distinct pathways. IRK extracellular domains determine its polarity and partially rescue the mutant phenotype, whereas KOIN’s extracellular domains are insufficient for polar sorting and function. Endodermal expression of an IRK/KOIN chimera generates non-cell-autonomous misregulation of root cell divisions that impacts patterning. Altogether, we reveal two contrasting mechanisms determining these receptors’ polarity and link their polarity to cell divisions in root tissue patterning. Protein polarization coordinates many plant developmental processes. Here the authors show that IRK and KOIN, two LRR-receptor-kinases polarized to opposite sides of cells in the root meristem, rely on distinct mechanisms to achieve polarity.
Collapse
|
40
|
Zhu YQ, Qiu L, Liu LL, Luo L, Han XP, Zhai YH, Wang WJ, Ren MZ, Xing YD. Identification and Comprehensive Structural and Functional Analyses of the EXO70 Gene Family in Cotton. Genes (Basel) 2021; 12:genes12101594. [PMID: 34680988 PMCID: PMC8536163 DOI: 10.3390/genes12101594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022] Open
Abstract
The EXO70 gene is a vital component of the exocytosis complex and participates in biological processes ranging from plant cell division to polar growth. There are many EXO70 genes in plants and their functions are extensive, but little is known about the EXO70 gene family in cotton. Here, we analyzed four cotton sequence databases, identified 165 EXO70 genes, and divided them into eight subgroups (EXO70A–EXO70H) based on their phylogenetic relationships. EXO70A had the most exons (≥11), whereas the other seven each had only one or two exons. Hence, EXO70A may have many important functions. The 84 EXO70 genes in Asian and upland cotton were expressed in the roots, stems, leaves, flowers, fibers, and/or ovules. Full-length GhEXO70A1-A cDNA was homologously cloned from upland cotton (Gossypium hirsutum, G. hirsutum). Subcellular analysis revealed that GhEXO70A1-A protein was localized to the plasma membrane. A yeast two-hybrid assay revealed that GhEXO70A1-A interacted with GhEXO84A, GhEXO84B, and GhEXO84C. GhEXO70A1-A silencing significantly altered over 4000 genes and changed several signaling pathways related to metabolism. Thus, the EXO70 gene plays critical roles in the physiological functions of cotton.
Collapse
Affiliation(s)
- Ya-Qian Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-Q.Z.); (L.Q.); (L.-L.L.); (L.L.); (X.-P.H.); (Y.-H.Z.); (W.-J.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lu Qiu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-Q.Z.); (L.Q.); (L.-L.L.); (L.L.); (X.-P.H.); (Y.-H.Z.); (W.-J.W.)
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lu-Lu Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-Q.Z.); (L.Q.); (L.-L.L.); (L.L.); (X.-P.H.); (Y.-H.Z.); (W.-J.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lei Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-Q.Z.); (L.Q.); (L.-L.L.); (L.L.); (X.-P.H.); (Y.-H.Z.); (W.-J.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xin-Pei Han
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-Q.Z.); (L.Q.); (L.-L.L.); (L.L.); (X.-P.H.); (Y.-H.Z.); (W.-J.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yao-Hua Zhai
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-Q.Z.); (L.Q.); (L.-L.L.); (L.L.); (X.-P.H.); (Y.-H.Z.); (W.-J.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wen-Jing Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-Q.Z.); (L.Q.); (L.-L.L.); (L.L.); (X.-P.H.); (Y.-H.Z.); (W.-J.W.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mao-Zhi Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Correspondence: (M.-Z.R.); (Y.-D.X.)
| | - Ya-Di Xing
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.-Q.Z.); (L.Q.); (L.-L.L.); (L.L.); (X.-P.H.); (Y.-H.Z.); (W.-J.W.)
- Correspondence: (M.-Z.R.); (Y.-D.X.)
| |
Collapse
|