1
|
Metoki A, Chauvin RJ, Gordon EM, Laumann TO, Kay BP, Krimmel SR, Marek S, Wang A, Van AN, Baden NJ, Suljic V, Scheidter KM, Monk J, Whiting FI, Ramirez-Perez NJ, Barch DM, Sotiras A, Dosenbach NUF. Brain functional connectivity, but not neuroanatomy, captures the interrelationship between sex and gender in preadolescents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621379. [PMID: 39554185 PMCID: PMC11565917 DOI: 10.1101/2024.10.31.621379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Understanding sex differences in the adolescent brain is crucial, as these differences are linked to neurological and psychiatric conditions that vary between males and females. Predicting sex from adolescent brain data may offer valuable insights into how these variations shape neurodevelopment. Recently, attention has shifted toward exploring socially-identified gender, distinct from sex assigned at birth, recognizing its additional explanatory power. This study evaluates whether resting-state functional connectivity (rsFC) or cortical thickness more effectively predicts sex and sex/gender alignment (the congruence between sex and gender) and investigates their interrelationship in preadolescents. Using data from the Adolescent Brain Cognitive Development (ABCD) Study, we employed machine learning to predict both sex (assigned at birth) and sex/gender alignment from rsFC and cortical thickness. rsFC predicted sex with significantly higher accuracy (86%) than cortical thickness (75%) and combining both did not improve the rsFC model's accuracy. Brain regions most effective in predicting sex belonged to association (default mode, dorsal attention, and parietal memory) and visual (visual and medial visual) networks. The rsFC sex classifier trained on sex/gender aligned youth was significantly more effective in classifying unseen youth with sex/gender alignment than in classifying unseen youth with sex/gender unalignment. In females, the degree to which their brains' rsFC matched a sex profile (female or male), was positively associated with the degree of sex/gender alignment. Lastly, neither rsFC nor cortical thickness predicted sex/gender alignment. These findings highlight rsFC's predictive power in capturing the relationship between sex and gender and the complexity of the interplay between sex, gender, and the brain's functional connectivity and neuroanatomy.
Collapse
Affiliation(s)
- Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anxu Wang
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noah J Baden
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vahdeta Suljic
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Julia Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Forrest I Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Deanna M Barch
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
| | - Aristeidis Sotiras
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Program in Occupational Therapy, Washington University, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Ghezeljeh FK, Kazemi R, Rostami R, Zandbagleh A, Khomami S, Vandi FR, Hadipour AL. Female Cerebellum Seems Sociable; An iTBS Investigation. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1783-1794. [PMID: 38530595 DOI: 10.1007/s12311-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The cerebellum has been shown to be engaged in tasks other than motor control, including cognitive and affective functions. Prior neuroimaging studies have documented the role of this area in social cognition and despite these findings, no studies have yet examined the causal relationship between the cerebellum and social cognition. This study aimed to investigate the role of the cerebellum in empathy and theory of mind (ToM) in a randomized, placebo-controlled, double-blind, parallel study. 32 healthy participants were assigned to either a sham or active group. For the active group, an intermittent theta-burst stimulation (iTBS) protocol at 100% of the motor threshold was applied to the cerebellum, while the control group received sham stimulation. An eyes-closed EEG session, the Empathy Quotient (EQ) test, and the Reading the Mind in the Eyes Test (RMET) were administered before and after the iTBS session. The results demonstrated differences in cognitive empathy, ToM, and a decrease in the activity of the default mode network (DMN) between the active and sham groups in females. Females also showed a decrease in the activity of the affective empathy network and connectivity in the DMN. We conclude that cognitive empathy and ToM are associated with cerebellar activity, and due to sex-related differences in the cortical organization of this area which is modulated by sex hormones, the stimulation of the cerebellum in males and females yields different results.
Collapse
Affiliation(s)
| | - Reza Kazemi
- Faculty of Entrepreneurship, University of Tehran, Farshi Moghadam (16 St.), North Kargar Ave., Tehran, Iran.
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Ahmad Zandbagleh
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sanaz Khomami
- Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Keller AS, Sun KY, Francisco A, Robinson H, Beydler E, Bassett DS, Cieslak M, Cui Z, Davatzikos C, Fan Y, Gardner M, Kishton R, Kornfield SL, Larsen B, Li H, Linder I, Pines A, Pritschet L, Raznahan A, Roalf DR, Seidlitz J, Shafiei G, Shinohara RT, Wolf DH, Alexander-Bloch A, Satterthwaite TD, Shanmugan S. Reproducible Sex Differences in Personalized Functional Network Topography in Youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615061. [PMID: 39386637 PMCID: PMC11463432 DOI: 10.1101/2024.09.26.615061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background A key step towards understanding psychiatric disorders that disproportionately impact female mental health is delineating the emergence of sex-specific patterns of brain organization at the critical transition from childhood to adolescence. Prior work suggests that individual differences in the spatial organization of functional brain networks across the cortex are associated with psychopathology and differ systematically by sex. Aims We aimed to evaluate the impact of sex on the spatial organization of person-specific functional brain networks. Method We leveraged person-specific atlases of functional brain networks defined using nonnegative matrix factorization in a sample of n = 6437 youths from the Adolescent Brain Cognitive Development Study. Across independent discovery and replication samples, we used generalized additive models to uncover associations between sex and the spatial layout ("topography") of personalized functional networks (PFNs). Next, we trained support vector machines to classify participants' sex from multivariate patterns of PFN topography. Finally, we leveraged transcriptomic data from the Allen Human Brain Atlas to evaluate spatial correlations between sex differences in PFN topography and gene expression. Results Sex differences in PFN topography were greatest in association networks including the fronto-parietal, ventral attention, and default mode networks. Machine learning models trained on participants' PFNs were able to classify participant sex with high accuracy. Brain regions with the greatest sex differences in PFN topography were enriched in expression of X-linked genes as well as genes expressed in astrocytes and excitatory neurons. Conclusions Sex differences in PFN topography are robust, replicate across large-scale samples of youth, and are associated with expression patterns of X-linked genes. These results suggest a potential contributor to the female-biased risk in depressive and anxiety disorders that emerge at the transition from childhood to adolescence.
Collapse
Affiliation(s)
- Arielle S Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Kevin Y Sun
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley Francisco
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heather Robinson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, USA
| | - Emily Beydler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering, Electrical & Systems Engineering, Physics & Astronomy, and Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Matthew Cieslak
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Gardner
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel Kishton
- Department of Family Medicine and Community Health, Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara L Kornfield
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Women's Behavioral Wellness, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Masonic Institute for the Developing Brain, Institute of Child Development, University of Minnesota, Minneapolis, MN 55414, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Isabella Linder
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Laura Pritschet
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, Maryland
| | - David R Roalf
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jakob Seidlitz
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Golia Shafiei
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sheila Shanmugan
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Center for Women's Behavioral Wellness, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Serio B, Hettwer MD, Wiersch L, Bignardi G, Sacher J, Weis S, Eickhoff SB, Valk SL. Sex differences in functional cortical organization reflect differences in network topology rather than cortical morphometry. Nat Commun 2024; 15:7714. [PMID: 39231965 PMCID: PMC11375086 DOI: 10.1038/s41467-024-51942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Differences in brain size between the sexes are consistently reported. However, the consequences of this anatomical difference on sex differences in intrinsic brain function remain unclear. In the current study, we investigate whether sex differences in intrinsic cortical functional organization may be associated with differences in cortical morphometry, namely different measures of brain size, microstructure, and the geodesic distance of connectivity profiles. For this, we compute a low dimensional representation of functional cortical organization, the sensory-association axis, and identify widespread sex differences. Contrary to our expectations, sex differences in functional organization do not appear to be systematically associated with differences in total surface area, microstructural organization, or geodesic distance, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis are associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.
Collapse
Affiliation(s)
- Bianca Serio
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Meike D Hettwer
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Brain-Based Predictive Modeling Lab, Feinstein Institutes for Medical Research, Glen Oaks, New York, NY, USA
| | - Giacomo Bignardi
- Max Planck School of Cognition, Leipzig, Germany
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Julia Sacher
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig Center for Female Health & Gender Medicine, Medical Faculty, University Clinic Leipzig, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
5
|
Pines A, Tozzi L, Bertrand C, Keller AS, Zhang X, Whitfield-Gabrieli S, Hastie T, Larsen B, Leikauf J, Williams LM. Psychiatric Symptoms, Cognition, and Symptom Severity in Children. JAMA Psychiatry 2024:2822689. [PMID: 39196567 PMCID: PMC11359114 DOI: 10.1001/jamapsychiatry.2024.2399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/07/2024] [Indexed: 08/29/2024]
Abstract
Importance Mental illnesses are a leading cause of disability globally, and functional disability is often in part caused by cognitive impairments across psychiatric disorders. However, studies have consistently reported seemingly opposite findings regarding the association between cognition and psychiatric symptoms. Objective To determine if the association between general cognition and mental health symptoms diverges at different symptom severities in children. Design, Setting, and Participants A total of 5175 children with complete data at 2 time points assessed 2 years apart (aged 9 to 11 years at the first assessment) from the ongoing Adolescent Brain and Cognitive Development (ABCD) study were evaluated for a general cognition factor and mental health symptoms from September 2016 to August 2020 at 21 sites across the US. Polynomial and generalized additive models afforded derivation of continuous associations between cognition and psychiatric symptoms across different ranges of symptom severity. Data were analyzed from December 2022 to April 2024. Main Outcomes and Measures Aggregate cognitive test scores (general cognition) were primarily evaluated in relation to total and subscale-specific symptoms reported from the Child Behavioral Checklist. Results The sample included 5175 children (2713 male [52.4%] and 2462 female [47.6%]; mean [SD] age, 10.9 [1.18] years). Previously reported mixed findings regarding the association between general cognition and symptoms may consist of several underlying, opposed associations that depend on the class and severity of symptoms. Linear models recovered differing associations between general cognition and mental health symptoms, depending on the range of symptom severities queried. Nonlinear models confirm that internalizing symptoms were significantly positively associated with cognition at low symptom burdens higher cognition = more symptoms) and significantly negatively associated with cognition at high symptom burdens. Conclusions and Relevance The association between mental health symptoms and general cognition in this study was nonlinear. Internalizing symptoms were both positively and negatively associated with general cognition at a significant level, depending on the range of symptom severities queried in the analysis sample. These results appear to reconcile mixed findings in prior studies, which implicitly assume that symptom severity tracks linearly with cognitive ability across the entire spectrum of mental health. As the association between cognition and symptoms may be opposite in low vs high symptom severity samples, these results reveal the necessity of clinical enrichment in studies of cognitive impairment.
Collapse
Affiliation(s)
- Adam Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Leonardo Tozzi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Claire Bertrand
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Arielle S. Keller
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Xue Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | | | - Trevor Hastie
- Department of Statistics, Stanford University, Stanford, California
- Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - John Leikauf
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Leanne M. Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
- Sierra-Pacific Mental Illness Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
6
|
Dhamala E, Bassett DS, Yeo T, Holmes AJ. Functional brain networks are associated with both sex and gender in children. SCIENCE ADVANCES 2024; 10:eadn4202. [PMID: 38996031 PMCID: PMC11244548 DOI: 10.1126/sciadv.adn4202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/12/2024] [Indexed: 07/14/2024]
Abstract
Sex and gender are associated with human behavior throughout the life span and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Somatomotor, visual, control, and limbic networks are preferentially associated with sex, while network correlates of gender are more distributed throughout the cortex. These results suggest that sex and gender are irreducible to one another not only in society but also in biology.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA
| | - Dani S. Bassett
- University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Thomas Yeo
- Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
7
|
Cioffi L, Grassi D, Diviccaro S, Caruso D, Pinto-Benito D, Arevalo MA, Garcia-Segura LM, Melcangi RC, Giatti S. Sex chromosome complement interacts with gonadal hormones in determining regional-specific neuroactive steroid levels in plasma, hippocampus, and hypothalamus. A study using the four core genotype mouse model. J Steroid Biochem Mol Biol 2024; 241:106514. [PMID: 38554982 DOI: 10.1016/j.jsbmb.2024.106514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
An important aspect of the neuromodulatory and neuroprotective actions exerted by neuroactive steroids is that they are sex-specific, as determined by the sexually dimorphic levels of these molecules in plasma and the nervous tissue. Thus, the identification of the factors that generate the sex-dimorphic levels of neuroactive steroids may be crucial from a neuroprotectant perspective. The main driver for sex determination in mammals is the SRY gene and the subsequent presence of a specific gonad: testes for males and ovaries for females, thus producing hormonal compounds, primarily androgens and estrogens, respectively. Nowadays, it is well established that despite the relevance of gonads, other factors control sexual features, and, among them, sex chromosome complement is highly relevant. In this study, neuroactive steroids were evaluated by liquid chromatography-tandem mass spectrometry in the hypothalamus, the hippocampus, and plasma of the four core genotype mouse model, to determine the relative contribution of sex chromosome complement and gonads in determining their sex dimorphic levels. The data obtained reveal that although gonads are the main contributing factor for sex differences in neuroactive steroid levels, the levels of some neuroactive steroids, including testosterone, are also influenced in brain and plasma by tissue-specific actions of sex chromosomes. The data presented here adds a new piece to the puzzle of steroid level regulation, which may be useful in designing sex-specific neuroprotective approaches to pathological conditions affecting the nervous system.
Collapse
Affiliation(s)
- Lucia Cioffi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniela Grassi
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Autonoma University of Madrid, Calle Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Silvia Diviccaro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Daniel Pinto-Benito
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Maria-Angeles Arevalo
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Luis Miguel Garcia-Segura
- Cajal Institute, CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain and Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milano 20133, Itlay
| |
Collapse
|
8
|
Zhao CL, Hou W, Jia Y, Sahakian BJ, Luo Q. Sex differences of signal complexity at resting-state functional magnetic resonance imaging and their associations with the estrogen-signaling pathway in the brain. Cogn Neurodyn 2024; 18:973-986. [PMID: 38826661 PMCID: PMC11143120 DOI: 10.1007/s11571-023-09954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 06/04/2024] Open
Abstract
Sex differences in the brain have been widely reported and may hold the key to elucidating sex differences in many medical conditions and drug response. However, the molecular correlates of these sex differences in structural and functional brain measures in the human brain remain unclear. Herein, we used sample entropy (SampEn) to quantify the signal complexity of resting-state functional magnetic resonance imaging (rsfMRI) in a large neuroimaging cohort (N = 1,642). The frontoparietal control network and the cingulo-opercular network had high signal complexity while the cerebellar and sensory motor networks had low signal complexity in both men and women. Compared with those in male brains, we found greater signal complexity in all functional brain networks in female brains with the default mode network exhibiting the largest sex difference. Using the gene expression data in brain tissues, we identified genes that were significantly associated with sex differences in brain signal complexity. The significant genes were enriched in the gene sets that were differentially expressed between the brain cortex and other tissues, the estrogen-signaling pathway, and the biological function of neural plasticity. In particular, the G-protein-coupled estrogen receptor 1 gene in the estrogen-signaling pathway was expressed more in brain regions with greater sex differences in SampEn. In conclusion, greater complexity in female brains may reflect the interactions between sex hormone fluctuations and neuromodulation of estrogen in women. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09954-y.
Collapse
Affiliation(s)
- Cheng-li Zhao
- College of Science, National University of Defense Technology, Changsha, 410073 China
| | - Wenjie Hou
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Yanbing Jia
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - the DIRECT Consortium
- College of Science, National University of Defense Technology, Changsha, 410073 China
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
9
|
Jiang Z, Sullivan PF, Li T, Zhao B, Wang X, Luo T, Huang S, Guan PY, Chen J, Yang Y, Stein JL, Li Y, Liu D, Sun L, Zhu H. The pivotal role of the X-chromosome in the genetic architecture of the human brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.08.30.23294848. [PMID: 37693466 PMCID: PMC10491353 DOI: 10.1101/2023.08.30.23294848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Genes on the X-chromosome are extensively expressed in the human brain. However, little is known for the X-chromosome's impact on the brain anatomy, microstructure, and functional network. We examined 1,045 complex brain imaging traits from 38,529 participants in the UK Biobank. We unveiled potential autosome-X-chromosome interactions, while proposing an atlas outlining dosage compensation (DC) for brain imaging traits. Through extensive association studies, we identified 72 genome-wide significant trait-locus pairs (including 29 new associations) that share genetic architectures with brain-related disorders, notably schizophrenia. Furthermore, we discovered unique sex-specific associations and assessed variations in genetic effects between sexes. Our research offers critical insights into the X-chromosome's role in the human brain, underscoring its contribution to the differences observed in brain structure and functionality between sexes.
Collapse
|
10
|
Ma Y, Li H, Zhou Z, Chen X, Ma L, Guray E, Balderston NL, Oathes DJ, Shinohara RT, Wolf DH, Nasrallah IM, Shou H, Satterthwaite TD, Davatzikos C, Fan Y. pNet: A toolbox for personalized functional networks modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591367. [PMID: 38746228 PMCID: PMC11092457 DOI: 10.1101/2024.04.26.591367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data are useful for characterizing individual variations in the brain functional topography associated with the brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes personalized FNs using two distinct modeling methods: one method optimizes the functional coherence of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and Python platforms with a modular design to facilitate extension and modification by users familiar with either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available at https://github.com/MLDataAnalytics/pNet.
Collapse
Affiliation(s)
- Yuncong Ma
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyang Chen
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Liang Ma
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Erus Guray
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Clinical Epidemiology (CCEB), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Statistics in Big Data (CSBD), Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- 9. Penn Lifespan Informatics and Neuroimaging Center (PennLINC), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Dhamala E, Chopra S, Ooi LQ, Rubio JM, Yeo BT, Malhotra AK, Holmes AJ. Sex differences in the functional network underpinnings of psychotic-like experiences in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590660. [PMID: 38712263 PMCID: PMC11071409 DOI: 10.1101/2024.04.22.590660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Psychotic-like experiences (PLEs) include a range of sub-threshold symptoms that resemble aspects of psychosis but do not necessarily indicate the presence of psychiatric illness. These experiences are highly prevalent in youth and are associated with developmental disruptions across social, academic, and emotional domains. While not all youth who report PLEs develop psychosis, many develop other psychiatric illnesses during adolescence and adulthood. As such, PLEs are theorized to represent early markers of poor mental health. Here, we characterized the similarities and differences in the neurobiological underpinnings of childhood PLEs across the sexes using a large sample from the ABCD Study (n=5,260), revealing sex-specific associations between functional networks connectivity and PLEs. We find that although the networks associated with PLEs overlap to some extent across the sexes, there are also crucial differences. In females, PLEs are associated with dispersed cortical and non-cortical connections, whereas in males, they are primarily associated with functional connections within limbic, temporal parietal, somato/motor, and visual networks. These results suggest that early transdiagnostic markers of psychopathology may be distinct across the sexes, further emphasizing the need to consider sex in psychiatric research as well as clinical practice.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, USA
| | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, USA
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, USA
| | - Leon Q.R. Ooi
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jose M. Rubio
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, USA
| | - B.T. Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Anil K. Malhotra
- Institute of Behavioral Sciences, Feinstein Institutes for Medical Research, Manhasset, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, USA
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, USA
| |
Collapse
|
12
|
Ryali S, Zhang Y, de los Angeles C, Supekar K, Menon V. Deep learning models reveal replicable, generalizable, and behaviorally relevant sex differences in human functional brain organization. Proc Natl Acad Sci U S A 2024; 121:e2310012121. [PMID: 38377194 PMCID: PMC10907309 DOI: 10.1073/pnas.2310012121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024] Open
Abstract
Sex plays a crucial role in human brain development, aging, and the manifestation of psychiatric and neurological disorders. However, our understanding of sex differences in human functional brain organization and their behavioral consequences has been hindered by inconsistent findings and a lack of replication. Here, we address these challenges using a spatiotemporal deep neural network (stDNN) model to uncover latent functional brain dynamics that distinguish male and female brains. Our stDNN model accurately differentiated male and female brains, demonstrating consistently high cross-validation accuracy (>90%), replicability, and generalizability across multisession data from the same individuals and three independent cohorts (N ~ 1,500 young adults aged 20 to 35). Explainable AI (XAI) analysis revealed that brain features associated with the default mode network, striatum, and limbic network consistently exhibited significant sex differences (effect sizes > 1.5) across sessions and independent cohorts. Furthermore, XAI-derived brain features accurately predicted sex-specific cognitive profiles, a finding that was also independently replicated. Our results demonstrate that sex differences in functional brain dynamics are not only highly replicable and generalizable but also behaviorally relevant, challenging the notion of a continuum in male-female brain organization. Our findings underscore the crucial role of sex as a biological determinant in human brain organization, have significant implications for developing personalized sex-specific biomarkers in psychiatric and neurological disorders, and provide innovative AI-based computational tools for future research.
Collapse
Affiliation(s)
- Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Carlo de los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
- Stanford Institute for Human-Centered Artificial Intelligence, Stanford University, Stanford, CA94305
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
- Stanford Institute for Human-Centered Artificial Intelligence, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
| |
Collapse
|
13
|
Wang Q, Qi L, He C, Feng H, Xie C. Age- and gender-related dispersion of brain networks across the lifespan. GeroScience 2024; 46:1303-1318. [PMID: 37542582 PMCID: PMC10828139 DOI: 10.1007/s11357-023-00900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/30/2023] [Indexed: 08/07/2023] Open
Abstract
The effects of age and gender on large-scale resting-state networks (RSNs) reflecting within- and between-network connectivity in the healthy brain remain unclear. This study investigated how age and gender influence the brain network roles and topological properties underlying the ageing process. Ten RSNs were constructed based on 998 participants from the REST-meta-MDD cohort. Multivariate linear regression analysis was used to examine the independent and interactive influences of age and gender on large-scale RSNs and their topological properties. A support vector regression model integrating whole-brain network features was used to predict brain age across the lifespan and cognitive decline in an Alzheimer's disease spectrum (ADS) sample. Differential effects of age and gender on brain network roles were demonstrated across the lifespan. Specifically, cingulo-opercular, auditory, and visual (VIS) networks showed more incohesive features reflected by decreased intra-network connectivity with ageing. Further, females displayed distinctive brain network trajectory patterns in middle-early age, showing enhanced network connectivity within the fronto-parietal network (FPN) and salience network (SAN) and weakened network connectivity between the FPN-somatomotor, FPN-VIS, and SAN-VIS networks. Age - but not gender - induced widespread decrease in topological properties of brain networks. Importantly, these differential network features predicted brain age and cognitive impairment in the ADS sample. By showing that age and gender exert specific dispersion of dynamic network roles and trajectories across the lifespan, this study has expanded our understanding of age- and gender-related brain changes with ageing. Moreover, the findings may be useful for detecting early-stage dementia.
Collapse
Affiliation(s)
- Qing Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lingyu Qi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Cancan He
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Haixia Feng
- Department of Nursing, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Institute of Neuropsychiatry, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu, 210009, China.
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
14
|
Khayretdinova M, Zakharov I, Pshonkovskaya P, Adamovich T, Kiryasov A, Zhdanov A, Shovkun A. Prediction of brain sex from EEG: using large-scale heterogeneous dataset for developing a highly accurate and interpretable ML model. Neuroimage 2024; 285:120495. [PMID: 38092156 DOI: 10.1016/j.neuroimage.2023.120495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
This study presents a comprehensive examination of sex-related differences in resting-state electroencephalogram (EEG) data, leveraging two different types of machine learning models to predict an individual's sex. We utilized data from the Two Decades-Brainclinics Research Archive for Insights in Neurophysiology (TDBRAIN) EEG study, affirming that gender prediction can be attained with noteworthy accuracy. The best performing model achieved an accuracy of 85% and an ROC AUC of 89%, surpassing all prior benchmarks set using EEG data and rivaling the top-tier results derived from fMRI studies. A comparative analysis of LightGBM and Deep Convolutional Neural Network (DCNN) models revealed DCNN's superior performance, attributed to its ability to learn complex spatial-temporal patterns in the EEG data and handle large volumes of data effectively. Despite this, interpretability remained a challenge for the DCNN model. The LightGBM interpretability analysis revealed that the most important EEG features for accurate sex prediction were related to left fronto-central and parietal EEG connectivity. We also showed the role of both low (delta and theta) and high (beta and gamma) activity in the accurate sex prediction. These results, however, have to be approached with caution, because it was obtained from a dataset comprised largely of participants with various mental health conditions, which limits the generalizability of the results and necessitates further validation in future studies. . Overall, the study illuminates the potential of interpretable machine learning for sex prediction, alongside highlighting the importance of considering individual differences in prediction sex from brain activity.
Collapse
|
15
|
Keller AS, Pines AR, Shanmugan S, Sydnor VJ, Cui Z, Bertolero MA, Barzilay R, Alexander-Bloch AF, Byington N, Chen A, Conan GM, Davatzikos C, Feczko E, Hendrickson TJ, Houghton A, Larsen B, Li H, Miranda-Dominguez O, Roalf DR, Perrone A, Shetty A, Shinohara RT, Fan Y, Fair DA, Satterthwaite TD. Personalized functional brain network topography is associated with individual differences in youth cognition. Nat Commun 2023; 14:8411. [PMID: 38110396 PMCID: PMC10728159 DOI: 10.1038/s41467-023-44087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.
Collapse
Affiliation(s)
- Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam R Pines
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sheila Shanmugan
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, China
| | - Maxwell A Bertolero
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ran Barzilay
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nora Byington
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Andrew Chen
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory M Conan
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric Feczko
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Timothy J Hendrickson
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongming Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Oscar Miranda-Dominguez
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anders Perrone
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Alisha Shetty
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, Institute of Child Development, College of Education and Human Development, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Yang J, Chen K, Zhang J, Ma Y, Chen M, Shao H, Zhang X, Fan D, Wang Z, Sun Z, Wang J. Molecular mechanisms underlying human spatial cognitive ability revealed with neurotransmitter and transcriptomic mapping. Cereb Cortex 2023; 33:11320-11328. [PMID: 37804242 DOI: 10.1093/cercor/bhad368] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023] Open
Abstract
Mental rotation, one of the cores of spatial cognitive abilities, is closely associated with spatial processing and general intelligence. Although the brain underpinnings of mental rotation have been reported, the cellular and molecular mechanisms remain unexplored. Here, we used magnetic resonance imaging, a whole-brain spatial distribution atlas of 19 neurotransmitter receptors, transcriptomic data from Allen Human Brain Atlas, and mental rotation performances of 356 healthy individuals to identify the genetic/molecular foundation of mental rotation. We found significant associations of mental rotation performance with gray matter volume and fractional amplitude of low-frequency fluctuations in primary visual cortex, fusiform gyrus, primary sensory-motor cortex, and default mode network. Gray matter volume and fractional amplitude of low-frequency fluctuations in these brain areas also exhibited significant sex differences. Importantly, spatial correlation analyses were conducted between the spatial patterns of gray matter volume or fractional amplitude of low-frequency fluctuations with mental rotation and the spatial distribution patterns of neurotransmitter receptors and transcriptomic data, and identified the related genes and neurotransmitter receptors associated with mental rotation. These identified genes are localized on the X chromosome and are mainly involved in trans-synaptic signaling, transmembrane transport, and hormone response. Our findings provide initial evidence for the neural and molecular mechanisms underlying spatial cognitive ability.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Kexuan Chen
- Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Junyu Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yingzi Ma
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Meiling Chen
- Department of Clinical Psychology, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Heng Shao
- Department of Geriatrics, the First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Xing Zhang
- The Second People's Hospital of Yuxi, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Defang Fan
- The Second People's Hospital of Yuxi, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhenglong Sun
- Bio-imaging lab, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Jiaojian Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
17
|
Serio B, Hettwer MD, Wiersch L, Bignardi G, Sacher J, Weis S, Eickhoff SB, Valk SL. Sex differences in intrinsic functional cortical organization reflect differences in network topology rather than cortical morphometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.23.568437. [PMID: 38045320 PMCID: PMC10690290 DOI: 10.1101/2023.11.23.568437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Brain size robustly differs between sexes. However, the consequences of this anatomical dimorphism on sex differences in intrinsic brain function remain unclear. We investigated the extent to which sex differences in intrinsic cortical functional organization may be explained by differences in cortical morphometry, namely brain size, microstructure, and the geodesic distances of connectivity profiles. For this, we computed a low dimensional representation of functional cortical organization, the sensory-association axis, and identified widespread sex differences. Contrary to our expectations, observed sex differences in functional organization were not fundamentally associated with differences in brain size, microstructural organization, or geodesic distances, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis were associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.
Collapse
Affiliation(s)
- Bianca Serio
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Meike D. Hettwer
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Lisa Wiersch
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Giacomo Bignardi
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Julia Sacher
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
| | - Susanne Weis
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Simon B. Eickhoff
- Max Planck School of Cognition, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sofie L. Valk
- Max Planck School of Cognition, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
18
|
Dhamala E, Bassett DS, Yeo BT, Homes AJ. Functional brain networks are associated with both sex and gender in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566592. [PMID: 38013996 PMCID: PMC10680589 DOI: 10.1101/2023.11.12.566592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Sex and gender are associated with human behavior throughout the lifespan and across health and disease, but whether they are associated with similar or distinct neural phenotypes is unknown. Here, we demonstrate that, in children, sex and gender are uniquely reflected in the intrinsic functional connectivity of the brain. Unimodal networks are more strongly associated with sex while heteromodal networks are more strongly associated with gender. These results suggest sex and gender are irreducible to one another not only in society but also in biology.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Zucker Hillside Hospital, Glen Oaks, New York, USA
| | - Dani S. Bassett
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | | | - Avram J. Homes
- Rutgers University, Department of Psychiatry, Brain Health Institute, Piscataway, New Jersey, USA
| |
Collapse
|
19
|
Dhamala E, Rong Ooi LQ, Chen J, Ricard JA, Berkeley E, Chopra S, Qu Y, Zhang XH, Lawhead C, Yeo BTT, Holmes AJ. Brain-Based Predictions of Psychiatric Illness-Linked Behaviors Across the Sexes. Biol Psychiatry 2023; 94:479-491. [PMID: 37031778 PMCID: PMC10524434 DOI: 10.1016/j.biopsych.2023.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Individual differences in functional brain connectivity can be used to predict both the presence of psychiatric illness and variability in associated behaviors. However, despite evidence for sex differences in functional network connectivity and in the prevalence, presentation, and trajectory of psychiatric illnesses, the extent to which disorder-relevant aspects of network connectivity are shared or unique across the sexes remains to be determined. METHODS In this work, we used predictive modeling approaches to evaluate whether shared or unique functional connectivity correlates underlie the expression of psychiatric illness-linked behaviors in males and females in data from the Adolescent Brain Cognitive Development Study (N = 5260; 2571 females). RESULTS We demonstrate that functional connectivity profiles predict individual differences in externalizing behaviors in males and females but predict internalizing behaviors only in females. Furthermore, models trained to predict externalizing behaviors in males generalize to predict internalizing behaviors in females, and models trained to predict internalizing behaviors in females generalize to predict externalizing behaviors in males. Finally, the neurobiological correlates of many behaviors are largely shared within and across sexes: functional connections within and between heteromodal association networks, including default, limbic, control, and dorsal attention networks, are associated with internalizing and externalizing behaviors. CONCLUSIONS Taken together, these findings suggest that shared neurobiological patterns may manifest as distinct behaviors across the sexes. Based on these results, we recommend that both clinicians and researchers carefully consider how sex may influence the presentation of psychiatric illnesses, especially those along the internalizing-externalizing spectrum.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, New York; Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.
| | - Leon Qi Rong Ooi
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore
| | - Jianzhong Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore
| | - Jocelyn A Ricard
- Department of Psychology, Yale University, New Haven, Connecticut
| | | | - Sidhant Chopra
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Yueyue Qu
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Xi-Han Zhang
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Connor Lawhead
- Department of Psychology, Yale University, New Haven, Connecticut
| | - B T Thomas Yeo
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut; Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey.
| |
Collapse
|
20
|
Zhou Z, Li H, Srinivasan D, Abdulkadir A, Nasrallah IM, Wen J, Doshi J, Erus G, Mamourian E, Bryan NR, Wolk DA, Beason-Held L, Resnick SM, Satterthwaite TD, Davatzikos C, Shou H, Fan Y. Multiscale functional connectivity patterns of the aging brain learned from harmonized rsfMRI data of the multi-cohort iSTAGING study. Neuroimage 2023; 269:119911. [PMID: 36731813 PMCID: PMC9992322 DOI: 10.1016/j.neuroimage.2023.119911] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
To learn multiscale functional connectivity patterns of the aging brain, we built a brain age prediction model of functional connectivity measures at seven scales on a large fMRI dataset, consisting of resting-state fMRI scans of 4186 individuals with a wide age range (22 to 97 years, with an average of 63) from five cohorts. We computed multiscale functional connectivity measures of individual subjects using a personalized functional network computational method, harmonized the functional connectivity measures of subjects from multiple datasets in order to build a functional brain age model, and finally evaluated how functional brain age gap correlated with cognitive measures of individual subjects. Our study has revealed that functional connectivity measures at multiple scales were more informative than those at any single scale for the brain age prediction, the data harmonization significantly improved the brain age prediction performance, and the data harmonization in the functional connectivity measures' tangent space worked better than in their original space. Moreover, brain age gap scores of individual subjects derived from the brain age prediction model were significantly correlated with clinical and cognitive measures. Overall, these results demonstrated that multiscale functional connectivity patterns learned from a large-scale multi-site rsfMRI dataset were informative for characterizing the aging brain and the derived brain age gap was associated with cognitive and clinical measures.
Collapse
Affiliation(s)
- Zhen Zhou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahmed Abdulkadir
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhao Wen
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nick R Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX, 78705, USA
| | - David A Wolk
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neurology and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, 20892, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, 20892, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Statistic in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Brain Behavior Laboratory and Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Statistic in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
21
|
Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits. Front Hum Neurosci 2023; 17:1133367. [PMID: 37020493 PMCID: PMC10067884 DOI: 10.3389/fnhum.2023.1133367] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
Analysis and interpretation of studies on cognitive and affective dysregulation often draw upon the network paradigm, especially the Triple Network Model, which consists of the default mode network (DMN), the frontoparietal network (FPN), and the salience network (SN). DMN activity is primarily dominant during cognitive leisure and self-monitoring processes. The FPN peaks during task involvement and cognitive exertion. Meanwhile, the SN serves as a dynamic "switch" between the DMN and FPN, in line with salience and cognitive demand. In the cognitive and affective domains, dysfunctions involving SN activity are connected to a broad spectrum of deficits and maladaptive behavioral patterns in a variety of clinical disorders, such as depression, insomnia, narcissism, PTSD (in the case of SN hyperactivity), chronic pain, and anxiety, high degrees of neuroticism, schizophrenia, epilepsy, autism, and neurodegenerative illnesses, bipolar disorder (in the case of SN hypoactivity). We discuss behavioral and neurological data from various research domains and present an integrated perspective indicating that these conditions can be associated with a widespread disruption in predictive coding at multiple hierarchical levels. We delineate the fundamental ideas of the brain network paradigm and contrast them with the conventional modular method in the first section of this article. Following this, we outline the interaction model of the key functional brain networks and highlight recent studies coupling SN-related dysfunctions with cognitive and affective impairments.
Collapse
Affiliation(s)
- Jakub Schimmelpfennig
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | - Jan Topczewski
- Behavioral Neuroscience Lab, Institute of Psychology, SWPS University, Warsaw, Poland
| | | | | |
Collapse
|
22
|
Yang G, Bozek J, Noble S, Han M, Wu X, Xue M, Kang J, Jia T, Fu J, Ge J, Cui Z, Li X, Feng J, Gao JH. Global diversity in individualized cortical network topography. Cereb Cortex 2023:6992941. [PMID: 36657772 DOI: 10.1093/cercor/bhad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
Individualized cortical network topography (ICNT) varies between people and exhibits great variability in the association networks in the human brain. However, these findings were mainly discovered in Western populations. It remains unclear whether and how ICNT is shaped by the non-Western populations. Here, we leveraged a multisession hierarchical Bayesian model to define individualized functional networks in White American and Han Chinese populations with data from both US and Chinese Human Connectome Projects. We found that both the size and spatial topography of individualized functional networks differed between White American and Han Chinese groups, especially in the heteromodal association cortex (including the ventral attention, control, language, dorsal attention, and default mode networks). Employing a support vector machine, we then demonstrated that ethnicity-related ICNT diversity can be used to identify an individual's ethnicity with high accuracy (74%, pperm < 0.0001), with heteromodal networks contributing most to the classification. This finding was further validated through mass-univariate analyses with generalized additive models. Moreover, we reveal that the spatial heterogeneity of ethnic diversity in ICNT correlated with fundamental properties of cortical organization, including evolutionary cortical expansion, brain myelination, and cerebral blood flow. Altogether, this case study highlights a need for more globally diverse and publicly available neuroimaging datasets.
Collapse
Affiliation(s)
- Guoyuan Yang
- Advanced Research Institute of Multidisciplinary Sciences, School of Medical Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb 10000, Croatia
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, United States
| | - Meizhen Han
- McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xinyu Wu
- Advanced Research Institute of Multidisciplinary Sciences, School of Medical Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Mufan Xue
- Advanced Research Institute of Multidisciplinary Sciences, School of Medical Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jujiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai 200433, China
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai 200433, China.,Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London SE5 8AF, United Kingdom
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300203, China
| | - Jianqiao Ge
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai 200433, China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom.,MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,McGovern Institute for Brain Research, Peking University, Beijing 100871, China.,Beijing City Key Laboratory for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|