1
|
Juhász A, Makaula P, Cunningham LJ, Jones S, Archer J, Lally D, Namacha G, Kapira D, Chammudzi P, LaCourse EJ, Seto E, Kayuni SA, Musaya J, Stothard JR. Revealing bovine schistosomiasis in Malawi: Connecting human and hybrid schistosomes within cattle. One Health 2024; 19:100761. [PMID: 39021560 PMCID: PMC11253675 DOI: 10.1016/j.onehlt.2024.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
In Malawi, the putative origin of a newly described Schistosoma haematobium-mattheei hybrid human schistosome was assessed upon a seminal molecular parasitological survey of cattle. Using miracidia hatch test (MHT) and carcass inspection at slaughter, mean prevalence of bovine schistosomiasis was 49.1% (95% CI: 43.7-54.6%) and 10.3% (95% CI: 6.0-16.2%) respectively, though significant spatial heterogeneity was noted. Approximately 2.0% of infected cattle, and only those from Mangochi District, shed S. haematobium-mattheei and/or S. haematobium in faeces. To quantify schistosome (re)infection dynamics, where a S. haematobium-mattheei hybrid was present, we undertook a novel pilot GPS-datalogging sub-study within a specific herd of cattle (n = 8) on the Lake Malawi shoreline, alongside a praziquantel (40 mg/kg) treatment efficacy spot check. At sub-study baseline, all GPS-tagged cattle had proven daily water contact with the lake. Each animal was patently infected upon MHT, with older animals shedding less miracidia. At one month review, whilst parasitological cure was 100.0%, from six weeks onwards, (re)infection was first noted in the youngest animal. By three-month review, all animals were patently (re)infected though only miracidia of S. mattheei were recovered, albeit in much lower numbers. To conclude, infection with S. mattheei is particularly common in cattle and demonstrates a previously cryptic burden of bovine schistosomiasis. Within Mangochi District, bovine transmission of both S. haematobium-mattheei hybrids and S. haematobium are now incriminated, with unequivocal evidence of contemporary zoonotic spill-over. Future control of urogenital schistosomiasis here in the southern region needs to develop, then successfully integrate, a One Health approach with appropriate mitigating strategies to reduce and/or contain bovine schistosomiasis transmission.
Collapse
Affiliation(s)
- Alexandra Juhász
- Liverpool School of Tropical Medicine, Liverpool, UK
- Semmelweis University, Budapest, Hungary
| | - Peter Makaula
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Sam Jones
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - John Archer
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Lally
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Gladys Namacha
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Donales Kapira
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | | | | | | | - Sekeleghe A. Kayuni
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Janelisa Musaya
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | | |
Collapse
|
2
|
Duncan AB, Godoy O, Michalakis Y, Zélé F, Magalhães S. Interspecific interactions among parasites in multiple infections. Trends Parasitol 2024; 40:1042-1052. [PMID: 39428306 DOI: 10.1016/j.pt.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024]
Abstract
Individual hosts and populations frequently harbour multiple parasite species simultaneously. Despite their commonness, the consequences of interspecific interactions among parasites for determining infection outcomes are still poorly understood. We review and propose several expectations for multiple infections involving different species. We highlight that interspecific interactions affect the outcome of competition within hosts and that heterospecific parasites engage in cotransmission, gene exchange, and reproductive interference. Studies specifically comparing intra- and inter-specific coinfections and knowledge from community ecology may be instrumental to fully understand the consequences of interspecific multiple infections for parasite life history, ecology, and evolution.
Collapse
Affiliation(s)
- Alison B Duncan
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France.
| | - Oscar Godoy
- Estación Biológica de Doñana, EBD, CSIC, Sevilla, 41092, Spain
| | - Yannis Michalakis
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, Montpellier 34394, France
| | - Flore Zélé
- Institut des Sciences de l'Évolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sara Magalhães
- Centre for Ecology, Evolution, and Environmental Changes (cE3c), CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Alale TY, Sormunen JJ, Vesterinen EJ, Klemola T, Knott KE, Baltazar‐Soares M. Genomic signatures of hybridization between Ixodes ricinus and Ixodes persulcatus in natural populations. Ecol Evol 2024; 14:e11415. [PMID: 38770117 PMCID: PMC11103643 DOI: 10.1002/ece3.11415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Identifying hybridization between common pathogen vectors is essential due to the major public health implications through risks associated with hybrid's enhanced pathogen transmission potential. The hard-ticks Ixodes ricinus and Ixodes persulcatus are the two most common vectors of tick-borne pathogens that affect human and animal health in Europe. Ixodes ricinus is a known native species in Finland with a well-known distribution, whereas I. persulcatus has expanded in range and abundance over the past 60 years, and currently it appears the most common tick species in certain areas in Finland. Here we used double-digest restriction site-associated DNA (ddRAD) sequencing on 186 ticks (morphologically identified as 92 I. ricinus, and 94 I. persulcatus) collected across Finland to investigate whether RAD generated single nucleotide polymorphisms (SNPs) can discriminate tick species and identify potential hybridization events. Two different clustering methods were used to assign specific species based on how they clustered and identified hybrids among them. We were able to discriminate between the two tick species and identified 11 putative hybrids with admixed genomic proportions ranging from approximately 24 to 76 percent. Four of these hybrids were morphologically identified as I. ricinus while the remaining seven were identified as I. persulcatus. Our results thus indicate that RAD SNPs are robust in identifying both species of the ticks as well as putative hybrids. These results further suggest ongoing hybridization between I. ricinus and I. persulcatus in their natural populations in Finland. The unique ability of RAD markers to discriminate between tick species and hybrids adds a useful aspect to tick evolutionary studies. Our findings align with previous studies and suggest a shared evolutionary history between the species, with instances of individuals possessing a considerable proportion of the other species' genome. This study is a significant step in understanding the formation of hybridization zones due to range expansion potentially associated with climate change.
Collapse
Affiliation(s)
- Theophilus Yaw Alale
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Jani J. Sormunen
- Department of BiologyUniversity of TurkuTurkuFinland
- Biodiversity UnitUniversity of TurkuTurkuFinland
| | | | - Tero Klemola
- Department of BiologyUniversity of TurkuTurkuFinland
| | - K. Emily Knott
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | | |
Collapse
|
4
|
Chakraborty S, Zigmond E, Shah S, Sylla M, Akorli J, Otoo S, Rose NH, McBride CS, Armbruster PA, Benoit JB. Thermal tolerance of mosquito eggs is associated with urban adaptation and human interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586322. [PMID: 38585904 PMCID: PMC10996485 DOI: 10.1101/2024.03.22.586322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Climate change is expected to profoundly affect mosquito distributions and their ability to serve as vectors for disease, specifically with the anticipated increase in heat waves. The rising temperature and frequent heat waves can accelerate mosquito life cycles, facilitating higher disease transmission. Conversely, higher temperatures could increase mosquito mortality as a negative consequence. Warmer temperatures are associated with increased human density, suggesting a need for anthropophilic mosquitoes to adapt to be more hardy to heat stress. Mosquito eggs provide an opportunity to study the biological impact of climate warming as this stage is stationary and must tolerate temperatures at the site of female oviposition. As such, egg thermotolerance is critical for survival in a specific habitat. In nature, Aedes mosquitoes exhibit different behavioral phenotypes, where specific populations prefer depositing eggs in tree holes and prefer feeding non-human vertebrates. In contrast, others, particularly human-biting specialists, favor laying eggs in artificial containers near human dwellings. This study examined the thermotolerance of eggs, along with adult stages, for Aedes aegypti and Ae. albopictus lineages associated with known ancestry and shifts in their relationship with humans. Mosquitoes collected from areas with higher human population density, displaying increased human preference, and having a human-associated ancestry profile have increased egg viability following high-temperature stress. Unlike eggs, thermal tolerance among adults showed no significant correlation based on the area of collection or human-associated ancestry. This study highlights that the egg stage is likely critical to mosquito survival when associated with humans and needs to be accounted when predicting future mosquito distribution.
Collapse
Affiliation(s)
- Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Emily Zigmond
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Sher Shah
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques, Sine Saloum University El Hadji Ibrahima NIASS (SSUEIN) Kaffrine Campus
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Noah H Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093
| | - Carolyn S McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| |
Collapse
|
5
|
Ajakaye OG, Enabulele EE, Balogun JB, Oyeyemi OT, Grigg ME. Extant interspecific hybridization among trematodes within the Schistosoma haematobium species complex in Nigeria. PLoS Negl Trop Dis 2024; 18:e0011472. [PMID: 38620029 PMCID: PMC11045100 DOI: 10.1371/journal.pntd.0011472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/25/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Natural interspecific hybridization between the human parasite (Schistosoma haematobium [Sh]) and bovine parasites (Schistosoma bovis [Sb], Schistosoma curassoni [Sc]) is increasingly reported in Africa. We developed a multi-locus PCR DNA-Seq strategy that amplifies two unlinked nuclear (transITS, BF) and two linked organellar genome markers (CO1, ND5) to genotype S. haematobium eggs collected from infected people in Ile Oluji/Oke Igbo, Ondo State (an agrarian community) and Kachi, Jigawa State (a pastoral community) in Southwestern and Northern Nigeria, respectively. PRINCIPAL FINDINGS Out of a total of 219 urine samples collected, 57 were positive for schistosomes. All patients from Jigawa state possessed an Sh mitochondrial genome and were infected with a genetic profile consistent with an Sh x Sb hybrid based on sequences obtained at CO1, ND5, transITS and BF nuclear markers. Whereas samples collected from Ondo state were more varied. Mitonuclear discordance was observed in all 17 patients, worms possessed an Sb mitochondrial genome but one of four different genetic profiles at the nuclear markers, either admixed (heterozygous between Sh x Sc or Sh x Sb) at both markers (n = 10), Sh at BF and admixed at transITS (Sh x Sc) (n = 5), admixed (Sh x Sc) at BF and homozygous Sc at transITS (n = 1) or homozygous Sh at BF and homozygous Sc at transITS (n = 1). SIGNIFICANCE Previous work suggested that zoonotic transmission of S. bovis in pastoral communities, where humans and animals share a common water source, is a driving factor facilitating interspecific hybridization. However, our data showed that all samples were hybrids, with greater diversity identified in Southwestern Nigeria, a non-pastoral site. Further, one patient possessed an S. bovis mitochondrial genome but was homozygous for S. haematobium at BF and homozygous for S. curassoni at transITS supporting at least two separate backcrosses in its origin, suggesting that interspecific hybridization may be an ongoing process.
Collapse
Affiliation(s)
- Oluwaremilekun G. Ajakaye
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
- Department of Animal and Environmental Biology, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Elisha E. Enabulele
- Disease Intervention and Prevention Program, Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Joshua B. Balogun
- Department of Biological Sciences Federal University, Dutse, Nigeria
| | - Oyetunde T. Oyeyemi
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo, Nigeria
| | - Michael E. Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda Maryland, United States of America
| |
Collapse
|
6
|
Gimmelli R, Papoff G, Saccoccia F, Lalli C, Gemma S, Campiani G, Ruberti G. Effects of structurally distinct human HDAC6 and HDAC6/HDAC8 inhibitors against S. mansoni larval and adult worm stages. PLoS Negl Trop Dis 2024; 18:e0011992. [PMID: 38416775 PMCID: PMC10927086 DOI: 10.1371/journal.pntd.0011992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/11/2024] [Accepted: 02/13/2024] [Indexed: 03/01/2024] Open
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide caused by Platyhelminthes of the genus Schistosoma. The treatment of schistosomiasis relies on the long-term application of a single safe drug, praziquantel (PZQ). Unfortunately, PZQ is very effective on adult parasites and poorly on larval stage and immature juvenile worms; this can partially explain the re-infection in endemic areas where patients are likely to host parasites at different developmental stages concurrently. Moreover, the risk of development of drug resistance because of the widespread use of a single drug in a large population is nowadays a serious threat. Hence, research aimed at identifying novel drugs to be used alone or in combination with PZQ is needed. Schistosomes display morphologically distinct stages during their life cycle and epigenetic mechanisms are known to play important roles in parasite growth, survival, and development. Histone deacetylase (HDAC) enzymes, particularly HDAC8, are considered valuable for therapeutic intervention for the treatment of schistosomiasis. Herein, we report the phenotypic screening on both larvae and adult Schistosoma mansoni stages of structurally different HDAC inhibitors selected from the in-house Siena library. All molecules have previously shown inhibition profiles on human HDAC6 and/or HDAC8 enzymes. Among them we identified a quinolone-based HDAC inhibitor, NF2839, that impacts larval and adult parasites as well as egg viability and maturation in vitro. Importantly, this quinolone-based compound also increases histone and tubulin acetylation in S. mansoni parasites, thus representing a leading candidate for the development of new generation anti-Schistosoma chemotherapeutics.
Collapse
Affiliation(s)
- Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Roma, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Cristiana Lalli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Adriano Buzzati-Traverso Campus, Monterotondo, Rome, Italy
| |
Collapse
|
7
|
Starkloff NC, Angelo T, Mahalila MP, Charles J, Kinung'hi S, Civitello DJ. Spatio-temporal variability in transmission risk of human schistosomes and animal trematodes in a seasonally desiccating East African landscape. Proc Biol Sci 2024; 291:20231766. [PMID: 38196367 PMCID: PMC10777146 DOI: 10.1098/rspb.2023.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Different populations of hosts and parasites experience distinct seasonality in environmental factors, depending on local-scale biotic and abiotic factors. This can lead to highly heterogeneous disease outcomes across host ranges. Variable seasonality characterizes urogenital schistosomiasis, a neglected tropical disease caused by parasitic trematodes (Schistosoma haematobium). Their intermediate hosts are aquatic Bulinus snails that are highly adapted to extreme rainfall seasonality, undergoing prolonged dormancy yearly. While Bulinus snails have a remarkable capacity for rebounding following dormancy, we investigated the extent to which parasite survival within snails is diminished. We conducted an investigation of seasonal snail schistosome dynamics in 109 ponds of variable ephemerality in Tanzania from August 2021 to July 2022. First, we found that ponds have two synchronized peaks of schistosome infection prevalence and observed cercariae, though of lower magnitude in the fully desiccating than non-desiccating ponds. Second, we evaluated total yearly schistosome prevalence across an ephemerality gradient, finding ponds with intermediate ephemerality to have the highest infection rates. We also investigated dynamics of non-schistosome trematodes, which lacked synonymity with schistosome patterns. We found peak schistosome transmission risk at intermediate pond ephemerality, thus the impacts of anticipated increases in landscape desiccation could result in increases or decreases in transmission risk with global change.
Collapse
Affiliation(s)
| | - Teckla Angelo
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
- Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
| | - Moses P. Mahalila
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Jenitha Charles
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Safari Kinung'hi
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | | |
Collapse
|
8
|
Díaz AV, Walker M, Webster JP. Reaching the World Health Organization elimination targets for schistosomiasis: the importance of a One Health perspective. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220274. [PMID: 37598697 PMCID: PMC10440173 DOI: 10.1098/rstb.2022.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Abstract
The past three years has seen the launch of a new World Health Organization (WHO) neglected tropical diseases (NTDs) roadmap, together with revised control and elimination guidelines. Across all, there is now a clear emphasis on the need to incorporate a One Health approach, recognizing the critical links between human and animal health and the environment. Schistosomiasis, caused by Schistosoma spp. trematodes, is a NTD of global medical and veterinary importance, with over 220 million people and untold millions of livestock currently infected. Its burden remains extremely high in certain regions, particularly within sub-Saharan Africa, despite over two decades of mass preventive chemotherapy (mass drug administration), predominantly to school-aged children. In Africa, in contrast to Asia, any zoonotic component of schistosomiasis transmission and its implications for disease control has, until recently, been largely ignored. Here, we review recent epidemiological, clinical, molecular, and modelling work across both Asia and Africa. We outline the evolutionary history and transmission dynamics of Schistosoma species, and emphasize the emerging risk raised by both wildlife reservoirs and viable hybridization between human and animal schistosomes. To achieve the 2030 WHO roadmap elimination targets, a truly multi-disciplinary One Health perspective must be implemented. This article is part of the theme issue 'Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs'.
Collapse
Affiliation(s)
- Adriana V. Díaz
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
| | - Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| | - Joanne P. Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield AL9 7TA, UK
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Faculty of Medicine, Imperial College, London W2 1PG, UK
| |
Collapse
|
9
|
Urban L, Perlas A, Francino O, Martí‐Carreras J, Muga BA, Mwangi JW, Boykin Okalebo L, Stanton JL, Black A, Waipara N, Fontsere C, Eccles D, Urel H, Reska T, Morales HE, Palmada‐Flores M, Marques‐Bonet T, Watsa M, Libke Z, Erkenswick G, van Oosterhout C. Real-time genomics for One Health. Mol Syst Biol 2023; 19:e11686. [PMID: 37325891 PMCID: PMC10407731 DOI: 10.15252/msb.202311686] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023] Open
Abstract
The ongoing degradation of natural systems and other environmental changes has put our society at a crossroad with respect to our future relationship with our planet. While the concept of One Health describes how human health is inextricably linked with environmental health, many of these complex interdependencies are still not well-understood. Here, we describe how the advent of real-time genomic analyses can benefit One Health and how it can enable timely, in-depth ecosystem health assessments. We introduce nanopore sequencing as the only disruptive technology that currently allows for real-time genomic analyses and that is already being used worldwide to improve the accessibility and versatility of genomic sequencing. We showcase real-time genomic studies on zoonotic disease, food security, environmental microbiome, emerging pathogens, and their antimicrobial resistances, and on environmental health itself - from genomic resource creation for wildlife conservation to the monitoring of biodiversity, invasive species, and wildlife trafficking. We stress why equitable access to real-time genomics in the context of One Health will be paramount and discuss related practical, legal, and ethical limitations.
Collapse
Affiliation(s)
- Lara Urban
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Albert Perlas
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
| | - Olga Francino
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Martí‐Carreras
- Nano1Health SL, Parc de Recerca UABCampus Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Brenda A Muga
- Department of AnatomyUniversity of OtagoDunedinNew Zealand
| | | | | | | | - Amanda Black
- Bioprotection AotearoaLincoln UniversityLincolnNew Zealand
| | | | - Claudia Fontsere
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
| | - David Eccles
- Hugh Green Cytometry CentreMalaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Harika Urel
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Tim Reska
- Helmholtz AI, Helmholtz Zentrum MuenchenNeuherbergGermany
- Helmholtz Pioneer Campus, Helmholtz Zentrum MuenchenNeuherbergGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Hernán E Morales
- Center for Evolutionary HologenomicsThe Globe Institute, University of CopenhagenCopenhagenDenmark
- Department of Biology, Ecology BuildingLund UniversityLundSweden
| | - Marc Palmada‐Flores
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
| | - Tomas Marques‐Bonet
- Institute of Evolutionary BiologyUniversitat Pompeu Fabra‐CSIC, PRBBBarcelonaSpain
- Catalan Institution of Research and Advanced Studies (ICREA)BarcelonaSpain
- CNAGCentre of Genomic AnalysisBarcelonaSpain
- Institut Català de Paleontologia Miquel CrusafontUniversitat Autònoma de BarcelonaBarcelonaSpain
| | | | - Zane Libke
- Instituto Nacional de BiodiversidadQuitoEcuador
- Fundación Sumak Kawsay In SituCantón MeraEcuador
| | | | | |
Collapse
|
10
|
Starkloff NC, Angelo T, Mahalila MP, Charles J, Kinung’hi S, Civitello DJ. Spatiotemporal variability in transmission risk of human schistosomes and animal trematodes in a seasonally desiccating East African landscape. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542103. [PMID: 37292923 PMCID: PMC10245890 DOI: 10.1101/2023.05.25.542103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Different populations of hosts and parasites experience distinct seasonality in environmental factors, depending on local-scale biotic and abiotic factors. This can lead to highly heterogenous disease outcomes across host ranges. Variable seasonality characterizes urogenital schistosomiasis, a neglected tropical disease caused by parasitic trematodes (Schistosoma haematobium). Their intermediate hosts are aquatic Bulinus snails that are highly adapted to extreme rainfall seasonality, undergoing dormancy for up to seven months yearly. While Bulinus snails have a remarkable capacity for rebounding following dormancy, parasite survival within snails is greatly diminished. We conducted a year-round investigation of seasonal snail-schistosome dynamics in 109 ponds of variable ephemerality in Tanzania. First, we found that ponds have two synchronized peaks of schistosome infection prevalence and cercariae release, though of lower magnitude in the fully desiccating ponds than non-desiccating ponds. Second, we evaluated total yearly prevalence across a gradient of an ephemerality, finding ponds with intermediate ephemerality to have the highest infection rates. We also investigated dynamics of non-schistosome trematodes, which lacked synonymity with schistosome patterns. We found peak schistosome transmission risk at intermediate pond ephemerality, thus the impacts of anticipated increases in landscape desiccation could result in increases or decreases in transmission risk with global change.
Collapse
Affiliation(s)
| | - Teckla Angelo
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Moses P. Mahalila
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Jenitha Charles
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | - Safari Kinung’hi
- National Institute of Medical Research Mwanza Center, Mwanza, Tanzania
| | | |
Collapse
|
11
|
Calvo-Urbano B, Léger E, Gabain I, De Dood CJ, Diouf ND, Borlase A, Rudge JW, Corstjens PLAM, Sène M, Van Dam GJ, Walker M, Webster JP. Sensitivity and specificity of human point-of-care circulating cathodic antigen (POC-CCA) test in African livestock for rapid diagnosis of schistosomiasis: A Bayesian latent class analysis. PLoS Negl Trop Dis 2023; 17:e0010739. [PMID: 37216407 DOI: 10.1371/journal.pntd.0010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Schistosomiasis is a major neglected tropical disease (NTD) affecting both humans and animals. The morbidity and mortality inflicted upon livestock in the Afrotropical region has been largely overlooked, in part due to a lack of validated sensitive and specific tests, which do not require specialist training or equipment to deliver and interpret. As stressed within the recent WHO NTD 2021-2030 Roadmap and Revised Guideline for schistosomiasis, inexpensive, non-invasive, and sensitive diagnostic tests for livestock-use would also facilitate both prevalence mapping and appropriate intervention programmes. The aim of this study was to assess the sensitivity and specificity of the currently available point-of-care circulating cathodic antigen test (POC-CCA), designed for Schistosoma mansoni detection in humans, for the detection of intestinal livestock schistosomiasis caused by Schistosoma bovis and Schistosoma curassoni. POC-CCA, together with the circulating anodic antigen (CAA) test, miracidial hatching technique (MHT) and organ and mesentery inspection (for animals from abattoirs only), were applied to samples collected from 195 animals (56 cattle and 139 small ruminants (goats and sheep) from abattoirs and living populations) from Senegal. POC-CCA sensitivity was greater in the S. curassoni-dominated Barkedji livestock, both for cattle (median 81%; 95% credible interval (CrI): 55%-98%) and small ruminants (49%; CrI: 29%-87%), than in S. bovis-dominated Richard Toll ruminants (cattle: 62%; CrI: 41%-84%; small ruminants: 12%, CrI: 1%-37%). Overall, sensitivity was greater in cattle than in small ruminants. Small ruminants POC-CCA specificity was similar in both locations (91%; CrI: 77%-99%), whilst cattle POC-CCA specificity could not be assessed owing to the low number of uninfected cattle surveyed. Our results indicate that, whilst the current POC-CCA does represent a potential diagnostic tool for cattle and possibly for predominantly S. curassoni-infected livestock, future work is needed to develop parasite- and/or livestock-specific affordable and field-applicable diagnostic tests to enable determination of the true extent of livestock schistosomiasis.
Collapse
Affiliation(s)
- Beatriz Calvo-Urbano
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Isobel Gabain
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Nicolas D Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | - Anna Borlase
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - James W Rudge
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
- Communicable Diseases Policy Research Group, Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Public Health, Mahidol University, Bangkok, Thailand
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d'Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint Louis, Senegal
| | | | - Martin Walker
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P Webster
- Royal Veterinary College, Department of Pathobiology and Population Sciences, University of London, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, School of Public Health, Department of Infectious Disease Epidemiology, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
12
|
Walker M, Lambert S, Neves MI, Worsley AD, Traub R, Colella V. Modeling the effectiveness of One Health interventions against the zoonotic hookworm Ancylostoma ceylanicum. Front Med (Lausanne) 2023; 10:1092030. [PMID: 36960338 PMCID: PMC10028197 DOI: 10.3389/fmed.2023.1092030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Hookworm disease is a major global public health concern, annually affecting 500-700 million of the world's poorest people. The World Health Organization is targeting the elimination of hookworm as a public health problem by 2030 using a strategy of mass drug administration (MDA) to at-risk human populations. However, in Southeast Asia and the Pacific the zoonotic hookworm species, Ancylostoma ceylanicum, is endemic in dogs and commonly infects people. This presents a potential impediment to the effectiveness of MDA that targets only humans. Here, we develop a novel multi-host (dog and human) transmission model of A. ceylanicum and compare the effectiveness of human-only and "One Health" (human plus dog) MDA strategies under a range of eco-epidemiological assumptions. We show that One Health interventions-targeting both dogs and humans-could suppress prevalence in humans to ≤ 1% by the end of 2030, even with only modest coverage (25-50%) of the animal reservoir. With increasing coverage, One Health interventions may even interrupt transmission. We discuss key unresolved questions on the eco-epidemiology of A. ceylanicum, the challenges of delivering MDA to animal reservoirs, and the growing importance of One Health interventions to human public health.
Collapse
Affiliation(s)
- Martin Walker
- Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Imperial College London, London, United Kingdom
| | - Sébastien Lambert
- Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Imperial College London, London, United Kingdom
- IHAP, INRAE, ENVT, Université de Toulouse, Toulouse, France
| | - M. Inês Neves
- Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
- Department of Infectious Disease Epidemiology, London Centre for Neglected Tropical Disease Research, Imperial College London, London, United Kingdom
| | - Andrew D. Worsley
- Department of Veterinary Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Traub
- Department of Veterinary Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Vito Colella
- Department of Veterinary Biosciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Crellen T, Haswell M, Sithithaworn P, Sayasone S, Odermatt P, Lamberton PHL, Spencer SEF, Déirdre Hollingsworth T. Diagnosis of helminths depends on worm fecundity and the distribution of parasites within hosts. Proc Biol Sci 2023; 290:20222204. [PMID: 36651047 PMCID: PMC9845982 DOI: 10.1098/rspb.2022.2204] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Helminth transmission and morbidity are dependent on the number of mature parasites within a host; however, observing adult worms is impossible for many natural infections. An outstanding challenge is therefore relating routine diagnostics, such as faecal egg counts, to the underlying worm burden. This relationship is complicated by density-dependent fecundity (egg output per worm reduces due to crowding at high burdens) and the skewed distribution of parasites (majority of helminths aggregated in a small fraction of hosts). We address these questions for the carcinogenic liver fluke Opisthorchis viverrini, which infects approximately 10 million people across Southeast Asia, by analysing five epidemiological surveys (n = 641) where adult flukes were recovered. Using a mechanistic model, we show that parasite fecundity varies between populations, with surveys from Thailand and Laos demonstrating distinct patterns of egg output and density-dependence. As the probability of observing faecal eggs increases with the number of mature parasites within a host, we quantify diagnostic sensitivity as a function of the worm burden and find that greater than 50% of cases are misdiagnosed as false negative in communities close to elimination. Finally, we demonstrate that the relationship between observed prevalence from routine diagnostics and true prevalence is nonlinear and strongly influenced by parasite aggregation.
Collapse
Affiliation(s)
- Thomas Crellen
- School of Biodiversity One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, 82 Hillhead Street, Glasgow G12 8QQ, UK
- Wellcome Centre for Integrative Parasitology, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Melissa Haswell
- Office of the Deputy Vice Chancellor, Indigenous Strategy and Services and School of Geosciences, John Woolley Building, University of Sydney, Sydney, New South Wales 2050, Australia
- School of Public Health and Social Work, Kelvin Grove Campus, Queensland University of Technology, Brisbane City, Queensland 4000, Australia
| | - Paiboon Sithithaworn
- Department of Parasitology, Khon Kaen University, 123 Thanon Mittraphap, Khon Kaen 40002, Thailand
| | - Somphou Sayasone
- Lao Tropical and Public Health Institute, Samsenthai Road, Sisattanak district, Vientiane, Lao PDR
| | - Peter Odermatt
- Department of Public Health and Epidemiology, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, Allschwil 4123, Switzerland
- University of Basel, Petersplatz 1, Basel 4001, Switzerland
| | - Poppy H. L. Lamberton
- School of Biodiversity One Health and Veterinary Medicine, Graham Kerr Building, University of Glasgow, 82 Hillhead Street, Glasgow G12 8QQ, UK
- Wellcome Centre for Integrative Parasitology, Sir Graeme Davies Building, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | - T. Déirdre Hollingsworth
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| |
Collapse
|
14
|
Senghor B, Mathieu-Begné E, Rey O, Doucouré S, Sow D, Diop B, Sène M, Boissier J, Sokhna C. Urogenital schistosomiasis in three different water access in the Senegal river basin: prevalence and monitoring praziquantel efficacy and re-infection levels. BMC Infect Dis 2022; 22:968. [PMID: 36581796 PMCID: PMC9801593 DOI: 10.1186/s12879-022-07813-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/26/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Urogenital schistosomiasis is a neglected tropical disease most prevalent in sub-Saharan Africa. In the Senegal river basin, the construction of the Diama dam led to an increase and endemicity of schistosomiasis. Since 2009, praziquantel has frequently been used as preventive chemotherapy in the form of mass administration to Senegalese school-aged children without monitoring of the treatment efficacy and the prevalence after re-infection. This study aims to determine the current prevalence of urogenital schistosomiasis (caused by Schistosoma haematobium), the efficacy of praziquantel, and the re-infection rates in children from five villages with different water access. METHODS The baseline prevalence of S. haematobium was determined in August 2020 in 777 children between 5 and 11 years old and a single dose of praziquantel (40 mg/kg) was administered to those positive. The efficacy of praziquantel and the re-infection rates were monitored 4 weeks and 7 months after treatment, respectively, in 226 children with a high intensity of infection at baseline. RESULTS At the baseline, prevalence was low among children from the village of Mbane who live close to the Lac de Guiers (38%), moderate among those from the villages of Dioundou and Khodit, which neighbor the Doue river (46%), and very high at Khodit (90.6%) and Guia (91.2%) which mainly use an irrigation canal. After treatment, the observed cure rates confirmed the efficacy of praziquantel. The lowest cure rate (88.5%) was obtained in the village using the irrigation canal, while high cure rates were obtained in those using the lake (96.5%) and the river (98%). However, high egg reduction rates (between 96.7 and 99.7%) were obtained in all the villages. The re-infection was significantly higher in the village using the canal (42.5%) than in the villages accessing the Lac de Guiers (18.3%) and the Doue river (14.8%). CONCLUSION Praziquantel has an impact on reducing the prevalence and intensity of urogenital schistosomiasis. However, in the Senegal river basin, S. haematobium remains a real health problem for children living in the villages near the irrigation canals, despite regular treatment, while prevalence is declining from those frequenting the river and the Lac de Guiers. Trial registration ClinicalTrials.gov, NCT04635553. Registered 19 November 2020 retrospectively registered, https://www. CLINICALTRIALS gov/ct2/show/NCT04635553?cntry=SN&draw=2&rank=4.
Collapse
Affiliation(s)
- Bruno Senghor
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal
| | - Eglantine Mathieu-Begné
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Olivier Rey
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Souleymane Doucouré
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal
| | - Doudou Sow
- grid.442784.90000 0001 2295 6052Department of Parasitology-Mycology, UFR of Health Sciences, University Gaston Berger, 234, Saint-Louis, Senegal
| | - Bocar Diop
- grid.442784.90000 0001 2295 6052Laboratory of Biological and Agronomic Sciences and Modelling of Complex Systems, UFRS2ATA, Gaston Berger University of Saint-Louis, Saint-Louis, Senegal
| | - Mariama Sène
- National Schistosomiasis Control Program (NSCP), Ministry of Health, Dakar, Senegal
| | - Jérôme Boissier
- grid.121334.60000 0001 2097 0141Host Pathogen Environments Interactions (IHPE) Laboratory, CNRS, IFREMER, University of Montpellier, University of Perpignan via Domitia, Perpignan, France
| | - Cheikh Sokhna
- grid.418291.70000 0004 0456 337XCampus International IRD-UCAD de Hann, Vectors-Tropical and Mediterranean Infections (VITROME) Laboratory, 1386 Dakar, Senegal ,grid.5399.60000 0001 2176 4817VITROME, IRD, SSA, AP-HM, IHU-Mediterranean Infection, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
15
|
Lo NC, Bezerra FSM, Colley DG, Fleming FM, Homeida M, Kabatereine N, Kabole FM, King CH, Mafe MA, Midzi N, Mutapi F, Mwanga JR, Ramzy RMR, Satrija F, Stothard JR, Traoré MS, Webster JP, Utzinger J, Zhou XN, Danso-Appiah A, Eusebi P, Loker ES, Obonyo CO, Quansah R, Liang S, Vaillant M, Murad MH, Hagan P, Garba A. Review of 2022 WHO guidelines on the control and elimination of schistosomiasis. THE LANCET. INFECTIOUS DISEASES 2022; 22:e327-e335. [PMID: 35594896 DOI: 10.1016/s1473-3099(22)00221-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/21/2022] [Indexed: 01/13/2023]
Abstract
Schistosomiasis is a helminthiasis infecting approximately 250 million people worldwide. In 2001, the World Health Assembly (WHA) 54.19 resolution defined a new global strategy for control of schistosomiasis through preventive chemotherapy programmes. This resolution culminated in the 2006 WHO guidelines that recommended empirical treatment by mass drug administration with praziquantel, predominately to school-aged children in endemic settings at regular intervals. Since then, school-based and community-based preventive chemotherapy programmes have been scaled-up, reducing schistosomiasis-associated morbidity. Over the past 15 years, new scientific evidence-combined with a more ambitious goal of eliminating schistosomiasis and an increase in the global donated supply of praziquantel-has highlighted the need to update public health guidance worldwide. In February, 2022, WHO published new guidelines with six recommendations to update the global public health strategy against schistosomiasis, including expansion of preventive chemotherapy eligibility from the predominant group of school-aged children to all age groups (2 years and older), lowering the prevalence threshold for annual preventive chemotherapy, and increasing the frequency of treatment. This Review, written by the 2018-2022 Schistosomiasis Guidelines Development Group and its international partners, presents a summary of the new WHO guideline recommendations for schistosomiasis along with their historical context, supporting evidence, implications for public health implementation, and future research needs.
Collapse
Affiliation(s)
- Nathan C Lo
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA.
| | | | - Daniel G Colley
- Department of Microbiology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | | | - Mamoun Homeida
- Academy of Medical Sciences and Technology, Khartoum, Sudan
| | - Narcis Kabatereine
- Accelerating Resilient, Innovative, and Sustainable Elimination of NTDs, Vector Control Division, Kampala, Uganda
| | | | - Charles H King
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Nicholas Midzi
- National Institute of Health Research, Ministry of Health and Child Care, Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, Tackling Infections to Benefit Africa Partnership, University of Edinburgh, Edinburgh, UK
| | - Joseph R Mwanga
- Department of Epidemiology, Biostatistics and Behavioral Sciences, School of Public Health, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Reda M R Ramzy
- National Nutrition Institute, General Organization for Teaching Hospitals and Institutes, Cairo, Egypt
| | - Fadjar Satrija
- School of Veterinary Medicine and Biomedicine, IPB University, Bogor, Indonesia
| | - J Russell Stothard
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Joanne P Webster
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, London, UK
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Paolo Eusebi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eric S Loker
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Charles O Obonyo
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Michel Vaillant
- Competence Centre for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg
| | - M Hassan Murad
- Evidence-based Practice Center, Mayo Clinic, Rochester, NY, USA
| | - Paul Hagan
- Faculty of Health Sciences, University of Hull, Hull, UK
| | - Amadou Garba
- Department of Control of Neglected Tropical Diseases, WHO, Geneva, Switzerland
| |
Collapse
|
16
|
Nikolakis ZL, Adams RH, Wade KJ, Lund AJ, Carlton EJ, Castoe TA, Pollock DD. Prospects for genomic surveillance for selection in schistosome parasites. FRONTIERS IN EPIDEMIOLOGY 2022; 2:932021. [PMID: 38455290 PMCID: PMC10910990 DOI: 10.3389/fepid.2022.932021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 03/09/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by multiple parasitic Schistosoma species, and which impacts over 200 million people globally, mainly in low- and middle-income countries. Genomic surveillance to detect evidence for natural selection in schistosome populations represents an emerging and promising approach to identify and interpret schistosome responses to ongoing control efforts or other environmental factors. Here we review how genomic variation is used to detect selection, how these approaches have been applied to schistosomes, and how future studies to detect selection may be improved. We discuss the theory of genomic analyses to detect selection, identify experimental designs for such analyses, and review studies that have applied these approaches to schistosomes. We then consider the biological characteristics of schistosomes that are expected to respond to selection, particularly those that may be impacted by control programs. Examples include drug resistance, host specificity, and life history traits, and we review our current understanding of specific genes that underlie them in schistosomes. We also discuss how inherent features of schistosome reproduction and demography pose substantial challenges for effective identification of these traits and their genomic bases. We conclude by discussing how genomic surveillance for selection should be designed to improve understanding of schistosome biology, and how the parasite changes in response to selection.
Collapse
Affiliation(s)
- Zachary L. Nikolakis
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Richard H. Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| | - Kristen J. Wade
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrea J. Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, United States
| | - Elizabeth J. Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, United States
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
17
|
Díaz AV, Lambert S, Neves MI, Borlase A, Léger E, Diouf ND, Sène M, Webster JP, Walker M. Modelling livestock test-and-treat: A novel One Health strategy to control schistosomiasis and mitigate drug resistance. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.893066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis, a neglected tropical disease, is a widespread chronic helminthiasis reported in 78 countries, predominantly those within sub-Saharan Africa, as well as Latin America, Asia, and most recently, even Europe. Species of the causative blood fluke infect not only humans but also animals, and hybrids between previously assumed human-specific and animal-specific schistosomes are being increasingly reported. Existing control programs across Africa focus on humans and rely heavily on mass drug administration of praziquantel, the sole drug available against schistosomiasis. Praziquantel is safe and highly efficacious but could become ineffective if resistance emerges. To reach the revised World Health Organization goal of elimination of schistosomiasis as a public health problem, and interruption of transmission within selected regions, by 2030, new consideration of the role of animal reservoirs in human transmission in general, and whether to also treat livestock with praziquantel in particular, has been raised. However, whilst there are no dedicated control programs targeting animals outside of Asia, there are emerging reports of the use and misuse of praziquantel in livestock across Africa. Therefore, to effectively treat livestock in Africa and to help mitigate against the potential evolution of praziquantel resistance, structured control strategies are required. Here, using a transmission modelling approach, we evaluate the potential effectiveness of a theoretical test-and-treat (TnT) strategy to control bovine schistosomiasis using a currently available point-of-care diagnostic test (developed for human use) to detect circulating cathodic antigen (POC-CCA). We show that implementing TnT at herd-level from 2022 to 2030 could be highly effective in suppressing infection in cattle and even, in lower prevalence settings, reaching nominal ‘elimination’ targets. We highlight the importance of enhancing the specificity of POC-CCA for use in livestock to avoid unnecessary treatments and discuss the outstanding challenges associated with implementing TnT as part of a holistic One Health approach to tackling human and animal schistosomiasis.
Collapse
|
18
|
Miranda GS, Rodrigues JGM, Silva JKADO, Camelo GMA, Silva-Souza N, Neves RH, Machado-Silva JR, Negrão-Corrêa DA. New challenges for the control of human schistosomiasis: The possible impact of wild rodents in Schistosoma mansoni transmission. Acta Trop 2022; 236:106677. [PMID: 36063905 DOI: 10.1016/j.actatropica.2022.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a neglected parasitic disease caused by digenean trematodes from the genus Schistosoma that affects millions of people worldwide. Despite efforts to control its transmission, this disease remains active within several endemic regions of Africa, Asia, and the Americas. In addition to the deficits in sanitation and educational structure, another major obstacle hindering the eradication of schistosomiasis is the ability of Schistosoma spp. to naturally infect multiple vertebrate hosts, particularly wild rodents. Due to climate change and other anthropogenic disturbances, contact between humans and wild animals has increased, and this has contributed to more frequent interactions between Schistosoma species that typically infect different hosts. This new transmission dynamic involving Schistosoma spp., humans, wild rodents, and livestock could potentially increase the frequency of Schistosoma hybridization and the establishment of new genotypes and strains. Although it is not currently possible to precisely measure how this biological phenomenon affects the epidemiology and morbidity of schistosomiasis, we speculate that these Schistosoma variants may negatively impact control strategies, treatment regimens, and disease burden in humans. In the present study, we discuss the natural infections of wild rodents with Schistosoma spp., the role of these animals as Schistosoma spp. reservoirs, and how they may select hybrids and strains of Schistosoma mansoni. We also discuss measures required to shed light on the actual role of the wild rodents Nectomys squamipes and Holochilus sciureus in the transmission and morbidity of schistosomiasis in Brazil.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil; Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Jeferson Kelvin Alves de Oliveira Silva
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil
| | - Nêuton Silva-Souza
- Department of Chemistry and Biology, State University of Maranhão, São Luis, Brazil
| | - Renata Heisler Neves
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Roberto Machado-Silva
- Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Biomedical Center, University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deborah Aparecida Negrão-Corrêa
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Antônio Carlos 6627, Campus Pampulha, Belo Horizonte, MG CEP: 31270-010, Brazil.
| |
Collapse
|
19
|
Berger DJ, Léger E, Sankaranarayanan G, Sène M, Diouf ND, Rabone M, Emery A, Allan F, Cotton JA, Berriman M, Webster JP. Genomic evidence of contemporary hybridization between Schistosoma species. PLoS Pathog 2022; 18:e1010706. [PMID: 35939508 PMCID: PMC9387932 DOI: 10.1371/journal.ppat.1010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/18/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hybridization between different species of parasites is increasingly being recognised as a major public and veterinary health concern at the interface of infectious diseases biology, evolution, epidemiology and ultimately control. Recent research has revealed that viable hybrids and introgressed lineages between Schistosoma spp. are prevalent across Africa and beyond, including those with zoonotic potential. However, it remains unclear whether these hybrid lineages represent recent hybridization events, suggesting hybridization is ongoing, and/or whether they represent introgressed lineages derived from ancient hybridization events. In human schistosomiasis, investigation is hampered by the inaccessibility of adult-stage worms due to their intravascular location, an issue which can be circumvented by post-mortem of livestock at abattoirs for Schistosoma spp. of known zoonotic potential. To characterise the composition of naturally-occurring schistosome hybrids, we performed whole-genome sequencing of 21 natural livestock infective schistosome isolates. To facilitate this, we also assembled a de novo chromosomal-scale draft assembly of Schistosoma curassoni. Genomic analyses identified isolates of S. bovis, S. curassoni and hybrids between the two species, all of which were early generation hybrids with multiple generations found within the same host. These results show that hybridization is an ongoing process within natural populations with the potential to further challenge elimination efforts against schistosomiasis.
Collapse
Affiliation(s)
- Duncan J. Berger
- Wellcome Sanger Institute, Hinxton, United Kingdom
- Royal Veterinary College, University of London, London, United Kingdom
| | - Elsa Léger
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Mariama Sène
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Nicolas D. Diouf
- Unité de Formation et de Recherche des Sciences Agronomiques, d’Aquaculture et de Technologies Alimentaires, Université Gaston Berger, Saint-Louis, Senegal
| | - Muriel Rabone
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Aidan Emery
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
| | - Fiona Allan
- The Natural History Museum, Department of Life Sciences, Cromwell Road, London, United Kingdom
- Pelagic Ecology Research Group, Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Hinxton, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| | - Joanne P. Webster
- Royal Veterinary College, University of London, London, United Kingdom
- London Centre for Neglected Tropical Diseases Research, Imperial College Faculty of Medicine, London, United Kingdom
| |
Collapse
|
20
|
Angora EK, Vangraefschepe A, Allienne JF, Menan H, Coulibaly JT, Meïté A, Raso G, Winkler MS, Yavo W, Touré AO, N'Goran EK, Zinsstag J, Utzinger J, Balmer O, Boissier J. Population genetic structure of Schistosoma haematobium and Schistosoma haematobium × Schistosoma bovis hybrids among school-aged children in Côte d'Ivoire. Parasite 2022; 29:23. [PMID: 35522066 PMCID: PMC9074780 DOI: 10.1051/parasite/2022023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
While population genetics of Schistosoma haematobium have been investigated in West Africa, only scant data are available from Côte d’Ivoire. The purpose of this study was to analyze both genetic variability and genetic structure among S. haematobium populations and to quantify the frequency of S. haematobium × S. bovis hybrids in school-aged children in different parts of Côte d’Ivoire. Urine samples were subjected to a filtration method and examined microscopically for Schistosoma eggs in four sites in the western and southern parts of Côte d’Ivoire. A total of 2692 miracidia were collected individually and stored on Whatman® FTA cards. Of these, 2561 miracidia were successfully genotyped for species and hybrid identification using rapid diagnostic multiplex mitochondrial cox1 PCR and PCR Restriction Fragment Length Polymorphism (PCR-RFLP) analysis of the nuclear ITS2 region. From 2164 miracidia, 1966 (90.9%) were successfully genotyped using at least 10 nuclear microsatellite loci to investigate genetic diversity and population structure. Significant differences were found between sites in all genetic diversity indices and genotypic differentiation was observed between the site in the West and the three sites in the East. Analysis at the infrapopulation level revealed clustering of parasite genotypes within individual children, particularly in Duekoué (West) and Sikensi (East). Of the six possible cox1-ITS2 genetic profiles obtained from miracidia, S. bovis cox1 × S. haematobium ITS2 (42.0%) was the most commonly observed in the populations. We identified only 15 miracidia (0.7%) with an S. bovis cox1 × S. bovis ITS2 genotype. Our study provides new insights into the population genetics of S. haematobium and S. haematobium × S. bovis hybrids in humans in Côte d’Ivoire and we advocate for researching hybrid schistosomes in animals such as rodents and cattle in Côte d’Ivoire.
Collapse
Affiliation(s)
- Etienne K Angora
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Alexane Vangraefschepe
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Jean-François Allienne
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| | - Hervé Menan
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - Jean T Coulibaly
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland - Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Aboulaye Meïté
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive, 06 BP 6394, Abidjan 06, Côte d'Ivoire
| | - Giovanna Raso
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Mirko S Winkler
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - William Yavo
- Unité de Formation et de Recherche Sciences Pharmaceutiques et Biologiques, Université Félix Houphouët-Boigny, BPV 34 Abidjan, Côte d'Ivoire
| | - André O Touré
- Institut Pasteur de Côte d'Ivoire, BPV 490 Abidjan, Côte d'Ivoire
| | - Eliézer K N'Goran
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, 22 BP 770, Abidjan 22, Côte d'Ivoire - Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan 01, Côte d'Ivoire
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Oliver Balmer
- Swiss Tropical and Public Health Institute, P.O. Box, CH-4002 Basel, Switzerland - University of Basel, Kreuzstrasse 2, CH-4123 Allschwil, Switzerland
| | - Jérôme Boissier
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
21
|
Janoušková E, Clark J, Kajero O, Alonso S, Lamberton PHL, Betson M, Prada JM. Public Health Policy Pillars for the Sustainable Elimination of Zoonotic Schistosomiasis. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.826501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a parasitic disease acquired through contact with contaminated freshwater. The definitive hosts are terrestrial mammals, including humans, with some Schistosoma species crossing the animal-human boundary through zoonotic transmission. An estimated 12 million people live at risk of zoonotic schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi, largely in the World Health Organization’s Western Pacific Region and in Indonesia. Mathematical models have played a vital role in our understanding of the biology, transmission, and impact of intervention strategies, however, these have mostly focused on non-zoonotic Schistosoma species. Whilst these non-zoonotic-based models capture some aspects of zoonotic schistosomiasis transmission dynamics, the commonly-used frameworks are yet to adequately capture the complex epi-ecology of multi-host zoonotic transmission. However, overcoming these knowledge gaps goes beyond transmission dynamics modelling. To improve model utility and enhance zoonotic schistosomiasis control programmes, we highlight three pillars that we believe are vital to sustainable interventions at the implementation (community) and policy-level, and discuss the pillars in the context of a One-Health approach, recognising the interconnection between humans, animals and their shared environment. These pillars are: (1) human and animal epi-ecological understanding; (2) economic considerations (such as treatment costs and animal losses); and (3) sociological understanding, including inter- and intra-human and animal interactions. These pillars must be built on a strong foundation of trust, support and commitment of stakeholders and involved institutions.
Collapse
|
22
|
Transmission potential of human schistosomes can be driven by resource competition among snail intermediate hosts. Proc Natl Acad Sci U S A 2022; 119:2116512119. [PMID: 35121663 PMCID: PMC8833218 DOI: 10.1073/pnas.2116512119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 11/18/2022] Open
Abstract
Predicting and disrupting transmission of human parasites from wildlife hosts or vectors remains challenging because ecological interactions can influence their epidemiological traits. Human schistosomes, parasitic flatworms that cycle between freshwater snails and humans, typify this challenge. Human exposure risk, given water contact, is driven by the production of free-living cercariae by snail populations. Conventional epidemiological models and management focus on the density of infected snails under the assumption that all snails are equally infectious. However, individual-level experiments contradict this assumption, showing increased production of schistosome cercariae with greater access to food resources. We built bioenergetics theory to predict how resource competition among snails drives the temporal dynamics of transmission potential to humans and tested these predictions with experimental epidemics and demonstrated consistency with field observations. This resource-explicit approach predicted an intense pulse of transmission potential when snail populations grow from low densities, i.e., when per capita access to resources is greatest, due to the resource-dependence of cercarial production. The experiment confirmed this prediction, identifying a strong effect of infected host size and the biomass of competitors on per capita cercarial production. A field survey of 109 waterbodies also found that per capita cercarial production decreased as competitor biomass increased. Further quantification of snail densities, sizes, cercarial production, and resources in diverse transmission sites is needed to assess the epidemiological importance of resource competition and support snail-based disruption of schistosome transmission. More broadly, this work illustrates how resource competition can sever the correspondence between infectious host density and transmission potential.
Collapse
|