1
|
Bayonés L, Guerra-Fernández MJ, Figueroa-Cares C, Gallo LI, Alfonso-Bueno S, Caspe O, Canal MP, Báez-Matus X, González-Jamett A, Cárdenas AM, Marengo FD. Dynamin-2 mutations linked to neonatal-onset centronuclear myopathy impair exocytosis and endocytosis in adrenal chromaffin cells. J Neurochem 2024; 168:3268-3283. [PMID: 39126680 DOI: 10.1111/jnc.16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/28/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Dynamins are large GTPases whose primary function is not only to catalyze membrane scission during endocytosis but also to modulate other cellular processes, such as actin polymerization and vesicle trafficking. Recently, we reported that centronuclear myopathy associated dynamin-2 mutations, p.A618T, and p.S619L, impair Ca2+-induced exocytosis of the glucose transporter GLUT4 containing vesicles in immortalized human myoblasts. As exocytosis and endocytosis occur within rapid timescales, here we applied high-temporal resolution techniques, such as patch-clamp capacitance measurements and carbon-fiber amperometry to assess the effects of these mutations on these two cellular processes, using bovine chromaffin cells as a study model. We found that the expression of any of these dynamin-2 mutants inhibits a dynamin and F-actin-dependent form of fast endocytosis triggered by single action potential stimulus, as well as inhibits a slow compensatory endocytosis induced by 500 ms square depolarization. Both dynamin-2 mutants further reduced the exocytosis induced by 500 ms depolarizations, and the frequency of release events and the recruitment of neuropeptide Y (NPY)-labeled vesicles to the cell cortex after stimulation of nicotinic acetylcholine receptors with 1,1-dimethyl-4-phenyl piperazine iodide (DMPP). They also provoked a significant decrease in the Ca2+-induced formation of new actin filaments in permeabilized chromaffin cells. In summary, our results indicate that the centronuclear myopathy (CNM)-linked p.A618T and p.S619L mutations in dynamin-2 affect exocytosis and endocytosis, being the disruption of F-actin dynamics a possible explanation for these results. These impaired cellular processes might underlie the pathogenic mechanisms associated with these mutations.
Collapse
Affiliation(s)
- Lucas Bayonés
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Luciana I Gallo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Samuel Alfonso-Bueno
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Octavio Caspe
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Pilar Canal
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Arlek González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, CitNe, Universidad de Valparaíso, Valparaiso, Chile
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando D Marengo
- Instituto de Fisiología, Biología Molecular y Neurociencias. CONICET. Departamento de Fisiología y Biología Molecular y Celular. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Abstract
Membrane fusion and budding mediate fundamental processes like intracellular trafficking, exocytosis, and endocytosis. Fusion is thought to open a nanometer-range pore that may subsequently close or dilate irreversibly, whereas budding transforms flat membranes into vesicles. Reviewing recent breakthroughs in real-time visualization of membrane transformations well exceeding this classical view, we synthesize a new model and describe its underlying mechanistic principles and functions. Fusion involves hemi-to-full fusion, pore expansion, constriction and/or closure while fusing vesicles may shrink, enlarge, or receive another vesicle fusion; endocytosis follows exocytosis primarily by closing Ω-shaped profiles pre-formed through the flat-to-Λ-to-Ω-shape transition or formed via fusion. Calcium/SNARE-dependent fusion machinery, cytoskeleton-dependent membrane tension, osmotic pressure, calcium/dynamin-dependent fission machinery, and actin/dynamin-dependent force machinery work together to generate fusion and budding modes differing in pore status, vesicle size, speed and quantity, controls release probability, synchronization and content release rates/amounts, and underlies exo-endocytosis coupling to maintain membrane homeostasis. These transformations, underlying mechanisms, and functions may be conserved for fusion and budding in general.
Collapse
Affiliation(s)
- Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| |
Collapse
|
4
|
Tsentsevitsky AN, Gafurova CR, Mukhutdinova KA, Giniatullin AR, Fedorov NS, Malomouzh AI, Petrov AM. Sphingomyelinase modulates synaptic vesicle mobilization at the mice neuromuscular junctions. Life Sci 2023; 318:121507. [PMID: 36801470 DOI: 10.1016/j.lfs.2023.121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
AIMS Sphingomyelin is an abundant component of the presynaptic membrane and an organizer of lipid rafts. In several pathological conditions, sphingomyelin is hydrolyzed due to an upregulation and release of secretory sphingomyelinases (SMases). Herein, the effects of SMase on exocytotic neurotransmitter release were studied in the diaphragm neuromuscular junctions of mice. MAIN METHODS Microelectrode recordings of postsynaptic potentials and styryl (FM) dyes were used to estimate neuromuscular transmission. Membrane properties were assessed with fluorescent techniques. KEY FINDINGS Application of SMase at a low concentration (0.01 U ml-1) led to a disruption of lipid-packing in the synaptic membranes. Neither spontaneous exocytosis nor evoked neurotransmitter release (in response to single stimuli) were affected by SMase treatment. However, SMase significantly increased neurotransmitter release and the rate of fluorescent FM-dye loss from the synaptic vesicles at 10, 20 and 70 Hz stimulation of the motor nerve. In addition, SMase treatment prevented a shift of the exocytotic mode from "full-collapse" fusion to "kiss-and-run" during high-frequency (70 Hz) activity. The potentiating effects of SMase on neurotransmitter release and FM-dye unloading were suppressed when synaptic vesicle membranes were also exposed to this enzyme (i.e., stimulation occurred during SMase treatment). SIGNIFICANCE Thus, hydrolysis of the plasma membrane sphingomyelin can enhance mobilization of synaptic vesicles and facilitate full fusion mode of exocytosis, but SMase acting on vesicular membrane had a depressant effect on the neurotransmission. Partially, the effects of SMase can be related with the changes in synaptic membrane properties and intracellular signaling.
Collapse
Affiliation(s)
- Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Kamilla A Mukhutdinova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Arthur R Giniatullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky St, Box 30, Kazan, RT 420111, Russia; Kazan State Medial University, 49 Butlerova St., Kazan, RT 420012, Russia.
| |
Collapse
|
5
|
Gonçalves PP, Stenovec M, Grácio L, Kreft M, Zorec R. Calcium-dependent subquantal peptide release from single docked lawn-resident vesicles of pituitary lactotrophs. Cell Calcium 2023; 109:102687. [PMID: 36528978 DOI: 10.1016/j.ceca.2022.102687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Regulated exocytosis consists of the fusion between vesicles and the plasma membranes, leading to the formation of a narrow fusion pore through which secretions exit the vesicle lumen into the extracellular space. An increase in the cytosolic concentration of free Ca2+ ([Ca2+]i) is considered the stimulus of this process. However, whether this mechanism can be preserved in a simplified system of membrane lawns with docked secretory vesicles, devoid of cellular components, is poorly understood. Here, we studied peptide discharge from individual secretory vesicles docked at the plasma membrane, prepared from primary endocrine pituitary cells (the lactotrophs), releasing hormone prolactin. To label secretory vesicles, we transfected lactotrophs to express the fluorescent atrial natriuretic peptide (ANP.emd), previously shown to be expressed in and released from prolactin-containing vesicles. We used stimulating solutions containing different [Ca2+] to evoke vesicle peptide discharge, which appeared similar in membrane lawns and in intact stimulated lactotrophs. All vesicles examined discharged peptides in a subquantal manner, either exhibiting a unitary or sequential time course. In the membrane lawns, the unitary vesicle peptide discharge was predominant and slightly slower than that recorded in intact cells, but with a shorter delay with respect to the stimulation onset. This study revealed directly that Ca2+ triggers peptide discharge from docked single vesicles in the membrane lawns with a half-maximal response of ∼8 µM [Ca2+], consistent with previous whole-cell patch-clamp studies in endocrine cells where the rapid component of exocytosis, interpreted to represent docked vesicles, was fully activated at <10 µM [Ca2+]. Interestingly, the sequential subquantal peptide vesicle discharge indicates that fluctuations between constricted and dilated fusion pore states are preserved in membrane lawns and that fusion pore regulation appears to be an autonomously controlled process.
Collapse
Affiliation(s)
- Paula P Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia
| | - Luciano Grácio
- CRACS & INESC-TEC - Centre for Research in Advanced Computing Systems & Institute for Systems and Computer Engineering, Technology and Science, Department of Computer Science, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Department of Biology, University of Ljubljana, Biotechnical Faculty, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Zaloška 4, 1000, Ljubljana, Slovenia; Laboratory of Cell Engineering, Celica Biomedical, Tehnološki Park 24, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
The mechanisms of chromogranin B-regulated Cl- homeostasis. Biochem Soc Trans 2022; 50:1659-1672. [PMID: 36511243 DOI: 10.1042/bst20220435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Chloride is the most abundant inorganic anions in almost all cells and in human circulation systems. Its homeostasis is therefore important for systems physiology and normal cellular activities. This topic has been extensively studied with chloride loaders and extruders expressed in both cell surfaces and intracellular membranes. With the newly discovered, large-conductance, highly selective Cl- channel formed by membrane-bound chromogranin B (CHGB), which differs from all other known anion channels of conventional transmembrane topology, and is distributed in plasma membranes, endomembrane systems, endosomal, and endolysosomal compartments in cells expressing it, we will discuss the potential physiological importance of the CHGB channels to Cl- homeostasis, cellular excitability and volume control, and cation uptake or release at the cellular and subcellular levels. These considerations and CHGB's association with human diseases make the CHGB channel a possible druggable target for future molecular therapeutics.
Collapse
|
7
|
Fan F, Wu Y, Hara M, Rizk A, Ji C, Nerad D, Tamarina N, Lou X. Dynamin deficiency causes insulin secretion failure and hyperglycemia. Proc Natl Acad Sci U S A 2021; 118:e2021764118. [PMID: 34362840 PMCID: PMC8364113 DOI: 10.1073/pnas.2021764118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse β cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their β cells are viable, and their β cells still contain numerous insulin granules. Endocytosis in these β cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in β cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.
Collapse
Affiliation(s)
- Fan Fan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yumei Wu
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Departments of Neuroscience and Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Manami Hara
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Adam Rizk
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Chen Ji
- Synapses and Circuits section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | - Dan Nerad
- Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX 76544
| | - Natalia Tamarina
- Department of Medicine, The Kovler Diabetes Center, University of Chicago, Chicago, IL 60637
| | - Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226;
| |
Collapse
|
8
|
Moro A, van Nifterick A, Toonen RF, Verhage M. Dynamin controls neuropeptide secretion by organizing dense-core vesicle fusion sites. SCIENCE ADVANCES 2021; 7:eabf0659. [PMID: 34020952 PMCID: PMC8139595 DOI: 10.1126/sciadv.abf0659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/02/2021] [Indexed: 05/13/2023]
Abstract
Synaptic vesicles (SVs) release neurotransmitters at specialized active zones, but release sites and organizing principles for the other major secretory pathway, neuropeptide/neuromodulator release from dense-core vesicles (DCVs), remain elusive. We identify dynamins, yeast Vps1 orthologs, as DCV fusion site organizers in mammalian neurons. Genetic or pharmacological inactivation of all three dynamins strongly impaired DCV exocytosis, while SV exocytosis remained unaffected. Wild-type dynamin restored normal exocytosis but not guanosine triphosphatase-deficient or membrane-binding mutants that cause neurodevelopmental syndromes. During prolonged stimulation, repeated use of the same DCV fusion location was impaired in dynamin 1-3 triple knockout neurons. The syntaxin-1 staining efficiency, but not its expression level, was reduced. αSNAP (α-soluble N-ethylmaleimide-sensitive factor attachment protein) expression restored this. We conclude that mammalian dynamins organize DCV fusion sites, downstream of αSNAP, by regulating the equilibrium between fusogenic and non-fusogenic syntaxin-1 promoting its availability for SNARE (SNAP receptor) complex formation and DCV exocytosis.
Collapse
Affiliation(s)
- Alessandro Moro
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| | - Anne van Nifterick
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands.
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, VU University Medical Center, Amsterdam, Netherlands.
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, de Boelelaan 1087, 1081 HV Amsterdam, Netherlands
| |
Collapse
|
9
|
Milosevic I. Spatial and Temporal Aspects of Exocytosis Studied on the Isolated Plasma Membranes. Methods Mol Biol 2021; 2233:311-325. [PMID: 33222144 DOI: 10.1007/978-1-0716-1044-2_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Exocytosis of large-dense core vesicles in neuroendocrine cells is a highly regulated, calcium-dependent process, mediated by networks of interrelated proteins and lipids. Here, I describe experimental procedures for studies of selective spatial and temporal aspects of exocytosis at the plasma membrane, or in its proximity, using adrenal chromaffin cells. The assay utilizes primary cells subjected to a brief ultrasonic pulse, resulting in the formation of thin, flat inside-out plasma membranes with attached secretory vesicles and elements of cell cytoskeleton. In this model, secretion of plasma membrane-attached secretory vesicles was found to be dependent on calcium and sensitive to clostridial neurotoxins. Depending on the probe selected for secretory vesicle cargo, protein, and/or lipid detection, this simple assay is versatile, fast and inexpensive, and offers excellent spatial resolution.
Collapse
Affiliation(s)
- Ira Milosevic
- European Neuroscience Institute (ENI), A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany. .,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
10
|
Urbina FL, Menon S, Goldfarb D, Edwards R, Ben Major M, Brennwald P, Gupton SL. TRIM67 regulates exocytic mode and neuronal morphogenesis via SNAP47. Cell Rep 2021; 34:108743. [PMID: 33567284 PMCID: PMC7941186 DOI: 10.1016/j.celrep.2021.108743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Neuronal morphogenesis involves dramatic plasma membrane expansion, fueled by soluble N-ethylmaleimide-sensitive factor attachment protein eceptors (SNARE)-mediated exocytosis. Distinct fusion modes described at synapses include full-vesicle fusion (FVF) and kiss-and-run fusion (KNR). During FVF, lumenal cargo is secreted and vesicle membrane incorporates into the plasma membrane. During KNR, a transient fusion pore secretes cargo but closes without membrane addition. In contrast, fusion modes are not described in developing neurons. Here, we resolve individual exocytic events in developing murine cortical neurons and use classification tools to identify four distinguishable fusion modes: two FVF-like modes that insert membrane material and two KNR-like modes that do not. Discrete fluorescence profiles suggest distinct behavior of the fusion pore. Simulations and experiments agree that FVF-like exocytosis provides sufficient membrane material for morphogenesis. We find the E3 ubiquitin ligase TRIM67 promotes FVF-like exocytosis in part by limiting incorporation of the Qb/Qc SNARE SNAP47 into SNARE complexes and, thus, SNAP47 involvement in exocytosis. Urbina et al. identify four exocytic modes in developing neurons: KNRd, KNRi, FVFd, FVFi. Simulations and experiments suggest that FVFi and FVFd provide material for plasma membrane expansion. Deletion of Trim67 decreases FVFi and FVFd while reducing surface area. SNAP47 incorporation into SNARE complexes alters fusion pore behavior, increasing KNRd.
Collapse
Affiliation(s)
- Fabio L Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Reginald Edwards
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Ben Major
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Patrick Brennwald
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Gowrisankaran S, Houy S, Del Castillo JGP, Steubler V, Gelker M, Kroll J, Pinheiro PS, Schwitters D, Halbsgut N, Pechstein A, van Weering JRT, Maritzen T, Haucke V, Raimundo N, Sørensen JB, Milosevic I. Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin. Nat Commun 2020; 11:1266. [PMID: 32152276 PMCID: PMC7062783 DOI: 10.1038/s41467-020-14993-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022] Open
Abstract
Endophilins-A are conserved endocytic adaptors with membrane curvature-sensing and -inducing properties. We show here that, independently of their role in endocytosis, endophilin-A1 and endophilin-A2 regulate exocytosis of neurosecretory vesicles. The number and distribution of neurosecretory vesicles were not changed in chromaffin cells lacking endophilin-A, yet fast capacitance and amperometry measurements revealed reduced exocytosis, smaller vesicle pools and altered fusion kinetics. The levels and distributions of the main exocytic and endocytic factors were unchanged, and slow compensatory endocytosis was not robustly affected. Endophilin-A’s role in exocytosis is mediated through its SH3-domain, specifically via a direct interaction with intersectin-1, a coordinator of exocytic and endocytic traffic. Endophilin-A not able to bind intersectin-1, and intersectin-1 not able to bind endophilin-A, resulted in similar exocytic defects in chromaffin cells. Altogether, we report that two endocytic proteins, endophilin-A and intersectin-1, are enriched on neurosecretory vesicles and regulate exocytosis by coordinating neurosecretory vesicle priming and fusion. Endophilins-A are conserved membrane-associated proteins required for endocytosis. Here, the authors report that endophilins-A also promote exocytosis of neurosecretory vesicles by coordinating priming and fusion through intersectin-1, independently of their roles in different types of endocytosis.
Collapse
Affiliation(s)
- Sindhuja Gowrisankaran
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Sébastien Houy
- University of Copenhagen, Department for Neuroscience, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Johanna G Peña Del Castillo
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Vicky Steubler
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Monika Gelker
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Jana Kroll
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Paulo S Pinheiro
- University of Copenhagen, Department for Neuroscience, Faculty of Health and Medical Sciences, Copenhagen, Denmark.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Dirk Schwitters
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Nils Halbsgut
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany
| | - Arndt Pechstein
- Leibniz Research Institute for Molecular Pharmacology, Molecular Physiology and Cell Biology Section, Berlin, Germany
| | - Jan R T van Weering
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tanja Maritzen
- Leibniz Research Institute for Molecular Pharmacology, Molecular Physiology and Cell Biology Section, Berlin, Germany
| | - Volker Haucke
- Leibniz Research Institute for Molecular Pharmacology, Molecular Physiology and Cell Biology Section, Berlin, Germany
| | - Nuno Raimundo
- Institute for Cellular Biochemistry, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Jakob B Sørensen
- University of Copenhagen, Department for Neuroscience, Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Ira Milosevic
- European Neuroscience Institute-A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society Göttingen, Göttingen, Germany.
| |
Collapse
|
12
|
Gómez-Elías MD, Fissore RA, Cuasnicú PS, Cohen DJ. Compensatory endocytosis occurs after cortical granule exocytosis in mouse eggs. J Cell Physiol 2019; 235:4351-4360. [PMID: 31612508 DOI: 10.1002/jcp.29311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
Compensatory endocytosis (CE) is one of the primary mechanisms through which cells maintain their surface area after exocytosis. Considering that in eggs massive exocytosis of cortical granules (CG) takes place after fertilization, the aim of this study was to evaluate the occurrence of CE following cortical exocytosis in mouse eggs. For this purpose, we developed a pulse-chase assay to detect CG membrane internalization. Results showed internalized labeling in SrCl2 -activated and fertilized eggs when chasing at 37°C, but not at a nonpermissive temperature (4°C). The use of kinase and calcineurin inhibitors led us to conclude that this internal labeling corresponded to CE. Further experiments showed that CE in mouse eggs is dependent on actin dynamics and dynamin activity, and could be associated with a transient exposure of phosphatidylserine. Finally, CE was impaired in A23187 ionophore-activated eggs, highlighting once again the mechanistic differences between the activation methods. Altogether, these results demonstrate for the first time that egg activation triggers CE in mouse eggs after exocytosis of CG, probably as a plasma membrane homeostasis mechanism.
Collapse
Affiliation(s)
- Matías D Gómez-Elías
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, Massachusetts
| | - Patricia S Cuasnicú
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Débora J Cohen
- Laboratorio de Mecanismos Moleculares de la Fertilización, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Eyring KW, Tsien RW. Direct Visualization of Wide Fusion-Fission Pores and Their Highly Varied Dynamics. Cell 2019; 173:819-821. [PMID: 29727670 DOI: 10.1016/j.cell.2018.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this issue of Cell, Shin et al. report the first live-cell imaging of a fusion pore. Directly visualized pores in neuroendocrine cells can be much larger than expected yet not require vesicular full-collapse. These fusion-fission pores have diverse fates arising from opposing dynamin-driven pore constriction and F-actin-mediated pore expansion.
Collapse
Affiliation(s)
- Katherine W Eyring
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10016, USA
| | - Richard W Tsien
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10016, USA.
| |
Collapse
|
14
|
Baratchi S, Keov P, Darby WG, Lai A, Khoshmanesh K, Thurgood P, Vahidi P, Ejendal K, McIntyre P. The TRPV4 Agonist GSK1016790A Regulates the Membrane Expression of TRPV4 Channels. Front Pharmacol 2019; 10:6. [PMID: 30728775 PMCID: PMC6351496 DOI: 10.3389/fphar.2019.00006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023] Open
Abstract
TRPV4 is a non-selective cation channel that tunes the function of different tissues including the vascular endothelium, lung, chondrocytes, and neurons. GSK1016790A is the selective and potent agonist of TRPV4 and a pharmacological tool that is used to study the TRPV4 physiological function in vitro and in vivo. It remains unknown how the sensitivity of TRPV4 to this agonist is regulated. The spatial and temporal dynamics of receptors are the major determinants of cellular responses to stimuli. Membrane translocation has been shown to control the response of several members of the transient receptor potential (TRP) family of ion channels to different stimuli. Here, we show that TRPV4 stimulation with GSK1016790A caused an increase in [Ca2+]i that is stable for a few minutes. Single molecule analysis of TRPV4 channels showed that the density of TRPV4 at the plasma membrane is controlled through two modes of membrane trafficking, complete, and partial vesicular fusion. Further, we show that the density of TRPV4 at the plasma membrane decreased within 20 min, as they translocate to the recycling endosomes and that the surface density is dependent on the release of calcium from the intracellular stores and is controlled via a PI3K, PKC, and RhoA signaling pathway.
Collapse
Affiliation(s)
- Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Peter Keov
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,Molecular Pharmacology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, Australia
| | - William G Darby
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Austin Lai
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | | | - Peter Thurgood
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Parisa Vahidi
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Karin Ejendal
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Somasundaram A, Taraska JW. Local protein dynamics during microvesicle exocytosis in neuroendocrine cells. Mol Biol Cell 2018; 29:1891-1903. [PMID: 29874123 PMCID: PMC6085826 DOI: 10.1091/mbc.e17-12-0716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium-triggered exocytosis is key to many physiological processes, including neurotransmitter and hormone release by neurons and endocrine cells. Dozens of proteins regulate exocytosis, yet the temporal and spatial dynamics of these factors during vesicle fusion remain unclear. Here we use total internal reflection fluorescence microscopy to visualize local protein dynamics at single sites of exocytosis of small synaptic-like microvesicles in live cultured neuroendocrine PC12 cells. We employ two-color imaging to simultaneously observe membrane fusion (using vesicular acetylcholine ACh transporter tagged to pHluorin) and the dynamics of associated proteins at the moments surrounding exocytosis. Our experiments show that many proteins, including the SNAREs syntaxin1 and VAMP2, the SNARE modulator tomosyn, and Rab proteins, are preclustered at fusion sites and rapidly lost at fusion. The ATPase N-ethylmaleimide–sensitive factor is locally recruited at fusion. Interestingly, the endocytic Bin-Amphiphysin-Rvs domain–containing proteins amphiphysin1, syndapin2, and endophilins are dynamically recruited to fusion sites and slow the loss of vesicle membrane-bound cargo from fusion sites. A similar effect on vesicle membrane protein dynamics was seen with the overexpression of the GTPases dynamin1 and dynamin2. These results suggest that proteins involved in classical clathrin-mediated endocytosis can regulate exocytosis of synaptic-like microvesicles. Our findings provide insights into the dynamics, assembly, and mechanistic roles of many key factors of exocytosis and endocytosis at single sites of microvesicle fusion in live cells.
Collapse
Affiliation(s)
- Agila Somasundaram
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
16
|
Shin W, Ge L, Arpino G, Villarreal SA, Hamid E, Liu H, Zhao WD, Wen PJ, Chiang HC, Wu LG. Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis. Cell 2018; 173:934-945.e12. [PMID: 29606354 PMCID: PMC5935532 DOI: 10.1016/j.cell.2018.02.062] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation.
Collapse
Affiliation(s)
- Wonchul Shin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Lihao Ge
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gianvito Arpino
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Seth A Villarreal
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Edaeni Hamid
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Huisheng Liu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Wei-Dong Zhao
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Peter J Wen
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Hsueh-Cheng Chiang
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
17
|
Kreft M, Jorgačevski J, Stenovec M, Zorec R. Ångstrom-size exocytotic fusion pore: Implications for pituitary hormone secretion. Mol Cell Endocrinol 2018; 463:65-71. [PMID: 28457949 DOI: 10.1016/j.mce.2017.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 02/08/2023]
Abstract
In the past, vesicle content release was thought to occur immediately and completely after triggering of exocytosis. However, vesicles may merge with the plasma membrane to form an Ångstrom diameter fusion pore that prevents the exit of secretions from the vesicle lumen. The advantage of such a narrow pore is to minimize the delay between the trigger and the release. Instead of stimulating a sequence of processes, leading to vesicle merger with the plasma membrane and a formation of a fusion pore, the stimulus only widens the pre-established fusion pore. The fusion pore may be stable and may exhibit repetitive opening of the vesicle lumen to the cell exterior accompanied by a content discharge. Such release of vesicle content is partial (subquantal), and depends on fusion pore open time, diameter and the diffusibility of the cargo. Such transient mode of fusion pore opening was not confirmed until the development of the membrane capacitance patch-clamp technique, which enables high-resolution measurement of changes in membrane surface area. It allows millisecond dwell-time measurements of fusion pores with subnanometer diameters. Currently, the soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins are considered to be key entities in end-stage exocytosis, and the SNARE complex assembly/disassembly may regulate the fusion pore. Moreover, lipids or other membrane constituents with anisotropic (non-axisymmetric) geometry may also favour the establishment of stable narrow fusion pores, if positioned in the neck of the fusion pore.
Collapse
Affiliation(s)
- Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
18
|
Abstract
Synaptic vesicle recycling is essential for sustained and reliable neurotransmission. A key component of synaptic vesicle recycling is the synaptic vesicle biogenesis process that is observed in synapses and that maintains the molecular identity of synaptic vesicles. However, the mechanisms by which synaptic vesicles are retrieved and reconstituted after fusion remain unclear. The complex molecular composition of synaptic vesicles renders their rapid biogenesis a daunting task. Therefore, in this context, kiss-and-run type transient fusion of synaptic vesicles with the plasma membrane without loss of their membrane composition and molecular identity remains a viable hypothesis that can account for the fidelity of the synaptic vesicle cycle. In this article, we discuss the biological implications of this problem as well as its possible molecular solutions.
Collapse
Affiliation(s)
- Natali L Chanaday
- Department of Neuroscience, University of Texas Southwestern Medical Centre, Dallas, TX, 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Centre, Dallas, TX, 75390-9111, USA
| |
Collapse
|
19
|
Wen X, Saltzgaber GW, Thoreson WB. Kiss-and-Run Is a Significant Contributor to Synaptic Exocytosis and Endocytosis in Photoreceptors. Front Cell Neurosci 2017; 11:286. [PMID: 28979188 PMCID: PMC5611439 DOI: 10.3389/fncel.2017.00286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/01/2017] [Indexed: 11/13/2022] Open
Abstract
Accompanying sustained release in darkness, rod and cone photoreceptors exhibit rapid endocytosis of synaptic vesicles. Membrane capacitance measurements indicated that rapid endocytosis retrieves at least 70% of the exocytotic membrane increase. One mechanism for rapid endocytosis is kiss-and-run fusion where vesicles briefly contact the plasma membrane through a small fusion pore. Release can also occur by full-collapse in which vesicles merge completely with the plasma membrane. We assessed relative contributions of full-collapse and kiss-and-run in salamander photoreceptors using optical techniques to measure endocytosis and exocytosis of large vs. small dye molecules. Incubation with small dyes (SR101, 1 nm; 3-kDa dextran-conjugated Texas Red, 2.3 nm) loaded rod and cone synaptic terminals much more readily than larger dyes (10-kDa Texas Red, 4.6 nm; 10-kDa pHrodo, 4.6 nm; 70-kDa Texas Red, 12 nm) consistent with significant uptake through 2.3–4.6 nm fusion pores. By using total internal reflection fluorescence microscopy (TIRFM) to image individual vesicles, when rods were incubated simultaneously with Texas Red and AlexaFluor-488 dyes conjugated to either 3-kDa or 10-kDa dextran, more vesicles loaded small molecules than large molecules. Using TIRFM to detect release by the disappearance of dye-loaded vesicles, we found that SR101 and 3-kDa Texas Red were released from individual vesicles more readily than 10-kDa and 70-kDa Texas Red. Although 10-kDa pHrodo was endocytosed poorly like other large dyes, the fraction of release events was similar to SR101 and 3-kDa Texas Red. We hypothesize that while 10-kDa pHrodo may not exit through a fusion pore, release of intravesicular protons can promote detection of fusion events by rapidly quenching fluorescence of this pH-sensitive dye. Assuming that large molecules can only be released by full-collapse whereas small molecules can be released by both modes, our results indicate that 50%–70% of release from rods involves kiss-and-run with 2.3–4.6 nm fusion pores. Rapid retrieval of vesicles by kiss-and-run may limit membrane disruption of release site function during ongoing release at photoreceptor ribbon synapses.
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, United States.,Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| | - Grant W Saltzgaber
- Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| | - Wallace B Thoreson
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical CenterOmaha, NE, United States.,Ophthalmology & Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical CenterOmaha, NE, United States
| |
Collapse
|
20
|
Eich ML, Dembla E, Wahl S, Dembla M, Schwarz K, Schmitz F. The Calcineurin-Binding, Activity-Dependent Splice Variant Dynamin1xb Is Highly Enriched in Synapses in Various Regions of the Central Nervous System. Front Mol Neurosci 2017; 10:230. [PMID: 28790889 PMCID: PMC5524891 DOI: 10.3389/fnmol.2017.00230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
In the present study, we generated and characterized a splice site-specific monoclonal antibody that selectively detects the calcineurin-binding dynamin1 splice variant dynamin1xb. Calcineurin is a Ca2+-regulated phosphatase that enhances dynamin1 activity and is an important Ca2+-sensing mediator of homeostatic synaptic plasticity in neurons. Using this dynamin1xb-specific antibody, we found dynamin1xb highly enriched in synapses of all analyzed brain regions. In photoreceptor ribbon synapses, dynamin1xb was enriched in close vicinity to the synaptic ribbon in a manner indicative of a peri-active zone immunolabeling. Interestingly, in dark-adapted mice we observed an enhanced and selective enrichment of dynamin1xb in both synaptic layers of the retina in comparison to light-adapted mice. This could be due to an illumination-dependent recruitment of dynamin1xb to retinal synapses and/or due to a darkness-induced increase of dynamin1xb biosynthesis. These latter findings indicate that dynamin1xb is part of a versatile and highly adjustable, activity-regulated endocytic synaptic machinery.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Ekta Dembla
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Silke Wahl
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Mayur Dembla
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland UniversityHomburg/Saar, Germany
| |
Collapse
|
21
|
Stevenson NL, White IJ, McCormack JJ, Robinson C, Cutler DF, Nightingale TD. Clathrin-mediated post-fusion membrane retrieval influences the exocytic mode of endothelial Weibel-Palade bodies. J Cell Sci 2017; 130:2591-2605. [PMID: 28674075 PMCID: PMC5558267 DOI: 10.1242/jcs.200840] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/10/2017] [Indexed: 01/15/2023] Open
Abstract
Weibel-Palade bodies (WPBs), the storage organelles of endothelial cells, are essential to normal haemostatic and inflammatory responses. Their major constituent protein is von Willebrand factor (VWF) which, following stimulation with secretagogues, is released into the blood vessel lumen as large platelet-catching strings. This exocytosis changes the protein composition of the cell surface and also results in a net increase in the amount of plasma membrane. Compensatory endocytosis is thought to limit changes in cell size and retrieve fusion machinery and other misplaced integral membrane proteins following exocytosis; however, little is known about the extent, timing, mechanism and precise function of compensatory endocytosis in endothelial cells. Using biochemical assays, live-cell imaging and correlative spinning-disk microscopy and transmission electron microscopy assays we provide the first in-depth high-resolution characterisation of this process. We provide a model of compensatory endocytosis based on rapid clathrin- and dynamin-mediated retrieval. Inhibition of this process results in a change of exocytic mode: WPBs then fuse with previously fused WPBs rather than the plasma membrane, leading, in turn, to the formation of structurally impaired tangled VWF strings. This article has an associated First Person interview with the first authors of the paper. Summary: Compensatory endocytosis plays key roles in Weibel-Palade body exocytosis. Inhibition of this process results in a change of exocytic mode and the release of von Willebrand factor as tangled strings.
Collapse
Affiliation(s)
- Nicola L Stevenson
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ian J White
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jessica J McCormack
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher Robinson
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel F Cutler
- MRC Cell Biology Unit, Laboratory of Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
22
|
Lasič E, Stenovec M, Kreft M, Robinson PJ, Zorec R. Dynamin regulates the fusion pore of endo- and exocytotic vesicles as revealed by membrane capacitance measurements. Biochim Biophys Acta Gen Subj 2017; 1861:2293-2303. [PMID: 28669852 DOI: 10.1016/j.bbagen.2017.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/24/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dynamin is a multidomain GTPase exhibiting mechanochemical and catalytic properties involved in vesicle scission from the plasmalemma during endocytosis. New evidence indicates that dynamin is also involved in exocytotic release of catecholamines, suggesting the existence of a dynamin-regulated structure that couples endo- to exocytosis. METHODS Thus we here employed high-resolution cell-attached capacitance measurements and super-resolution structured illumination microscopy to directly examine single vesicle interactions with the plasmalemma in cultured rat astrocytes treated with distinct pharmacological modulators of dynamin activity. Fluorescent dextrans and the lipophilic plasmalemmal marker DiD were utilized to monitor uptake and distribution of vesicles in the peri-plasmalemmal space and in the cell cytosol. RESULTS Dynamin inhibition with Dynole™-34-2 and Dyngo™-4a prevented vesicle internalization into the cytosol and decreased fusion pore conductance of vesicles that remained attached to the plasmalemma via a narrow fusion pore that lapsed into a state of repetitive opening and closing - flickering. In contrast, the dynamin activator Ryngo™-1-23 promoted vesicle internalization and favored fusion pore closure by prolonging closed and shortening open fusion pore dwell times. Immunocytochemical staining revealed dextran uptake into dynamin-positive vesicles and increased dextran uptake into Syt4- and VAMP2-positive vesicles after dynamin inhibition, indicating prolonged retention of these vesicles at the plasmalemma. CONCLUSIONS Our results have provided direct evidence for a role of dynamin in regulation of fusion pore geometry and kinetics of endo- and exocytotic vesicles, indicating that both share a common dynamin-regulated structural intermediate, the fusion pore.
Collapse
Affiliation(s)
- Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Department of Biology, CPAE, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Phillip J Robinson
- Children's Medical Research Institute, The University of Sydney, Australia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia.
| |
Collapse
|
23
|
Xu Y, Toomre DK, Bogan JS, Hao M. Excess cholesterol inhibits glucose-stimulated fusion pore dynamics in insulin exocytosis. J Cell Mol Med 2017; 21:2950-2962. [PMID: 28544529 PMCID: PMC5661106 DOI: 10.1111/jcmm.13207] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/28/2017] [Indexed: 01/06/2023] Open
Abstract
Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β-cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β-cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β-cells and contribute to β-cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β-cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single-granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose-stimulated fusion events, and modulated the proportion of full fusion and kiss-and-run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol-overloaded β-cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol-induced phosphatidylinositol 4,5-bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss-and-run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes.
Collapse
Affiliation(s)
- Yingke Xu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Bioengineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| | - Derek K Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Jonathan S Bogan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Mingming Hao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
24
|
Liang K, Wei L, Chen L. Exocytosis, Endocytosis, and Their Coupling in Excitable Cells. Front Mol Neurosci 2017; 10:109. [PMID: 28469555 PMCID: PMC5395637 DOI: 10.3389/fnmol.2017.00109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 11/13/2022] Open
Abstract
Evoked exocytosis in excitable cells is fast and spatially confined and must be followed by coupled endocytosis to enable sustained exocytosis while maintaining the balance of the vesicle pool and the plasma membrane. Various types of exocytosis and endocytosis exist in these excitable cells, as those has been found from different types of experiments conducted in different cell types. Correlating these diversified types of exocytosis and endocytosis is problematic. By providing an outline of different exocytosis and endocytosis processes and possible coupling mechanisms here, we emphasize that the endocytic pathway may be pre-determined at the time the vesicle chooses to fuse with the plasma membrane in one specific mode. Therefore, understanding the early intermediate stages of vesicle exocytosis may be instrumental in exploring the mechanism of tailing endocytosis.
Collapse
Affiliation(s)
- Kuo Liang
- Department of General Surgery, XuanWu Hospital, Capital Medical UniversityBeijing, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking UniversityBeijing, China
| |
Collapse
|
25
|
Balseiro-Gomez S, Flores JA, Acosta J, Ramirez-Ponce MP, Ales E. Transient fusion ensures granule replenishment to enable repeated release after IgE-mediated mast cell degranulation. J Cell Sci 2016; 129:3989-4000. [PMID: 27624612 DOI: 10.1242/jcs.194340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
To ensure normal immune function, mast cells employ different pathways to release mediators. Here, we report a thus far unknown capacity of mast cells to recycle and reuse secretory granules after an antigen-evoked degranulation process under physiological conditions; this phenomenon involves the existence of a recycling secretory granule pool that is available for release in a short time scale. Rapid endocytic modes contributed to the recycling of ∼60% of the total secretory granule population, which involved kiss-and-run and cavicapture mechanisms, causing retention of the intragranular matrix. We found the presence of normal-size granules and giant actomyosin- and dynamin-dependent granules, which were characterized by large quantal content. These large structures allowed the recovered mast cells to release a large amount of 5-HT, compensating for the decrease in the number of exocytosed secretory granules. This work uncovers a new physiological role of the exo-endocytosis cycle in the immunological plasticity of mast cells and reveals a new property of their biological secretion.
Collapse
Affiliation(s)
- Santiago Balseiro-Gomez
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| | - Juan A Flores
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| | - Jorge Acosta
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| | - M Pilar Ramirez-Ponce
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| | - Eva Ales
- Departamento Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de 41009 Sevilla, Spain
| |
Collapse
|
26
|
Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. ACTA ACUST UNITED AC 2016; 6:123-148. [PMID: 27141430 DOI: 10.1016/j.baga.2016.02.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dopamine (DA) transmission is governed by processes that regulate release from axonal boutons in the forebrain and the somatodendritic compartment in midbrain, and by clearance by the DA transporter, diffusion, and extracellular metabolism. We review how axonal DA release is regulated by neuronal activity and by autoreceptors and heteroreceptors, and address how quantal release events are regulated in size and frequency. In brain regions densely innervated by DA axons, DA clearance is due predominantly to uptake by the DA transporter, whereas in cortex, midbrain, and other regions with relatively sparse DA inputs, the norepinephrine transporter and diffusion are involved. We discuss the role of DA uptake in restricting the sphere of influence of DA and in temporal accumulation of extracellular DA levels upon successive action potentials. The tonic discharge activity of DA neurons may be translated into a tonic extracellular DA level, whereas their bursting activity can generate discrete extracellular DA transients.
Collapse
Affiliation(s)
- David Sulzer
- Depts of Psychiatry, Neurology, & Pharmacology, NY State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Stephanie J Cragg
- Dept Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Margaret E Rice
- Depts of Neurosurgery & Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
27
|
Trexler AJ, Sochacki KA, Taraska JW. Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis. Mol Biol Cell 2016; 27:2423-34. [PMID: 27307587 PMCID: PMC4966983 DOI: 10.1091/mbc.e16-01-0057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/09/2016] [Indexed: 12/13/2022] Open
Abstract
Imaging of exocytic and endocytic proteins shows which are present at exocytic sites before, during, and after exocytosis in living cells. Rab proteins and SNARE modulators are lost, and dynamin, PIP2, and BAR-domain proteins are rapidly and transiently recruited, where they may modulate the nascent fusion pore. How and when the dozens of molecules that control exocytosis assemble in living cells to regulate the fusion of a vesicle with the plasma membrane is unknown. Here we image with two-color total internal reflection fluorescence microscopy the local changes of 27 proteins at single dense-core vesicles undergoing calcium-triggered fusion. We identify two broad dynamic behaviors of exocytic molecules. First, proteins enriched at exocytic sites are associated with DCVs long before exocytosis, and near the time of membrane fusion, they diffuse away. These proteins include Rab3 and Rab27, rabphilin3a, munc18a, tomosyn, and CAPS. Second, we observe a group of classical endocytic proteins and lipids, including dynamins, amphiphysin, syndapin, endophilin, and PIP2, which are rapidly and transiently recruited to the exocytic site near the time of membrane fusion. Dynamin mutants unable to bind amphiphysin were not recruited, indicating that amphiphysin is involved in localizing dynamin to the fusion site. Expression of mutant dynamins and knockdown of endogenous dynamin altered the rate of cargo release from single vesicles. Our data reveal the dynamics of many key proteins involved in exocytosis and identify a rapidly recruited dynamin/PIP2/BAR assembly that regulates the exocytic fusion pore of dense-core vesicles in cultured endocrine beta cells.
Collapse
Affiliation(s)
- Adam J Trexler
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Cárdenas AM, Marengo FD. How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode, and vesicle recycling in neuroendocrine cells. J Neurochem 2016; 137:867-79. [DOI: 10.1111/jnc.13565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso; Valparaíso Chile
| | - Fernando D. Marengo
- Laboratorio de Fisiología y Biología Molecular; Instituto de Fisiología; Biología Molecular y Neurociencias (CONICET); Departamento de Fisiología y Biología Molecular y Celular; Facultad de Ciencias Exactas y Naturales; Universidad de Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
29
|
Eno C, Solanki B, Pelegri F. aura (mid1ip1l) regulates the cytoskeleton at the zebrafish egg-to-embryo transition. Development 2016; 143:1585-99. [PMID: 26965374 PMCID: PMC4986165 DOI: 10.1242/dev.130591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
Embryos from females homozygous for a recessive maternal-effect mutation in the gene aura exhibit defects including reduced cortical integrity, defective cortical granule (CG) release upon egg activation, failure to complete cytokinesis, and abnormal cell wound healing. We show that the cytokinesis defects are associated with aberrant cytoskeletal reorganization during furrow maturation, including abnormal F-actin enrichment and microtubule reorganization. Cortical F-actin prior to furrow formation fails to exhibit a normal transition into F-actin-rich arcs, and drug inhibition is consistent with aura function promoting F-actin polymerization and/or stabilization. In mutants, components of exocytic and endocytic vesicles, such as Vamp2, Clathrin and Dynamin, are sequestered in unreleased CGs, indicating a need for CG recycling in the normal redistribution of these factors. However, the exocytic targeting factor Rab11 is recruited to the furrow plane normally at the tip of bundling microtubules, suggesting an alternative anchoring mechanism independent of membrane recycling. A positional cloning approach indicates that the mutation in aura is associated with a truncation of Mid1 interacting protein 1 like (Mid1ip1l), previously identified as an interactor of the X-linked Opitz G/BBB syndrome gene product Mid1. A Cas9/CRISPR-induced mutant allele in mid1ip1l fails to complement the originally isolated aura maternal-effect mutation, confirming gene assignment. Mid1ip1l protein localizes to cortical F-actin aggregates, consistent with a direct role in cytoskeletal regulation. Our studies indicate that maternally provided aura (mid1ip1l) acts during the reorganization of the cytoskeleton at the egg-to-embryo transition and highlight the importance of cytoskeletal dynamics and membrane recycling during this developmental period.
Collapse
Affiliation(s)
- Celeste Eno
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| | - Bharti Solanki
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, 425-G Henry Mall, Room 2455 Genetics, Madison, WI 53706, USA
| |
Collapse
|
30
|
Lin Y, Wang P, Liu YH, Shang XL, Chen LY, Xue YX. DT(270-326) , a Truncated Diphtheria Toxin, Increases Blood-Tumor Barrier Permeability by Upregulating the Expression of Caveolin-1. CNS Neurosci Ther 2016; 22:477-87. [PMID: 26861687 DOI: 10.1111/cns.12519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/13/2023] Open
Abstract
AIM The nontoxic mutant of diphtheria toxin (DT) has been demonstrated to act as a receptor-specific carrier protein to delivery drug into brain. Recent research showed that the truncated "receptorless" DT was still capable of being internalized into cells. This study investigated the effects and potential mechanisms of DT(270-326) , a truncated "receptorless" DT, on the permeability of the blood-tumor barrier (BTB). METHODS BTB and GECs were subjected to DT(270-326) treatment. HRP flux assays, immunofluorescent, co-immunoprecipitation, Western blot, CCK-8, and Flow cytometry analysis were used to evaluate the effects of DT(270-326) administration. RESULTS Our results revealed that 5 μM of DT(270-326) significantly increased the permeability of BTBin vitro, which reached its peak at 6 h. The permeability was reduced by pretreatment with filipinIII. DT(270-326) co-localized and interacted with caveolin-1 via its caveolin-binding motif. The mRNA and protein expression levels of caveolin-1 were identical with the changes of BTB permeability. The upregulated expression of caveolin-1 was associated with Src kinase-dependent tyrosine phosphorylation of caveolin-1, which subsequently induced phosphorylation and inactivation of the transcription factor Egr-1. The combination of DT(270-326) with doxorubicin significantly enhanced the loss of cell viability and apoptosis of U87 glioma cells in contrast to doxorubicin alone. CONCLUSIONS DT(270-326) might provide a novel strategy to increase the delivery of macromolecular therapeutic agents across the BTB.
Collapse
Affiliation(s)
- Yang Lin
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiu-Li Shang
- Department of Neurology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang-Yu Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, China.,Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| |
Collapse
|
31
|
Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nat Commun 2015; 5:3356. [PMID: 24561832 PMCID: PMC4267856 DOI: 10.1038/ncomms4356] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/30/2014] [Indexed: 12/18/2022] Open
Abstract
Vesicle fusion with the plasma membrane generates an Ω-shaped membrane profile. Its pore is thought to dilate until flattening (full-collapse), followed by classical endocytosis to retrieve vesicles. Alternatively, the pore may close (kiss-and-run), but the triggering mechanisms and its endocytic roles remain poorly understood. Here, using confocal and stimulated emission depletion microscopy imaging of dense-core vesicles, we find that fusion-generated Ω-profiles may enlarge or shrink while maintaining vesicular membrane proteins. Closure of fusion-generated Ω-profiles, which produces various sizes of vesicles, is the dominant mechanism mediating rapid and slow endocytosis within ~1-30 s. Strong calcium influx triggers dynamin-mediated closure. Weak calcium influx does not promote closure, but facilitates the merging of Ω-profiles with the plasma membrane via shrinking rather than full-collapse. These results establish a model, termed Ω-exo-endocytosis, in which the fusion-generated Ω-profile may shrink to merge with the plasma membrane, change in size or change in size then close in response to calcium, which is the main mechanism to retrieve dense-core vesicles.
Collapse
|
32
|
Sreetama SC, Takano T, Nedergaard M, Simon SM, Jaiswal JK. Injured astrocytes are repaired by Synaptotagmin XI-regulated lysosome exocytosis. Cell Death Differ 2015; 23:596-607. [PMID: 26450452 DOI: 10.1038/cdd.2015.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are known to facilitate repair following brain injury; however, little is known about how injured astrocytes repair themselves. Repair of cell membrane injury requires Ca(2+)-triggered vesicle exocytosis. In astrocytes, lysosomes are the main Ca(2+)-regulated exocytic vesicles. Here we show that astrocyte cell membrane injury results in a large and rapid calcium increase. This triggers robust lysosome exocytosis where the fusing lysosomes release all luminal contents and merge fully with the plasma membrane. In contrast to this, receptor stimulation produces a small sustained calcium increase, which is associated with partial release of the lysosomal luminal content, and the lysosome membrane does not merge into the plasma membrane. In most cells, lysosomes express the synaptotagmin (Syt) isoform Syt VII; however, this isoform is not present on astrocyte lysosomes and exogenous expression of Syt VII on lysosome inhibits their exocytosis. Deletion of one of the most abundant Syt isoform in astrocyte--Syt XI--suppresses astrocyte lysosome exocytosis. This identifies lysosome as Syt XI-regulated exocytic vesicle in astrocytes. Further, inhibition of lysosome exocytosis (by Syt XI depletion or Syt VII expression) prevents repair of injured astrocytes. These results identify the lysosomes and Syt XI as the sub-cellular and molecular regulators, respectively of astrocyte cell membrane repair.
Collapse
Affiliation(s)
- S C Sreetama
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA
| | - T Takano
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - M Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, USA
| | - S M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY, USA
| | - J K Jaiswal
- Center for Genetic Medicine Research, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue NW, Washington, DC, USA
| |
Collapse
|
33
|
Jackson J, Papadopulos A, Meunier FA, McCluskey A, Robinson PJ, Keating DJ. Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release. Mol Psychiatry 2015; 20:810-9. [PMID: 25939402 DOI: 10.1038/mp.2015.56] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/14/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Hormones and neurotransmitters are stored in specialised vesicles and released from excitable cells through exocytosis. During vesicle fusion with the plasma membrane, a transient fusion pore is created that enables transmitter release. The protein dynamin is known to regulate fusion pore expansion (FPE). The mechanism is unknown, but requires its oligomerisation-stimulated GTPase activity. We used a palette of small molecule dynamin modulators to reveal bi-directional regulation of FPE by dynamin and vesicle release in chromaffin cells. The dynamin inhibitors Dynole 34-2 and Dyngo 4a and the dynamin activator Ryngo 1-23 reduced or increased catecholamine released from single vesicles, respectively. Total internal reflection fluorescence (TIRF) microscopy demonstrated that dynamin stimulation with Ryngo 1-23 reduced the number of neuropeptide Y (NPY) kiss-and-run events, but not full fusion events, and slowed full fusion release kinetics. Amperometric stand-alone foot signals, representing transient kiss-and-run events, were less frequent but were of longer duration, similarly to full amperometric spikes and pre-spike foot signals. These effects are not due to alterations in vesicle size. Ryngo 1-23 action was blocked by inhibitors of actin polymerisation or myosin II. Therefore, we demonstrate using a novel pharmacological approach that dynamin not only controls FPE during exocytosis, but is a bi-directional modulator of the fusion pore that increases or decreases the amount released from a vesicle during exocytosis if it is activated or inhibited, respectively. As such, dynamin has the ability to exquisitely fine-tune transmitter release.
Collapse
Affiliation(s)
- J Jackson
- Discipline of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia
| | - A Papadopulos
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - F A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - A McCluskey
- Centre for Chemical Biology and Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - P J Robinson
- Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - D J Keating
- 1] Discipline of Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, Australia [2] South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
34
|
Kononenko N, Haucke V. Molecular Mechanisms of Presynaptic Membrane Retrieval and Synaptic Vesicle Reformation. Neuron 2015; 85:484-96. [DOI: 10.1016/j.neuron.2014.12.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Recycling endosomes undergo rapid closure of a fusion pore on exocytosis in neuronal dendrites. J Neurosci 2014; 34:11106-18. [PMID: 25122907 DOI: 10.1523/jneurosci.0799-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Exocytosis of recycling endosomes (REs) represents the last step of receptor and membrane recycling, a fundamental process involved in many aspects of cell physiology. In neurons, it is involved in the control of cell polarity and synaptic plasticity and is locally and tightly regulated. However, its molecular mechanisms are still poorly understood. We have imaged single exocytosis events of REs in rat hippocampal neurons in culture transfected with three types of receptors tagged with the pH-sensitive GFP mutant superecliptic phluorin. We found that exocytosis events are grouped into two categories: (1) short burst events in which receptors diffuse into the plasma membrane in a few seconds; and (2) long display events in which receptors remain visible and clustered after exocytosis for many seconds. Display events are much rarer in non-neuronal cells, such as fibroblasts and astrocytes. Using two-color imaging and fast extracellular solution changes, we show that display events correspond to the rapid opening and closing of a fusion pore (or "kiss-and-run") with a median opening time of 2.6 s, which restricts the diffusion of multiple receptor types and bound cargo. Moreover, the RE marker Rab11 remains enriched after display exocytosis events and controls the mode of RE exocytosis. Finally, a given RE can undergo multiple rounds of display exocytosis. The last step of recycling can thus be controlled in neurons for the selective delivery of receptors at the cell surface.
Collapse
|
36
|
Larson BT, Sochacki KA, Kindem JM, Taraska JW. Systematic spatial mapping of proteins at exocytic and endocytic structures. Mol Biol Cell 2014; 25:2084-93. [PMID: 24807904 PMCID: PMC4072581 DOI: 10.1091/mbc.e14-02-0771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A quantitative cellular imaging and spatial mapping system is developed and used to measure a library of 78 proteins at calcium-regulated exocytic or clathrin-coated endocytic structures. Structures and proteins are randomly distributed. A steady-state network map is provided for studying the behavior of membrane-trafficking proteins. Vesicular secretion (exocytosis) involves the release and then compensatory recycling of vesicle components through endocytosis. This fundamental cellular process is controlled by the coordinated assembly and interactions of dozens of proteins at the plasma membrane. Understanding the molecular composition of individual exocytic and endocytic structures and their organization across the plasma membrane is critical to understanding the behavior and regulation of these two cellular processes. Here we develop a high-resolution and high-throughput fluorescence imaging–based approach for the unbiased mapping of 78 proteins at single exocytic vesicles and endocytic structures in neuroendocrine PC12 cells. This analysis uses two-color single-frame images to provide a systems-level map of the steady-state distributions of proteins at individual exocytic and endocytic structures in the cell. Along with this quantitative map, we find that both calcium-regulated exocytic vesicles (dense core vesicles) and endocytic structures (clathrin-coated structures) and the proteins associated with these structures exhibit a random spatial distribution in unstimulated neuroendocrine PC12 cells. This approach is broadly applicable for quantitatively mapping the molecular composition and spatial organization of discrete cellular processes with central molecular hubs.
Collapse
Affiliation(s)
- Ben T Larson
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kem A Sochacki
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan M Kindem
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
37
|
González-Jamett AM, Haro-Acuña V, Momboisse F, Caviedes P, Bevilacqua JA, Cárdenas AM. Dynamin-2 in nervous system disorders. J Neurochem 2013; 128:210-23. [DOI: 10.1111/jnc.12455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - Jorge A. Bevilacqua
- Departamento de Neurología y Neurocirugía; Hospital Clínico Universidad de Chile; and Programa de Anatomía y Biología del Desarrollo; ICBM; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| |
Collapse
|
38
|
González-Jamett AM, Momboisse F, Haro-Acuña V, Bevilacqua JA, Caviedes P, Cárdenas AM. Dynamin-2 function and dysfunction along the secretory pathway. Front Endocrinol (Lausanne) 2013; 4:126. [PMID: 24065954 PMCID: PMC3776141 DOI: 10.3389/fendo.2013.00126] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/31/2013] [Indexed: 12/21/2022] Open
Abstract
Dynamin-2 is a ubiquitously expressed mechano-GTPase involved in different stages of the secretory pathway. Its most well-known function relates to the scission of nascent vesicles from the plasma membrane during endocytosis; however, it also participates in the formation of new vesicles from the Golgi network, vesicle trafficking, fusion processes and in the regulation of microtubule, and actin cytoskeleton dynamics. Over the last 8 years, more than 20 mutations in the dynamin-2 gene have been associated to two hereditary neuromuscular disorders: Charcot-Marie-Tooth neuropathy and centronuclear myopathy. Most of these mutations are grouped in the pleckstrin homology domain; however, there are no common mutations associated with both disorders, suggesting that they differently impact on dynamin-2 function in diverse tissues. In this review, we discuss the impact of these disease-related mutations on dynamin-2 function during vesicle trafficking and endocytotic processes.
Collapse
Affiliation(s)
- Arlek M. González-Jamett
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Fanny Momboisse
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentina Haro-Acuña
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Jorge A. Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana María Cárdenas
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Ana María Cárdenas, Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha 2360102, Valparaíso, Chile e-mail:
| |
Collapse
|
39
|
González-Jamett AM, Momboisse F, Guerra MJ, Ory S, Báez-Matus X, Barraza N, Calco V, Houy S, Couve E, Neely A, Martínez AD, Gasman S, Cárdenas AM. Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells. PLoS One 2013; 8:e70638. [PMID: 23940613 PMCID: PMC3734226 DOI: 10.1371/journal.pone.0070638] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/25/2013] [Indexed: 11/29/2022] Open
Abstract
Over the past years, dynamin has been implicated in tuning the amount and nature of transmitter released during exocytosis. However, the mechanism involved remains poorly understood. Here, using bovine adrenal chromaffin cells, we investigated whether this mechanism rely on dynamin’s ability to remodel actin cytoskeleton. According to this idea, inhibition of dynamin GTPase activity suppressed the calcium-dependent de novo cortical actin and altered the cortical actin network. Similarly, expression of a small interfering RNA directed against dynamin-2, an isoform highly expressed in chromaffin cells, changed the cortical actin network pattern. Disruption of dynamin-2 function, as well as the pharmacological inhibition of actin polymerization with cytochalasine-D, slowed down fusion pore expansion and increased the quantal size of individual exocytotic events. The effects of cytochalasine-D and dynamin-2 disruption were not additive indicating that dynamin-2 and F-actin regulate the late steps of exocytosis by a common mechanism. Together our data support a model in which dynamin-2 directs actin polymerization at the exocytosis site where both, in concert, adjust the hormone quantal release to efficiently respond to physiological demands.
Collapse
Affiliation(s)
- Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
| | - María José Guerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Stéphane Ory
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
| | - Ximena Báez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Natalia Barraza
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Valerie Calco
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
| | - Sébastien Houy
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
| | - Eduardo Couve
- Departamento de Biololgía, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Alan Neely
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique (CNRS UPR 3212), and Université de Strasbourg, Strasbourg, France
- * E-mail: (AMC); (SG)
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña, Playa Ancha, Valparaíso, Chile
- * E-mail: (AMC); (SG)
| |
Collapse
|
40
|
Grossman GH, Ebke LA, Beight CD, Jang GF, Crabb JW, Hagstrom SA. Protein partners of dynamin-1 in the retina. Vis Neurosci 2013; 30:129-39. [PMID: 23746204 PMCID: PMC3936680 DOI: 10.1017/s0952523813000138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dynamin proteins are involved in vesicle generation, providing mechanical force to excise newly formed vesicles from membranes of cellular compartments. In the brain, dynamin-1, dynamin-2, and dynamin-3 have been well studied; however, their function in the retina remains elusive. A retina-specific splice variant of dynamin-1 interacts with the photoreceptor-specific protein Tubby-like protein 1 (Tulp1), which when mutated causes an early onset form of autosomal recessive retinitis pigmentosa. Here, we investigated the role of the dynamins in the retina, using immunohistochemistry to localize dynamin-1, dynamin-2, and dynamin-3 and immunoprecipitation followed by mass spectrometry to explore dynamin-1 interacting proteins in mouse retina. Dynamin-2 is primarily confined to the inner segment compartment of photoreceptors, suggesting a role in outer segment protein transport. Dynamin-3 is present in the terminals of photoreceptors and dendrites of second-order neurons but is most pronounced in the inner plexiform layer where second-order neurons relay signals from photoreceptors. Dynamin-1 appears to be the dominant isoform in the retina and is present throughout the retina and in multiple compartments of the photoreceptor cell. This suggests that it may function in multiple cellular pathways. Surprisingly, dynamin-1 expression and localization did not appear to be disrupted in tulp1−/− mice. Immunoprecipitation experiments reveal that dynamin-1 associates primarily with proteins involved in cytoskeletal-based membrane dynamics. This finding is confirmed by western blot analysis. Results further implicate dynamin-1 in vesicular protein transport processes relevant to synaptic and post-Golgi pathways and indicate a possible role in photoreceptor stability.
Collapse
Affiliation(s)
- Gregory H Grossman
- Department of Ophthalmic Research, Cleveland Clinic Cole Eye Institute, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
41
|
Imaging the post-fusion release and capture of a vesicle membrane protein. Nat Commun 2013; 3:1154. [PMID: 23093191 PMCID: PMC3521636 DOI: 10.1038/ncomms2158] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/21/2012] [Indexed: 12/16/2022] Open
Abstract
The molecular mechanism responsible for capturing, sorting, and retrieving vesicle membrane proteins following triggered exocytosis is not understood. Here we image the post-fusion release and then capture of a vesicle membrane protein, the vesicular acetylcholine transporter, from single vesicles in living neuroendocrine cells. We combine these measurements with super-resolution interferometric photo-activation localization microscopy (iPALM), electron microscopy, and modeling to map the nanometer-scale topography and architecture of the structures responsible for the transporter’s capture following exocytosis. We show that after exocytosis, the transporter rapidly diffuses into the plasma membrane, but most travels only a short distance before it is locally captured over a dense network of membrane-resident clathrin-coated structures. We propose that the extreme density of these structures acts as a short-range diffusion trap. They quickly sequester diffusing vesicle material and limit its spread across the membrane. This system could provide a means for clathrin-mediated endocytosis to quickly recycle vesicle proteins in highly excitable cells.
Collapse
|
42
|
Cabeza JM, Acosta J, Alés E. Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem 2013; 288:20293-305. [PMID: 23709219 DOI: 10.1074/jbc.m113.459065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In secretory cells, several exocytosis-coupled forms of endocytosis have been proposed including clathrin-mediated endocytosis, kiss-and-run endocytosis, cavicapture, and bulk endocytosis. These forms of endocytosis can be induced under different conditions, but their detailed molecular mechanisms and functions are largely unknown. We studied exocytosis and endocytosis in mast cells with both perforated-patch and whole-cell configurations of the patch clamp technique using cell capacitance measurements in combination with amperometric serotonin detection. We found that intact mast cells exhibit an early endocytosis that follows exocytosis induced by compound 48/80. Direct observation of individual exocytic and endocytic events showed a higher percentage of capacitance flickers (27.3%) and off-steps (11.4%) in intact mast cells than in dialyzed cells (5.4% and 2.9%, respectively). Moreover, we observed a type of endocytosis of large pieces of membrane that were likely formed by cumulative fusion of several secretory granules with the cell membrane. We also identified "large-capacitance flickers" that occur after large endocytosis events. Pore conductance analysis indicated that these transient events may represent "compound cavicapture," most likely due to the flickering of a dilated fusion pore. Using fluorescence imaging of individual exocytic and endocytic events we observed that granules can fuse to granules already fused with the plasma membrane, and then the membranes and dense cores of fused granules are internalized. Altogether, our results suggest that stimulated exocytosis in intact mast cells is followed by several forms of compensatory endocytosis, including kiss-and-run endocytosis and a mechanism for efficient retrieval of the compound membrane of several secretory granules through a single membrane fission event.
Collapse
Affiliation(s)
- Jose M Cabeza
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, 41009 Sevilla, Spain
| | | | | |
Collapse
|
43
|
Gan Z, Ram S, Ober RJ, Ward ES. Using multifocal plane microscopy to reveal novel trafficking processes in the recycling pathway. J Cell Sci 2013; 126:1176-88. [PMID: 23345403 DOI: 10.1242/jcs.116327] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A major outstanding issue in cell biology is the lack of understanding of the contribution of tubulovesicular transport carriers (TCs) to intracellular trafficking pathways within 3D cellular environments. This is primarily due to the challenges associated with the use of microscopy techniques to track these highly motile, small compartments. In the present study we have used multifocal plane microscopy with localized photoactivation to overcome these limitations. Using this approach, we have characterized individual components constituting the recycling pathway of the receptor FcRn. Specifically, several different pathways followed by TCs that intersect with larger, relatively static sorting endosomes have been defined. These pathways include a novel 'looping' process in which TCs leave and return to the same sorting endosome. Significantly, TCs with different itineraries can be identified by associations with distinct complements of Rab GTPases, APPL1 and SNX4. These studies provide a framework for further analyses of the recycling pathway.
Collapse
Affiliation(s)
- Zhuo Gan
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
44
|
Menon M, Schafer DA. Dynamin: expanding its scope to the cytoskeleton. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:187-219. [PMID: 23351711 DOI: 10.1016/b978-0-12-407699-0.00003-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The large GTPase dynamin is well known for its actions on budded cellular membranes to generate vesicles, most often, clathrin-coated endocytic vesicles. The scope of cellular processes in which dynamin-mediated vesicle formation occurs, has expanded to include secretory vesicle formation at the Golgi, from other endosomes and nonclathrin structures, such as caveolae, as well as membrane remodeling during exocytosis and vesicle fusion. An intriguing new facet of dynamin's sphere of influence is the cytoskeleton. Cytoskeletal filament networks maintain cell shape, provide cell movement, execute cell division and orchestrate vesicle trafficking. Recent evidence supports the hypothesis that dynamin influences actin filaments and microtubules via mechanisms that are independent of its membrane-remodeling activities. This chapter discusses this emerging evidence and considers possible mechanisms of action.
Collapse
Affiliation(s)
- Manisha Menon
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
45
|
Orai-STIM-mediated Ca2+ release from secretory granules revealed by a targeted Ca2+ and pH probe. Proc Natl Acad Sci U S A 2012. [PMID: 23184982 DOI: 10.1073/pnas.1218247109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Secretory granules (SGs) sequester significant calcium. Understanding roles for this calcium and potential mechanisms of release is hampered by the difficulty of measuring SG calcium directly in living cells. We adapted the Förster resonance energy transfer-based D1-endoplasmic reticulum (ER) probe to develop a unique probe (D1-SG) to measure calcium and pH in secretory granules. It significantly localizes to SGs and reports resting free Ca(2+) of 69 ± 15 μM and a pH of 5.8. Application of extracellular ATP to activate P2Y receptors resulted in a slow monotonic decrease in SG Ca(2+) temporally correlated with the occurrence of store-operated calcium entry (SOCE). Further investigation revealed a unique receptor-mediated mechanism of calcium release from SGs that involves SG store-operated Orai channels activated by their regulator stromal interaction molecule 1 (STIM1) on the ER. SG Ca(2+) release is completely antagonized by a SOCE antagonist, by switching to Ca(2+)-free medium, and by overexpression of a dominant-negative Orai1(E106A). Overexpression of the CRAC activation domain (CAD) of STIM1 resulted in a decrease of resting SG Ca(2+) by ∼75% and completely abolished the ATP-mediated release of Ca(2+) from SGs. Overexpression of a dominant-negative CAD construct(CAD-A376K) induced no significant changes in SG Ca(2+). Colocalization analysis suggests that, like the plasma membrane, SG membranes also possess Orai1 channels and that during SG Ca(2+) release, colocalization between SGs and STIM1 increases. We propose Orai channel opening on SG membranes as a potential mode of calcium release from SGs that may serve to raise local cytoplasmic calcium concentrations and aid in refilling intracellular calcium stores of the ER and exocytosis.
Collapse
|
46
|
Abstract
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
47
|
Anantharam A, Axelrod D, Holz RW. Real-time imaging of plasma membrane deformations reveals pre-fusion membrane curvature changes and a role for dynamin in the regulation of fusion pore expansion. J Neurochem 2012; 122:661-71. [PMID: 22671293 DOI: 10.1111/j.1471-4159.2012.07816.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Assays for real-time investigation of exocytosis typically measure what is released from the granule. From this, inferences are made about the dynamics of membrane remodeling as fusion progresses from start to finish. We have recently undertaken a different approach to investigate the fusion process, by focusing not primarily on the granule, but rather its partner in exocytosis - the plasma membrane. We have been guided by the idea that biochemical interactions between the granule and plasma membranes before and during fusion, cause changes in membrane conformation. To enable study of membrane conformation, a novel imaging technique was developed combining polarized excitation of an oriented membrane probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diI) with total internal reflection fluorescence microscopy (pTIRFM). Because this technique measures changes in membrane conformation (or deformations) directly, its usefulness persists even after granule cargo reporter (catecholamine, or protein), is no longer present. In this mini-review, we first summarize the workings of pTIRFM. We then discuss the application of the technique to investigate deformations in the membrane preceding fusion, and later, during fusion pore expansion. Finally, we discuss how expansion of the fusion pore may be regulated by the GTPase activity of dynamin.
Collapse
Affiliation(s)
- Arun Anantharam
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
48
|
Scalettar BA, Jacobs C, Fulwiler A, Prahl L, Simon A, Hilken L, Lochner JE. Hindered submicron mobility and long-term storage of presynaptic dense-core granules revealed by single-particle tracking. Dev Neurobiol 2012; 72:1181-95. [PMID: 21976424 DOI: 10.1002/dneu.20984] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 01/29/2023]
Abstract
Dense-core granules (DCGs) are organelles found in neuroendocrine cells and neurons that house, transport, and release a number of important peptides and proteins. In neurons, DCG cargo can include the secreted neuromodulatory proteins tissue plasminogen activator (tPA) and/or brain-derived neurotrophic factor (BDNF), which play a key role in modulating synaptic efficacy in the hippocampus. This function has spurred interest in DCGs that localize to synaptic contacts between hippocampal neurons, and several studies recently have established that DCGs localize to, and undergo regulated exocytosis from, postsynaptic sites. To complement this work, we have studied presynaptically localized DCGs in hippocampal neurons, which are much more poorly understood than their postsynaptic analogs. Moreover, to enhance relevance, we visualized DCGs via fluorescence labeling of exogenous and endogenous tPA and BDNF. Using single-particle tracking, we determined trajectories of more than 150 presynaptically localized DCGs. These trajectories reveal that mobility of DCGs in presynaptic boutons is highly hindered and that storage is long-lived. We also computed mean-squared displacement curves, which can be used to elucidate mechanisms of transport. Over shorter time windows, most curves are linear, demonstrating that DCG transport in boutons is driven predominantly by diffusion. The remaining curves plateau with time, consistent with motion constrained by a submicron-sized corral. These results have relevance to recent models of presynaptic organization and to recent hypotheses about DCG cargo function. The results also provide estimates for transit times to the presynaptic plasma membrane that are consistent with measured times for onset of neurotrophin release from synaptically localized DCGs.
Collapse
Affiliation(s)
- B A Scalettar
- Department of Physics, Lewis and Clark College, Portland, Oregon 97219, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Thorn P. Measuring calcium signals and exocytosis in tissues. Biochim Biophys Acta Gen Subj 2012; 1820:1179-84. [PMID: 22402251 DOI: 10.1016/j.bbagen.2012.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Since the 1960s it has been clear that calcium is a key regulator of exocytosis. Early experiments directly showed that the secretory output was calcium dependent. But it has taken improvements in technology and clever experimentation to determine the relationships between the calcium signal and exocytosis. Today controversies still remain because of limitations in our ability to record both the calcium responses within the local domains that control secretion and in the methods used to record exocytosis. SCOPE OF REVIEW Here the techniques used to measure calcium and exocytosis are reviewed with a distinction being drawn between measurements in excitable cells versus measurements in non-excitable cells. The review has a focus on techniques that are relevant to in vitro studies of native tissues and recent in vivo recordings. MAJOR CONCLUSIONS There are a range of methods used to study the stimulus-secretion pathway. Each presents their own advantages and drawbacks. These are discussed with reference to the latest work determining the factors controlling exocytosis in tissues. GENERAL SIGNIFICANCE Stimulus-secretion coupling is the fundamental step in the control of neurotransmitter release, hormone secretion and protein secretion. Understanding secretory control is therefore important in understanding the physiological regulation of processes ranging from learning and memory to pancreatic secretion. Recent technological advances are now enabling us to study stimulus-secretion coupling within native tissues. This is helping us to understand the physiological complexities of secretory control. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Peter Thorn
- School of Biomedical Science, University of Queensland, QLD, Australia.
| |
Collapse
|
50
|
Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, Ramanan D, Chapman ER, Jackson MB. Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 2011; 22:2324-36. [PMID: 21551071 PMCID: PMC3128534 DOI: 10.1091/mbc.e11-02-0159] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different synaptotagmin isoforms (syt I, VII, and IX) sort to populations of dense-core vesicles with different sizes. These isoforms differ in their sensitivities to divalent cations and trigger different modes of exocytosis. Exocytosis triggered by these isoforms also differs in its sensitivity to inhibition by another isoform, syt IV. Many cells release multiple substances in different proportions according to the specific character of a stimulus. PC12 cells, a model neuroendocrine cell line, express multiple isoforms of the exocytotic Ca2+ sensor synaptotagmin. We show that these isoforms sort to populations of dense-core vesicles that differ in size. These synaptotagmins differ in their Ca2+ sensitivities, their preference for full fusion or kiss-and-run, and their sensitivity to inhibition by synaptotagmin IV. In PC12 cells, vesicles that harbor these different synaptotagmin isoforms can be preferentially triggered to fuse by different forms of stimulation. The mode of fusion is specified by the synaptotagmin isoform activated, and because kiss-and-run exocytosis can filter small molecules through a size-limiting fusion pore, the activation of isoforms that favor kiss-and-run will select smaller molecules over larger molecules packaged in the same vesicle. Thus synaptotagmin isoforms can provide multiple levels of control in the release of different molecules from the same cell.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Physiology, University of Wisconsin School of Medical and Public Health, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|