1
|
Luo Q, Ji XY, Zhang L, Huang X, Wang XQ, Zhang B. Shikonin prevents mice from heat stroke-induced death via suppressing a trigger IL-17A on the inflammatory and oxidative pathways. Biomed Pharmacother 2023; 166:115346. [PMID: 37643485 DOI: 10.1016/j.biopha.2023.115346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023] Open
Abstract
Heat stroke (HS) is the deadliest disease. Due to the complex pathogenesis of HS, lack of effective therapeutic drugs for clinical treatment. Shikonin (SK) is the main active compound of Radix Arnebiae, which was evaluated on the HS model (temperature: (41 ± 0.5) ℃, relative humidity: (60 ± 5) %) via pathological and biochemical approaches in vivo and in vitro. Upon the dose of 10 mg.kg-1, SK delays the rising rate of core temperature, prolongs the survival time of mice, and improves organ injury and coagulation function markedly. Serum HS biomarkers interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were decreased significantly by SK, which contribute to liver and lung protection in the models. Three pathways' responses to heat-stress were found to have a close connection with the IL-17 pathway via RNA sequencing and network analysis. WB and IHC results showed that the nuclear factor-κB (NF-κB) p65 in the SK group was down-regulated (P < 0.05). The expressions of nuclear factor erythroid 2 like 2 (NFE2L2/Nrf2) and heat shock protein 70 (HSP70) were up-regulated (P < 0.05). Additional administration of recombinant IL-17A protein on the HS model up-regulated the expression level of NF- κB p65 in the liver and lung tissue, additional intraperitoneal injection of IL-17A antibody in mice has a synergistic effect with SK in inhibiting tissue inflammatory response and protecting HS. In summary, SK was proved an effective compound for fulfilling the anti-inflammatory and antioxidative capacity of the HS model by reducing the production and inhibiting the expression of IL-17A.
Collapse
Affiliation(s)
- Qiong Luo
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China
| | - Xin Ye Ji
- Key Laboratory of Xinjiang Phytomedicine Resources and utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China
| | - Liang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resources and utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China
| | - Xin Huang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Xiao Qin Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resources and utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, PR China.
| |
Collapse
|
2
|
Chaukimath P, Frankel G, Visweswariah SS. The metabolic impact of bacterial infection in the gut. FEBS J 2023; 290:3928-3945. [PMID: 35731686 DOI: 10.1111/febs.16562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 08/17/2023]
Abstract
Bacterial infections of the gut are one of the major causes of morbidity and mortality worldwide. The interplay between the pathogen and the host is finely balanced, with the bacteria evolving to proliferate and establish infection. In contrast, the host mounts a response to first restrict and then eliminate the infection. The intestine is a rapidly proliferating tissue, and metabolism is tuned to cater to the demands of proliferation and differentiation along the crypt-villus axis (CVA) in the gut. As bacterial pathogens encounter the intestinal epithelium, they elicit changes in the host cell, and core metabolic pathways such as the tricarboxylic acid (TCA) cycle, lipid metabolism and glycolysis are affected. This review highlights the mechanisms utilized by diverse gut bacterial pathogens to subvert host metabolism and describes host responses to the infection.
Collapse
Affiliation(s)
- Pooja Chaukimath
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Gad Frankel
- Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College, London, UK
| | - Sandhya S Visweswariah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
3
|
Lu M, Ma A, Liu J, Zhou W, Cao P, Chu T, Fan L. Study on the expression of TRIM7 in peripheral blood mononuclear cells of patients with sepsis and its early diagnostic value. BMC Infect Dis 2022; 22:865. [PMID: 36402943 PMCID: PMC9675165 DOI: 10.1186/s12879-022-07874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
Background The early diagnosis of sepsis is beneficial to put forward a reasonable clinical treatment plan as soon as possible. This study was to explore the expression of Tripartite Motif 7 (TRIM7) in peripheral blood mononuclear cells (PBMCs) of patients with sepsis and its diagnostic value. Methods This is a cross-sectional study. A total of 69 patients with infectious diseases were enrolled in the emergency room. They were divided into the sepsis group (34 cases) and the non-sepsis infection group (35 cases). There were 25 healthy subjects who were selected as the control group. The expression of TRIM7 in PBMCs was observed by immunofluorescence staining. The correlation between the expression of TRIM7 mRNA and acute physiology and chronic health evaluation II (APACHE II) score, sequential organ failure assessment (SOFA) score, white blood cell (WBC), C-reactive protein (CRP), procalcitonin (PCT), tumor necrosis factor (TNF)-α and interleukin (IL)-6 was discussed. The receiver operating characteristic (ROC) curve was utilized for evaluating the value of TRIM7 expression for the early diagnosis of sepsis. Results The fluorescence intensity representing the expression level of TRIM7 in PBMCs of patients in the sepsis group was the lowest among three groups. The TRIM7 mRNA expression in PBMCs of the sepsis group was greatly decreased in comparison with that of the non-sepsis infection group and control group (P < 0.05). Spearman correlation analysis indicated that TRIM7 mRNA expression was negatively correlated with APACHE II score, SOFA score, WBC, CRP, PCT, TNF-α and IL-6. ROC curve analysis revealed that the area under curve (AUC) of TRIM7 mRNA expression in PBMCs for the diagnosis of sepsis was 0.798, with a 95% confidence interval of 0.691- 0.905, a sensitivity of 73.5%, and a specificity of 77.1%. Conclusion The expression of TRIM7 in PBMCs of patients with sepsis is significantly down-regulated, which has certain clinical value for early diagnosis of sepsis.
Collapse
Affiliation(s)
- Mingfeng Lu
- grid.268415.cDepartment of Emergency, Clinical Medical College, Yangzhou University, No 98, Nantong West Rd, Yangzhou, 225001 China
| | - Aiwen Ma
- grid.268415.cDepartment of Emergency, Clinical Medical College, Yangzhou University, No 98, Nantong West Rd, Yangzhou, 225001 China
| | - Jianwei Liu
- grid.268415.cDepartment of Emergency, Clinical Medical College, Yangzhou University, No 98, Nantong West Rd, Yangzhou, 225001 China
| | - Wenzhen Zhou
- grid.268415.cDepartment of Emergency, Clinical Medical College, Yangzhou University, No 98, Nantong West Rd, Yangzhou, 225001 China
| | - Peng Cao
- grid.268415.cDepartment of Emergency, Clinical Medical College, Yangzhou University, No 98, Nantong West Rd, Yangzhou, 225001 China
| | - Tao Chu
- grid.268415.cDepartment of Emergency, Clinical Medical College, Yangzhou University, No 98, Nantong West Rd, Yangzhou, 225001 China
| | - Lu Fan
- grid.268415.cDepartment of Emergency, Clinical Medical College, Yangzhou University, No 98, Nantong West Rd, Yangzhou, 225001 China
| |
Collapse
|
4
|
Grudlewska-Buda K, Wiktorczyk-Kapischke N, Budzyńska A, Kwiecińska-Piróg J, Przekwas J, Kijewska A, Sabiniarz D, Gospodarek-Komkowska E, Skowron K. The Variable Nature of Vitamin C—Does It Help When Dealing with Coronavirus? Antioxidants (Basel) 2022; 11:antiox11071247. [PMID: 35883738 PMCID: PMC9312329 DOI: 10.3390/antiox11071247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading worldwide. For this reason, new treatment methods are constantly being researched. Consequently, new and already-known preparations are being investigated to potentially reduce the severe course of coronavirus disease 2019 (COVID-19). SARS-CoV-2 infection induces the production of pro-inflammatory cytokines and acute serum biomarkers in the host organism. In addition to antiviral drugs, there are other substances being used in the treatment of COVID-19, e.g., those with antioxidant properties, such as vitamin C (VC). Exciting aspects of the use of VC in antiviral therapy are its antioxidant and pro-oxidative abilities. In this review, we summarized both the positive effects of using VC in treating infections caused by SARS-CoV-2 in the light of the available research. We have tried to answer the question as to whether the use of high doses of VC brings the expected benefits in the treatment of COVID-19 and whether such treatment is the correct therapeutic choice. Each case requires individual assessment to determine whether the positives outweigh the negatives, especially in the light of populational studies concerning the genetic differentiation of genes encoding the solute carriers responsible forVC adsorption. Few data are available on the influence of VC on the course of SARS-CoV-2 infection. Deducing from already-published data, high-dose intravenous vitamin C (HDIVC) does not significantly lower the mortality or length of hospitalization. However, some data prove, among other things, its impact on the serum levels of inflammatory markers. Finally, the non-positive effect of VC administration is mainly neutral, but the negative effect is that it can result in urinary stones or nephropathies.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Jana Przekwas
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Agnieszka Kijewska
- Department of Immunobiology and Environmental Biology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | | | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (A.B.); (J.K.-P.); (J.P.); (E.G.-K.)
- Correspondence: ; Tel.: +48-(52)-585-38-38
| |
Collapse
|
5
|
Huang X, Yang Q, Yan Z, Wang P, Shi H, Li J, Shang X, Gun S. Combined Analysis of RRBS DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Clostridium perfringens Type C-Induced Diarrhea. Front Genet 2022; 13:803477. [PMID: 35401691 PMCID: PMC8990837 DOI: 10.3389/fgene.2022.803477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Clostridium perfringens type C (Cp) is one of the principal microorganisms responsible for bacterial diarrhea in neonatal and pre-weaning piglets. To better understand the molecular effects of Cp infection, we performed a genome-wide comparison of the changes in DNA methylation and gene expression in Cp infected resistant and susceptible piglets. We characterized the pattern of changes in methylation and found 6485, 5968, and 6472 differentially methylated regions (DMRs) of piglets infected with Cp in IR vs. IC, IS vs. IC, and IS vs. IR groups, respectively. These methylation changes for genes mainly involved in immune and inflammatory responses, cell adhesion, and activation of transcription factors. Gene ontology and KEGG pathway analyses showed that the differentially methylated genes (DMGs) were associated with negative regulation of transcription, apoptotic processes, protein binding, and kinase activity. In addition, they were enriched in immunity-related pathways, such as MAPK signaling pathway, Toll-like receptor signaling pathway, and NF-kappa B signaling pathway. Integrative analysis identified 168, 198, and 7 mRNAs showing inverse correlations between methylation and expression with Cp infection. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon Cp infection, 14 immune-associated mRNAs with differential methylation and transcriptional repression were identified in IS vs. IR, commonly revealing that the differentially expressed genes (DEGs) LBP, TBX21, and LCN2 were likely involved in the piglets against Cp infection. The present results provide further insight into the DNA methylation epigenetic alterations of C. perfringens type C infected piglet ileum tissues, and may advance the identification of biomarkers and drug targets for predicting susceptibility to and controlling C. perfringens type C-induced piglet diarrhea.
Collapse
Affiliation(s)
- Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Hairen Shi
- Tibet Academy of Agricultural and Animal Husbandry Science, Lasa, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuefeng Shang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
- *Correspondence: Shuangbao Gun,
| |
Collapse
|
6
|
Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab 2022; 33:218-229. [PMID: 35065875 DOI: 10.1016/j.tem.2021.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
7
|
Sanders S, Herpai DM, Rodriguez A, Huang Y, Chou J, Hsu FC, Seals D, Mott R, Miller LD, Debinski W. The Presence and Potential Role of ALDH1A2 in the Glioblastoma Microenvironment. Cells 2021; 10:2485. [PMID: 34572134 PMCID: PMC8468822 DOI: 10.3390/cells10092485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant glioma. Therapeutic targeting of GBM is made more difficult due to its heterogeneity, resistance to treatment, and diffuse infiltration into the brain parenchyma. Better understanding of the tumor microenvironment should aid in finding more effective management of GBM. GBM-associated macrophages (GAM) comprise up to 30% of the GBM microenvironment. Therefore, exploration of GAM activity/function and their specific markers are important for developing new therapeutic agents. In this study, we identified and evaluated the expression of ALDH1A2 in the GBM microenvironment, and especially in M2 GAM, though it is also expressed in reactive astrocytes and multinucleated tumor cells. We demonstrated that M2 GAM highly express ALDH1A2 when compared to other ALDH1 family proteins. Additionally, GBM samples showed higher expression of ALDH1A2 when compared to low-grade gliomas (LGG), and this expression was increased upon tumor recurrence both at the gene and protein levels. We demonstrated that the enzymatic product of ALDH1A2, retinoic acid (RA), modulated the expression and activity of MMP-2 and MMP-9 in macrophages, but not in GBM tumor cells. Thus, the expression of ALDH1A2 may promote the progressive phenotype of GBM.
Collapse
Affiliation(s)
- Stephanie Sanders
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Denise M. Herpai
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, Jackson T. Stephens Spine and Neuroscience Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yue Huang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Jeff Chou
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC 27157, USA;
| | - Darren Seals
- Biology Department, Appalachian State University, Boone, NC 28608, USA;
| | - Ryan Mott
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA;
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| |
Collapse
|
8
|
Martínez-Paz P, Aragón-Camino M, Gómez-Sánchez E, Lorenzo-López M, Gómez-Pesquera E, Fadrique-Fuentes A, Liu P, Tamayo-Velasco Á, Ortega-Loubon C, Martín-Fernández M, Gonzalo-Benito H, García-Morán E, Heredia-Rodríguez M, Tamayo E. Distinguishing septic shock from non-septic shock in postsurgical patients using gene expression. J Infect 2021; 83:147-155. [PMID: 34144116 DOI: 10.1016/j.jinf.2021.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To obtain a gene expression signature to distinguish between septic shock and non-septic shock in postoperative patients, since patients with both conditions show similar signs and symptoms. METHODS Differentially expressed genes were selected by microarray analysis in the discovery cohort. These genes were evaluated by quantitative real time polymerase chain reactions in the validation cohort to determine their reliability and predictive capacity by receiver operating characteristic curve analysis. RESULTS Differentially expressed genes selected were IGHG1, IL1R2, LCN2, LTF, MMP8, and OLFM4. The multivariate regression model for gene expression presented an area under the curve value of 0.922. These genes were able to discern between both shock conditions better than other biomarkers used for diagnosis of these conditions, such as procalcitonin (0.589), C-reactive protein (0.705), or neutrophils (0.605). CONCLUSIONS Gene expression patterns provided a robust tool to distinguish septic shock from non-septic shock postsurgical patients and shows the potential to provide an immediate and specific treatment, avoiding the unnecessary use of broad-spectrum antibiotics and the development of antimicrobial resistance, secondary infections and increase health care costs.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Department of Surgery, Faculty of Medicine, University of Valladolid. 7 Ramón y Cajal Ave, 47005 Valladolid, Spain; BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain
| | - Marta Aragón-Camino
- BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Anesthesiology and Resuscitation Service, University Clinical Hospital of Valladolid. 3 Ramón y Cajal Ave, 47003 Valladolid, Spain
| | - Esther Gómez-Sánchez
- Department of Surgery, Faculty of Medicine, University of Valladolid. 7 Ramón y Cajal Ave, 47005 Valladolid, Spain; BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Anesthesiology and Resuscitation Service, University Clinical Hospital of Valladolid. 3 Ramón y Cajal Ave, 47003 Valladolid, Spain
| | - Mario Lorenzo-López
- Department of Surgery, Faculty of Medicine, University of Valladolid. 7 Ramón y Cajal Ave, 47005 Valladolid, Spain; BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Anesthesiology and Resuscitation Service, University Clinical Hospital of Valladolid. 3 Ramón y Cajal Ave, 47003 Valladolid, Spain
| | - Estefanía Gómez-Pesquera
- Department of Surgery, Faculty of Medicine, University of Valladolid. 7 Ramón y Cajal Ave, 47005 Valladolid, Spain; BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Anesthesiology and Resuscitation Service, University Clinical Hospital of Valladolid. 3 Ramón y Cajal Ave, 47003 Valladolid, Spain
| | - Alejandra Fadrique-Fuentes
- BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Anesthesiology and Resuscitation Service, Hospital of Medina del Campo. 24 Peñaranda St, 47400 Medina del Campo (Valladolid), Spain
| | - Pilar Liu
- BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Anesthesiology and Resuscitation Service, University Clinical Hospital of Valladolid. 3 Ramón y Cajal Ave, 47003 Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Hematology and Hemotherapy Service, University Clinical Hospital of Valladolid. 3 Ramón y Cajal Ave, 47003 Valladolid, Spain
| | - Christian Ortega-Loubon
- BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Cardiovascular Surgery Service, Hospital Clinic of Barcelona. 170 Villarroel St, 08036 Barcelona, Spain
| | - Marta Martín-Fernández
- BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Department of Medicine, Dermatology and Toxicology, Faculty of Medicine, University of Valladolid. 7 Ramón y Cajal Ave, 47005 Valladolid, Spain
| | - Hugo Gonzalo-Benito
- BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Institute of Health Sciences of Castile and Leon (IECSCYL). Santa Clara Sq, 42002 Soria, Spain.
| | - Emilio García-Morán
- BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Cardiology Service, University Clinical Hospital of Valladolid. 3 Ramón y Cajal Ave, 47003 Valladolid, Spain
| | - María Heredia-Rodríguez
- Department of Surgery, Faculty of Medicine, University of Valladolid. 7 Ramón y Cajal Ave, 47005 Valladolid, Spain; BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Anesthesiology and Resuscitation Service, University Hospital of Salamanca. 182 San Vicente Rd, 37007 Salamanca, Spain
| | - Eduardo Tamayo
- Department of Surgery, Faculty of Medicine, University of Valladolid. 7 Ramón y Cajal Ave, 47005 Valladolid, Spain; BioCritic. Group for Biomedical Research in Critical Care Medicine. Valladolid, Spain; Anesthesiology and Resuscitation Service, University Clinical Hospital of Valladolid. 3 Ramón y Cajal Ave, 47003 Valladolid, Spain
| |
Collapse
|
9
|
Ullmann T, Luckhardt S, Wolf M, Parnham MJ, Resch E. High-Throughput Screening for CEBPD-Modulating Compounds in THP-1-Derived Reporter Macrophages Identifies Anti-Inflammatory HDAC and BET Inhibitors. Int J Mol Sci 2021; 22:ijms22063022. [PMID: 33809617 PMCID: PMC8002291 DOI: 10.3390/ijms22063022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.
Collapse
Affiliation(s)
- Tatjana Ullmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
- Correspondence:
| | - Sonja Luckhardt
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Schnackenburgallee 114, 22525 Hamburg, Germany;
| | - Michael J. Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
- EpiEndo Pharmaceuticals ehf, Eiðistorg 13-15, 170 Seltjarnarnes, Iceland
| | - Eduard Resch
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (S.L.); (M.J.P.); (E.R.)
| |
Collapse
|
10
|
LI L, FANG J, LI Z, SHEN L, WANG G, FU S. [Master genes and co-expression network analysis in peripheral blood mononuclear cells of patients with gram-positive and gram-negative sepsis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:732-742. [PMID: 33448176 PMCID: PMC10412950 DOI: 10.3785/j.issn.1008-9292.2020.12.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/01/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the functional pathways enriched and differentially expressed genes (DEGs) in peripheral blood mononuclear cells (PBMCs) of patients with gram-positive and gram-negative sepsis. METHODS Dataset GSE9960 obtained from NCBI GEO database containing PBMC samples from 16 non-infectious systematic inflammatory response syndrome (SIRS) patients, 17 gram-positive septic patients and 18 gram-negative septic patients were included in the study. Functional pathway annotations were conducted by gene set enrichment analysis and weighted gene co-expression network analysis. DEGs were filtered and master DEGs were then validated in PBMCs of gram-positive septic, gram-negative septic and non-infectious SIRS patients. RESULTS The enriched gene sets in gram-positive sepsis and gram-negative sepsis were significantly different. The results indicated the opposite co-expression networks in SIRS and gram-negative sepsis, and the entirely different co-expression networks in gram-positive and gram-negative sepsis. Furthermore, we validated that TYMS was up-regulated in gram-positive sepsis (P<0.05), CD3D was down-regulated in gram-negative sepsis (P<0.01), while IRAK3 was up-regulated in gram-negative sepsis (P<0.05). CONCLUSIONS The results indicate that there are differences in the mechanism and pathogenesis of gram-positive and gram-negative sepsis, which may provide potential markers for sepsis diagnosis and empirical antimicrobial therapy.
Collapse
|
11
|
Dual Host-Intracellular Parasite Transcriptome of Enucleated Cells Hosting Leishmania amazonensis: Control of Half-Life of Host Cell Transcripts by the Parasite. Infect Immun 2020; 88:IAI.00261-20. [PMID: 32817329 DOI: 10.1128/iai.00261-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Enucleated cells or cytoplasts (cells whose nucleus is removed in vitro) represent an unexplored biological model for intracellular infection studies due to the abrupt interruption of nuclear processing and new RNA synthesis by the host cell in response to pathogen entry. Using enucleated fibroblasts hosting the protozoan parasite Leishmania amazonensis, we demonstrate that parasite multiplication and biogenesis of large parasitophorous vacuoles in which parasites multiply are independent of the host cell nucleus. Dual RNA sequencing of both host cytoplast and intracellular parasite transcripts identified host transcripts that are more preserved or degraded upon interaction with parasites and also parasite genes that are differentially expressed when hosted by nucleated or enucleated cells. Cytoplasts are suitable host cells, which persist in culture for more than 72 h and display functional enrichment of transcripts related to mitochondrial functions and mRNA translation. Crosstalk between nucleated host de novo gene expression in response to intracellular parasitism and the parasite gene expression to counteract or benefit from these host responses induces a parasite transcriptional profile favoring parasite multiplication and aerobic respiration, and a host-parasite transcriptional landscape enriched in host cell metabolic functions related to NAD, fatty acid, and glycolytic metabolism. Conversely, interruption of host nucleus-parasite cross talk by infection of enucleated cells generates a host-parasite transcriptional landscape in which cytoplast transcripts are enriched in phagolysosome-related pathway, prosurvival, and SerpinB-mediated immunomodulation. In addition, predictive in silico analyses indicated that parasite transcript products secreted within cytoplasts interact with host transcript products conserving the host V-ATPase proton translocation function and glutamine/proline metabolism. The collective evidence indicates parasite-mediated control of host cell transcripts half-life that is beneficial to parasite intracellular multiplication and escape from host immune responses. These findings will contribute to improved drug targeting and serve as database for L. amazonensis-host cell interactions.
Collapse
|
12
|
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J Cardiol 2020; 12:303-333. [PMID: 32843934 PMCID: PMC7415235 DOI: 10.4330/wjc.v12.i7.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of macrophage “foam” cells, laden with cholesterol and cholesteryl ester, within the intima of large arteries, is a hallmark of early “fatty streak” lesions which can progress to complex, multicellular atheromatous plaques, involving lipoproteins from the bloodstream and cells of the innate and adaptive immune response. Sterol accumulation triggers induction of genes encoding proteins mediating the atheroprotective cholesterol efflux pathway. Within the arterial intima, however, this mechanism is overwhelmed, leading to distinct changes in macrophage phenotype and inflammatory status. Over the last decade marked gains have been made in understanding of the epigenetic landscape which influence macrophage function, and in particular the importance of small non-coding micro-RNA (miRNA) sequences in this context. This review identifies some of the miRNA sequences which play a key role in regulating “foam” cell formation and atherogenesis, highlighting sequences involved in cholesterol accumulation, those influencing inflammation in sterol-loaded cells, and novel sequences and pathways which may offer new strategies to influence macrophage function within atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard James Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Janice Marie Walsh Taylor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| |
Collapse
|
13
|
Zolfaghari Emameh R, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19. Biol Proced Online 2020; 22:16. [PMID: 32754004 PMCID: PMC7377208 DOI: 10.1186/s12575-020-00127-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap with SARS-CoV. Results In this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport), and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation) showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV. PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19 patients. Conclusions Based on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Eftekhari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Ahmed I, Ismail N. M1 and M2 Macrophages Polarization via mTORC1 Influences Innate Immunity and Outcome of Ehrlichia Infection. JOURNAL OF CELLULAR IMMUNOLOGY 2020; 2:108-115. [PMID: 32719831 DOI: 10.33696/immunology.2.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human monocytic ehrlichiosis (HME) is an emerging life-threatening tick-borne disease caused by the obligate intracellular bacterium Ehrlichia chaffeensis. HME is often presented as a nonspecific flu-like illness characterized by presence of fever, headache, malaise, and myalgia. However, in some cases the disease can evolve to a severe form, which is commonly marked by acute liver injury followed by multi-organ failure and toxic shock-like syndrome [1-3]. Macrophages and monocytes are the major target cells for Ehrlichia, although this bacterium can infect other cell types such as hepatocytes and endothelial cells [4]. In this article, we discuss how macrophages polarization to M1 or M2 phenotypes dictate the severity of ehrlichiosis and the outcome of infection. We will also discuss the potential mechanisms that regulate such polarization.
Collapse
Affiliation(s)
- Ibrahim Ahmed
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Genomic Tools for the Conservation and Genetic Improvement of a Highly Fragmented Breed-The Ramo Grande Cattle from the Azores. Animals (Basel) 2020; 10:ani10061089. [PMID: 32599723 PMCID: PMC7341246 DOI: 10.3390/ani10061089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Inbreeding control is a key concern in managing local endangered breeds, which often have developed unique adaptation features. Ramo Grande is a local cattle breed raised in the Azores archipelago under very harsh conditions, with a census of about 1300 cows dispersed by various islands. This fragmentation is a challenge when the goal is to keep inbreeding under control. Currently, panels of genetic markers are available which enable the assessment of inbreeding and the occurrence of previous bottlenecks in a population. These panels also allow the identification of genes associated with specific production traits, if reliable phenotypic information is available. We used a panel of genetic markers and estimated that the degree of inbreeding was approaching a level of concern, while some exotic gene inflow may have occurred in the past. We were able to identify genetic markers significantly associated with longevity, which reflects the ability of these cattle to remain productive under severe environmental conditions. Genetic markers were also identified as significantly associated with age at first calving and calf growth rate. The results indicate that genomic information can be used to control inbreeding and to implement genomic selection in Ramo Grande cattle to enhance adaptation and production traits. Abstract Ramo Grande is a local cattle breed raised in the archipelago of Azores, with a small and dispersed census, where inbreeding control is of utmost importance. A single nucleotide polymorphism (SNP) Beadchip array was used to assess inbreeding, by analysis of genomic regions harboring contiguous homozygous genotypes named runs of homozygosity (ROH), and to estimate past effective population size by analysis of linkage disequilibrium (LD). Genetic markers associated with production traits were also investigated, exploiting the unique genetic and adaptation features of this breed. A total of 639 ROH with length >4 Mb were identified, with mean length of 14.96 Mb. The mean genomic inbreeding was 0.09, and long segments of ROH were common, indicating recent inbred matings. The LD pattern indicates a large effective population size, suggesting the inflow of exotic germplasm in the past. The genome-wide association study identified novel markers significantly affecting longevity, age at first calving and direct genetic effects on calf weight. These results provide the first evidence of the association of longevity with genes related with DNA recognition and repair, and the association of age at first calving with aquaporin proteins, which are known to have a crucial role in reproduction.
Collapse
|
16
|
Wang W, Zhou C, Tang H, Yu Y, Zhang Q. Combined Analysis of DNA Methylome and Transcriptome Reveal Novel Candidate Genes Related to Porcine Escherichia coli F4ab/ac-Induced Diarrhea. Front Cell Infect Microbiol 2020; 10:250. [PMID: 32547963 PMCID: PMC7272597 DOI: 10.3389/fcimb.2020.00250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) that express F4 (K88) fimbriae are the principal microorganisms responsible for bacterial diarrhea in neonatal and pre-weaning piglets. To better understand the molecular effects of ETEC F4ab/ac infection, we performed a genome-wide comparison of the changes in DNA methylation and gene expression in ETEC F4ab/ac infected porcine intestinal epithelial cells. We characterized the pattern of changes in methylation and found 3297 and 1593 differentially methylated regions in cells infected with F4ab and F4ac, respectively. Moreover, 606 and 780 differentially expressed genes (DEGs) in ETEC F4ab and F4ac infected cells were detected and these genes were highly enriched in immune/defense response related pathways. Integrative analysis identified 27 and 10 genes showing inverse correlations between promoter methylation and expression with ETEC F4ab/ac infection. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions upon ETEC F4ab/ac infection. Further functional analyses revealed that three DEGs (S100A9, SGO1, and ESPL1) in F4ab infected cells and three DEGs (MAP3K21, PAK6, and MPZL1) in F4ac infected cells are likely involved in the host cells response to ETEC infection. Our data provides further insight into the epigenetic and transcriptomic alterations of ETEC F4ab/ac infected porcine intestinal epithelial cells, and may advance the identification of biomarkers and drug targets for predicting susceptibility to and controlling ETEC F4ab/ac induced diarrhea.
Collapse
Affiliation(s)
- Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chuanli Zhou
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Ying Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Petráčková D, Farman MR, Amman F, Linhartová I, Dienstbier A, Kumar D, Držmíšek J, Hofacker I, Rodriguez ME, Večerek B. Transcriptional profiling of human macrophages during infection with Bordetella pertussis. RNA Biol 2020; 17:731-742. [PMID: 32070192 PMCID: PMC7237194 DOI: 10.1080/15476286.2020.1727694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Bordetella pertussis, a strictly human re-emerging pathogen and the causative agent of whooping cough, exploits a broad variety of virulence factors to establish efficient infection. Here, we used RNA sequencing to analyse the changes in gene expression profiles of human THP-1 macrophages resulting from B. pertussis infection. In parallel, we attempted to determine the changes in intracellular B. pertussis-specific transcriptomic profiles resulting from interaction with macrophages. Our analysis revealed that global gene expression profiles in THP-1 macrophages are extensively rewired 6 h post-infection. Among the highly expressed genes, we identified those encoding cytokines, chemokines, and transcription regulators involved in the induction of the M1 and M2 macrophage polarization programmes. Notably, several host genes involved in the control of apoptosis and inflammation which are known to be hijacked by intracellular bacterial pathogens were overexpressed upon infection. Furthermore, in silico analyses identified large temporal changes in expression of specific gene subsets involved in signalling and metabolic pathways. Despite limited numbers of the bacterial reads, we observed reduced expression of majority of virulence factors and upregulation of several transcriptional regulators during infection suggesting that intracellular B. pertussis cells switch from virulent to avirulent phase and actively adapt to intracellular environment, respectively.
Collapse
Affiliation(s)
- Denisa Petráčková
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Mariam R. Farman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
| | - Fabian Amman
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Irena Linhartová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Molecular Biology of Bacterial Pathogens, Prague, Czech Republic
| | - Ana Dienstbier
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Dilip Kumar
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Jakub Držmíšek
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Faculty of Computer Science, Research Group Bioinformatics and Computational Biology, University of Vienna, Vienna, Austria
| | - Maria Eugenia Rodriguez
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CINDEFI (UNLP CONICET La Plata), La Plata, Argentina
| | - Branislav Večerek
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Post-transcriptional Control of Gene Expression, Prague, Czech Republic
| |
Collapse
|
18
|
Liu B, Bai L, Fu Y, Zhao S, Liu H, Wang R, Wang W, Li Y, Tao Y, Wang Z, Fan J, Liu E. Genetic and molecular features for hepadnavirus and plague infections in the Himalayan marmot. Genome 2020; 63:307-317. [PMID: 32308030 DOI: 10.1139/gen-2019-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Himalayan marmot (Marmota himalayana), a natural host and transmitter of plague, is also susceptible to the hepadnavirus infection. To reveal the genetic basis of the hepadnavirus susceptibility and the immune response to plague, we systematically characterized the features of immune genes in Himalayan marmot with those of human and mouse. We found that the entire major histocompatibility complex region and the hepatitis B virus pathway genes of the Himalayan marmot were conserved with those of humans. A Trim (tripartite motif) gene cluster involved in immune response and antiviral activity displays dynamic evolution, which is reflected by the duplication of Trim5 and the absence of Trim22 and Trim34. Three key regions of Ntcp, which is critical for hepatitis B virus entry, had high identity among seven species of Marmota. Moreover, we observed a severe alveolar hemorrhage, inflammatory infiltrate in the infected lungs and livers from Himalayan marmots after infection of EV76, a live attenuated Yersinia pestis strain. Lots of immune genes were remarkably up-regulated, which several hub genes Il2rγ, Tra29, and Nlrp7 are placed at the center of the gene network. These findings suggest that Himalayan marmot is a potential animal model for study on the hepadnavirus and plague infection.
Collapse
Affiliation(s)
- Baoning Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Liang Bai
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Yu Fu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Haiqing Liu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai 811602, China
| | - Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| | - Yandong Li
- Department of Pathology, First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710000, China
| | - Yuanqing Tao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai 811602, China
| | - Zhongdong Wang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, Qinghai 811602, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China.,Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, Shaanxi 710061, China
| |
Collapse
|
19
|
Le KTT, Chu X, Jaeger M, Plantinga JA, Matzaraki V, Withoff S, Joosten LAB, Netea MG, Wijmenga C, Li Y, Moser J, Kumar V. Leukocyte-Released Mediators in Response to Both Bacterial and Fungal Infections Trigger IFN Pathways, Independent of IL-1 and TNF-α, in Endothelial Cells. Front Immunol 2019; 10:2508. [PMID: 31708927 PMCID: PMC6824321 DOI: 10.3389/fimmu.2019.02508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
In sepsis, dysregulated immune responses to infections cause damage to the host. Previous studies have attempted to capture pathogen-induced leukocyte responses. However, the impact of mediators released after pathogen-leukocyte interaction on endothelial cells, and how endothelial cell responses vary depending on the pathogen-type is lacking. Here, we comprehensively characterized the transcriptomic responses of human leukocytes and endothelial cells to Gram negative-bacteria, Gram positive-bacteria, and fungi. We showed that whole pathogen lysates induced strong activation of leukocytes but not endothelial cells. Interestingly, the common response of leukocytes to various pathogens converges on endothelial activation. By exposing endothelial cells to leukocyte-released mediators, we observed a strong activation of endothelial cells at both transcription and protein levels. By adding IL-1RA and TNF-α antibody in leukocyte-released mediators before exposing to endothelial cells, we identified specific roles for IL-1 and TNF-α in driving the most, but not all, endothelial activation. We also showed for the first time, activation of interferon response by endothelial cells in response to leukocyte-released mediators, independently from IL-1 and TNF-α pathways. Our study therefore, not only provides pathogen-dependent transcriptional changes in leukocytes and endothelial cells during infections, but also reveals a role for IFN, together with IL1 and TNFα signaling, in mediating leukocyte-endothelial interaction in infections.
Collapse
Affiliation(s)
- Kieu T T Le
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Xiaojing Chu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Josée A Plantinga
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vasiliki Matzaraki
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Immunology, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jill Moser
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Haloul M, Oliveira ERA, Kader M, Wells JZ, Tominello TR, El Andaloussi A, Yates CC, Ismail N. mTORC1-mediated polarization of M1 macrophages and their accumulation in the liver correlate with immunopathology in fatal ehrlichiosis. Sci Rep 2019; 9:14050. [PMID: 31575880 PMCID: PMC6773708 DOI: 10.1038/s41598-019-50320-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022] Open
Abstract
A polarized macrophage response into inflammatory (M1) or regenerative/anti-inflammatory (M2) phenotypes is critical in host response to multiple intracellular bacterial infections. Ehrlichia is an obligate Gram-negative intracellular bacterium that causes human monocytic ehrlichiosis (HME): a febrile illness that may progress to fatal sepsis with multi-organ failure. We have shown that liver injury and Ehrlichia-induced sepsis occur due to dysregulated inflammation. Here, we investigated the contribution of macrophages to Ehrlichia-induced sepsis using murine models of mild and fatal ehrlichiosis. Lethally-infected mice showed accumulation of M1 macrophages (iNOS-positive) in the liver. In contrast, non-lethally infected mice showed polarization of M2 macrophages and their accumulation in peritoneum, but not in the liver. Predominance of M1 macrophages in lethally-infected mice was associated with expansion of IL-17-producing T, NK, and NKT cells. Consistent with the in vivo data, infection of bone marrow-derived macrophages (BMM) with lethal Ehrlichia polarized M0 macrophages into M1 phenotype under an mTORC1-dependent manner, while infection with non-lethal Ehrlichia polarized these cells into M2 types. This work highlights that mTORC1-mediated polarization of macrophages towards M1 phenotype may contribute to induction of pathogenic immune responses during fatal ehrlichiosis. Targeting mTORC1 pathway may provide a novel aproach for treatment of HME.
Collapse
Affiliation(s)
- Mohamed Haloul
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Children's Cancer Hospital Egypt, 57357, Cairo, Egypt
| | - Edson R A Oliveira
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Muhamuda Kader
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jakob Z Wells
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler R Tominello
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abdeljabar El Andaloussi
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Cecelia C Yates
- Nursing School, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Curtale G, Rubino M, Locati M. MicroRNAs as Molecular Switches in Macrophage Activation. Front Immunol 2019; 10:799. [PMID: 31057539 PMCID: PMC6478758 DOI: 10.3389/fimmu.2019.00799] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/26/2019] [Indexed: 12/25/2022] Open
Abstract
The efficacy of macrophage- mediated inflammatory response relies on the coordinated expression of key factors, which expression is finely regulated at both transcriptional and post-transcriptional level. Several studies have provided compelling evidence that microRNAs play pivotal roles in modulating macrophage activation, polarization, tissue infiltration, and resolution of inflammation. In this review, we highlight the essential molecular mechanisms underlying the different phases of inflammation that are targeted by microRNAs to inhibit or accelerate restoration to tissue integrity and homeostasis. We further review the impact of microRNA-dependent regulation of tumor-associated macrophages and the relative implication for tumor biology.
Collapse
Affiliation(s)
- Graziella Curtale
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Marcello Rubino
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Massimo Locati
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.,Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| |
Collapse
|
22
|
Young TR, Boczko EM. Early treatment gains for antibiotic administration and within human host time series data. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2018; 35:203-224. [PMID: 28339789 PMCID: PMC5998801 DOI: 10.1093/imammb/dqw025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 12/30/2016] [Indexed: 11/13/2022]
Abstract
As technological improvements continue to infiltrate and impact medical practice, it has become possible to non-invasively collect dense physiological time series data from individual patients in real time. These advances continue to improve physicians' ability to detect and to treat infections early. One important benefit of early detection and treatment of nascent infections is that it leads to earlier resolution. In response to current and anticipated advances in data capture, we introduce the Early Treatment Gain (ETG) as a measure to quantify this benefit. Roughly, we define the gain to be the limiting ratio: ETG=differential change in time of resolutiondifferential change in treatment time.We study the gain using standard dynamical models and demonstrate its use with time series data from Surgical Intensive Care Unit (SICU) patients facing ventilator associated pneumonia. The main conclusion from the mathematical modelling is that the ETG is always greater than one unless there is an effective immune response, in which case the ETG can be less than one. Using real patient time series data, we observe that the formula derived for a linear model can be applied and that this produces a ETG greater than one.
Collapse
Affiliation(s)
- Todd R Young
- Mathematics, Ohio University, Morton, Athens, Ohio, USA
| | - Erik M Boczko
- Mathematics, Ohio University, Morton, Athens, Ohio, USA
| |
Collapse
|
23
|
Kim S, Seo H, Mahmud HA, Islam MI, Lee BE, Cho ML, Song HY. In vitro activity of collinin isolated from the leaves of Zanthoxylum schinifolium against multidrug- and extensively drug-resistant Mycobacterium tuberculosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 46:104-110. [PMID: 30097109 DOI: 10.1016/j.phymed.2018.04.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/14/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tuberculosis is a very serious infectious disease that threatens humanity, and the emergence of multidrug-resistant (MDR), extensively drug-resistant (XDR) strains resistant to drugs suggests that new drug development is urgent. In order to develop new tuberculosis drug, we have conducted in vitro anti-tubercular tests on thousands of plant-derived substances and finally found collinin extracted from the leaves of Zanthoxylum schinifolium, which has an excellent anti-tuberculosis effect. PURPOSE To isolate an anti-tubercular bioactive compound from the leaves of Z. schinifolium and evaluate whether this agent demonstrates any potential in vitro characteristics suitable for the development of future anti-tubercular drugs to treat MDR and XDR Mycobacterium tuberculosis. METHODS The methanolic extracts of the leaves of Z. schinifolium were subjected to bioassay-guided fractionation against M. tuberculosis using a microbial cell viability assay. In addition, following cell cytotoxicity assay, an intracellular anti-mycobacterial activity of the most active anti-tubercular compound was investigated after it was purified. RESULTS The active compound with anti-tubercular activity isolated from leaves of Z. schinifolium was identified as a collinin. The extracted collinin showed anti-tubercular activity against both drug-susceptible and -resistant strains of M. tuberculosis at 50% minimum inhibitory concentrations (MIC50s) of 3.13-6.25 µg/ml in culture broth and MIC50s of 6.25-12.50 µg/ml inside Raw264.7 and A549 cells. Collinin had no cytotoxicity against human lung pneumocytes up to a concentration of 100 µg/ml (selectivity index > 16-32). CONCLUSIONS Collinin extracted from the leaves of Z. schinifolium significantly inhibits the growth of MDR and XDR M. tuberculosis in the culture broth. In addition, it also inhibits the growth of intracellular drug-susceptible and drug-resistant tuberculosis in Raw264.7 and A549 cells. To our knowledge, this is the first report on the in vitro anti-tubercular activity of collinin, and our data suggest collinin as a potential drug to treat drug-resistant tuberculosis. Further studies are warranted to assess the in vivo efficacy and therapeutic potential of collinin.
Collapse
Affiliation(s)
- Sukyung Kim
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea
| | - Hafij Al Mahmud
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea
| | - Md Imtiazul Islam
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea
| | - Byung-Eui Lee
- Department of Chemistry, School of Life Sciences, Soonchunhyang University, Asan, Chungnam 31538, South Korea
| | - Myoung-Lae Cho
- National Development Institute of Korean Medicine, Gyeongsan, Gyeongnam 38540, South Korea
| | - Ho-Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, South Korea.
| |
Collapse
|
24
|
Xia B, Meng Q, Feng X, Tang X, Jia A, Feng J, Zhang S, Zhang H. Probing the molecular regulation of lipopolysaccharide stress in piglet liver by comparative proteomics analysis. Electrophoresis 2018; 39:2321-2331. [PMID: 29569248 DOI: 10.1002/elps.201700467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/03/2018] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide (LPS) can induce inflammatory responses in piglets, causing immunological stress and tissue damage. However, chronic LPS infection may lead to LPS-induced immunological stress resistance. The molecular mechanisms underlying LPS stress have not been fully elucidated. Here, we conducted a global comparative proteomics analysis to investigate the molecular regulation of LPS stress using an immunological stress model of weaned piglets. A shotgun-based SWATH-MS workflow was used for global proteomes of the piglet livers after 15-day LPS treatment. Out of 3700 quantified proteins, 93 proteins showed differential changes under LPS stress. Bioinformatics analysis indicated that the differentially expressed proteins were mainly involved in inflammatory response, oxidation-redox processes and defense reactions, and were enriched in a phagosome pathway. Several key proteins associated with oxidative stress (SOD2), inflammation response (STEAP4 and S100 family) and the phagosome pathway were verified by activity and targeted-MS analyses. The observed responses appear to mitigate hepatic damage due to excessive oxidative stress, inflammation, and repression of the phagosome pathway. Our results reveal that an increased STEAP4 expression in piglets appears involved in cellular regulation by LPS stress and subsequent immunological stress resistance. This study sheds new light on the mechanism of prevention and relieving injury by LPS-induced immune responses.
Collapse
Affiliation(s)
- Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qingshi Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaohui Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Anfeng Jia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| |
Collapse
|
25
|
Dahlin A, Qiu W, Litonjua AA, Lima JJ, Tamari M, Kubo M, Irvin CG, Peters SP, Wu AC, Weiss ST, Tantisira KG. The phosphatidylinositide 3-kinase (PI3K) signaling pathway is a determinant of zileuton response in adults with asthma. THE PHARMACOGENOMICS JOURNAL 2018; 18:665-677. [PMID: 29298996 PMCID: PMC6150906 DOI: 10.1038/s41397-017-0006-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022]
Abstract
Variable responsiveness to zileuton, a leukotriene antagonist used to treat asthma, may be due in part to genetic variation. While individual SNPs were previously associated with zileuton-related lung function changes, specific quantitative trait loci (QTLs) and biological pathways that may contribute have not been identified. In this study, we investigated the hypothesis that genetic variation within biological pathways is associated with zileuton response. We performed an integrative QTL mapping and pathway enrichment study to investigate data from a GWAS of zileuton response, in addition to mRNA expression profiles and leukotriene production data from lymphoblastoid cell lines (LCLs) (derived from asthmatics) that were treated with zileuton or ethanol (control). We identified 1060 QTLs jointly associated with zileuton-related differential LTB4 production in LCLs and lung function change in patients taking zileuton, of which eight QTLs were also significantly associated with persistent LTB4 production in LCLs following zileuton treatment (i.e., ‘poor’ responders). Four nominally significant trans-eQTLs were predicted to regulate three candidate genes (SELL, MTF2, and GAL), the expression of which was significantly reduced in LCLs following zileuton treatment. Gene and pathway enrichment analyses of QTL associations identified multiple genes and pathways, predominantly related to phosphatidyl inositol signaling via PI3K. We validated the PI3K pathway activation status in a subset of LCLs demonstrating variable zileuton-related LTB4 production, and show that in contrast to LCLs that responded to zileuton, the PI3K pathway was activated in poor responder LCLs. Collectively, these findings demonstrate a role for the PIK3 pathway and its targets as important determinants of differential responsiveness to zileuton.
Collapse
Affiliation(s)
- Amber Dahlin
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Stephen P Peters
- Wake Forest University Health Science Center, Winston-Salem, NC, USA
| | - Ann C Wu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Partners Center for Personalized Genetic Medicine, Partners Health Care, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,University of Vermont, Burlington, VT, USA
| |
Collapse
|
26
|
Terenina E, Sautron V, Ydier C, Bazovkina D, Sevin-Pujol A, Gress L, Lippi Y, Naylies C, Billon Y, Liaubet L, Mormede P, Villa-Vialaneix N. Time course study of the response to LPS targeting the pig immune gene networks. BMC Genomics 2017; 18:988. [PMID: 29273011 PMCID: PMC5741867 DOI: 10.1186/s12864-017-4363-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
Background Stress is a generic term used to describe non-specific responses of the body to all kinds of challenges. A very large variability in the response can be observed across individuals, depending on numerous conditioning factors like genetics, early influences and life history. As a result, there is a wide range of individual vulnerability and resilience to stress, also called robustness. The importance of robustness-related traits in breeding strategies is increasing progressively towards the production of animals with a high level of production under a wide range of climatic conditions and management systems, together with a lower environmental impact and a high level of animal welfare. The present study aims at describing blood transcriptomic, hormonal, and metabolic responses of pigs to a systemic challenge using lipopolysaccharide (LPS). The objective is to analyze the individual variation of the biological responses in relation to the activity of the HPA axis measured by the levels of plasma cortisol after LPS and ACTH in 120 juvenile Large White (LW) pigs. The kinetics of the response was measured with biological variables and whole blood gene expression at 4 time points. A multilevel statistical analysis was used to take into account the longitudinal aspect of the data. Results Cortisol level reaches its peak 4 h after LPS injection. The characteristic changes of white blood cell count to LPS were observed, with a decrease of total count, maximal at t=+4 h, and the mirror changes in the respective proportions of lymphocytes and granulocytes. The lymphocytes / granulocytes ratio was maximal at t=+1 h. An integrative statistical approach was used and provided a set of candidate genes for kinetic studies and ongoing complementary studies focused on the LPS-stimulated inflammatory response. Conclusions The present study demonstrates the specific biomarkers indicative of an inflammation in swine. Furthermore, these stress responses persist for prolonged periods of time and at significant expression levels, making them good candidate markers for evaluating the efficacy of anti-inflammatory drugs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4363-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Terenina
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France.
| | - Valérie Sautron
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Caroline Ydier
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Darya Bazovkina
- Department of Behavioral Neurogenomics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Amélie Sevin-Pujol
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Laure Gress
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, F-31027, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, F-31027, France
| | - Yvon Billon
- INRA, UE 1372 GenESI, Surgeres, F-17700, France
| | - Laurence Liaubet
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | - Pierre Mormede
- INRA, UMR 1388 GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet-Tolosan, F-31326, France
| | | |
Collapse
|
27
|
Chen Y, Cao S, Sun Y, Li C. Gene expression profiling of the TRIM protein family reveals potential biomarkers for indicating tuberculosis status. Microb Pathog 2017; 114:385-392. [PMID: 29225091 DOI: 10.1016/j.micpath.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022]
Abstract
Tripartite motif (TRIM) family proteins play important regulatory roles in innate immune responses, the dysregulation of which cause several infectious diseases. However, the role and function of TRIM family proteins during tuberculosis (TB) infection remains unclear. In this study, we employed real-time quantitative PCR to profile the transcript levels of 72 TRIM genes from a cohort of 5 active TB patients, 5 latent tuberculosis infection (LTBI) subjects, and 5 healthy controls (HCs) in an initial discovery phase. The notable TRIM genes were assessed by in vitro cell infection experiments and further validated in another independent cohort (36 active TB, 24 LTBI and 28 HCs). The receiver operating characteristic (ROC) was used to analyze the diagnostic power of these TRIM genes. Our results revealed that 20 TRIM genes were decreased in active TB compared to LTBI and HCs. In addition, TRIM4, 16, 27, 32, 35, 46, 47, 65 and 68 were further shown to be downregulated in Mycobacterium smegmatis-infected macrophages and were found to be closely correlated with infection time and initial bacteria loads. Furthermore, the ROC analyses showed that TRIM4, 27 and 65 all exhibited the highest areas under the curve (AUC) values of 1.00 in discriminating active TB from LTBI and HCs. Moreover, TRIM27 combined with TRIM32 for an improved AUC value of 0.81 in discriminating LTBI from HCs. These results suggest that TRIM gene dysregulation might be involved in the pathogenesis of TB and that these genes could serve as potential biomarkers for indicating TB status.
Collapse
Affiliation(s)
- Yanqing Chen
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Shuhui Cao
- Department of Laboratory Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yong Sun
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Chuanyou Li
- Department of Bacteriology and Immunology, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
28
|
Gliddon HD, Herberg JA, Levin M, Kaforou M. Genome-wide host RNA signatures of infectious diseases: discovery and clinical translation. Immunology 2017; 153:171-178. [PMID: 28921535 PMCID: PMC5765383 DOI: 10.1111/imm.12841] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
The use of whole blood gene expression to derive diagnostic biomarkers capable of distinguishing between phenotypically similar diseases holds great promise but remains a challenge. Differential gene expression analysis is used to identify the key genes that undergo changes in expression relative to healthy individuals, as well as to patients with other diseases. These key genes can act as diagnostic, prognostic and predictive markers of disease. Gene expression ‘signatures’ in the blood hold the potential to be used for the diagnosis of infectious diseases, where current diagnostics are unreliable, ineffective or of limited potential. For diagnostic tests based on RNA signatures to be useful clinically, the first step is to identify the minimum set of gene transcripts that accurately identify the disease in question. The second requirement is rapid and cost‐effective detection of the gene expression levels. Signatures have been described for a number of infectious diseases, but ‘clinic‐ready’ technologies for RNA detection from clinical samples are limited, though existing methods such as RT‐PCR are likely to be superseded by a number of emerging technologies, which may form the basis of the translation of gene expression signatures into routine diagnostic tests for a range of disease states.
Collapse
Affiliation(s)
- Harriet D Gliddon
- London Centre for Nanotechnology, University College London, London, UK
| | | | - Michael Levin
- Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
29
|
Nagenborg J, Goossens P, Biessen EAL, Donners MMPC. Heterogeneity of atherosclerotic plaque macrophage origin, phenotype and functions: Implications for treatment. Eur J Pharmacol 2017; 816:14-24. [PMID: 28989084 DOI: 10.1016/j.ejphar.2017.10.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 01/01/2023]
Abstract
Macrophages are key players in atherosclerotic lesions, regulating the local inflammatory milieu and plaque stability by the secretion of many inflammatory molecules, growth factors and cytokines. Monocytes have long been considered to be the main source of plaque macrophages. However, recent findings provide evidence for proliferation of local macrophages or transdifferentiation from other vascular cells as alternative sources. Recent years of research focused on the further identification and characterisation of macrophage phenotypes and functions. In this review we describe the advances in our understanding of monocyte and macrophage heterogeneity and its implications for specific therapeutic interventions, aiming to reduce the ever growing significant risk of cardiovascular events without any detrimental side effects on the patient's immune response.
Collapse
Affiliation(s)
- Jan Nagenborg
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Pieter Goossens
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Marjo M P C Donners
- Department of Pathology, CARIM, Maastricht University, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
30
|
Genome-wide DNA methylation and transcriptome analyses reveal genes involved in immune responses of pig peripheral blood mononuclear cells to poly I:C. Sci Rep 2017; 7:9709. [PMID: 28852164 PMCID: PMC5575306 DOI: 10.1038/s41598-017-10648-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
DNA methylation changes play essential roles in regulating the activities of genes involved in immune responses. Understanding of variable DNA methylation linked to immune responses may contribute to identifying biologically promising epigenetic markers for pathogenesis of diseases. Here, we generated genome-wide DNA methylation and transcriptomic profiles of six pairs of polyinosinic-polycytidylic acid-treated pig peripheral blood mononuclear cell (PBMC) samples and corresponding controls using methylated DNA immunoprecipitation sequencing and RNA sequencing. Comparative methylome analyses identified 5,827 differentially methylated regions and 615 genes showing differential expression between the two groups. Integrative analyses revealed inverse associations between DNA methylation around transcriptional start site and gene expression levels. Furthermore, 70 differentially methylated and expressed genes were identified such as TNFRSF9, IDO1 and EBI3. Functional annotation revealed the enriched categories including positive regulation of immune system process and regulation of leukocyte activation. These findings demonstrated DNA methylation changes occurring in immune responses of PBMCs to poly I:C stimulation and a subset of genes potentially regulated by DNA methylation in the immune responses. The PBMC DNA methylome provides an epigenetic overview of this physiological system in response to viral infection, and we expect it to constitute a valuable resource for future epigenetic epidemiology studies in pigs.
Collapse
|
31
|
Banchereau R, Cepika AM, Banchereau J, Pascual V. Understanding Human Autoimmunity and Autoinflammation Through Transcriptomics. Annu Rev Immunol 2017; 35:337-370. [PMID: 28142321 PMCID: PMC5937945 DOI: 10.1146/annurev-immunol-051116-052225] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transcriptomics, the high-throughput characterization of RNAs, has been instrumental in defining pathogenic signatures in human autoimmunity and autoinflammation. It enabled the identification of new therapeutic targets in IFN-, IL-1- and IL-17-mediated diseases. Applied to immunomonitoring, transcriptomics is starting to unravel diagnostic and prognostic signatures that stratify patients, track molecular changes associated with disease activity, define personalized treatment strategies, and generally inform clinical practice. Herein, we review the use of transcriptomics to define mechanistic, diagnostic, and predictive signatures in human autoimmunity and autoinflammation. We discuss some of the analytical approaches applied to extract biological knowledge from high-dimensional data sets. Finally, we touch upon emerging applications of transcriptomics to study eQTLs, B and T cell repertoire diversity, and isoform usage.
Collapse
Affiliation(s)
| | | | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06030;
| | - Virginia Pascual
- Baylor Institute for Immunology Research, Dallas, Texas 75204; , ,
| |
Collapse
|
32
|
Doublet V, Poeschl Y, Gogol-Döring A, Alaux C, Annoscia D, Aurori C, Barribeau SM, Bedoya-Reina OC, Brown MJF, Bull JC, Flenniken ML, Galbraith DA, Genersch E, Gisder S, Grosse I, Holt HL, Hultmark D, Lattorff HMG, Le Conte Y, Manfredini F, McMahon DP, Moritz RFA, Nazzi F, Niño EL, Nowick K, van Rij RP, Paxton RJ, Grozinger CM. Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics 2017; 18:207. [PMID: 28249569 PMCID: PMC5333379 DOI: 10.1186/s12864-017-3597-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/20/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
Collapse
Affiliation(s)
- Vincent Doublet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK.
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Technische Hochschule Mittelhessen, Gießen, Germany
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Christian Aurori
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Seth M Barribeau
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Oscar C Bedoya-Reina
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, State College, PA, USA
- Present address: MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Present address: MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea, UK
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - David A Galbraith
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
- Department of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Ivo Grosse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holly L Holt
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
- Department of Fisheries, Wildlife, and Conservation Biology, The Monarch Joint Venture, University of Minnesota, St. Paul, MN, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - H Michael G Lattorff
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Present address: International Centre of Insect Physiology and Ecology (icipe), Environmental Health Theme, Nairobi, Kenya
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Dino P McMahon
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Robin F A Moritz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Elina L Niño
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Katja Nowick
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Paxton
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
33
|
Cabezas-Cruz A, Alberdi P, Valdés JJ, Villar M, de la Fuente J. Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis. Front Cell Infect Microbiol 2017; 7:23. [PMID: 28229048 PMCID: PMC5293764 DOI: 10.3389/fcimb.2017.00023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Institute of Parasitology, Biology Center, Czech Academy of SciencesCeské Budejovice, Czechia
- Faculty of Science, University of South BohemiaCeské Budejovice, Czechia
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad Real, Spain
| | - James J. Valdés
- Institute of Parasitology, Biology Center, Czech Academy of SciencesCeské Budejovice, Czechia
- Department of Virology, Veterinary Research InstituteBrno, Czechia
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad Real, Spain
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM)Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, USA
| |
Collapse
|
34
|
Zhou W, Zhang Y, Li YH, Wang S, Zhang JJ, Zhang CX, Zhang ZS. Investigating dysregulated pathways in Staphylococcus aureus (SA) exposed macrophages based on pathway interaction network. Comput Biol Chem 2016; 66:21-25. [PMID: 27866052 DOI: 10.1016/j.compbiolchem.2016.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This work aimed to identify dysregulated pathways for Staphylococcus aureus (SA) exposed macrophages based on pathway interaction network (PIN). METHODS The inference of dysregulated pathways was comprised of four steps: preparing gene expression data, protein-protein interaction (PPI) data and pathway data; constructing a PIN dependent on the data and Pearson correlation coefficient (PCC); selecting seed pathway from PIN by computing activity score for each pathway according to principal component analysis (PCA) method; and investigating dysregulated pathways in a minimum set of pathways (MSP) utilizing seed pathway and the area under the receiver operating characteristics curve (AUC) index implemented in support vector machines (SVM) model. RESULTS A total of 20,545 genes, 449,833 interactions and 1189 pathways were obtained in the gene expression data, PPI data and pathway data, respectively. The PIN was consisted of 8388 interactions and 1189 nodes, and Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins was identified as the seed pathway. Finally, 15 dysregulated pathways in MSP (AUC=0.999) were obtained for SA infected samples, such as Respiratory electron transport and DNA Replication. CONCLUSIONS We have identified 15 dysregulated pathways for SA infected macrophages based on PIN. The findings might provide potential biomarkers for early detection and therapy of SA infection, and give insights to reveal the molecular mechanism underlying SA infections. However, how these dysregulated pathways worked together still needs to be studied.
Collapse
Affiliation(s)
- Wei Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei Province, China; Department of Biological Safety Inspection, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, Hebei Province, China
| | - Yan Zhang
- Department of Biological Safety Inspection, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, Hebei Province, China
| | - Yue-Hua Li
- Department of Biological Safety Inspection, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, Hebei Province, China
| | - Shuang Wang
- Department of Biological Safety Inspection, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, Hebei Province, China
| | - Jing-Jing Zhang
- Department of Biological Safety Inspection, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, Hebei Province, China
| | - Cui-Xia Zhang
- Department of Biological Safety Inspection, Hebei Food Inspection and Research Institute, Shijiazhuang, 050091, Hebei Province, China
| | - Zhi-Sheng Zhang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, 071000, Hebei Province, China.
| |
Collapse
|
35
|
Detection of LINE RT elements in the olive flounder (Paralichthys olivaceus) genome and expression analysis after infection with S. parauberis. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Valdez HA, Oviedo JM, Gorgojo JP, Lamberti Y, Rodriguez ME. Bordetella pertussis modulates human macrophage defense gene expression. Pathog Dis 2016; 74:ftw073. [PMID: 27465637 DOI: 10.1093/femspd/ftw073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 01/14/2023] Open
Abstract
Bordetella pertussis, the etiological agent of whooping cough, still causes outbreaks. We recently found evidence that B. pertussis can survive and even replicate inside human macrophages, indicating that this host cell might serve as a niche for persistence. In this work, we examined the interaction of B. pertussis with a human monocyte cell line (THP-1) that differentiates into macrophages in culture in order to investigate the host cell response to the infection and the mechanisms that promote that intracellular survival. To that end, we investigated the expression profile of a selected number of genes involved in cellular bactericidal activity and the inflammatory response during the early and late phases of infection. The bactericidal and inflammatory response of infected macrophages was progressively downregulated, while the number of THP-1 cells heavily loaded with live bacteria increased over time postinfection. Two of the main toxins of B. pertussis, pertussis toxin (Ptx) and adenylate cyclase (CyaA), were found to be involved in manipulating the host cell response. Therefore, failure to express either toxin proved detrimental to the development of intracellular infections by those bacteria. Taken together, these results support the relevance of host defense gene manipulation to the outcome of the interaction between B. pertussis and macrophages.
Collapse
Affiliation(s)
- Hugo Alberto Valdez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Juan Marcos Oviedo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Juan Pablo Gorgojo
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
37
|
Binder H, Kurz T, Teschner S, Kreutz C, Geyer M, Donauer J, Kraemer-Guth A, Timmer J, Schumacher M, Walz G. Dealing with prognostic signature instability: a strategy illustrated for cardiovascular events in patients with end-stage renal disease. BMC Med Genomics 2016; 9:43. [PMID: 27439789 PMCID: PMC4955222 DOI: 10.1186/s12920-016-0210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/14/2016] [Indexed: 11/13/2022] Open
Abstract
Background Identification of prognostic gene expression markers from clinical cohorts might help to better understand disease etiology. A set of potentially important markers can be automatically selected when linking gene expression covariates to a clinical endpoint by multivariable regression models and regularized parameter estimation. However, this is hampered by instability due to selection from many measurements. Stability can be assessed by resampling techniques, which might guide modeling decisions, such as choice of the model class or the specific endpoint definition. Methods We specifically propose a strategy for judging the impact of different endpoint definitions, endpoint updates, different approaches for marker selection, and exclusion of outliers. This strategy is illustrated for a study with end-stage renal disease patients, who experience a yearly mortality of more than 20 %, with almost 50 % sudden cardiac death or myocardial infarction. The underlying etiology is poorly understood, and we specifically point out how our strategy can help to identify novel prognostic markers and targets for therapeutic interventions. Results For markers such as the potentially prognostic platelet glycoprotein IIb, the endpoint definition, in combination with the signature building approach is seen to have the largest impact. Removal of outliers, as identified by the proposed strategy, is also seen to considerably improve stability. Conclusions As the proposed strategy allowed us to precisely quantify the impact of modeling choices on the stability of marker identification, we suggest routine use also in other applications to prevent analysis-specific results, which are unstable, i.e. not reproducible.
Collapse
Affiliation(s)
- Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Obere Zahlbacher Str. 69, Mainz, 55131, Germany.
| | - Thorsten Kurz
- Core Facility Genomics, Centre for Systems Biology, University Freiburg, Freiburg, Germany
| | - Sven Teschner
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Institute of Physics, University Freiburg, Freiburg, Germany
| | - Marcel Geyer
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany
| | | | | | - Jens Timmer
- Institute of Physics, University Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signalling Studies, University Freiburg, Germany, Freiburg, Germany
| | - Martin Schumacher
- Institute of Medical Biometry and Medical Informatics, University Medical Center Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg, Germany.,BIOSS Center for Biological Signalling Studies, University Freiburg, Germany, Freiburg, Germany
| |
Collapse
|
38
|
Fan SL, Miller NS, Lee J, Remick DG. Diagnosing sepsis - The role of laboratory medicine. Clin Chim Acta 2016; 460:203-10. [PMID: 27387712 DOI: 10.1016/j.cca.2016.07.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 02/08/2023]
Abstract
Sepsis is the host response to microbial pathogens resulting in significant morbidity and mortality. An accurate and timely diagnosis of sepsis allows prompt and appropriate treatment. This review discusses laboratory testing for sepsis because differentiating systemic inflammation from infection is challenging. Procalcitonin (PCT) is currently an FDA approved test to aid in the diagnosis of sepsis but with questionable efficacy. However, studies support the use of PCT for antibiotic de-escalation. Serial lactate measurements have been recommended for monitoring treatment efficacy as part of sepsis bundles. The 2016 sepsis consensus definitions include lactate concentrations >2mmol/L (>18mg/dL) as part of the definition of septic shock. Also included in the 2016 definitions are measuring bilirubin and creatinine to determine progression of organ failure indicating worse prognosis. Hematologic parameters, including a simple white blood cell count and differential, are frequently part of the initial sepsis diagnostic protocols. Several new biomarkers have been proposed to diagnose sepsis or to predict mortality, but they currently lack sufficient sensitivity and specificity to be considered as stand-alone testing. If sepsis is suspected, new technologies and microbiologic assays allow rapid and specific identification of pathogens. In 2016 there is no single laboratory test that accurately diagnoses sepsis.
Collapse
Affiliation(s)
- Shu-Ling Fan
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine/Boston Medical Center, United States
| | - Nancy S Miller
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine/Boston Medical Center, United States
| | - John Lee
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine/Boston Medical Center, United States
| | - Daniel G Remick
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine/Boston Medical Center, United States.
| |
Collapse
|
39
|
Luo F, Sun X, Qu Z, Zhang X. Salmonella typhimurium-induced M1 macrophage polarization is dependent on the bacterial O antigen. World J Microbiol Biotechnol 2016; 32:22. [PMID: 26745982 DOI: 10.1007/s11274-015-1978-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022]
Abstract
Recently, macrophages were shown to be capable of differentiating toward two phenotypes after antigen stimulation: a classically activated (M1) or an alternatively activated phenotype (M2). To investigate the effect of Salmonella enteric serovar typhimurium (S. typhimurium) on macrophage differentiation, we compared macrophage phenotypes after infection of murine bone marrow-derived macrophages with wild-type S. typhimurium and its isogenic rfc mutant. S. typhimurium C5 induced M1 macrophage polarization and enhanced inducible nitric oxide synthase expression by macrophages; this induction was dependent on Toll-like receptor 4. In contrast, the Δrfc mutant (S. typhimurium C5 rfc::Km(r)) lost this function and induced an M2 response in the macrophages. Here, we propose that S. typhimurium C5 is capable of polarizing macrophages towards the M1 phenotype and that this polarization is dependent on the O antigen encoded by rfc. Our finding indicates that M1 macrophage polarization induced by S. typhimurium may be related to the ability of this intracellular bacterium to survive and replicate within macrophages, which is essential for systemic disease.
Collapse
Affiliation(s)
- Fengling Luo
- State Key Laboratory of Virology, Medical Research Institute of Wuhan University and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Road 185#, Wuhan, 430071, Hubei Province, China
| | - Xiaoming Sun
- State Key Laboratory of Virology, Medical Research Institute of Wuhan University and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Road 185#, Wuhan, 430071, Hubei Province, China
| | - Zhen Qu
- State Key Laboratory of Virology, Medical Research Institute of Wuhan University and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Road 185#, Wuhan, 430071, Hubei Province, China
| | - Xiaolian Zhang
- State Key Laboratory of Virology, Medical Research Institute of Wuhan University and Department of Immunology and Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University School of Medicine, Donghu Road 185#, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
40
|
Blischak JD, Tailleux L, Mitrano A, Barreiro LB, Gilad Y. Mycobacterial infection induces a specific human innate immune response. Sci Rep 2015; 5:16882. [PMID: 26586179 PMCID: PMC4653619 DOI: 10.1038/srep16882] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/21/2015] [Indexed: 12/30/2022] Open
Abstract
The innate immune system provides the first response to infection and is now recognized to be partially pathogen-specific. Mycobacterium tuberculosis (MTB) is able to subvert the innate immune response and survive inside macrophages. Curiously, only 5-10% of otherwise healthy individuals infected with MTB develop active tuberculosis (TB). We do not yet understand the genetic basis underlying this individual-specific susceptibility. Moreover, we still do not know which properties of the innate immune response are specific to MTB infection. To identify immune responses that are specific to MTB, we infected macrophages with eight different bacteria, including different MTB strains and related mycobacteria, and studied their transcriptional response. We identified a novel subset of genes whose regulation was affected specifically by infection with mycobacteria. This subset includes genes involved in phagosome maturation, superoxide production, response to vitamin D, macrophage chemotaxis, and sialic acid synthesis. We suggest that genetic variants that affect the function or regulation of these genes should be considered candidate loci for explaining TB susceptibility.
Collapse
Affiliation(s)
- John D Blischak
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.,Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | | | - Amy Mitrano
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Québec, Canada.,Department of Pediatrics, University of Montreal, Montreal, Québec, Canada
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
41
|
Rodrigues V, Holzmuller P, Puech C, Wesonga H, Thiaucourt F, Manso-Silván L. Whole Blood Transcriptome Analysis of Mycoplasma mycoides Subsp. mycoides-Infected Cattle Confirms Immunosuppression but Does Not Reflect Local Inflammation. PLoS One 2015; 10:e0139678. [PMID: 26431338 PMCID: PMC4592004 DOI: 10.1371/journal.pone.0139678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/16/2015] [Indexed: 12/20/2022] Open
Abstract
Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides (Mmm), is a severe respiratory disease of cattle responsible for major economic losses in sub-Saharan Africa. Disease control relies mainly on the use of empirically attenuated vaccines that provide limited protection. Thus, understanding the virulence mechanisms used by Mmm as well as the role of the host immune system in disease development, persistence, and control is a prerequisite for the development of new, rationally designed control strategies. The aim of this study was to assess the use of whole blood transcriptome analysis to study cattle-Mmm interactions, starting by the characterization of the bovine response to Mmm infection during the acute form of the disease. For that purpose, we compared the transcriptome profile of whole blood from six cattle, before challenge by contact with Mmm-infected animals and at the appearance of first clinical signs, using a bovine microarray. Functional analysis revealed that 680 annotated genes were differentially expressed, with an overwhelming majority of down-regulated genes characterizing an immunosuppression. The main bio-functions affected were "organismal survival", "cellular development, morphology and functions" and "cell-to cell signaling and interactions". These affected functions were consistent with the results of previous in vitro immunological studies. However, microarray and qPCR validation results did not highlight pro-inflammatory molecules (such as TNFα, TLR2, IL-12B and IL-6), whereas inflammation is one of the most characteristic traits of acute CBPP. This global gene expression pattern may be considered as the result, in blood, of the local pulmonary response and the systemic events occurring during acute CBPP. Nevertheless, to understand the immune events occurring during disease, detailed analyses on the different immune cell subpopulations, either in vivo, at the local site, or in vitro, will be required. Whole blood transcriptome analysis remains an interesting approach for the identification of bio-signatures correlating to recovery and protection, which should facilitate the evaluation and validation of novel vaccine formulations.
Collapse
Affiliation(s)
- Valérie Rodrigues
- CIRAD, UMR15 CMAEE, F-34398 Montpellier, France
- INRA, UMR1309 CMAEE, F-34398 Montpellier, France
| | - Philippe Holzmuller
- CIRAD, UMR15 CMAEE, F-34398 Montpellier, France
- INRA, UMR1309 CMAEE, F-34398 Montpellier, France
| | - Carinne Puech
- CIRAD, UMR15 CMAEE, F-34398 Montpellier, France
- INRA, UMR1309 CMAEE, F-34398 Montpellier, France
| | | | - François Thiaucourt
- CIRAD, UMR15 CMAEE, F-34398 Montpellier, France
- INRA, UMR1309 CMAEE, F-34398 Montpellier, France
| | - Lucía Manso-Silván
- CIRAD, UMR15 CMAEE, F-34398 Montpellier, France
- INRA, UMR1309 CMAEE, F-34398 Montpellier, France
| |
Collapse
|
42
|
Zou J, Shankar N. Roles of TLR/MyD88/MAPK/NF-κB Signaling Pathways in the Regulation of Phagocytosis and Proinflammatory Cytokine Expression in Response to E. faecalis Infection. PLoS One 2015; 10:e0136947. [PMID: 26317438 PMCID: PMC4552673 DOI: 10.1371/journal.pone.0136947] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022] Open
Abstract
Enterococcus faecalis is a commensal bacterium residing in the gastrointestinal tract of mammals, but in certain situations it is also an opportunistic pathogen which can cause serious disease. Macrophages have been shown to play a critical role in controlling infections by commensal enterococci and also have an important role in mediating chromosomal instability and promoting colon cancer during high-level enterococcal colonization in genetically susceptible mice. However, the molecular mechanisms involved in the interaction of macrophages with enterococci during infection are not fully understood. In this study, using BMDM and RAW264.7 macrophages we show that enterococcal infection activates ERK, JNK and p38 MAPK as well as NF-κB, and drives polarization of macrophages towards the M1 phenotype. Inhibition of NF-κB activation significantly reduced the expression of TNF-α and IL-1β, as did the inhibition of ERK, JNK and p38 MAPK, although to differing extent. Enterococci-induced activation of these pathways and subsequent cytokine expression was contact dependent, modest compared to activation by E. coli and, required the adaptor protein MyD88. Phagocytosis of enterococci by macrophages was enhanced by preopsonization with E. faecalis antiserum and involved the ERK and JNK signaling pathways, with the adaptor protein MyD88 as an important mediator. This study of the interaction of macrophages with enterococci could provide a foundation for studying the pathogenesis of infection by this opportunistic pathogen and to developing new therapeutic approaches to combat enterococcal infection.
Collapse
Affiliation(s)
- Jun Zou
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Nathan Shankar
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
43
|
Gandi SK, Watson D, Kersaudy-Kerhoas M, Desmulliez MPY, Bachmann T, Bridle H. Impact of microfluidic processing on bacterial ribonucleic acid expression. BIOMICROFLUIDICS 2015; 9:031102. [PMID: 26045727 PMCID: PMC4449352 DOI: 10.1063/1.4921819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Bacterial transcriptomics is widely used to investigate gene regulation, bacterial susceptibility to antibiotics, host-pathogen interactions, and pathogenesis. Transcriptomics is crucially dependent on suitable methods to isolate and detect bacterial RNA. Microfluidics offer ways of creating integrated point-of-care systems, analysing a sample from preparation, and RNA isolation to detection. A critical requirement for on-chip diagnostics to deliver on their promise is that mRNA expression is not altered via microfluidic sample processing. This article investigates the impact of the use of microfluidics upon RNA expression of bacteria isolated from blood, a key step towards proving the suitability of such systems for further development.
Collapse
Affiliation(s)
- Senthil Kumar Gandi
- Division of Infection and Pathway Medicine, University of Edinburgh , Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | | | - Maïwenn Kersaudy-Kerhoas
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - Marc P Y Desmulliez
- Institute of Sensors, Signals and Systems, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| | - Till Bachmann
- Division of Infection and Pathway Medicine, University of Edinburgh , Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, United Kingdom
| | - Helen Bridle
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University , Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
44
|
Transcriptional programming of human macrophages: on the way to systems immunology. J Mol Med (Berl) 2015; 93:589-97. [PMID: 25877862 DOI: 10.1007/s00109-015-1286-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 12/13/2022]
Abstract
Many of the major common diseases such as atherosclerosis, diabetes, obesity, numerous autoimmune diseases, as well as neurodegenerative diseases such as Alzheimer's disease and many cancer types are characterised by a chronic inflammatory component termed sterile inflammation. Myeloid cells, particularly macrophages, are an important cellular component of chronic inflammation in these diseases. For almost all of these disease conditions, previous reports suggested that macrophages can exert either so-called pro-inflammatory or anti-inflammatory functions, thereby either fighting or feeding the disease. This apparent dichotomy of reactions of macrophages led to a dichotomous definition of macrophage activation classified as macrophage polarisation. However, analysis of large transcriptomics data derived from human and murine macrophages show that macrophage functions are shaped in a very tissue- and signal-input specific manner, allowing these cells to develop extremely specific functional programmes. Integrating global views on macrophage activation on the transcriptome, the epigenome, the proteome or the metabolome will finally lead to a data-driven approach to understand macrophage biology in context of major diseases. We are indeed on the way to a systems immunology approach that integrates -omics data with mathematical and bioinformatical modelling as the pre-requisite to generate data-driven hypotheses. This approach opens completely new avenues for the development of tailored diagnostics and therapies targeting macrophages in sterile inflammations of the major common diseases. I will also discuss some of the next developments that will be necessary to reach these important goals.
Collapse
|
45
|
Detecting specific infections in children through host responses: a paradigm shift. Curr Opin Infect Dis 2015; 27:228-35. [PMID: 24739346 DOI: 10.1097/qco.0000000000000065] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW There is a need for improved diagnosis and for optimal classification of patients with infectious diseases. An alternative approach to the pathogen-detection strategy is based on a comprehensive analysis of the host response to the infection. This review focuses on the value of transcriptome analyses of blood leukocytes for the diagnosis and management of patients with infectious diseases. RECENT FINDINGS Initial studies showed that RNA from blood leukocytes of children with acute viral and bacterial infections carried pathogen-specific transcriptional signatures. Subsequently, transcriptional signatures for several other infections have been described and validated in humans with malaria, dengue, salmonella, melioidosis, respiratory syncytial virus, influenza, tuberculosis, and HIV. In addition, transcriptome analyses represent an invaluable tool to understand disease pathogenesis and to objectively classify patients according to the clinical severity. SUMMARY Microarray studies have been shown to be highly reproducible using different platforms, and in different patient populations, confirming the value of blood transcriptome analyses to study pathogen-specific host immune responses in the clinical setting. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.
Collapse
|
46
|
Tsalik EL, McClain M, Zaas AK. Moving toward prime time: host signatures for diagnosis of respiratory infections. J Infect Dis 2015; 212:173-5. [PMID: 25637349 DOI: 10.1093/infdis/jiv032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 01/12/2023] Open
Affiliation(s)
- Ephraim L Tsalik
- Institute for Genome Sciences and Precision Medicine, Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Micah McClain
- Institute for Genome Sciences and Precision Medicine, Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Aimee K Zaas
- Institute for Genome Sciences and Precision Medicine, Division of Infectious Diseases and International Health, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
47
|
Experimentally-derived fibroblast gene signatures identify molecular pathways associated with distinct subsets of systemic sclerosis patients in three independent cohorts. PLoS One 2015; 10:e0114017. [PMID: 25607805 PMCID: PMC4301872 DOI: 10.1371/journal.pone.0114017] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022] Open
Abstract
Genome-wide expression profiling in systemic sclerosis (SSc) has identified four ‘intrinsic’ subsets of disease (fibroproliferative, inflammatory, limited, and normal-like), each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling.
Collapse
|
48
|
Isaza-Guzmán DM, Cardona-Vélez N, Gaviria-Correa DE, Martínez-Pabón MC, Castaño-Granada MC, Tobón-Arroyave SI. Association study between salivary levels of interferon (IFN)-gamma, interleukin (IL)-17, IL-21, and IL-22 with chronic periodontitis. Arch Oral Biol 2015; 60:91-9. [PMID: 25285903 DOI: 10.1016/j.archoralbio.2014.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate if the salivary levels of IL-17, IL-21, IL-22, and its ratio regarding salivary IFN-γ may be linked with the periodontal clinical status. DESIGN One hundred and five chronic periodontitis (CP) subjects and 44 healthy controls (HC) were recruited. Periodontal status was assessed based on full-mouth clinical periodontal measurements. Cytokine salivary levels were analyzed by ELISA. The association between the analytes with CP was analyzed using a binary logistic regression model. RESULTS A statistically significant increase in salivary levels of IFN-γ and IFN-γ/IL-22 ratio in CP group could be detected, but there was no significant domination of any Th17 cytokine that could be of predictive value for health/disease status. Univariate and binary logistic regression analyses revealed a strong and independent association of IFN-γ salivary levels and IFN-γ/IL-22 ratio with disease status. An interaction effect of ageing on IFN-γ levels also could be noted. CONCLUSION While salivary levels of IFN-γ and IFN-γ/IL-22 ratio may act as strong/independent indicators of the amount and extent of periodontal breakdown, the low detection frequency of Th17 cytokines in saliva samples make these determinations useless for the detection of disease presence and/or its severity.
Collapse
Affiliation(s)
- D M Isaza-Guzmán
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - N Cardona-Vélez
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - D E Gaviria-Correa
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - M C Martínez-Pabón
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - M C Castaño-Granada
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - S I Tobón-Arroyave
- POPCAD Research Group, Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia.
| |
Collapse
|
49
|
Yang WE, Woods CW, Tsalik EL. Host-Based Diagnostics for Detection and Prognosis of Infectious Diseases. J Microbiol Methods 2015. [DOI: 10.1016/bs.mim.2015.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Prucha M, Bellingan G, Zazula R. Sepsis biomarkers. Clin Chim Acta 2014; 440:97-103. [PMID: 25447700 DOI: 10.1016/j.cca.2014.11.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 02/06/2023]
Abstract
Sepsis is the most frequent cause of death in non-coronary intensive care units (ICUs). In the past 10 years, progress has been made in the early identification of septic patients and in their treatment and these improvements in support and therapy mean that the mortality is gradually decreasing but it still remains unacceptably high. Leaving clinical diagnosis aside, the laboratory diagnostics represent a complex range of investigations that can place significant demands on the system given the speed of response required. There are hundreds of biomarkers which could be potentially used for diagnosis and prognosis in septic patients. The main attributes of successful markers would be high sensitivity, specificity, possibility of bed-side monitoring, and financial accessibility. Only a fraction is used in routine clinical practice because many lack sufficient sensitivity or specificity. The following review gives a short overview of the current epidemiology of sepsis, its pathogenesis and state-of-the-art knowledge on the use of specific biochemical, hematological and immunological parameters in its diagnostics. Prospective approaches towards discovery of new diagnostic biomarkers have been shortly mentioned.
Collapse
Affiliation(s)
- Miroslav Prucha
- Department of Clinical Biochemistry, Hematology and Immunology, Hospital Na Homolce, Prague, Czech Republic.
| | - Geoff Bellingan
- University College London Hospitals, 235 Euston Rd, London NW1 2PG, United Kingdom(1)
| | - Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University in Prague and Thomayer Hospital, Prague, Czech Republic
| |
Collapse
|