1
|
Wang H, Liu D, Ge X, Wang Y, Zhou X. Mycobacterium bovis Mb3523c protein regulates host ferroptosis via chaperone-mediated autophagy. Autophagy 2025:1-18. [PMID: 39968901 DOI: 10.1080/15548627.2025.2468139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
The occurrence of necrosis during Mycobacterium bovis (M. bovis) infection is regarded as harmful to the host because it promotes the spread of M. bovis. Ferroptosis is a controlled type of cell death that occurs when there is an excessive buildup of both free iron and harmful lipid peroxides. Here, we demonstrate that the mammalian cell entry (Mce) 4 family protein Mb3523c triggers ferroptosis to promote M. bovis pathogenicity and dissemination. Mechanistically, Mb3523c, through its Y237 and G241 site, interacts with host HSP90 protein to stabilize the LAMP2A on the lysosome to promote the chaperone-mediated autophagy (CMA) pathway. Then, GPX4 is delivered to lysosomes for destruction via the CMA pathway, eventually inducing ferroptosis to promote M. bovis transmission. In summary, our findings offer novel insights into the molecular mechanisms of pathogen-induced ferroptosis, demonstrating that targeting the GPX4-dependent ferroptosis through blocking the M. bovis Mb3523c-host HSP90 interface represents a potential therapeutic strategy for tuberculosis (TB).Abbreviations: CFU: colony-forming units; CMA: chaperone-mediated autophagy; Co-IP: co-immunoprecipitation; Fer-1: ferrostatin-1; GPX4: glutathione peroxidase 4; HSP90: heat shock protein 90; LDH: lactate dehydrogenase; Mce: mammalian cell entry; MOI: multiplicity of infection; Nec-1: necrostatin-1; PI: propidium iodide; RCD: regulated cell death.
Collapse
Affiliation(s)
- Haoran Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Dingpu Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Xin Ge
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
- National Key Laboratory of Veterinary Public Health and Safety, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Gupta VK, Vaishnavi VV, Arrieta-Ortiz ML, Abhirami P, Jyothsna K, Jeyasankar S, Raghunathan V, Baliga NS, Agarwal R. 3D Hydrogel Culture System Recapitulates Key Tuberculosis Phenotypes and Demonstrates Pyrazinamide Efficacy. Adv Healthc Mater 2025; 14:e2304299. [PMID: 38655817 PMCID: PMC7616495 DOI: 10.1002/adhm.202304299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Indexed: 04/26/2024]
Abstract
The mortality caused by tuberculosis (TB) infections is a global concern, and there is a need to improve understanding of the disease. Current in vitro infection models to study the disease have limitations such as short investigation durations and divergent transcriptional signatures. This study aims to overcome these limitations by developing a 3D collagen culture system that mimics the biomechanical and extracellular matrix (ECM) of lung microenvironment (collagen fibers, stiffness comparable to in vivo conditions) as the infection primarily manifests in the lungs. The system incorporates Mycobacterium tuberculosis (Mtb) infected human THP-1 or primary monocytes/macrophages. Dual RNA sequencing reveals higher mammalian gene expression similarity with patient samples than 2D macrophage infections. Similarly, bacterial gene expression more accurately recapitulates in vivo gene expression patterns compared to bacteria in 2D infection models. Key phenotypes observed in humans, such as foamy macrophages and mycobacterial cords, are reproduced in the model. This biomaterial system overcomes challenges associated with traditional platforms by modulating immune cells and closely mimicking in vivo infection conditions, including showing efficacy with clinically relevant concentrations of anti-TB drug pyrazinamide, not seen in any other in vitro infection model, making it reliable and readily adoptable for tuberculosis studies and drug screening.
Collapse
Affiliation(s)
- Vishal K. Gupta
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | | | | | - P.S. Abhirami
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | - K.M. Jyothsna
- Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
3
|
Araújo LE, Petrilli J, Oliveira C, Horta T, Estevão P, Carvalho FR, Cardoso CAA, Cardoso TM, de Ângelis L, Montenegro L, Santos FLN, Arruda S, Queiroz A. Evaluation of nonpolar lipid extract antigen-based enzyme-linked immunosorbent assay for the serodiagnosis of tuberculosis. Diagn Microbiol Infect Dis 2025; 111:116560. [PMID: 39437652 DOI: 10.1016/j.diagmicrobio.2024.116560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
This study assessed the diagnostic potential of nonpolar lipid extracts in enzyme-linked immunosorbent assays (ELISAs) for tuberculosis (TB) serodiagnosis. Nonpolar lipid extracts were harvested from Mycobacterium tuberculosis (Mtb) knockout in mce1 operon (∆mce1) and its parental wild type (WT) strains. IgM and IgG anti-nonpolar lipid serum levels were measured in TB patients (n=45), healthy individuals with positive (n=22) and negative (n=44) interferon-gamma release assay (IGRA) results, and symptomatic respiratory (SR) patients with negative TB tests (n=9). IgG anti-WT lipid distinguished TB patients from IGRA-positive individuals with 60% sensitivity and 77.3% specificity. Conversely, IgG anti-∆mce lipid levels didn't vary significantly across groups. Interestingly, most SR patients exhibited significantly higher IgM and IgG anti-WT lipid titers than the IGRA-positive and -nega groups. While the overall diagnostic potential of Mtb nonpolar lipids was limited, the impaired immunogenecity of Δmce1 lipid extract suggests that some missing lipid classes in this extract can potentially induce antibody production in TB patients.
Collapse
Affiliation(s)
- Luana E Araújo
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Jéssica Petrilli
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Carlos Oliveira
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Thainá Horta
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Paulo Estevão
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Fabiana Rabe Carvalho
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Claudete A Araújo Cardoso
- Laboratório Multiusuário de Apoio à Pesquisa em Nefrologia e Ciências Médicas, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil; Departamento Materno-Infantil, Faculdade de Medicina, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brasil
| | - Thiago Marconi Cardoso
- Laboratório de Pesquisa Clínica, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Luanna de Ângelis
- Laboratório de Imunoepidemiologia, Instituto Aggeu Magalhães (IAM)/Fiocruz, Recife, Pernambuco, Brasil
| | - Lilian Montenegro
- Laboratório de Imunoepidemiologia, Instituto Aggeu Magalhães (IAM)/Fiocruz, Recife, Pernambuco, Brasil
| | - Fred Luciano Neves Santos
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Sérgio Arruda
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil
| | - Adriano Queiroz
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz (IGM)/Fiocruz, Salvador, Bahia, Brasil.
| |
Collapse
|
4
|
van der Klugt T, van den Biggelaar RHGA, Saris A. Host and bacterial lipid metabolism during tuberculosis infections: possibilities to synergise host- and bacteria-directed therapies. Crit Rev Microbiol 2024:1-21. [PMID: 38916142 DOI: 10.1080/1040841x.2024.2370979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative pathogen of tuberculosis, the most lethal infectious disease resulting in 1.3 million deaths annually. Treatments against Mtb are increasingly impaired by the growing prevalence of antimicrobial drug resistance, which necessitates the development of new antibiotics or alternative therapeutic approaches. Upon infecting host cells, predominantly macrophages, Mtb becomes critically dependent on lipids as a source of nutrients. Additionally, Mtb produces numerous lipid-based virulence factors that contribute to the pathogen's ability to interfere with the host's immune responses and to create a lipid rich environment for itself. As lipids, lipid metabolism and manipulating host lipid metabolism play an important role for the virulence of Mtb, this review provides a state-of-the-art overview of mycobacterial lipid metabolism and concomitant role of host metabolism and host-pathogen interaction therein. While doing so, we will emphasize unexploited bacteria-directed and host-directed drug targets, and highlight potential synergistic drug combinations that hold promise for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Teun van der Klugt
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Sturm A, Sun P, Avila-Pacheco J, Clatworthy AE, Bloom-Ackermann Z, Wuo MG, Gomez JE, Jin S, Clish CB, Kiessling LL, Hung DT. Genetic factors affecting storage and utilization of lipids during dormancy in Mycobacterium tuberculosis. mBio 2024; 15:e0320823. [PMID: 38236034 PMCID: PMC10865790 DOI: 10.1128/mbio.03208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an in vitro carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, omamC, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor rv0516c and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with "latent" infection, where Mycobacterium tuberculosis survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, omamC, is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis.
Collapse
Affiliation(s)
- Alexander Sturm
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Penny Sun
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Anne E. Clatworthy
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Zohar Bloom-Ackermann
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael G. Wuo
- Department of Chemistry, MIT, Cambridge, Massachusetts, USA
| | - James E. Gomez
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Soomin Jin
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Clary B. Clish
- Metabolomics Platform, Broad Institute, Cambridge, Massachusetts, USA
| | | | - Deborah T. Hung
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Silva-Pereira TT, Soler-Camargo NC, Guimarães AMS. Diversification of gene content in the Mycobacterium tuberculosis complex is determined by phylogenetic and ecological signatures. Microbiol Spectr 2024; 12:e0228923. [PMID: 38230932 PMCID: PMC10871547 DOI: 10.1128/spectrum.02289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
We analyzed the pan-genome and gene content modulation of the most diverse genome data set of the Mycobacterium tuberculosis complex (MTBC) gathered to date. The closed pan-genome of the MTBC was characterized by reduced accessory and strain-specific genomes, compatible with its clonal nature. However, significantly fewer gene families were shared between MTBC genomes as their phylogenetic distance increased. This effect was only observed in inter-species comparisons, not within-species, which suggests that species-specific ecological characteristics are associated with changes in gene content. Gene loss, resulting from genomic deletions and pseudogenization, was found to drive the variation in gene content. This gene erosion differed among MTBC species and lineages, even within M. tuberculosis, where L2 showed more gene loss than L4. We also show that phylogenetic proximity is not always a good proxy for gene content relatedness in the MTBC, as the gene repertoire of Mycobacterium africanum L6 deviated from its expected phylogenetic niche conservatism. Gene disruptions of virulence factors, represented by pseudogene annotations, are mostly not conserved, being poor predictors of MTBC ecotypes. Each MTBC ecotype carries its own accessory genome, likely influenced by distinct selective pressures such as host and geography. It is important to investigate how gene loss confer new adaptive traits to MTBC strains; the detected heterogeneous gene loss poses a significant challenge in elucidating genetic factors responsible for the diverse phenotypes observed in the MTBC. By detailing specific gene losses, our study serves as a resource for researchers studying the MTBC phenotypes and their immune evasion strategies.IMPORTANCEIn this study, we analyzed the gene content of different ecotypes of the Mycobacterium tuberculosis complex (MTBC), the pathogens of tuberculosis. We found that changes in their gene content are associated with their ecological features, such as host preference. Gene loss was identified as the primary driver of these changes, which can vary even among different strains of the same ecotype. Our study also revealed that the gene content relatedness of these bacteria does not always mirror their evolutionary relationships. In addition, some genes of virulence can be variably lost among strains of the same MTBC ecotype, likely helping them to evade the immune system. Overall, our study highlights the importance of understanding how gene loss can lead to new adaptations in these bacteria and how different selective pressures may influence their genetic makeup.
Collapse
Affiliation(s)
- Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Kumar C, Shrivastava K, Singh A, Chauhan V, Giri A, Gupta S, Sharma NK, Bose M, Sharma S, Varma-Basil M. Expression of mammalian cell entry genes in clinical isolates of M. tuberculosis and the cell entry potential and immunological reactivity of the Rv0590A protein. Med Microbiol Immunol 2023; 212:407-419. [PMID: 37787822 DOI: 10.1007/s00430-023-00781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Mammalian cell entry (mce) operons play a vital role in cell invasion and survival of M. tuberculosis. Of the mce genes, the function of Rv0590A is still unknown. The present study was performed to investigate the function and immunogenic properties of the protein Rv0590A. Human leukemia monocytic cell line (THP-1) derived macrophages were infected with M. tuberculosis H37Rv at 3, 6, and 24 h of infection. The maximum colony forming units (CFU) were observed at 6 h (p < 0.005), followed by 3 h after infection. M. tuberculosis H37Rv and clinical isolates representative of Delhi/CAS, EAI, Beijing, Haarlem and Euro-American-superlineage were included in the study for expression analysis of mce1A, mce2A, mce3A, mce4A, and Rv0590A genes. Maximum upregulation of all mce genes was observed at 3 h of infection. All the five clinical isolates and H37Rv upregulated Rv0590A at various time points. Macrophage infection with M. tuberculosis H37Rv-overexpressing Rv0590A gene showed higher intracellular CFU as compared to that of wild-type H37Rv. Further, purified Rv0590A protein stimulated the production of TNFα, IFNγ, and IL-10 in macrophages. Thus, Rv0590A was found to be involved in cell invasion and showed good immunological response.
Collapse
Affiliation(s)
- Chanchal Kumar
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Kamal Shrivastava
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Anupriya Singh
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Varsha Chauhan
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Maharshi Dayanand University, Rohtak, Haryana, India
| | - Astha Giri
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- Deshbandhu College, University of Delhi, Delhi, India
| | - Shraddha Gupta
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Naresh Kumar Sharma
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
- University of Manitoba, Winnipeg, MB, Canada
| | - Mridula Bose
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India
| | - Sadhna Sharma
- Department of Zoology, Miranda House, University of Delhi, Delhi, 110007, India
| | - Mandira Varma-Basil
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
8
|
Maity D, Singh D, Bandhu A. Mce1R of Mycobacterium tuberculosis prefers long-chain fatty acids as specific ligands: a computational study. Mol Divers 2023; 27:2523-2543. [PMID: 36385433 DOI: 10.1007/s11030-022-10566-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
The mce1 operon of Mycobacterium tuberculosis, which codes the Mce1 transporter, facilitates the transport of fatty acids. Fatty acids are one of the major sources for carbon and energy for the pathogen during its intracellular survival and pathogenicity. The mce1 operon is transcriptionally regulated by Mce1R, a VanR-type regulator, which could bind specific ligands and control the expression of the mce1 operon accordingly. This work reports computational identification of Mce1R-specific ligands. Initially by employing cavity similarity search algorithm by the ProBis server, the cavities of the proteins similar to that of Mce1R and the bound ligands were identified from which fatty acids were selected as the potential ligands. From the earlier-generated monomeric structure, the dimeric structure of Mce1R was then modeled by the GalaxyHomomer server and validated computationally to use in molecular docking and molecular dynamics simulation analysis. The fatty acid ligands were found to dock within the cavity of Mce1R and the docked complexes were subjected to molecular dynamics simulation to explore their stabilities and other dynamic properties. The data suggest that Mce1R preferably binds to long-chain fatty acids and undergoes distinct structural changes upon binding.
Collapse
Affiliation(s)
- Dipanwita Maity
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Dheeraj Singh
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India
| | - Amitava Bandhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
9
|
Chen Y, Wang Y, Chng SS. A conserved membrane protein negatively regulates Mce1 complexes in mycobacteria. Nat Commun 2023; 14:5897. [PMID: 37736771 PMCID: PMC10517005 DOI: 10.1038/s41467-023-41578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Tuberculosis continues to pose a serious threat to global health. Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen that relies on various mechanisms to survive and persist within the host. Among their many virulence factors, mycobacteria encode Mce systems. Some of these systems are implicated in lipid uptake, but the molecular basis for Mce function(s) is poorly understood. To gain insights into the composition and architecture of Mce systems, we characterized the putative Mce1 complex involved in fatty acid transport. We show that the Mce1 system in Mycobacterium smegmatis comprises a canonical ATP-binding cassette transporter associated with distinct heterohexameric assemblies of substrate-binding proteins. Furthermore, we establish that the conserved membrane protein Mce1N negatively regulates Mce1 function via a unique mechanism involving blocking transporter assembly. Our work offers a molecular understanding of Mce complexes, sheds light on mycobacterial lipid metabolism and its regulation, and informs future anti-mycobacterial strategies.
Collapse
Affiliation(s)
- Yushu Chen
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Yuchun Wang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore (SCELSE-NUS), Singapore, 117456, Singapore.
| |
Collapse
|
10
|
Maxson ME, Das L, Goldberg MF, Porcelli SA, Chan J, Jacobs WR. Mycobacterium tuberculosis Central Metabolism Is Key Regulator of Macrophage Pyroptosis and Host Immunity. Pathogens 2023; 12:1109. [PMID: 37764917 PMCID: PMC10535942 DOI: 10.3390/pathogens12091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysregulation in Mycobacterium tuberculosis results in increased macrophage apoptosis or pyroptosis. However, mechanistic links between Mycobacterium virulence and bacterial metabolic plasticity remain ill defined. In this study, we screened random transposon insertions of M. bovis BCG to identify mutants that induce pyroptotic death of the infected macrophage. Analysis of the transposon insertion sites identified a panel of fdr (functioning death repressor) genes, which were shown in some cases to encode functions central to Mycobacterium metabolism. In-depth studies of one fdr gene, fdr8 (BCG3787/Rv3727), demonstrated its important role in the maintenance of M. tuberculosis and M. bovis BCG redox balance in reductive stress conditions in the host. Our studies expand the subset of known Mycobacterium genes linking bacterial metabolic plasticity to virulence and also reveal that the broad induction of pyroptosis by an intracellular bacterial pathogen is linked to enhanced cellular immunity in vivo.
Collapse
Affiliation(s)
- Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Lahari Das
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | | | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | - John Chan
- Department of Medicine, New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA;
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| |
Collapse
|
11
|
Nishimura N, Tomiyasu N, Torigoe S, Mizuno S, Fukano H, Ishikawa E, Katano H, Hoshino Y, Matsuo K, Takahashi M, Izumi Y, Bamba T, Akashi K, Yamasaki S. Mycobacterial mycolic acids trigger inhibitory receptor Clec12A to suppress host immune responses. Tuberculosis (Edinb) 2023; 138:102294. [PMID: 36542980 DOI: 10.1016/j.tube.2022.102294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Mycobacteria often cause chronic infection. To establish persistence in the host, mycobacteria need to evade host immune responses. However, the molecular mechanisms underlying the evasion strategy are not fully understood. Here, we demonstrate that mycobacterial cell wall lipids trigger an inhibitory receptor to suppress host immune responses. Mycolic acids are major cell wall components and are essential for survival of mycobacteria. By screening inhibitory receptors that react with mycobacterial lipids, we found that mycolic acids from various mycobacterial species bind to mouse Clec12A, and more potently to human Clec12A. Clec12A is a conserved inhibitory C-type lectin receptor containing immunoreceptor tyrosine-based inhibitory motif (ITIM). Innate immune responses, such as MCP-1 production, and PPD-specific recall T cell responses were augmented in Clec12A-deficient mice after infection. In contrast, human Clec12A transgenic mice were susceptible to infection with M. tuberculosis. These results suggest that mycobacteria dampen host immune responses by hijacking an inhibitory host receptor through their specific and essential lipids, mycolic acids. The blockade of this interaction might provide a therapeutic option for the treatment or prevention of mycobacterial infection.
Collapse
Affiliation(s)
- Naoya Nishimura
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Noriyuki Tomiyasu
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shota Torigoe
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan; Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan; Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Satoru Mizuno
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Eri Ishikawa
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan
| | - Harutaka Katano
- Department of Pathology, National Institute of Infectious Disease, Tokyo, 162-8640, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Tokyo, 204-0022, Japan
| | - Masatomo Takahashi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Takeshi Bamba
- Department of Systems Life Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Suita, 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University (CiDER), Suita, 565-0871, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, 260-8673, Japan; Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
12
|
Rajwani R, Galata C, Lee AWT, So PK, Leung KSS, Tam KKG, Shehzad S, Ng TTL, Zhu L, Lao HY, Chan CTM, Leung JSL, Lee LK, Wong KC, Yam WC, Siu GKH. A multi-omics investigation into the mechanisms of hyper-virulence in Mycobacterium tuberculosis. Virulence 2022; 13:1088-1100. [PMID: 35791449 PMCID: PMC9262360 DOI: 10.1080/21505594.2022.2087304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinical manifestations of tuberculosis range from asymptomatic infection to a life-threatening disease such as tuberculous meningitis (TBM). Recent studies showed that the spectrum of disease severity could be related to genetic diversity among clinical strains of Mycobacterium tuberculosis (Mtb). Certain strains are reported to preferentially invade the central nervous system, thus earning the label “hypervirulent strains”.However, specific genetic mutations that accounted for enhanced mycobacterial virulence are still unknown. We previously identified a set of 17 mutations in a hypervirulent Mtb strain that was from TBM patient and exhibited significantly better intracellular survivability. These mutations were also commonly shared by a cluster of globally circulating hyper-virulent strains. Here, we aimed to validate the impact of these hypervirulent-specific mutations on the dysregulation of gene networks associated with virulence in Mtb via multi-omic analysis. We surveyed transcriptomic and proteomic differences between the hyper-virulent and low-virulent strains using RNA-sequencing and label-free quantitative LC-MS/MS approach, respectively. We identified 25 genes consistently differentially expressed between the strains at both transcript and protein level, regardless the strains were growing in a nutrient-rich or a physiologically relevant multi-stress condition (acidic pH, limited nutrients, nitrosative stress, and hypoxia). Based on integrated genomic-transcriptomic and proteomic comparisons, the hypervirulent-specific mutations in FadE5 (g. 295,746 C >T), Rv0178 (p. asp150glu), higB (p. asp30glu), and pip (IS6110-insertion) were linked to deregulated expression of the respective genes and their functionally downstream regulons. The result validated the connections between mutations, gene expression, and mycobacterial pathogenicity, and identified new possible virulence-associated pathways in Mtb.
Collapse
Affiliation(s)
- Rahim Rajwani
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Chala Galata
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Annie Wing Tung Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Pui-Kin So
- University Research Facility in Life Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Kenneth Siu Sing Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kingsley King Gee Tam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sheeba Shehzad
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Timothy Ting Leung Ng
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Li Zhu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Hiu Yin Lao
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Chloe Toi-Mei Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Jake Siu-Lun Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Lam-Kwong Lee
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| | - Kin Chung Wong
- Department of Clinical Pathology, United Christian Hospital, Hong Kong Special Administrative Region, China
| | - Wing Cheong Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, Hong Kong, China
| |
Collapse
|
13
|
Sun X, Chen Z, Kong T, Chen Z, Dong Y, Kolton M, Cao Z, Zhang X, Zhang H, Liu G, Gao P, Yang N, Lan L, Xu Y, Sun W. Mycobacteriaceae Mineralizes Micropolyethylene in Riverine Ecosystems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15705-15717. [PMID: 36288260 DOI: 10.1021/acs.est.2c05346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microplastic (MP) contamination is a serious global environmental problem. Plastic contamination has attracted extensive attention during the past decades. While physiochemical weathering may influence the properties of MPs, biodegradation by microorganisms could ultimately mineralize plastics into CO2. Compared to the well-studied marine ecosystems, the MP biodegradation process in riverine ecosystems, however, is less understood. The current study focuses on the MP biodegradation in one of the world's most plastic contaminated rivers, Pearl River, using micropolyethylene (mPE) as a model substrate. Mineralization of 13C-labeled mPE into 13CO2 provided direct evidence of mPE biodegradation by indigenous microorganisms. Several Actinobacteriota genera were identified as putative mPE degraders. Furthermore, two Mycobacteriaceae isolates related to the putative mPE degraders, Mycobacterium sp. mPE3 and Nocardia sp. mPE12, were retrieved, and their ability to mineralize 13C-mPE into 13CO2 was confirmed. Pangenomic analysis reveals that the genes related to the proposed mPE biodegradation pathway are shared by members of Mycobacteriaceae. While both Mycobacterium and Nocardia are known for their pathogenicity, these populations on the plastisphere in this study were likely nonpathogenic as they lacked virulence factors. The current study provided direct evidence for MP mineralization by indigenous biodegraders and predicted their biodegradation pathway, which may be harnessed to improve bioremediation of MPs in urban rivers.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Max Kolton
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Beer Sheva 849900, Israel
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xin Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Haihan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Guoqiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Nie Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ling Lan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yating Xu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Mejía L, Prado B, Cárdenas P, Trueba G, González-Candelas F. The impact of genetic recombination on pathogenic Leptospira. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 102:105313. [PMID: 35688386 DOI: 10.1016/j.meegid.2022.105313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Leptospirosis is the most common zoonosis worldwide, and is increasingly common in poor urban communities, where there is inadequate sewage disposal and abundance of domestic and peridomestic animals. There are many risk factors associated with the disease, such as contaminated water exposure, close contact with animals, floods, recreational activities related to water, wet agriculture. The symptoms of leptospirosis are common to other infectious diseases and, if not treated, it can lead to meningitis, liver failure, kidney damage and death. Leptospirosis is caused by 38 pathogenic species of Leptospira, which are divided in almost 30 serogroups and more than 300 serovars. The serological classification (serogroups and serovars) is based on the expression of distinct lipopolysaccharide (LPS) antigens. These antigens are also associated to protective immunity; antibodies against a serovar protect from any member of the same serovar. Serologic and phylogenetic analyses are not congruent probably due to genetic recombination of LPS genes among different leptospiral species. To analyze the importance of recombination in leptospiral evolution, we performed a gene-by-gene tree topology comparison on closed genomes available in public databases at two levels: among core genomes of pathogenic species (34 recombinant among 1213 core genes), and among core genomes of L. interrogans isolates (178/798). We found that most recombinant genes code for proteins involved in translation, ribosomal structure and biogenesis, but also for cell wall, membrane and envelope biogenesis. Besides, our final results showed that half of LPS genes are recombinant (18/36). This is relevant because serovar classification and vaccine development are based on these epitopes. The frequent recombination of LPS-associated genes suggests that natural selection is promoting the survival of recombinant lineages. These results may help understanding the factors that make Leptospira a successful pathogen.
Collapse
Affiliation(s)
- Lorena Mejía
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain
| | - Belén Prado
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Paúl Cárdenas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, University of Valencia, Valencia, Spain; Joint Research Unit "Infection and Public Health" FISABIO-University of Valencia, Valencia, Spain; CIBER (Centro de Investigación Biomédica en Red) in Epidemiology and Public Health, Valencia, Spain.
| |
Collapse
|
15
|
Yokobori N, López B, Ritacco V. The host-pathogen-environment triad: Lessons learned through the study of the multidrug-resistant Mycobacterium tuberculosis M strain. Tuberculosis (Edinb) 2022; 134:102200. [PMID: 35339874 DOI: 10.1016/j.tube.2022.102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/13/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
Abstract
Multidrug-resistant tuberculosis is one of the major obstacles that face the tuberculosis eradication efforts. Drug-resistant Mycobacterium tuberculosis clones were initially disregarded as a public health threat, because they were assumed to have paid a high fitness cost in exchange of resistance acquisition. However, some genotypes manage to overcome the impact of drug-resistance conferring mutations, retain transmissibility and cause large outbreaks. In Argentina, the HIV-AIDS epidemics fuelled the expansion of the so-called M strain in the early 1990s, which is responsible for the largest recorded multidrug-resistant tuberculosis cluster of Latin America. The aim of this work is to review the knowledge gathered after nearly three decades of multidisciplinary research on epidemiological, microbiological and immunological aspects of this highly successful strain. Collectively, our results indicate that the successful transmission of the M strain could be ascribed to its unaltered virulence, low Th1/Th17 response, a low fitness cost imposed by the resistance conferring mutations and a high resistance to host-related stress. In the early 2000s, the incident cases due to the M strain steadily declined and stabilized in the latest years. Improvements in the management, diagnosis and treatment of multidrug-resistant tuberculosis along with societal factors such as the low domestic and international mobility of the patients affected by this strain probably contributed to the outbreak containment. This stresses the importance of sustaining the public health interventions to avoid the resurgence of this conspicuous multidrug-resistant strain.
Collapse
Affiliation(s)
- Noemí Yokobori
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| | - Beatriz López
- Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina.
| | - Viviana Ritacco
- Servicio de Micobacterias, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. C. G. Malbrán", Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
| |
Collapse
|
16
|
Dow A, Burger A, Marcantonio E, Prisic S. Multi-Omics Profiling Specifies Involvement of Alternative Ribosomal Proteins in Response to Zinc Limitation in Mycobacterium smegmatis. Front Microbiol 2022; 13:811774. [PMID: 35222334 PMCID: PMC8866557 DOI: 10.3389/fmicb.2022.811774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Zinc ion (Zn2+) is an essential micronutrient and a potent antioxidant. However, Zn2+ is often limited in the environment. Upon Zn2+ limitation, Mycolicibacterium (basonym: Mycobacterium) smegmatis (Msm) undergoes a morphogenesis, which relies on alternative ribosomal proteins (AltRPs); i.e., Zn2+-independent paralogues of Zn2+-dependent ribosomal proteins. However, the underlying physiological changes triggered by Zn2+ limitation and how AltRPs contribute to these changes were not known. In this study, we expand the knowledge of mechanisms utilized by Msm to endure Zn2+ limitation, by comparing the transcriptomes and proteomes of Zn2+-limited and Zn2+-replete Msm. We further compare, corroborate and contrast our results to those reported for the pathogenic mycobacterium, M. tuberculosis, which highlighted conservation of the upregulated oxidative stress response when Zn2+ is limited in both mycobacteria. By comparing the multi-omics analysis of a knockout mutant lacking AltRPs (ΔaltRP) to the Msm wild type strain, we specify the involvement of AltRPs in the response to Zn2+ limitation. Our results show that AltRP expression in Msm does not affect the conserved oxidative stress response during Zn2+ limitation observed in mycobacteria, but AltRPs do significantly impact expression patterns of numerous genes that may be involved in morphogenesis or other adaptive responses. We conclude that AltRPs are not only important as functional replacements for their Zn2+-dependent paralogues; they are also involved in the transcriptomic response to the Zn2+-limited environment.
Collapse
Affiliation(s)
- Allexa Dow
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Andrew Burger
- School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Endrei Marcantonio
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Sladjana Prisic
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
- *Correspondence: Sladjana Prisic,
| |
Collapse
|
17
|
López-Agudelo VA, Baena A, Barrera V, Cabarcas F, Alzate JF, Beste DJV, Ríos-Estepa R, Barrera LF. Dual RNA Sequencing of Mycobacterium tuberculosis-Infected Human Splenic Macrophages Reveals a Strain-Dependent Host-Pathogen Response to Infection. Int J Mol Sci 2022; 23:ijms23031803. [PMID: 35163725 PMCID: PMC8836425 DOI: 10.3390/ijms23031803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), leading to pulmonary and extrapulmonary TB, whereby Mtb is disseminated to many other organs and tissues. Dissemination occurs early during the disease, and bacteria can be found first in the lymph nodes adjacent to the lungs and then later in the extrapulmonary organs, including the spleen. The early global gene expression response of human tissue macrophages and intracellular clinical isolates of Mtb has been poorly studied. Using dual RNA-seq, we have explored the mRNA profiles of two closely related clinical strains of the Latin American and Mediterranean (LAM) family of Mtb in infected human splenic macrophages (hSMs). This work shows that these pathogens mediate a distinct host response despite their genetic similarity. Using a genome-scale host–pathogen metabolic reconstruction to analyze the data further, we highlight that the infecting Mtb strain also determines the metabolic response of both the host and pathogen. Thus, macrophage ontogeny and the genetic-derived program of Mtb direct the host–pathogen interaction.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
| | - Vianey Barrera
- Programa de Ingeniería Biológica, Universidad Nacional de Colombia, Sede Medellín, Medellín 050010, Colombia;
| | - Felipe Cabarcas
- Grupo Sistemas Embebidos e Inteligencia Computacional (SISTEMIC), Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Dany J. V. Beste
- Department of Microbial Sciences, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK;
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Correspondence:
| |
Collapse
|
18
|
Vilchèze C, Yan B, Casey R, Hingley-Wilson S, Ettwiller L, Jacobs WR. Commonalities of Mycobacterium tuberculosis Transcriptomes in Response to Defined Persisting Macrophage Stresses. Front Immunol 2022; 13:909904. [PMID: 35844560 PMCID: PMC9283954 DOI: 10.3389/fimmu.2022.909904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
As the goal of a bacterium is to become bacteria, evolution has imposed continued selections for gene expression. The intracellular pathogen Mycobacterium tuberculosis, the causative agent of tuberculosis, has adopted a fine-tuned response to survive its host's methods to aggressively eradicate invaders. The development of microarrays and later RNA sequencing has led to a better understanding of biological processes controlling the relationship between host and pathogens. In this study, RNA-seq was performed to detail the transcriptomes of M. tuberculosis grown in various conditions related to stresses endured by M. tuberculosis during host infection and to delineate a general stress response incurring during persisting macrophage stresses. M. tuberculosis was subjected to long-term growth, nutrient starvation, hypoxic and acidic environments. The commonalities between these stresses point to M. tuberculosis maneuvering to exploit propionate metabolism for lipid synthesis or to withstand propionate toxicity whilst in the intracellular environment. While nearly all stresses led to a general shutdown of most biological processes, up-regulation of pathways involved in the synthesis of amino acids, cofactors, and lipids were observed only in hypoxic M. tuberculosis. This data reveals genes and gene cohorts that are specifically or exclusively induced during all of these persisting stresses. Such knowledge could be used to design novel drug targets or to define possible M. tuberculosis vulnerabilities for vaccine development. Furthermore, the disruption of specific functions from this gene set will enhance our understanding of the evolutionary forces that have caused the tubercle bacillus to be a highly successful pathogen.
Collapse
Affiliation(s)
- Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Bo Yan
- Research Department, Genome Biology Division, New England Biolabs Inc., Ipswich, MA, United States
| | - Rosalyn Casey
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Suzie Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Laurence Ettwiller
- Research Department, Genome Biology Division, New England Biolabs Inc., Ipswich, MA, United States
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: William R. Jacobs Jr,
| |
Collapse
|
19
|
Inducible knockdown of Mycobacterium smegmatis MSMEG_2975 (glyoxalase II) affected bacterial growth, antibiotic susceptibility, biofilm, and transcriptome. Arch Microbiol 2021; 204:97. [DOI: 10.1007/s00203-021-02652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/19/2022]
|
20
|
Mycobacterial MCE proteins as transporters that control lipid homeostasis of the cell wall. Tuberculosis (Edinb) 2021; 132:102162. [PMID: 34952299 DOI: 10.1016/j.tube.2021.102162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 01/05/2023]
Abstract
Mammalian cell entry (mce) genes are not only present in genomes of pathogenic mycobacteria, including Mycobacterium tuberculosis (the causative agent of tuberculosis), but also in saprophytic and opportunistic mycobacterial species. MCE are conserved cell-wall proteins encoded by mce operons, which maintain an identical structure in all mycobacteria: two yrbE genes (A and B) followed by six mce genes (A, B, C, D, E and F). Although these proteins are known to participate in the virulence of pathogenic mycobacteria, the presence of the operons in nonpathogenic mycobacteria and other bacteria indicates that they play another role apart from host cell invasion. In this respect, more recent studies suggest that they are functionally similar to ABC transporters and form part of lipid transporters in Actinobacteria. To date, most reviews on mce operons in the literature discuss their role in virulence. However, according to data from transcriptional studies, mce genes, particularly the mce1 and mce4 operons, modify their expression according to the carbon source and upon hypoxia, starvation, surface stress and oxidative stress; which suggests a role of MCE proteins in the response of Mycobacteria to external stressors. In addition to these data, this review also summarizes the studies demonstrating the role of MCE proteins as lipid transporters as well as the relevance of their transport function in the interaction of pathogenic Mycobacteria with the hosts. Altogether, the evidence to date would indicate that MCE proteins participate in the response to the stress conditions that mycobacteria encounter during infection, by participating in the cell wall remodelling and possibly contributing to lipid homeostasis.
Collapse
|
21
|
Furió V, Moreno-Molina M, Chiner-Oms Á, Villamayor LM, Torres-Puente M, Comas I. An evolutionary functional genomics approach identifies novel candidate regions involved in isoniazid resistance in Mycobacterium tuberculosis. Commun Biol 2021; 4:1322. [PMID: 34819627 PMCID: PMC8613195 DOI: 10.1038/s42003-021-02846-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Efforts to eradicate tuberculosis are hampered by the rise and spread of antibiotic resistance. Several large-scale projects have aimed to specifically link clinical mutations to resistance phenotypes, but they were limited in both their explanatory and predictive powers. Here, we combine functional genomics and phylogenetic associations using clinical strain genomes to decipher the architecture of isoniazid resistance and search for new resistance determinants. This approach has allowed us to confirm the main target route of the antibiotic, determine the clinical relevance of redox metabolism as an isoniazid resistance mechanism and identify novel candidate genes harboring resistance mutations in strains with previously unexplained isoniazid resistance. This approach can be useful for characterizing how the tuberculosis bacilli acquire resistance to new antibiotics and how to forestall them. Victoria Furió et al. apply functional genomics and evolutionary analyses to the study of antibiotic resistance in tuberculosis. Focusing on isoniazid resistance and using genomic data from clinical strains, they identify novel candidate genes with resistance mutations and further uncover the mechanisms underlying drug resistance.
Collapse
Affiliation(s)
- Victoria Furió
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, 46020, Spain.
| | | | - Álvaro Chiner-Oms
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, 46020, Spain
| | | | | | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, 46020, Spain.,CIBER in Epidemiology and Public Health, Madrid, 28029, Spain
| |
Collapse
|
22
|
Beites T, Jansen RS, Wang R, Jinich A, Rhee KY, Schnappinger D, Ehrt S. Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection. Nat Commun 2021; 12:6593. [PMID: 34782606 PMCID: PMC8593149 DOI: 10.1038/s41467-021-26941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis depends on host fatty acids as a carbon source. However, fatty acid β-oxidation is mediated by redundant enzymes, which hampers the development of antitubercular drugs targeting this pathway. Here, we show that rv0338c, which we refer to as etfD, encodes a membrane oxidoreductase essential for β-oxidation in M. tuberculosis. An etfD deletion mutant is incapable of growing on fatty acids or cholesterol, with long-chain fatty acids being bactericidal, and fails to grow and survive in mice. Analysis of the mutant’s metabolome reveals a block in β-oxidation at the step catalyzed by acyl-CoA dehydrogenases (ACADs), which in other organisms are functionally dependent on an electron transfer flavoprotein (ETF) and its cognate oxidoreductase. We use immunoprecipitation to show that M. tuberculosis EtfD interacts with FixA (EtfB), a protein that is homologous to the human ETF subunit β and is encoded in an operon with fixB, encoding a homologue of human ETF subunit α. We thus refer to FixA and FixB as EtfB and EtfA, respectively. Our results indicate that EtfBA and EtfD (which is not homologous to human EtfD) function as the ETF and oxidoreductase for β-oxidation in M. tuberculosis and support this pathway as a potential target for tuberculosis drug development. The pathogen Mycobacterium tuberculosis depends on host fatty acids and cholesterol as carbon sources. Here, Beites et al. identify a protein complex that is essential for fatty acid and cholesterol utilization and thus for survival of M. tuberculosis during infection, supporting this pathway as a potential target for tuberculosis drug development.
Collapse
Affiliation(s)
- Tiago Beites
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Robert S Jansen
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.,Department of Microbiology, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.,Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
23
|
Lara AC, Corretto E, Kotrbová L, Lorenc F, Petříčková K, Grabic R, Chroňáková A. The Genome Analysis of the Human Lung-Associated Streptomyces sp. TR1341 Revealed the Presence of Beneficial Genes for Opportunistic Colonization of Human Tissues. Microorganisms 2021; 9:1547. [PMID: 34442631 PMCID: PMC8401907 DOI: 10.3390/microorganisms9081547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022] Open
Abstract
Streptomyces sp. TR1341 was isolated from the sputum of a man with a history of lung and kidney tuberculosis, recurrent respiratory infections, and COPD. It produces secondary metabolites associated with cytotoxicity and immune response modulation. In this study, we complement our previous results by identifying the genetic features associated with the production of these secondary metabolites and other characteristics that could benefit the strain during its colonization of human tissues (virulence factors, modification of the host immune response, or the production of siderophores). We performed a comparative phylogenetic analysis to identify the genetic features that are shared by environmental isolates and human respiratory pathogens. The results showed a high genomic similarity of Streptomyces sp. TR1341 to the plant-associated Streptomyces sp. endophyte_N2, inferring a soil origin of the strain. Putative virulence genes, such as mammalian cell entry (mce) genes were not detected in the TR1341's genome. The presence of a type VII secretion system, distinct from the ones found in Mycobacterium species, suggests a different colonization strategy than the one used by other actinomycete lung pathogens. We identified a higher diversity of genes related to iron acquisition and demonstrated that the strain produces ferrioxamine B in vitro. These results indicate that TR1341 may have an advantage in colonizing environments that are low in iron, such as human tissue.
Collapse
Affiliation(s)
- Ana Catalina Lara
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Erika Corretto
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Lucie Kotrbová
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - František Lorenc
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| | - Kateřina Petříčková
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studničkova 7, 12800 Prague 2, Czech Republic;
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 37005 České Budějovice, Czech Republic
| | - Roman Grabic
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, Zátiší 728/II, 38925 Vodňany, Czech Republic;
| | - Alica Chroňáková
- Institute of Soil Biology, Biology Centre Academy of Sciences of The Czech Republic, Na Sádkách 702/7, 37005 České Budějovice, Czech Republic; (A.C.L.); (E.C.); (L.K.); (F.L.)
| |
Collapse
|
24
|
López-Fernández H, Vieira CP, Ferreira P, Gouveia P, Fdez-Riverola F, Reboiro-Jato M, Vieira J. On the Identification of Clinically Relevant Bacterial Amino Acid Changes at the Whole Genome Level Using Auto-PSS-Genome. Interdiscip Sci 2021; 13:334-343. [PMID: 34009546 DOI: 10.1007/s12539-021-00439-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/21/2021] [Accepted: 05/07/2021] [Indexed: 11/26/2022]
Abstract
The identification of clinically relevant bacterial amino acid changes can be performed using different methods aimed at the identification of genes showing positively selected amino acid sites (PSS). Nevertheless, such analyses are time consuming, and the frequency of genes showing evidence for PSS can be low. Therefore, the development of a pipeline that allows the quick and efficient identification of the set of genes that show PSS is of interest. Here, we present Auto-PSS-Genome, a Compi-based pipeline distributed as a Docker image, that automates the process of identifying genes that show PSS using three different methods, namely codeML, FUBAR, and omegaMap. Auto-PSS-Genome accepts as input a set of FASTA files, one per genome, containing all coding sequences, thus minimizing the work needed to conduct positively selected sites analyses. The Auto-PSS-Genome pipeline identifies orthologous gene sets and corrects for multiple possible problems in input FASTA files that may prevent the automated identification of genes showing PSS. A FASTA file containing all coding sequences can also be given as an external global reference, thus easing the comparison of results across species, when gene names are different. In this work, we use Auto-PSS-Genome to analyse Mycobacterium leprae (that causes leprosy), and the closely related species M. haemophilum, that mainly causes ulcerating skin infections and arthritis in persons who are severely immunocompromised, and in children causes cervical and perihilar lymphadenitis. The genes identified in these two species as showing PSS may be those that are partially responsible for virulence and resistance to drugs.
Collapse
Affiliation(s)
- Hugo López-Fernández
- Department of Computer Science, University of Vigo, ESEI, Campus As Lagoas, 32004, Ourense, Spain
- The Biomedical Research Centre (CINBIO), Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Cristina P Vieira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Pedro Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Paula Gouveia
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Florentino Fdez-Riverola
- Department of Computer Science, University of Vigo, ESEI, Campus As Lagoas, 32004, Ourense, Spain
- The Biomedical Research Centre (CINBIO), Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Miguel Reboiro-Jato
- Department of Computer Science, University of Vigo, ESEI, Campus As Lagoas, 32004, Ourense, Spain
- The Biomedical Research Centre (CINBIO), Campus Universitario Lagoas-Marcosende, 36310, Vigo, Spain
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jorge Vieira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
25
|
Emergence of additional drug resistance during treatment of multidrug-resistant tuberculosis in China: a prospective cohort study. Clin Microbiol Infect 2021; 27:1805-1813. [PMID: 33895338 DOI: 10.1016/j.cmi.2021.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Little is known about how additional second-line drug resistance emerges during multidrug-resistant tuberculosis (MDR-TB) treatment. The present study aimed to investigate the influence of microevolution, exogenous reinfection and mixed infection on second-line drug resistance during the recommended 2-year MDR-TB treatment. METHODS Individuals with MDR-TB were enrolled between 2013 and 2016 in a multicentre prospective observational cohort study and were followed up for 2 years until treatment completion. Whole-genome sequencing (WGS) was applied for serial Mycobacterium tuberculosis isolates from study participants throughout the treatment, to study the role of microevolution, exogenous reinfection and mixed infection in the development of second-line drug resistance. RESULTS Of the 286 enrolled patients with MDR-TB, 63 (22.0%) M. tuberculosis isolates developed additional drug resistance during the MDR-TB treatment, including 5 that fulfilled the criteria of extensively drug-resistant TB. By comparing WGS data of serial isolates retrieved from the patients throughout treatment, 41 (65.1%) of the cases of additional second-line drug resistance were the result of exogenous reinfection, 18 (28.6%) were caused by acquired drug resistance, i.e. microevolution, while the remaining 4 (6.3%) were caused by mixed infections with drug-resistant and drug-susceptible strains. In multivariate analysis, previous TB treatment (adjusted hazard ratio (aHR) 2.51, 95% CI 1.51-4.18), extensive disease on chest X-ray (aHR 3.39, 95% CI 2.03-5.66) and type 2 diabetes mellitus (aHR 4.00, 95% CI 2.22-7.21) were independent risk factors associated with the development of additional second-line drug resistance. CONCLUSIONS A large proportion of additional second-line drug resistance emerging during MDR-TB treatment was attributed to exogenous reinfection, indicating the urgency of infection control in health facilities as well as the need for repeated drug susceptibility testing throughout MDR-TB treatment.
Collapse
|
26
|
Evidence for the Mycobacterial Mce4 Transporter Being a Multiprotein Complex. J Bacteriol 2021; 203:JB.00685-20. [PMID: 33649150 DOI: 10.1128/jb.00685-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/24/2021] [Indexed: 01/01/2023] Open
Abstract
Mycobacteria possess Mce transporters that import lipids and are thought to function analogously to ATP-binding cassette (ABC) transporters. However, whereas ABC transporters import substrates using a single solute-binding protein (SBP) to deliver a substrate to permease proteins in the membrane, mycobacterial Mce transporters have a potential for six SBPs (MceA to MceF) working with a pair of permeases (YrbEA and YrbEB), a cytoplasmic ATPase (MceG), and multiple Mce-associated membrane (Mam) and orphaned Mam (Omam) proteins to transport lipids. In this study, we used the model mycobacterium Mycobacterium smegmatis to study the requirement for individual Mce, Mam, and Omam proteins in Mce4 transport of cholesterol. All of the Mce4 and Mam4 proteins we investigated were required for cholesterol uptake. However, not all Omam proteins, which are encoded by genes outside mce loci, proved to contribute to cholesterol import. OmamA and OmamB were required for cholesterol import, while OmamC, OmamD, OmamE, and OmamF were not. In the absence of any single Mce4, Mam4, or Omam protein that we tested, the abundance of Mce4A and Mce4E declined. This relationship between the levels of Mce4A and Mce4E and these additional proteins suggests a network of interactions that assemble and/or stabilize a multiprotein Mce4 transporter complex. Further support for Mce transporters being multiprotein complexes was obtained by immunoprecipitation-mass spectrometry, in which we identified every single Mce, YrbE, MceG, Mam, and Omam protein with a role in cholesterol transport as associating with Mce4A. This study represents the first time any of these Mce4 transporter proteins has been shown to associate.IMPORTANCE How lipids travel between membranes of diderm bacteria is a challenging mechanistic question because lipids, which are hydrophobic molecules, must traverse a hydrophilic periplasm. This question is even more complex for mycobacteria, which have a unique cell envelope that is highly impermeable to molecules. A growing body of knowledge identifies Mce transporters as lipid importers for mycobacteria. Here, using protein stability experiments and immunoprecipitation-mass spectrometry, we provide evidence for mycobacterial Mce transporters existing as multiprotein complexes.
Collapse
|
27
|
TREM2 is a receptor for non-glycosylated mycolic acids of mycobacteria that limits anti-mycobacterial macrophage activation. Nat Commun 2021; 12:2299. [PMID: 33863908 PMCID: PMC8052348 DOI: 10.1038/s41467-021-22620-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Mycobacterial cell-wall glycolipids elicit an anti-mycobacterial immune response via FcRγ-associated C-type lectin receptors, including Mincle, and caspase-recruitment domain family member 9 (CARD9). Additionally, mycobacteria harbor immuno-evasive cell-wall lipids associated with virulence and latency; however, a mechanism of action is unclear. Here, we show that the DAP12-associated triggering receptor expressed on myeloid cells 2 (TREM2) recognizes mycobacterial cell-wall mycolic acid (MA)-containing lipids and suggest a mechanism by which mycobacteria control host immunity via TREM2. Macrophages respond to glycosylated MA-containing lipids in a Mincle/FcRγ/CARD9-dependent manner to produce inflammatory cytokines and recruit inducible nitric oxide synthase (iNOS)-positive mycobactericidal macrophages. Conversely, macrophages respond to non-glycosylated MAs in a TREM2/DAP12-dependent but CARD9-independent manner to recruit iNOS-negative mycobacterium-permissive macrophages. Furthermore, TREM2 deletion enhances Mincle-induced macrophage activation in vitro and inflammation in vivo and accelerates the elimination of mycobacterial infection, suggesting that TREM2-DAP12 signaling counteracts Mincle-FcRγ-CARD9-mediated anti-mycobacterial immunity. Mycobacteria, therefore, harness TREM2 for immune evasion. Mycobacterial cell wall lipids can drive immunoevasion, but underlying mechanisms are incompletely understood. Here the authors show TREM2 is a pattern recognition receptor that binds non-glycosylated mycolic acid-containing lipids and inhibits Mincle-induced anti-mycobacterial macrophage responses.
Collapse
|
28
|
Bose P, Harit AK, Das R, Sau S, Iyer AK, Kashaw SK. Tuberculosis: current scenario, drug targets, and future prospects. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02691-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Molecular Cloning, Purification and Characterization of Mce1R of Mycobacterium tuberculosis. Mol Biotechnol 2021; 63:200-220. [PMID: 33423211 DOI: 10.1007/s12033-020-00293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
The mce1 operon of Mycobacterium tuberculosis, important for lipid metabolism/transport, host cell invasion, modulation of host immune response and pathogenicity, is under the transcriptional control of Mce1R. Hence characterizing Mce1R is an important step for novel anti-tuberculosis drug discovery. The present study reports functional and in silico characterization of Mce1R. In this work, we have computationally modeled the structure of Mce1R and have validated the structure by computational and experimental methods. Mce1R has been shown to harbor the canonical VanR-like structure with a flexible N-terminal 'arm', carrying conserved positively charged residues, most likely involved in the operator DNA binding. The mce1R gene has been cloned, expressed, purified and its DNA-binding activity has been measured in vitro. The Kd value for Mce1R-operator DNA interaction has been determined to be 0.35 ± 0.02 µM which implies that Mce1R binds to DNA with moderate affinity compared to the other FCD family of regulators. So far, this is the first report for measuring the DNA-binding affinity of any VanR-type protein. Despite significant sequence similarity at the N-terminal domain, the wHTH motif of Mce1R exhibits poor conservancy of amino acid residues, critical for DNA-binding, thus results in moderate DNA-binding affinity. The N-terminal DNA-binding domain is structurally dynamic while the C-terminal domain showed significant stability and such profile of structural dynamics is most likely to be preserved in the structural orthologs of Mce1R. In addition to this, a cavity has been detected in the C-terminal domain of Mce1R which contains a few conserved residues. Comparison with other FCD family of regulators suggests that most of the conserved residues might be critical for binding to specific ligand. The max pKd value and drug score for the cavity are estimated to be 9.04 and 109 respectively suggesting that the cavity represents a suitable target site for novel anti-tuberculosis drug discovery approaches.
Collapse
|
30
|
Zaychikova MV, Danilenko VN. The Actinobacterial mce Operon: Structure and Functions. BIOLOGY BULLETIN REVIEWS 2020. [PMCID: PMC7709480 DOI: 10.1134/s2079086420060079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- M. V. Zaychikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - V. N. Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| |
Collapse
|
31
|
Petrilli JD, Müller I, Araújo LE, Cardoso TM, Carvalho LP, Barros BC, Teixeira M, Arruda S, Riley LW, Queiroz A. Differential Host Pro-Inflammatory Response to Mycobacterial Cell Wall Lipids Regulated by the Mce1 Operon. Front Immunol 2020; 11:1848. [PMID: 32973761 PMCID: PMC7461851 DOI: 10.3389/fimmu.2020.01848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/09/2020] [Indexed: 11/17/2022] Open
Abstract
The cell wall of wild-type (WT) Mycobacterium tuberculosis (Mtb), an etiologic agent of tuberculosis (TB) and a Mtb strain disrupted in a 13-gene operon mce1 (Δmce1) varies by more than 400 lipid species. Here, we examined Mtb lipid-induced response in murine macrophage, as well as in human T-cell subpopulations in order to gain an insight into how changes in cell wall lipid composition may modulate host immune response. Relative to WT Mtb cell wall lipids, the non-polar lipid extracts from Δmce1 enhanced the mRNA expression of lipid-sense nuclear receptors TR4 and PPAR-γ and dampened the macrophage expression of genes encoding TNF-α, IL-6, and IL-1β. Relative to untreated control, WT lipid-pre-stimulated macrophages from healthy individuals induced a higher level of CD4−CD8− double negative T-cells (DN T-cells) producing TNF-α. Conversely, compared to WT, stimulation with Δmce1 lipids induced higher mean fluorescence intensity (MFI) in IL-10-producing DN T cells. Mononuclear cells from TB patients stimulated with WT Mtb lipids induced an increased production of TNF-α by CD8+ lymphocytes. Taken together, these observations suggest that changes in mce1 operon expression during a course of infection may serve as a strategy by Mtb to evade the host pro-inflammatory responses.
Collapse
Affiliation(s)
- Jéssica D Petrilli
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Igor Müller
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Luana E Araújo
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Thiago M Cardoso
- Laboratório de Pesquisa Clínica, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Lucas P Carvalho
- Laboratório de Pesquisa Clínica, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Bruna C Barros
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Maurício Teixeira
- Laboratório de Pesquisa Clínica, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Sérgio Arruda
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| | - Lee W Riley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Adriano Queiroz
- Laboratorio Avançado de Saúde Pública, Instituto Gonçalo Moniz, Salvador, Brazil
| |
Collapse
|
32
|
Alonso MN, Malaga W, Mc Neil M, Jackson M, Romano MI, Guilhot C, Santangelo MP. Efficient method for targeted gene disruption by homologous recombination in Mycobacterium avium subspecie paratuberculosis. Res Microbiol 2020; 171:203-210. [PMID: 32283218 DOI: 10.1016/j.resmic.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Targeted gene disruption by homologous recombination, has been widely used in mycobacterium species to understand the genetic basis of virulence and persistence in the host and to develop efficacious potential live vaccines. However, in slow growing pathogenic mycobacteria as Mycobacterium avium subsp paratuberculosis (MAP), these methods have been inefficient, in part due to the low frequency of legitimate homologous recombination. Another feature of mycobacteria is the low efficiency of transformation; therefore, some years ago, a phage-mediated transduction process was developed to introduce DNA into mycobacteria. This strategy is very efficient, due to the high rate of infection of the phage. This report describes a genetic method for the generation of targeted deletion mutations in MAP by allelic exchange using in vitro-generated specialized transducing mycobacteriophages, which does not require the critical packaging step and that could also be applied to other mycobacteria. We provide a detailed gene deletion methodology and demonstrate the use of this genetic system by deleting the mce4 operon of MAP. Finally, our results showed that the deletion of mce4 in MAP induces triacylglycerol accumulation; alter morphology and aggregation in liquid culture.
Collapse
Affiliation(s)
- Maria Natalia Alonso
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale, IPBS, University of Toulouse, CNRS, UPS, BP64182 205 Route de Narbonne, 31077 Toulouse Cedex 04, France.
| | - Michael Mc Neil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | - Maria Isabel Romano
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, IPBS, University of Toulouse, CNRS, UPS, BP64182 205 Route de Narbonne, 31077 Toulouse Cedex 04, France.
| | - María Paz Santangelo
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
33
|
Hemati Z, Derakhshandeh A, Haghkhah M, Chaubey KK, Gupta S, Singh M, Singh SV, Dhama K. Mammalian cell entry operons; novel and major subset candidates for diagnostics with special reference to Mycobacterium avium subspecies paratuberculosis infection. Vet Q 2020; 39:65-75. [PMID: 31282842 PMCID: PMC6830979 DOI: 10.1080/01652176.2019.1641764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian cell entry (mce) genes are the components of the mce operon and play a vital role in the entry of Mycobacteria into the mammalian cell and their survival within phagocytes and epithelial cells. Mce operons are present in the DNA of Mycobacteria and translate proteins associated with the invasion and long-term existence of these pathogens in macrophages. The exact mechanism of action of mce genes and their functions are not clear yet. However, with the loss of these genes Mycobacteria lose their pathogenicity. Mycobacterium avium subspecies paratuberculosis (MAP), the etiological agent of Johne’s disease, is the cause of chronic enteritis of animals and significantly affects economic impact on the livestock industry. Since MAP is not inactivated during pasteurization, human population is continuously at the risk of getting exposed to MAP infection through consumption of dairy products. There is need for new candidate genes and/or proteins for developing improved diagnostic assays for the diagnosis of MAP infection and for the control of disease. Increasing evidences showed that expression of mce genes is important for the virulence of MAP. Whole-genome DNA microarray representing MAP revealed that there are 14 large sequence polymorphisms with LSPP12 being the most widely conserved MAP-specific region that included a cluster of six homologs of mce-family involved in lipid metabolism. On the other hand, LSP11 comprising part of mce2 operon was absent in MAP isolates. This review summarizes the advancement of research on mce genes of Mycobacteria with special reference to the MAP infection.
Collapse
Affiliation(s)
- Zahra Hemati
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Masoud Haghkhah
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Kundan Kumar Chaubey
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Manju Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Shoorvir V Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University , Mathura , India
| | - Kuldeep Dhama
- Department of Pathology, Indian Veterinary Research Institute , Bareilly , India
| |
Collapse
|
34
|
Behra PRK, Pettersson BMF, Ramesh M, Dasgupta S, Kirsebom LA. Insight into the biology of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members. Sci Rep 2019; 9:19259. [PMID: 31848383 PMCID: PMC6917791 DOI: 10.1038/s41598-019-55464-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Nontuberculous mycobacteria, NTM, are of growing concern and among these members of the Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clades can cause infections in humans and they are resistant to first-line anti-tuberculosis drugs. They can be isolated from different ecological niches such as soil, tap water and ground water. Mycobacteria, such as Mmuc and Mneo, are classified as rapid growing mycobacteria, RGM, while the most familiar, Mycobacterium tuberculosis, belongs to the slow growing mycobacteria, SGM. Modern “omics” approaches have provided new insights into our understanding of the biology and evolution of this group of bacteria. Here we present comparative genomics data for seventeen NTM of which sixteen belong to the Mmuc- and Mneo-clades. Focusing on virulence genes, including genes encoding sigma/anti-sigma factors, serine threonine protein kinases (STPK), type VII (ESX genes) secretion systems and mammalian cell entry (Mce) factors we provide insight into their presence as well as phylogenetic relationship in the case of the sigma/anti-sigma factors and STPKs. Our data further suggest that these NTM lack ESX-5 and Mce2 genes, which are known to affect virulence. In this context, Mmuc- and Mneo-clade members lack several of the genes in the glycopeptidolipid (GLP) locus, which have roles in colony morphotype appearance and virulence. For the M. mucogenicum type strain, MmucT, we provide RNASeq data focusing on mRNA levels for sigma factors, STPK, ESX proteins and Mce proteins. These data are discussed and compared to in particular the SGM and fish pathogen Mycobacterium marinum. Finally, we provide insight into as to why members of the Mmuc- and Mneo-clades show resistance to rifampin and isoniazid, and why MmucT forms a rough colony morphotype.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
35
|
Serum anti-Mce1A immunoglobulin detection as a tool for differential diagnosis of tuberculosis and latent tuberculosis infection in children and adolescents. Tuberculosis (Edinb) 2019; 120:101893. [PMID: 32090854 DOI: 10.1016/j.tube.2019.101893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 11/21/2022]
|
36
|
Madacki J, Mas Fiol G, Brosch R. Update on the virulence factors of the obligate pathogen Mycobacterium tuberculosis and related tuberculosis-causing mycobacteria. INFECTION GENETICS AND EVOLUTION 2019; 72:67-77. [DOI: 10.1016/j.meegid.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/02/2018] [Accepted: 12/07/2018] [Indexed: 12/21/2022]
|
37
|
Mashabela GT, de Wet TJ, Warner DF. Mycobacterium tuberculosis Metabolism. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0067-2019. [PMID: 31350832 PMCID: PMC10957194 DOI: 10.1128/microbiolspec.gpp3-0067-2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is the cause of tuberculosis (TB), a disease which continues to overwhelm health systems in endemic regions despite the existence of effective combination chemotherapy and the widespread use of a neonatal anti-TB vaccine. For a professional pathogen, M. tuberculosis retains a surprisingly large proportion of the metabolic repertoire found in nonpathogenic mycobacteria with very different lifestyles. Moreover, evidence that additional functions were acquired during the early evolution of the M. tuberculosis complex suggests the organism has adapted (and augmented) the metabolic pathways of its environmental ancestor to persistence and propagation within its obligate human host. A better understanding of M. tuberculosis pathogenicity, however, requires the elucidation of metabolic functions under disease-relevant conditions, a challenge complicated by limited knowledge of the microenvironments occupied and nutrients accessed by bacilli during host infection, as well as the reliance in experimental mycobacteriology on a restricted number of experimental models with variable relevance to clinical disease. Here, we consider M. tuberculosis metabolism within the framework of an intimate host-pathogen coevolution. Focusing on recent advances in our understanding of mycobacterial metabolic function, we highlight unusual adaptations or departures from the better-characterized model intracellular pathogens. We also discuss the impact of these mycobacterial "innovations" on the susceptibility of M. tuberculosis to existing and experimental anti-TB drugs, as well as strategies for targeting metabolic pathways. Finally, we offer some perspectives on the key gaps in the current knowledge of fundamental mycobacterial metabolism and the lessons which might be learned from other systems.
Collapse
Affiliation(s)
- Gabriel T Mashabela
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Current address: Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch, South Africa
| | - Timothy J de Wet
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
- Wellcome Centre for Infectious Disease Research in Africa, University of Cape Town, South Africa
| |
Collapse
|
38
|
Chiner-Oms Á, Sánchez-Busó L, Corander J, Gagneux S, Harris SR, Young D, González-Candelas F, Comas I. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. SCIENCE ADVANCES 2019; 5:eaaw3307. [PMID: 31448322 PMCID: PMC6691555 DOI: 10.1126/sciadv.aaw3307] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Models on how bacterial lineages differentiate increase our understanding of early bacterial speciation events and the genetic loci involved. Here, we analyze the population genomics events leading to the emergence of the tuberculosis pathogen. The emergence is characterized by a combination of recombination events involving core pathogenesis functions and purifying selection on early diverging loci. We identify the phoR gene, the sensor kinase of a two-component system involved in virulence, as a key functional player subject to pervasive positive selection after the divergence of the Mycobacterium tuberculosis complex from its ancestor. Previous evidence showed that phoR mutations played a central role in the adaptation of the pathogen to different host species. Now, we show that phoR mutations have been under selection during the early spread of human tuberculosis, during later expansions, and in ongoing transmission events. Our results show that linking pathogen evolution across evolutionary and epidemiological time scales points to past and present virulence determinants.
Collapse
Affiliation(s)
- Á. Chiner-Oms
- Unidad Mixta “Infección y Salud Pública” FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas (ISysBio), Valencia, Spain
| | - L. Sánchez-Busó
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
| | - J. Corander
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK
- Department of Biostatistics, University of Oslo, 0317 Oslo, Norway
- Helsinki Institute of Information Technology (HIIT), Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - S. Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - S. R. Harris
- Microbiotica, BioData Innovation Centre, Wellcome Genome Campus, Cambridge CB10 1DR, UK
| | - D. Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - F. González-Candelas
- Unidad Mixta “Infección y Salud Pública” FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas (ISysBio), Valencia, Spain
- CIBER en Epidemiología y Salud Pública, Valencia, Spain
| | - I. Comas
- CIBER en Epidemiología y Salud Pública, Valencia, Spain
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| |
Collapse
|
39
|
Microenvironment of Mycobacterium smegmatis Culture to Induce Cholesterol Consumption Does Cell Wall Remodeling and Enables the Formation of Granuloma-Like Structures. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1871239. [PMID: 31119154 PMCID: PMC6500705 DOI: 10.1155/2019/1871239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/11/2019] [Accepted: 03/17/2019] [Indexed: 11/22/2022]
Abstract
Pathogenic species of mycobacteria are known to use the host cholesterol during lung infection as an alternative source of carbon and energy. Mycobacteria culture in minimal medium (MM) has been used as an in vitro experimental model to study the consumption of exogenous cholesterol. Once in MM, different species of mycobacteria start to consume the cholesterol and initiate transcriptional and metabolic adaptations, upregulating the enzymes of the methylcitrate cycle (MCC) and accumulating a variety of primary metabolites that are known to be important substrates for cell wall biosynthesis. We hypothesized that stressful pressure of cultures in MM is able to induce critical adaptation for the bacteria which win the infection. To identify important modifications in the biosynthesis of the cell wall, we cultured the fast-growing and nonpathogenic Mycobacterium smegmatis in MM supplemented with or without glycerol and/or cholesterol. Different from the culture in complete medium Middlebrook 7H9 broth, the bacteria when cultured in MM decreased growth and changed in the accumulation of cell wall molecules. However, the supplementation of MM with glycerol and/or cholesterol recovered the accumulation of phosphatidylinositol mannosides (PIMs) and other phospholipids but maintained growth deceleration. The biosynthesis of lipomannan (LM) and of lipoarabinomannan (LAM) was significantly modulated after culture in MM, independently of glycerol and/or cholesterol supplementation, where LM size was decreased (LM13-25KDa) and LAM increased (LAM37-100KDa), when compared these molecules after bacteria culture in complete medium (LM17-25KDa and LAM37-50KDa). These changes modified the cell surface hydrophobicity and susceptibility against H2O2. The infection of J774 macrophages with M. smegmatis, after culture in MM, induced the formation of granuloma-like structures, while supplementation with cholesterol induced the highest rate of formation of these structures. Taken together, our results identify critical changes in mycobacterial cell wall molecules after culture in MM that induces cholesterol accumulation, helping the mycobacteria to increase their capacity to form granuloma-like structures.
Collapse
|
40
|
Yan S, Zhen J, Li Y, Zhang C, Stojkoska A, Lambert N, Li Q, Li P, Xie J. Mce-associated protein Rv0177 alters the cell wall structure of Mycobacterium smegmatis and promotes macrophage apoptosis via regulating the cytokines. Int Immunopharmacol 2019; 66:205-214. [DOI: 10.1016/j.intimp.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
|
41
|
Abhishek S, Saikia UN, Gupta A, Bansal R, Gupta V, Singh N, Laal S, Verma I. Transcriptional Profile of Mycobacterium tuberculosis in an in vitro Model of Intraocular Tuberculosis. Front Cell Infect Microbiol 2018; 8:330. [PMID: 30333960 PMCID: PMC6175983 DOI: 10.3389/fcimb.2018.00330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Intraocular tuberculosis (IOTB), an extrapulmonary manifestation of tuberculosis of the eye, has unique and varied clinical presentations with poorly understood pathogenesis. As it is a significant cause of inflammation and visual morbidity, particularly in TB endemic countries, it is essential to study the pathogenesis of IOTB. Clinical and histopathologic studies suggest the presence of Mycobacterium tuberculosis in retinal pigment epithelium (RPE) cells. Methods: A human retinal pigment epithelium (ARPE-19) cell line was infected with a virulent strain of M. tuberculosis (H37Rv). Electron microscopy and colony forming units (CFU) assay were performed to monitor the M. tuberculosis adherence, invasion, and intracellular replication, whereas confocal microscopy was done to study its intracellular fate in the RPE cells. To understand the pathogenesis, the transcriptional profile of M. tuberculosis in ARPE-19 cells was studied by whole genome microarray. Three upregulated M. tuberculosis transcripts were also examined in human IOTB vitreous samples. Results: Scanning electron micrographs of the infected ARPE-19 cells indicated adherence of bacilli, which were further observed to be internalized as monitored by transmission electron microscopy. The CFU assay showed that 22.7 and 8.4% of the initial inoculum of bacilli adhered and invaded the ARPE-19 cells, respectively, with an increase in fold CFU from 1 dpi (0.84) to 5dpi (6.58). The intracellular bacilli were co-localized with lysosomal-associated membrane protein-1 (LAMP-1) and LAMP-2 in ARPE-19 cells. The transcriptome study of intracellular bacilli showed that most of the upregulated transcripts correspond to the genes encoding the proteins involved in the processes such as adherence (e.g., Rv1759c and Rv1026), invasion (e.g., Rv1971 and Rv0169), virulence (e.g., Rv2844 and Rv0775), and intracellular survival (e.g., Rv1884c and Rv2450c) as well as regulators of various metabolic pathways. Two of the upregulated transcripts (Rv1971, Rv1230c) were also present in the vitreous samples of the IOTB patients. Conclusions:M. tuberculosis is phagocytosed by RPE cells and utilizes these cells for intracellular multiplication with the involvement of late endosomal/lysosomal compartments and alters its transcriptional profile plausibly for its intracellular adaptation and survival. The findings of the present study could be important to understanding the molecular pathogenesis of IOTB with a potential role in the development of diagnostics and therapeutics for IOTB.
Collapse
Affiliation(s)
- Sudhanshu Abhishek
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amod Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reema Bansal
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vishali Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nirbhai Singh
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Suman Laal
- Department of Pathology, New York University Langone Medical Center, New York, NY, United States
- Veterans Affairs New York Harbor Healthcare System, New York, NY, United States
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
42
|
Kai-Cheen A, Lay-Harn G. Comparison of aqueous soluble proteins profile of Mycobacterium tuberculosis H37Rv and H37Ra and a Malaysian clinical isolate. Biotechnol Appl Biochem 2018; 65:876-882. [PMID: 30132993 DOI: 10.1002/bab.1687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/15/2018] [Indexed: 11/06/2022]
Abstract
Differentially expressed aqueous soluble proteins between Mycobacterium tuberculosis H37Ra and H37Rv were identified. The protein extracts were separated by two-dimensional gel electrophoresis followed by tandem mass spectrometric analysis. Twelve proteins were detected to be differentially expressed significantly between virulent strain H37Rv and attenuated strain H37Ra. The differentially expression of these proteins was validated by a recently isolated clinical virulent strains of M. tuberculosis, TB138. Out of the 12 proteins identified, which consisted of ten upregulated and two downregulated proteins, nine were belonged to intermediate metabolism and respiration protein group, two were in lipid metabolism, and one protein was involved in information pathways and virulence. Among these proteins, two of the upregulated proteins, namely, mmsA and pntAa, showed a consistent expression pattern in both virulent mycobacterium strains. These proteins can serve as potential biomarkers for the intervention treatment of TB.
Collapse
Affiliation(s)
- Ang Kai-Cheen
- School of Pharmaceutical Sciences, University Sains Malaysia, Minden, Penang, Malaysia
| | - Gam Lay-Harn
- School of Pharmaceutical Sciences, University Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
43
|
Koster K, Largen A, Foster JT, Drees KP, Qian L, Desmond EP, Wan X, Hou S, Douglas JT. Whole genome SNP analysis suggests unique virulence factor differences of the Beijing and Manila families of Mycobacterium tuberculosis found in Hawaii. PLoS One 2018; 13:e0201146. [PMID: 30036392 PMCID: PMC6056056 DOI: 10.1371/journal.pone.0201146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/09/2018] [Indexed: 02/05/2023] Open
Abstract
While tuberculosis (TB) remains a global disease, the WHO estimates that 62% of the incident TB cases in 2016 occurred in the WHO South-East Asia and Western Pacific regions. TB in the Pacific is composed predominantly of two genetic families of Mycobacterium tuberculosis (Mtb): Beijing and Manila. The Manila family is historically under-studied relative to the families that comprise the majority of TB in Europe and North America (e.g. lineage 4), and it remains unclear why this lineage has persisted in Filipino populations despite the predominance of more globally successful Mtb lineages in most of the world. The Beijing family is of particular interest as it is increasingly associated with drug resistance throughout the world. Both of these lineages are important to the State of Hawaii, where they comprise over two-thirds of TB cases. Here, we performed whole genome sequencing on 82 Beijing family, Manila family, and outgroup clinical Mtb isolates from Hawaii to identify lineage-specific SNPs (SNPs found in all isolates from their respective families, and exclusively in those families) in established virulence factor genes. Six non-silent lineage-specific virulence factor SNPs were found in the Beijing family, including mutations in alternative sigma factor sigG and polyketide synthases pks5 and pks7. The Manila family displayed more than eleven non-silent lineage-specific and characteristic virulence factor mutations, including in genes coding for MCE-family protein Mce1B, two mutations in fatty-acid-AMP ligase FadD26, and virulence-regulating transcriptional regulator VirS. This study further identified an ancient clade that shared some virulence factor mutations with the Manila family, and investigated the relationship of those and other “Manila-like” spoligotypes to the Manila family with this SNP dataset. This work identified a set of virulence genes that are worth pursuing to determine potential differences in transmission or virulence displayed by these two Mtb families.
Collapse
Affiliation(s)
- Kent Koster
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Angela Largen
- Hawaii State Department of Health, Honolulu, Hawaii, United States of America
| | - Jeffrey T. Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Kevin P. Drees
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Lishi Qian
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Edward P. Desmond
- California Department of Public Health, Richmond, California, United States of America
| | - Xuehua Wan
- Advanced Studies in Genomics, Proteomics and Bioinformatics, Honolulu, Hawaii, United States of America
| | - Shaobin Hou
- Advanced Studies in Genomics, Proteomics and Bioinformatics, Honolulu, Hawaii, United States of America
| | - James T. Douglas
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
44
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
45
|
Yeom J, Pontes MH, Choi J, Groisman EA. A protein that controls the onset of a Salmonella virulence program. EMBO J 2018; 37:embj.201796977. [PMID: 29858228 DOI: 10.15252/embj.201796977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/11/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
The mechanism of action and contribution to pathogenesis of many virulence genes are understood. By contrast, little is known about anti-virulence genes, which contribute to the start, progression, and outcome of an infection. We now report how an anti-virulence factor in Salmonella enterica serovar Typhimurium dictates the onset of a genetic program that governs metabolic adaptations and pathogen survival in host tissues. Specifically, we establish that the anti-virulence protein CigR directly restrains the virulence protein MgtC, thereby hindering intramacrophage survival, inhibition of ATP synthesis, stabilization of cytoplasmic pH, and gene transcription by the master virulence regulator PhoP. We determine that, like MgtC, CigR localizes to the bacterial inner membrane and that its C-terminal domain is critical for inhibition of MgtC. As in many toxin/anti-toxin genes implicated in antibiotic tolerance, the mgtC and cigR genes are part of the same mRNA. However, cigR is also transcribed from a constitutive promoter, thereby creating a threshold of CigR protein that the inducible MgtC protein must overcome to initiate a virulence program critical for pathogen persistence in host tissues.
Collapse
Affiliation(s)
- Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA.,Yale Microbial Sciences Institute, West Haven, CT, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA .,Yale Microbial Sciences Institute, West Haven, CT, USA
| |
Collapse
|
46
|
Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, Shi Y, Zhang L, Gao GF, Liu CH. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol 2018; 16:380-391. [PMID: 29572547 DOI: 10.1038/s41423-018-0016-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
The intracellular pathogen Mycobacterium tuberculosis (Mtb) can survive in the host and cause disease by interfering with a variety of cellular functions. The mammalian cell entry 2 (mce2) operon of Mtb has been shown to contribute to tuberculosis pathogenicity. However, little is known about the regulatory roles of Mtb Mce2 family proteins towards host cellular functions. Here we show that the Mce2 family protein Mce2E suppressed the macrophage innate immune response and promoted epithelial cell proliferation. Mce2E inhibited activation of the extracellular signal-regulated kinase (ERK) and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathways in a non-canonical D motif (a MAPK-docking motif)-dependent manner, leading to reduced expression of TNF and IL-6 in macrophages. Furthermore, Mce2E promoted proliferation of human lung epithelium-derived lung adenoma A549 cells by inhibiting K48-linked polyubiquitination of eEF1A1 in a β strand region-dependent manner. In summary, Mce2E is a novel multifunctional Mtb virulence factor that regulates host cellular functions in a niche-dependent manner. Our data suggest a potential novel target for TB therapy.
Collapse
Affiliation(s)
- Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,Institute of Health Sciences, Anhui University, 230601, Hefei, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Bingxi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences Beijing, Beijing Institute of Lifeomics, 100850, Beijing, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China. .,Savaid Medical School, University of Chinese Academy of Sciences, 101408, Beijing, China.
| |
Collapse
|
47
|
Wilburn KM, Fieweger RA, VanderVen BC. Cholesterol and fatty acids grease the wheels of Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4931720. [PMID: 29718271 PMCID: PMC6251666 DOI: 10.1093/femspd/fty021] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/06/2018] [Indexed: 01/23/2023] Open
Abstract
Tuberculosis is a distinctive disease in which the causative agent, Mycobacterium tuberculosis, can persist in humans for decades by avoiding clearance from host immunity. During infection, M. tuberculosis maintains viability by extracting and utilizing essential nutrients from the host, and this is a prerequisite for all of the pathogenic activities that are deployed by the bacterium. In particular, M. tuberculosis preferentially acquires and metabolizes host-derived lipids (fatty acids and cholesterol), and the bacterium utilizes these substrates to cause and maintain disease. In this review, we discuss our current understanding of lipid utilization by M. tuberculosis, and we describe how these pathways promote pathogenesis to fuel metabolic processes in the bacillus. Finally, we highlight weaknesses in these pathways that potentially can be targeted for drug discovery.
Collapse
Affiliation(s)
- Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| |
Collapse
|
48
|
Zhai X, Luo T, Peng X, Ma P, Wang C, Zhang C, Suo J, Bao L. The truncated Rv2820c of Mycobacterium tuberculosis Beijing family augments intracellular survival of M. smegmatis by altering cytokine profile and inhibiting NO generation. INFECTION GENETICS AND EVOLUTION 2018; 59:75-83. [PMID: 29407192 DOI: 10.1016/j.meegid.2018.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 12/26/2022]
Abstract
Genetic variations among genes of Mycobacterium tuberculosis may be associated with antigenic variation and immune evasion, which complicates the pathogenesis of M. tuberculosis. The hyper-virulent M. tuberculosis Beijing strains harbored several large sequence deletions, among which RD207 attributed to the deletion of CRISPR loci and several Cas genes. RD207 also gave rise to a truncated gene Rv2820c-Bj with 60% deletion in length at the 3'-end and a new 3'-end of five amino acid mutations. It has been reported that Rv2820c-Bj correlated with enhanced intracellular survival of M. smegmatis in macrophages when compared to its full-length counterpart Rv2820c in M. tuberculosis, however, the respective contribution of the truncation and the new 3'-end of Rv2820c-Bj to this enhancement was unclear. Here, by infecting THP-1 macrophages with Ms_Rv2820c-Bj, Ms_Rv2820c and MS_Rv2820c-Tr (expressing the truncated Rv2820c without five amino acid mutations at 3'-end), we found only Ms_Rv2820c-Bj was responsible for the enhancement of survival of M. smegmatis in macrophages. Furthermore, we detected that Ms_Rv2820c-Tr and Ms_Rv2820c-Bj induced similar cytokine profile and NO production after infection of macrophages, which was distinctly different from Ms_Rv2820c. However, Ms_Rv2820c-Bj evoked higher levels of interleukin-10 (IL-10) and lower levels of interleukin- 6 (IL-6), interleukin-1β (IL-1β) and interleukin-12 (IL-12) in infected THP-1 macrophages than Ms_Rv2820c-Tr. Accordingly, we concluded that the new 3'-end of Rv2820c-Bj was important to dampen host defense and enhance the intracellular survival of M. smegmatis.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tao Luo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| | - Xuan Peng
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Pengjiao Ma
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chuhan Wang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Chunxi Zhang
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Jing Suo
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Lang Bao
- Laboratory of Infection and Immunity, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
49
|
Rajwani R, Yam WC, Zhang Y, Kang Y, Wong BKC, Leung KSS, Tam KKG, Tulu KT, Zhu L, Siu GKH. Comparative Whole-Genomic Analysis of an Ancient L2 Lineage Mycobacterium tuberculosis Reveals a Novel Phylogenetic Clade and Common Genetic Determinants of Hypervirulent Strains. Front Cell Infect Microbiol 2018; 7:539. [PMID: 29376038 PMCID: PMC5770396 DOI: 10.3389/fcimb.2017.00539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/26/2017] [Indexed: 12/25/2022] Open
Abstract
Background: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-α than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants of mycobacterial virulence that were common to strain H112 and hypervirulent M. tuberculosis strains of the same phylogenetic clade isolated in other global regions. Methods: A low-virulent M. tuberculosis strain H54 which belonged to the same phylogenetic lineage (L2) as strain H112 was selected from a collection of 115 clinical isolates. Both H112 and H54 were whole-genome-sequenced using PacBio sequencing technology. A comparative genomics approach was adopted to identify mutations present in strain H112 but absent in strain H54. Subsequently, an extensive phylogenetic analysis was conducted by including all publically available M. tuberculosis genomes. Single-nucleotide-polymorphisms (SNPs) and structural variations (SVs) common to hypervirulent strains in the global collection of genomes were considered as potential genetic determinants of hypervirulence. Results:Sequencing data revealed that both H112 and H54 were identified as members of the same sub-lineage L2.2.1. After excluding the lineage-related mutations shared between H112 and H54, we analyzed the phylogenetic relatedness of H112 with global collection of M. tuberculosis genomes (n = 4,338), and identified a novel phylogenetic clade in which four hypervirulent strains isolated from geographically diverse regions were clustered together. All hypervirulent strains in the clade shared 12 SNPs and 5 SVs with H112, including those affecting key virulence-associated loci, notably, a deleterious SNP (rv0178 p. D150E) within mce1 operon and an intergenic deletion (854259_ 854261delCC) in close-proximity to phoP. Conclusion: The present study identified common genetic factors in a novel phylogenetic clade of hypervirulent M. tuberculosis. The causative role of these mutations in mycobacterial virulence should be validated in future study.
Collapse
Affiliation(s)
- Rahim Rajwani
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Wing Cheong Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Yu Kang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | - Kenneth Siu Sing Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Kingsley King Gee Tam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ketema Tafess Tulu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Li Zhu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Gilman Kit Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| |
Collapse
|
50
|
Koch AS, Brites D, Stucki D, Evans JC, Seldon R, Heekes A, Mulder N, Nicol M, Oni T, Mizrahi V, Warner DF, Parkhill J, Gagneux S, Martin DP, Wilkinson RJ. The Influence of HIV on the Evolution of Mycobacterium tuberculosis. Mol Biol Evol 2017; 34:1654-1668. [PMID: 28369607 PMCID: PMC5455964 DOI: 10.1093/molbev/msx107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HIV significantly affects the immunological environment during tuberculosis coinfection, and therefore may influence the selective landscape upon which M. tuberculosis evolves. To test this hypothesis whole genome sequences were determined for 169 South African M. tuberculosis strains from HIV-1 coinfected and uninfected individuals and analyzed using two Bayesian codon-model based selection analysis approaches: FUBAR which was used to detect persistent positive and negative selection (selection respectively favoring and disfavoring nonsynonymous substitutions); and MEDS which was used to detect episodic directional selection specifically favoring nonsynonymous substitutions within HIV-1 infected individuals. Among the 25,251 polymorphic codon sites analyzed, FUBAR revealed that 189-fold more were detectably evolving under persistent negative selection than were evolving under persistent positive selection. Three specific codon sites within the genes celA2b, katG, and cyp138 were identified by MEDS as displaying significant evidence of evolving under directional selection influenced by HIV-1 coinfection. All three genes encode proteins that may indirectly interact with human proteins that, in turn, interact functionally with HIV proteins. Unexpectedly, epitope encoding regions were enriched for sites displaying weak evidence of directional selection influenced by HIV-1. Although the low degree of genetic diversity observed in our M. tuberculosis data set means that these results should be interpreted carefully, the effects of HIV-1 on epitope evolution in M. tuberculosis may have implications for the design of M. tuberculosis vaccines that are intended for use in populations with high HIV-1 infection rates.
Collapse
Affiliation(s)
- Anastasia S Koch
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Daniela Brites
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - David Stucki
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Joanna C Evans
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ronnett Seldon
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alexa Heekes
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicola Mulder
- Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mark Nicol
- University of Cape Town, and National Health Laboratory Service, Cape Town, South Africa
| | - Tolu Oni
- Division of Public Health Medicine, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.,The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Darren P Martin
- Division of Computational Biology, Department of Integrated Biology Sciences and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, and Department of Medicine, University of Cape Town, Cape Town, South Africa.,Department of Medicine, Imperial College, London, United Kingdom.,Francis Crick Institute, London, United Kingdom
| |
Collapse
|