1
|
Gong L, Si MS. SLIT3-mediated fibroblast signaling: a promising target for antifibrotic therapies. Am J Physiol Heart Circ Physiol 2023; 325:H1400-H1411. [PMID: 37830982 DOI: 10.1152/ajpheart.00216.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
The SLIT family (SLIT1-3) of highly conserved glycoproteins was originally identified as ligands for the Roundabout (ROBO) family of single-pass transmembrane receptors, serving to provide repulsive axon guidance cues in the nervous system. Intriguingly, studies involving SLIT3 mutant mice suggest that SLIT3 might have crucial biological functions outside the neural context. Although these mutant mice display no noticeable neurological abnormalities, they present pronounced connective tissue defects, including congenital central diaphragmatic hernia, membranous ventricular septal defect, and osteopenia. We recently hypothesized that the phenotype observed in SLIT3-deficient mice may be tied to abnormalities in fibrillar collagen-rich connective tissue. Further research by our group indicates that both SLIT3 and its primary receptor, ROBO1, are expressed in fibrillar collagen-producing cells across various nonneural tissues. Global and constitutive SLIT3 deficiency not only reduces the synthesis and content of fibrillar collagen in various organs but also alleviates pressure overload-induced fibrosis in both the left and right ventricles. This review delves into the known phenotypes of SLIT3 mutants and the debated role of SLIT3 in vasculature and bone. Present evidence hints at SLIT3 acting as an autocrine regulator of fibrillar collagen synthesis, suggesting it as a potential antifibrotic treatment. However, the precise pathway and mechanisms through which SLIT3 regulates fibrillar collagen synthesis remain uncertain, presenting an intriguing avenue for future research.
Collapse
Affiliation(s)
- Lianghui Gong
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Ming-Sing Si
- Division of Cardiac Surgery, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| |
Collapse
|
2
|
Hojo M, Maeno A, Sakamoto Y, Yamamoto Y, Taquahashi Y, Hirose A, Suzuki J, Inomata A, Nakae D. Time-Course of Transcriptomic Change in the Lungs of F344 Rats Repeatedly Exposed to a Multiwalled Carbon Nanotube in a 2-Year Test. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2105. [PMID: 37513116 PMCID: PMC10383707 DOI: 10.3390/nano13142105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Despite intensive toxicological studies of carbon nanotubes (CNTs) over the last two decades, only a few studies have demonstrated their pulmonary carcinogenicities in chronic animal experiments, and the underlying molecular mechanisms are still unclear. To obtain molecular insights into CNT-induced lung carcinogenicity, we performed a transcriptomic analysis using a set of lung tissues collected from rats in a 2-year study, in which lung tumors were induced by repeated intratracheal instillations of a multiwalled carbon nanotube, MWNT-7. The RNA-seq-based transcriptome identified a large number of significantly differentially expressed genes at Year 0.5, Year 1, and Year 2. Ingenuity Pathway Analysis revealed that macrophage-elicited signaling pathways such as phagocytosis, acute phase response, and Toll-like receptor signaling were activated throughout the experimental period. At Year 2, cancer-related pathways including ERBB signaling and some axonal guidance signaling pathways such as EphB4 signaling were perturbed. qRT-PCR and immunohistochemistry indicated that several key molecules such as Osteopontin/Spp1, Hmox1, Mmp12, and ERBB2 were markedly altered and/or localized in the preneoplastic lesions, suggesting their participation in the induction of lung cancer. Our findings support a scenario of inflammation-induced carcinogenesis and contribute to a better understanding of the molecular mechanism of MWCNT carcinogenicity.
Collapse
Affiliation(s)
- Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan, 1-4-25 Koraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara 290-0193, Chiba, Japan
| |
Collapse
|
3
|
Tang L, Liu C, Rosenberger P. Platelet formation and activation are influenced by neuronal guidance proteins. Front Immunol 2023; 14:1206906. [PMID: 37398659 PMCID: PMC10310924 DOI: 10.3389/fimmu.2023.1206906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Platelets are anucleate blood cells derived from megakaryocytes. They link the fundamental functions of hemostasis, inflammation and host defense. They undergo intracellular calcium flux, negatively charged phospholipid translocation, granule release and shape change to adhere to collagen, fibrin and each other, forming aggregates, which are key to several of their functions. In all these dynamic processes, the cytoskeleton plays a crucial role. Neuronal guidance proteins (NGPs) form attractive and repulsive signals to drive neuronal axon navigation and thus refine neuronal circuits. By binding to their target receptors, NGPs rearrange the cytoskeleton to mediate neuron motility. In recent decades, evidence has indicated that NGPs perform important immunomodulatory functions and influence platelet function. In this review, we highlight the roles of NGPs in platelet formation and activation.
Collapse
|
4
|
Basha S, Jin-Smith B, Sun C, Pi L. The SLIT/ROBO Pathway in Liver Fibrosis and Cancer. Biomolecules 2023; 13:biom13050785. [PMID: 37238655 DOI: 10.3390/biom13050785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis is a common outcome of most chronic liver insults/injuries that can develop into an irreversible process of cirrhosis and, eventually, liver cancer. In recent years, there has been significant progress in basic and clinical research on liver cancer, leading to the identification of various signaling pathways involved in tumorigenesis and disease progression. Slit glycoprotein (SLIT)1, SLIT2, and SLIT3 are secreted members of a protein family that accelerate positional interactions between cells and their environment during development. These proteins signal through Roundabout receptor (ROBO) receptors (ROBO1, ROBO2, ROBO3, and ROBO4) to achieve their cellular effects. The SLIT and ROBO signaling pathway acts as a neural targeting factor regulating axon guidance, neuronal migration, and axonal remnants in the nervous system. Recent findings suggest that various tumor cells differ in SLIT/ROBO signaling levels and show varying degrees of expression patterns during tumor angiogenesis, cell invasion, metastasis, and infiltration. Emerging roles of the SLIT and ROBO axon-guidance molecules have been discovered in liver fibrosis and cancer development. Herein, we examined the expression patterns of SLIT and ROBO proteins in normal adult livers and two types of liver cancers: hepatocellular carcinoma and cholangiocarcinoma. This review also summarizes the potential therapeutics of this pathway for anti-fibrosis and anti-cancer drug development.
Collapse
Affiliation(s)
- Sreenivasulu Basha
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Brady Jin-Smith
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Chunbao Sun
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Liya Pi
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
5
|
Yamanaka M, Hayashi M, Sonohara F, Yamada S, Tanaka H, Sakai A, Mii S, Kobayashi D, Kurimoto K, Tanaka N, Inokawa Y, Takami H, Hattori N, Kanda M, Tanaka C, Nakayama G, Koike M, Kodera Y. Downregulation of ROBO4 in Pancreatic Cancer Serves as a Biomarker of Poor Prognosis and Indicates Increased Cell Motility and Proliferation Through Activation of MMP-9. Ann Surg Oncol 2022; 29:7180-7189. [PMID: 35726111 DOI: 10.1245/s10434-022-12039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/30/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND The axon guidance gene family, SLIT/ROBO pathway, controls neural network formation, which correlates with the development of several cancers. METHODS We found through analysis of the public database that ROBO4, one of the axon guidance molecules among the SLIT/ROBO family, is significantly downregulated in primary pancreatic cancer tissues compared with adjacent normal tissues. We carried out transfection experiments using three pancreatic cancer cell lines (MiaPaCa-2, BxPC-3, and SW1990) and one pancreatic duct epithelial cell line (HPDE6c7). A total of 51 clinical samples were then examined by immunohistochemical staining to find an association between ROBO4 expression at the protein level, clinical characteristics, and surgical outcomes. RESULTS ROBO4 overexpression suppressed the invasion and migration abilities in MiaPaCa-2 and BxPC-3, while ROBO4 siRNA transfection to SW1990 and HPDE6c7 enhanced those activities. PCR-based profiling detected MMP-9 as a candidate downstream target of ROBO4, which was validated by decreased MMP-9 activity after the ROBO4 overexpression assay. High ROBO4 expression clinical samples had significantly better overall survival rather than low ROBO4 cases (P = 0.048). CONCLUSION These findings suggest that decreased ROBO4 expression activates malignant phenotypes in cancer cells and is correlated with poor survival outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Masaya Yamanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Fuminori Sonohara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Sakai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daigo Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kurimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobutake Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norifumi Hattori
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Khalaj K, Figueira RL, Antounians L, Gandhi S, Wales M, Montalva L, Biouss G, Zani A. Treatment with Amniotic Fluid Stem Cell Extracellular Vesicles Promotes Fetal Lung Branching and Cell Differentiation at Canalicular and Saccular Stages in Experimental Pulmonary Hypoplasia Secondary to Congenital Diaphragmatic Hernia. Stem Cells Transl Med 2022; 11:1089-1102. [PMID: 36103370 PMCID: PMC9585953 DOI: 10.1093/stcltm/szac063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by impaired branching morphogenesis and differentiation. We have previously demonstrated that administration of extracellular vesicles derived from rat amniotic fluid stem cells (AFSC-EVs) rescues development of hypoplastic lungs at the pseudoglandular and alveolar stages in rodent models of CDH. Herein, we tested whether AFSC-EVs exert their regenerative effects at the canalicular and saccular stages, as these are translationally relevant for clinical intervention. To induce fetal pulmonary hypoplasia, we gavaged rat dams with nitrofen at embryonic day 9.5 and demonstrated that nitrofen-exposed lungs had impaired branching morphogenesis, dysregulated signaling pathways relevant to lung development (FGF10/FGFR2, ROBO/SLIT, Ephrin, Neuropilin 1, β-catenin) and impaired epithelial and mesenchymal cell marker expression at both stages. AFSC-EVs administered to nitrofen-exposed lung explants rescued airspace density and increased the expression levels of key factors responsible for branching morphogenesis. Moreover, AFSC-EVs rescued the expression of alveolar type 1 and 2 cell markers at both canalicular and saccular stages and restored markers of club, ciliated epithelial, and pulmonary neuroendocrine cells at the saccular stage. AFSC-EV-treated lungs also had restored markers of lipofibroblasts and PDGFRA+ cells to control levels at both stages. EV tracking showed uptake of AFSC-EV RNA cargo throughout the fetal lung and an mRNA-miRNA network analysis identified that several miRNAs responsible for regulating lung development processes were contained in the AFSC-EV cargo. These findings suggest that AFSC-EV-based therapies hold potential for restoring fetal lung growth and maturation in babies with pulmonary hypoplasia secondary to CDH.
Collapse
Affiliation(s)
- Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Sree Gandhi
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Matthew Wales
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - George Biouss
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children , Toronto, ON , Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children , Toronto, ON , Canada
- Department of Surgery, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
7
|
Ahirwar DK, Peng B, Charan M, Misri S, Mishra S, Kaul K, Sassi S, Gadepalli VS, Siddiqui J, Miles WO, Ganju RK. Slit2/Robo1 signaling inhibits small-cell lung cancer by targeting β-catenin signaling in tumor cells and macrophages. Mol Oncol 2022; 17:839-856. [PMID: 35838343 PMCID: PMC10158774 DOI: 10.1002/1878-0261.13289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with poor patient prognosis. However, the mechanisms that regulate SCLC progression and metastasis remain undefined. Here, we show that the expression of the slit guidance ligand 2 (SLIT2) tumor suppressor gene is reduced in SCLC tumors relative to adjacent normal tissue. In addition, the expression of the SLIT2 receptor, roundabout guidance receptor 1 (ROBO1), is upregulated. We find a positive association between SLIT2 expression and the Yes1 associated transcriptional regulator (YAP1)-expressing SCLC subtype (SCLC-Y), which shows a better prognosis. Using genetically engineered SCLC cells, adenovirus gene therapy, and preclinical xenograft models, we show that SLIT2 overexpression or the deletion of ROBO1 restricts tumor growth in vitro and in vivo. Mechanistic studies revealed significant inhibition of myeloid-derived suppressor cells (MDSCs) and M2-like tumor-associated macrophages (TAMs) in the SCLC tumors. In addition, SLIT2 enhances M1-like and phagocytic macrophages. Molecular analysis showed that ROBO1 knockout or SLIT2 overexpression suppresses the transforming growth factor beta 1 (TGF-β1)/β-catenin signaling pathway in both tumor cells and macrophages. Overall, we find that SLIT2 and ROBO1 have contrasting effects on SCLC tumors. SLIT2 suppresses, whereas ROBO1 promotes, SCLC growth by regulating the Tgf-β1/glycogen synthase kinase-3 beta (GSK3)/β-catenin signaling pathway in tumor cells and TAMs. These studies indicate that SLIT2 could be used as a novel therapeutic agent against aggressive SCLC.
Collapse
Affiliation(s)
- Dinesh K Ahirwar
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Bo Peng
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Manish Charan
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Swati Misri
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sanjay Mishra
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kirti Kaul
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Salha Sassi
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Jalal Siddiqui
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Wayne O Miles
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Ramesh K Ganju
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Hellenthal KEM, Brabenec L, Wagner NM. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells 2022; 11:cells11121935. [PMID: 35741064 PMCID: PMC9221661 DOI: 10.3390/cells11121935] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation can be triggered by infection, surgery, trauma or burns. During systemic inflammation, an overshooting immune response induces tissue damage resulting in organ dysfunction and mortality. Endothelial cells make up the inner lining of all blood vessels and are critically involved in maintaining organ integrity by regulating tissue perfusion. Permeability of the endothelial monolayer is strictly controlled and highly organ-specific, forming continuous, fenestrated and discontinuous capillaries that orchestrate the extravasation of fluids, proteins and solutes to maintain organ homeostasis. In the physiological state, the endothelial barrier is maintained by the glycocalyx, extracellular matrix and intercellular junctions including adherens and tight junctions. As endothelial cells are constantly sensing and responding to the extracellular environment, their activation by inflammatory stimuli promotes a loss of endothelial barrier function, which has been identified as a hallmark of systemic inflammation, leading to tissue edema formation and hypotension and thus, is a key contributor to lethal outcomes. In this review, we provide a comprehensive summary of the major players, such as the angiopoietin-Tie2 signaling axis, adrenomedullin and vascular endothelial (VE-) cadherin, that substantially contribute to the regulation and dysregulation of endothelial permeability during systemic inflammation and elucidate treatment strategies targeting the preservation of vascular integrity.
Collapse
|
9
|
Friedmacher F, Rolle U, Puri P. Genetically Modified Mouse Models of Congenital Diaphragmatic Hernia: Opportunities and Limitations for Studying Altered Lung Development. Front Pediatr 2022; 10:867307. [PMID: 35633948 PMCID: PMC9136148 DOI: 10.3389/fped.2022.867307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth defect, characterized by an abnormal opening in the primordial diaphragm that interferes with normal lung development. As a result, CDH is accompanied by immature and hypoplastic lungs, being the leading cause of morbidity and mortality in patients with this condition. In recent decades, various animal models have contributed novel insights into the pathogenic mechanisms underlying CDH and associated pulmonary hypoplasia. In particular, the generation of genetically modified mouse models, which show both diaphragm and lung abnormalities, has resulted in the discovery of multiple genes and signaling pathways involved in the pathogenesis of CDH. This article aims to offer an up-to-date overview on CDH-implicated transcription factors, molecules regulating cell migration and signal transduction as well as components contributing to the formation of extracellular matrix, whilst also discussing the significance of these genetic models for studying altered lung development with regard to the human situation.
Collapse
Affiliation(s)
- Florian Friedmacher
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Rolle
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Prem Puri
- Beacon Hospital, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Hernandez-Pacheco N, Gorenjak M, Li J, Repnik K, Vijverberg SJ, Berce V, Jorgensen A, Karimi L, Schieck M, Samedy-Bates LA, Tavendale R, Villar J, Mukhopadhyay S, Pirmohamed M, Verhamme KMC, Kabesch M, Hawcutt DB, Turner S, Palmer CN, Tantisira KG, Burchard EG, Maitland-van der Zee AH, Flores C, Potočnik U, Pino-Yanes M. Identification of ROBO2 as a Potential Locus Associated with Inhaled Corticosteroid Response in Childhood Asthma. J Pers Med 2021; 11:jpm11080733. [PMID: 34442380 PMCID: PMC8399629 DOI: 10.3390/jpm11080733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled corticosteroids (ICS) are the most common asthma controller medication. An important contribution of genetic factors in ICS response has been evidenced. Here, we aimed to identify novel genetic markers involved in ICS response in asthma. A genome-wide association study (GWAS) of the change in lung function after 6 weeks of ICS treatment was performed in 166 asthma patients from the SLOVENIA study. Patients with an improvement in lung function ≥8% were considered as ICS responders. Suggestively associated variants (p-value ≤ 5 × 10−6) were evaluated in an independent study (n = 175). Validation of the association with asthma exacerbations despite ICS use was attempted in European (n = 2681) and admixed (n = 1347) populations. Variants previously associated with ICS response were also assessed for replication. As a result, the SNP rs1166980 from the ROBO2 gene was suggestively associated with the change in lung function (OR for G allele: 7.01, 95% CI: 3.29–14.93, p = 4.61 × 10−7), although this was not validated in CAMP. ROBO2 showed gene-level evidence of replication with asthma exacerbations despite ICS use in Europeans (minimum p-value = 1.44 × 10−5), but not in admixed individuals. The association of PDE10A-T with ICS response described by a previous study was validated. This study suggests that ROBO2 could be a potential novel locus for ICS response in Europeans.
Collapse
Affiliation(s)
- Natalia Hernandez-Pacheco
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Mario Gorenjak
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
| | - Jiang Li
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
| | - Katja Repnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Vojko Berce
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Department of Pediatrics, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia
| | - Andrea Jorgensen
- Department of Biostatistics, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| | - Leila Karimi
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Maximilian Schieck
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
- Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Lesly-Anne Samedy-Bates
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Roger Tavendale
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Multidisciplinary Organ Dysfunction Evaluation Research Network, Research Unit, Hospital Universitario Dr. Negrín, Calle Barranco de la Ballena s/n, 35019 Las Palmas de Gran Canaria, Spain
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St Michael’s Hospital, 30 Bond St, Toronto, ON M5B 1W8, Canada
| | - Somnath Mukhopadhyay
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
- Academic Department of Paediatrics, Brighton and Sussex Medical School, Royal Alexandra Children’s Hospital, 94 N-S Rd, Falmer, Brighton BN2 5BE, UK
| | - Munir Pirmohamed
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, 200 London Rd, Liverpool L3 9TA, UK;
| | - Katia M. C. Verhamme
- Department of Medical Informatics, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (L.K.); (K.M.C.V.)
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children’s Hospital Regensburg (KUNO), Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (M.S.); (M.K.)
| | - Daniel B. Hawcutt
- Department of Women’s and Children’s Health, University of Liverpool, Liverpool L69 3BX, UK;
- Alder Hey Children’s Hospital, E Prescot Rd, Liverpool L14 5AB, UK
| | - Steve Turner
- Child Health, University of Aberdeen, King’s College, Aberdeen AB24 3FX, UK;
| | - Colin N. Palmer
- Population Pharmacogenetics Group, Biomedical Research Institute, Ninewells Hospital, and Medical School, University of Dundee, Dundee DD1 9SY, UK; (R.T.); (S.M.); (C.N.P.)
| | - Kelan G. Tantisira
- The Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA; (J.L.); (K.G.T.)
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| | - Esteban G. Burchard
- Department of Medicine, University of California, San Francisco, CA 94143, USA; (L.-A.S.-B.); (E.G.B.)
- Department of Bioengineering and Therapeutic Sciences, University of California, 533 Parnassus Ave, San Francisco, CA 94143, USA
| | - Anke H. Maitland-van der Zee
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (S.J.V.); (A.H.M.-v.d.Z.)
- Division of Pharmacoepidemiology and Clinical Pharmacology, Faculty of Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
- Department of Pediatric Respiratory Medicine and Allergy, Emma’s Children Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Carlos Flores
- Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Carretera General del Rosario 145, 38010 Santa Cruz de Tenerife, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Polígono Industrial de Granadilla, 38600 Granadilla, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia; (M.G.); (K.R.); (V.B.)
- Laboratory for Biochemistry, Molecular Biology, and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Correspondence: (N.H.-P.); (U.P.); Tel.: +46-0702983315 (N.H.-P.); +386-22345854 (U.P.)
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez s/n, Faculty of Science, Apartado 456, 38200 San Cristóbal de La Laguna, Spain;
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Avenida de Monforte de Lemos, 5, 28029 Madrid, Spain;
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Faculty of Health Sciences, Apartado 456, 38200 San Cristóbal de La Laguna, Spain
| |
Collapse
|
11
|
Sengupta D, Bhattacharya G, Ganguli S, Sengupta M. Structural insights and evaluation of the potential impact of missense variants on the interactions of SLIT2 with ROBO1/4 in cancer progression. Sci Rep 2020; 10:21909. [PMID: 33318575 PMCID: PMC7736846 DOI: 10.1038/s41598-020-78882-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
The cognate interaction of ROBO1/4 with its ligand SLIT2 is known to be involved in lung cancer progression. However, the precise role of genetic variants, disrupting the molecular interactions is less understood. All cancer-associated missense variants of ROBO1/4 and SLIT2 from COSMIC were screened for their pathogenicity. Homology modelling was done in Modeller 9.17, followed by molecular simulation in GROMACS. Rigid docking was performed for the cognate partners in PatchDock with refinement in HADDOCK server. Post-docking alterations in conformational, stoichiometric, as well as structural parameters, were assessed. The disruptive variants were ranked using a weighted scoring scheme. In silico prioritisation of 825 variants revealed 379 to be potentially pathogenic out of which, about 12% of the variants, i.e. ROBO1 (14), ROBO4 (8), and SLIT2 (23) altered the cognate docking. Six variants of ROBO1 and 5 variants of ROBO4 were identified as "high disruptors" of interactions with SLIT2 wild type. Likewise, 17 and 13 variants of SLIT2 were found to be "high disruptors" of its interaction with ROBO1 and ROBO4, respectively. Our study is the first report on the impact of cancer-associated missense variants on ROBO1/4 and SLIT2 interactions that might be the drivers of lung cancer progression.
Collapse
Affiliation(s)
- Debmalya Sengupta
- Department of Genetics, University of Calcutta, University College of Science (UCSTA), 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | - Gairika Bhattacharya
- Department of Genetics, University of Calcutta, University College of Science (UCSTA), 35, Ballygunge Circular Road, Kolkata, 700 019, India
- Cactus Communications, Mumbai, India
| | - Sayak Ganguli
- Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700 016, India.
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, University College of Science (UCSTA), 35, Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
12
|
Srivastava S, Pang KM, Iida M, Nelson MS, Liu J, Nam A, Wang J, Mambetsariev I, Pillai R, Mohanty A, McDaniel N, Behal A, Kulkarni P, Wheeler DL, Salgia R. Activation of EPHA2-ROBO1 Heterodimer by SLIT2 Attenuates Non-canonical Signaling and Proliferation in Squamous Cell Carcinomas. iScience 2020; 23:101692. [PMID: 33196021 PMCID: PMC7644594 DOI: 10.1016/j.isci.2020.101692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022] Open
Abstract
The tyrosine kinase receptor ephrin receptor A2 (EPHA2) is overexpressed in lung (LSCC) and head and neck (HNSCC) squamous cell carcinomas. Although EPHA2 can inhibit tumorigenesis in a ligand-dependent fashion via phosphorylation of Y588 and Y772, it can promote tumorigenesis in a ligand-independent manner via phosphorylation of S897. Here, we show that EPHA2 and Roundabout Guidance Receptor 1 (ROBO1) interact to form a functional heterodimer. Furthermore, we show that the ROBO1 ligand Slit Guidance Ligand 2 (SLIT2) and ensartinib, an inhibitor of EPHA2, can attenuate growth of HNSCC cells and act synergistically in LSCC cells. Our results suggest that patients with LSCC and HNSCC may be stratified and treated based on their EPHA2 and ROBO1 expression patterns. Although ~73% of patients with LSCC could benefit from SLIT2+ensartinib treatment, ~41% of patients with HNSCC could be treated with either SLIT2 or ensartinib. Thus, EPHA2 and ROBO1 represent potential LSCC and HNSCC theranostics.
Collapse
Affiliation(s)
- Saumya Srivastava
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ka Ming Pang
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Michael S. Nelson
- Light Microscopy Core, City of Hope National Medical Center, Duarte, CA, USA
| | - Jiayi Liu
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Arin Nam
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Jiale Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Raju Pillai
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Atish Mohanty
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Nellie McDaniel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Amita Behal
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, Madison, WI 53705-2275, USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Gonçalves AN, Correia-Pinto J, Nogueira-Silva C. ROBO2 signaling in lung development regulates SOX2/SOX9 balance, branching morphogenesis and is dysregulated in nitrofen-induced congenital diaphragmatic hernia. Respir Res 2020; 21:302. [PMID: 33208157 PMCID: PMC7672875 DOI: 10.1186/s12931-020-01568-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
Background Characterized by abnormal lung growth or maturation, congenital diaphragmatic hernia (CDH) affects 1:3000 live births. Cellular studies report proximal (SOX2+) and distal (SOX9+) progenitor cells as key modulators of branching morphogenesis and epithelial differentiation, whereas transcriptome studies demonstrate ROBO/SLIT as potential therapeutic targets for diaphragm defect repair in CDH. In this study, we tested the hypothesis that (a) experimental-CDH could changes the expression profile of ROBO1, ROBO2, SOX2 and SOX9; and (b) ROBO1 or ROBO2 receptors are regulators of branching morphogenesis and SOX2/SOX9 balance. Methods The expression profile for receptors and epithelial progenitor markers were assessed by Western blot and immunohistochemistry in a nitrofen-induced CDH rat model. Immunohistochemistry signals by pulmonary structure were also quantified from embryonic-to-saccular stages in normal and hypoplastic lungs. Ex vivo lung explant cultures were harvested at E13.5, cultures during 4 days and treated with increasing doses of recombinant rat ROBO1 or human ROBO2 Fc Chimera proteins for ROBO1 and ROBO2 inhibition, respectively. The lung explants were analyzed morphometrically and ROBO1, ROBO2, SOX2, SOX9, BMP4, and β-Catenin were quantified by Western blot. Results Experimental-CDH induces distinct expression profiles by pulmonary structure and developmental stage for both receptors (ROBO1 and ROBO2) and epithelial progenitor markers (SOX2 and SOX9) that provide evidence of the impairment of proximodistal patterning in experimental-CDH. Ex vivo functional studies showed unchanged branching morphogenesis after ROBO1 inhibition; increased fetal lung growth after ROBO2 inhibition in a mechanism-dependent on SOX2 depletion and overexpression of SOX9, non-phospho β-Catenin, and BMP4. Conclusions These studies provided evidence of receptors and epithelial progenitor cells which are severely affected by CDH-induction from embryonic-to-saccular stages and established the ROBO2 inhibition as promoter of branching morphogenesis through SOX2/SOX9 balance.
Collapse
Affiliation(s)
- Ana N Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
| | - Cristina Nogueira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Gualtar, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal.
| |
Collapse
|
14
|
Huang Y, Xie Y, Abel PW, Wei P, Plowman J, Toews ML, Strah H, Siddique A, Bailey KL, Tu Y. TGF-β1-induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression. Biochem Pharmacol 2020; 180:114172. [PMID: 32712053 PMCID: PMC8742596 DOI: 10.1016/j.bcp.2020.114172] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with irreversible loss of lung tissue and function. Myofibroblasts in the lung are key cellular mediators of IPF progression. Transforming growth factor (TGF)-β1, a major profibrogenic cytokine, induces pulmonary myofibroblast differentiation, and emerging evidence has established the importance of microRNAs (miRs) in the development of IPF. The objective of this study was to define the pro-fibrotic roles and mechanisms of miRs in TGF-β1-induced pulmonary myofibroblast differentiation. Using RNA sequencing, we identified miR-424 as an important TGF-β1-induced miR in human lung fibroblasts (HLFs). Quantitative RT-PCR confirmed that miR-424 expression was increased by 2.6-fold in HLFs in response to TGF-β1 and was 1.7-fold higher in human fibrotic lung tissues as compared to non-fibrotic lung tissues. TGF-β1-induced upregulation of miR-424 was blocked by the Smad3 inhibitor SIS3, suggesting the involvement of this canonical TGF-β1 signaling pathway. Transfection of a miR-424 hairpin inhibitor into HLFs reduced TGF-β1-induced expression of classic myofibroblast differentiation markers including ɑ-smooth muscle actin (ɑ-SMA) and connective tissue growth factor (CTGF), whereas a miR-424 mimic significantly enhanced TGF-β1-induced myofibroblast differentiation. In addition, TGF-β1 induced Smad3 phosphorylation in HLFs, and this response was reduced by the miR-424 inhibitor. In silico analysis identified Slit2, a protein that inhibits TGF-β1 profibrogenic signaling, as a putative target of regulation by miR-424. Slit2 is less highly expressed in human fibrotic lung tissues than in non-fibrotic lung tissues, and knockdown of Slit2 by its siRNA enhanced TGF-β1-induced HLF differentiation. Overexpression of a miR-424 mimic down-regulated expression of Slit2 but not the Slit2 major receptor ROBO1 in HLFs. Luciferase reporter assays showed that the miR-424 mimic represses Slit2 3' untranslated region (3'-UTR) reporter activity, and mutations at the seeding regions in the 3'-UTR of Slit2 abolish this inhibition. Together, these data demonstrate a pro-fibrotic role of miR-424 in TGF-β1-induced HLF differentiation. It functions as a positive feed-back regulator of the TGF-β1 signaling pathway by reducing expression of the negative regulator Slit2. Thus, targeting miR-424 may provide a new therapeutic strategy to prevent myofibroblast differentiation and IPF progression.
Collapse
Affiliation(s)
- Yapei Huang
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yan Xie
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Peter W Abel
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Peng Wei
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Jocelyn Plowman
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Myron L Toews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Heather Strah
- Department of Internal Medicine, Pulmonary Critical Care, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aleem Siddique
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kristina L Bailey
- Department of Internal Medicine, Pulmonary Critical Care, University of Nebraska Medical Center, Omaha, NE 68198, USA; VA Nebraska-Western Iowa Health Care Center, Omaha, NE 68105, USA.
| | - Yaping Tu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
15
|
Bhosle VK, Mukherjee T, Huang YW, Patel S, Pang BWF, Liu GY, Glogauer M, Wu JY, Philpott DJ, Grinstein S, Robinson LA. SLIT2/ROBO1-signaling inhibits macropinocytosis by opposing cortical cytoskeletal remodeling. Nat Commun 2020; 11:4112. [PMID: 32807784 PMCID: PMC7431850 DOI: 10.1038/s41467-020-17651-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/08/2020] [Indexed: 01/06/2023] Open
Abstract
Macropinocytosis is essential for myeloid cells to survey their environment and for growth of RAS-transformed cancer cells. Several growth factors and inflammatory stimuli are known to induce macropinocytosis, but its endogenous inhibitors have remained elusive. Stimulation of Roundabout receptors by Slit ligands inhibits directional migration of many cell types, including immune cells and cancer cells. We report that SLIT2 inhibits macropinocytosis in vitro and in vivo by inducing cytoskeletal changes in macrophages. In mice, SLIT2 attenuates the uptake of muramyl dipeptide, thereby preventing NOD2-dependent activation of NF-κB and consequent secretion of pro-inflammatory chemokine, CXCL1. Conversely, blocking the action of endogenous SLIT2 enhances CXCL1 secretion. SLIT2 also inhibits macropinocytosis in RAS-transformed cancer cells, thereby decreasing their survival in nutrient-deficient conditions which resemble tumor microenvironment. Our results identify SLIT2 as a physiological inhibitor of macropinocytosis and challenge the conventional notion that signals that enhance macropinocytosis negatively regulate cell migration, and vice versa.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Tapas Mukherjee
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Yi-Wei Huang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Sajedabanu Patel
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Bo Wen Frank Pang
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- BenchSci, Suite 201, 559 College Street, Toronto, ON, M6G 1A9, Canada
| | - Guang-Ying Liu
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, 101 Elm Street, Toronto, ON, M5G 2L3, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, University Health Network, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Centre for Advanced Dental Research and Care, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
| | - Jane Y Wu
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 290 Victoria Street, Toronto, ON, M5C 1N8, Canada
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Division of Nephrology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
16
|
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect that is associated with significant morbidity and mortality, especially when associated with additional congenital anomalies. Both environmental and genetic factors are thought to contribute to CDH. The genetic contributions to CDH are highly heterogeneous and incompletely defined. No one genetic cause accounts for more than 1-2% of CDH cases. In this review, we summarize the known genetic causes of CDH from chromosomal anomalies to individual genes. Both de novo and inherited variants contribute to CDH. Genes causing CDH are increasingly identified from animal models and from genomic strategies including exome and genome sequencing in humans. CDH genes are often transcription factors, genes involved in cell migration or the components of extracellular matrix. We provide clinical genetic testing strategies in the clinical evaluation that can identify a genetic cause in up to ∼30% of patients with non-isolated CDH and can be useful to refine prognosis, identify associated medical and neurodevelopmental issues to address, and inform family planning options.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Rebecca R. Hernan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
17
|
Jiang Z, Liang G, Xiao Y, Qin T, Chen X, Wu E, Ma Q, Wang Z. Targeting the SLIT/ROBO pathway in tumor progression: molecular mechanisms and therapeutic perspectives. Ther Adv Med Oncol 2019; 11:1758835919855238. [PMID: 31217826 PMCID: PMC6557020 DOI: 10.1177/1758835919855238] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
The SLITs (SLIT1, SLIT2, and SLIT3) are a family of secreted proteins that mediate positional interactions between cells and their environment during development by signaling through ROBO receptors (ROBO1, ROBO2, ROBO3, and ROBO4). The SLIT/ROBO signaling pathway has been shown to participate in axonal repulsion, axon guidance, and neuronal migration in the nervous system and the formation of the vascular system. However, the role of the SLIT/ROBO pathway has not been thoroughly clarified in tumor development. The SLIT/ROBO pathway can produce both beneficial and detrimental effects in the growth of malignant cells. It has been confirmed that SLIT/ROBO play contradictory roles in tumorigenesis. Here, we discuss the tumor promotion and tumor suppression roles of the SLIT/ROBO pathway in tumor growth, angiogenesis, migration, and the tumor microenvironment. Understanding these roles will help us develop more effective cancer therapies.
Collapse
Affiliation(s)
- Zhengdong Jiang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Liang
- Department of Hepatobiliary Surgery, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tao Qin
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Chen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Erxi Wu
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott and White Health, Temple, TX, USA
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
18
|
Low Expression and Promoter Hypermethylation of the Tumour Suppressor SLIT2, are Associated with Adverse Patient Outcomes in Diffuse Large B Cell Lymphoma. Pathol Oncol Res 2019; 25:1223-1231. [DOI: 10.1007/s12253-019-00600-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022]
|
19
|
Jiang S, Hamakubo T, Mitsui K, Yagami R, Fujiyoshi Y, Ajioka Y, Naito M. Roundabout1 distribution in neoplastic and non-neoplastic diseases with a focus on neoangiogenesis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5755-5764. [PMID: 31949661 PMCID: PMC6963095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
Slit and its receptor Roundabout (Robo) are important for neuronal development and neo-angiogenesis in various neoplastic and non-neoplastic diseases. Angiogenesis is a key factor for tumor growth and other angiogenesis-dependent diseases including rheumatoid arthritis, and chronic inflammation Recently, over-expression of Slit/Robo1 family proteins has been reported in several types of malignancy. We explored the expression of Robo1 in neoplastic and non-neoplastic diseases with a focus on newly formed blood vessels. Three hundred and thirty four cases of malignancy and forty five cases of angiogenic diseases were recruited. Using the A7241A Robo1 monoclonal antibody, Robo1 expression was validated by immunohistochemistry. Among malignant cases, endothelial cells of newly formed blood vessels in 283 tumors (84.7%) exhibited positive staining with above antibody. In non-neoplastic diseases, newly formed blood vessels were positive in 70.6% (12/17) cases of chronic inflammation, 100% (18/18) cases of pyogenic granuloma and 83.3% (5/6) cases of rheumatoid arthritis. Recently, newly anti-angiogenesis therapy is drawing attention as effective therapy for angiogenesis-dependent diseases without regard to their neoplastic or non-neoplastic nature. Our results showed a large number of neoplastic and non-neoplastic diseases showed positive staining for ROBO1 by immunohistochemistry. Thus, Robo1 targeted therapy may create new strategies for the treatment of angiogenic-dependent diseases through the suppression of angiogenesis. Further, besides the majority of liver cell carcinomas (23/28, 82.1%), Robo1 was positive in 100% of the squamous cell carcinoma of the esophagus, uterine cervix, lung and skin. Thus, immunohistochemical evaluation of Robo1 may be useful as an additional diagnostic tool for liver cell carcinomas and squamous cell carcinomas.
Collapse
Affiliation(s)
- Shuying Jiang
- Department of Orthoptist, Niigata College of Medical TechnologyKamishinnsakae-machi, Nishi-ku, Niigata, Niigata-Pref, Japan
- Division of Molecular and Diagnostic Pathology Graduate School of Medical and Dental Sciences, Niigata UniversityAsahimachi-Doori, Chuo-ku, Niigata, Niigata-Pref, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of TokyoKomaba, Meguro-ku, Tokyo, Japan
| | - Kenichi Mitsui
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of TokyoKomaba, Meguro-ku, Tokyo, Japan
| | - Ren Yagami
- Aoyama Medical lmt. Sales Promotion Dept. Internal AffairsJapan
| | - Yukio Fujiyoshi
- Department of Anatomic Pathology and Molecular Diagnosis, Nagoya City University Graduate School of Medical Sciences and Medical SchoolMizuho-cho, Mizuho-ku, Nagoya, Japan
| | - Yoichi Ajioka
- Division of Molecular and Diagnostic Pathology Graduate School of Medical and Dental Sciences, Niigata UniversityAsahimachi-Doori, Chuo-ku, Niigata, Niigata-Pref, Japan
| | - Makoto Naito
- Division of Pathology, Niigata Medical CenterNishi-ku, Niigata, Niigata-Pref, Japan
- Department of Cellular Function, Division of Cellular and Molecular, Pathology, Niigata University Graduate School of Medical and Dental SciencesAsahimachi-Dori, Chuo-ku, Niigata, Niigata-Pref, Japan
| |
Collapse
|
20
|
Beamish IV, Hinck L, Kennedy TE. Making Connections: Guidance Cues and Receptors at Nonneural Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:a029165. [PMID: 28847900 PMCID: PMC6211390 DOI: 10.1101/cshperspect.a029165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The field of axon guidance was revolutionized over the past three decades by the identification of highly conserved families of guidance cues and receptors. These proteins are essential for normal neural development and function, directing cell and axon migration, neuron-glial interactions, and synapse formation and plasticity. Many of these genes are also expressed outside the nervous system in which they influence cell migration, adhesion and proliferation. Because the nervous system develops from neural epithelium, it is perhaps not surprising that these guidance cues have significant nonneural roles in governing the specialized junctional connections between cells in polarized epithelia. The following review addresses roles for ephrins, semaphorins, netrins, slits and their receptors in regulating adherens, tight, and gap junctions in nonneural epithelia and endothelia.
Collapse
Affiliation(s)
- Ian V Beamish
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
21
|
Nguemgo Kouam P, Rezniczek GA, Kochanneck A, Priesch-Grzeszkowiak B, Hero T, Adamietz IA, Bühler H. Robo1 and vimentin regulate radiation-induced motility of human glioblastoma cells. PLoS One 2018; 13:e0198508. [PMID: 29864155 PMCID: PMC5986140 DOI: 10.1371/journal.pone.0198508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/21/2018] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma is a primary brain tumor with a poor prognosis despite of many treatment regimens. Radiotherapy significantly prolongs patient survival and remains the most common treatment. Slit2 and Robo1 are evolutionarily conserved proteins involved in axon guidance, migration, and branching of neuronal cells. New studies have shown that Slit2 and Robo1 could play important roles in leukocyte chemotaxis and glioblastoma cell migration. Therefore, we investigated whether the Slit2/Robo1 complex has an impact on the motility of glioblastoma cells and whether irradiation with therapeutic doses modulates this effect. Our results indicate that photon irradiation increases the migration of glioblastoma cells in vitro. qPCR and immunoblotting experiments in two different glioblastoma cell lines (U-373 MG and U-87 MG) with different malignancy revealed that both Slit2 and Robo1 are significantly lower expressed in the cell populations with the highest motility and that the expression was reduced after irradiation. Overexpression of Robo1 significantly decreased the motility of glioblastoma cells and inhibited the accelerated migration of wild-type cells after irradiation. Immunoblotting analysis of migration-associated proteins (fascin and focal adhesion kinase) and of the epithelial-mesenchymal-transition-related protein vimentin showed that irradiation affected the migration of glioblastoma cells by increasing vimentin expression, which can be reversed by the overexpression of Slit2 and Robo1. Our findings suggest that Robo1 expression might counteract migration and also radiation-induced migration of glioblastoma cells, a process that might be connected to mesenchymal-epithelial transition.
Collapse
Affiliation(s)
- Pascaline Nguemgo Kouam
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Günther A. Rezniczek
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Anja Kochanneck
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Bettina Priesch-Grzeszkowiak
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Thomas Hero
- Department of Radiotherapy and Radio-Oncology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Irenäus A. Adamietz
- Department of Radiotherapy and Radio-Oncology, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| | - Helmut Bühler
- Institute for Molecular Oncology, Radio-Biology and Experimental Radiotherapy, Ruhr-Universität Bochum, Medical Research Center, Marien Hospital Herne, Herne, Germany
| |
Collapse
|
22
|
Zhao Y, Yang JY, Thieker DF, Xu Y, Zong C, Boons GJ, Liu J, Woods RJ, Moremen KW, Amster IJ. A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1153-1165. [PMID: 29520710 PMCID: PMC6004239 DOI: 10.1007/s13361-018-1903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/14/2018] [Accepted: 01/14/2018] [Indexed: 06/10/2023]
Abstract
Roundabout 1 (Robo1) interacts with its receptor Slit to regulate axon guidance, axon branching, and dendritic development in the nervous system and to regulate morphogenesis and many cell functions in the nonneuronal tissues. This interaction is known to be critically regulated by heparan sulfate (HS). Previous studies suggest that HS is required to promote the binding of Robo1 to Slit to form the minimal signaling complex, but the molecular details and the structural requirements of HS for this interaction are still unclear. Here, we describe the application of traveling wave ion mobility spectrometry (TWIMS) to study the conformational details of the Robo1-HS interaction. The results suggest that Robo1 exists in two conformations that differ by their compactness and capability to interact with HS. The results also suggest that the highly flexible interdomain hinge region connecting the Ig1 and Ig2 domains of Robo1 plays an important functional role in promoting the Robo1-Slit interaction. Moreover, variations in the sulfation pattern and size of HS were found to affect its binding affinity and selectivity to interact with different conformations of Robo1. Both MS measurements and CIU experiments show that the Robo1-HS interaction requires the presence of a specific size and pattern of modification of HS. Furthermore, the effect of N-glycosylation on the conformation of Robo1 and its binding modes with HS is reported. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yuejie Zhao
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jeong Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David F Thieker
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yongmei Xu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jian Liu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
San Agustin JT, Klena N, Granath K, Panigrahy A, Stewart E, Devine W, Strittmatter L, Jonassen JA, Liu X, Lo CW, Pazour GJ. Genetic link between renal birth defects and congenital heart disease. Nat Commun 2016; 7:11103. [PMID: 27002738 PMCID: PMC4804176 DOI: 10.1038/ncomms11103] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 12/19/2022] Open
Abstract
Structural birth defects in the kidney and urinary tract are observed in 0.5% of live births and are a major cause of end-stage renal disease, but their genetic aetiology is not well understood. Here we analyse 135 lines of mice identified in large-scale mouse mutagenesis screen and show that 29% of mutations causing congenital heart disease (CHD) also cause renal anomalies. The renal anomalies included duplex and multiplex kidneys, renal agenesis, hydronephrosis and cystic kidney disease. To assess the clinical relevance of these findings, we examined patients with CHD and observed a 30% co-occurrence of renal anomalies of a similar spectrum. Together, these findings demonstrate a common shared genetic aetiology for CHD and renal anomalies, indicating that CHD patients are at increased risk for complications from renal anomalies. This collection of mutant mouse models provides a resource for further studies to elucidate the developmental link between renal anomalies and CHD.
Collapse
Affiliation(s)
- Jovenal T San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213 373 Plantation Street Worcester, Massachusetts 01605, USA
| | - Nikolai Klena
- Department of Developmental Biology, University of Pittsburgh, 8111 Rangos Research Center, 530 45th Street, Pittsburgh, Pennsylvania 15201, USA
| | - Kristi Granath
- Department of Developmental Biology, University of Pittsburgh, 8111 Rangos Research Center, 530 45th Street, Pittsburgh, Pennsylvania 15201, USA
| | - Ashok Panigrahy
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Children's Hospital Drive 45th Street and Penn Avenue Pittsburgh, Pennsylvania 15201, USA
| | - Eileen Stewart
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Children's Hospital Drive 45th Street and Penn Avenue Pittsburgh, Pennsylvania 15201, USA
| | - William Devine
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Children's Hospital Drive 45th Street and Penn Avenue Pittsburgh, Pennsylvania 15201, USA
| | - Lara Strittmatter
- Electron Microscopy Core, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Julie A Jonassen
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh, 8111 Rangos Research Center, 530 45th Street, Pittsburgh, Pennsylvania 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, 8111 Rangos Research Center, 530 45th Street, Pittsburgh, Pennsylvania 15201, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213 373 Plantation Street Worcester, Massachusetts 01605, USA
| |
Collapse
|
24
|
Huang T, Kang W, Cheng ASL, Yu J, To KF. The emerging role of Slit-Robo pathway in gastric and other gastro intestinal cancers. BMC Cancer 2015; 15:950. [PMID: 26674478 PMCID: PMC4682238 DOI: 10.1186/s12885-015-1984-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Due to the high frequency of metastasis, it is still one of the most lethal malignancies in which kinds of signaling pathways are involved in. The Roundabout (ROBO) receptors and their secreted SLIT glycoprotein ligands, which were originally identified as important axon guidance molecules, have implication in the regulation of neurons and glia, leukocytes, and endothelial cells migration. Recent researches also put high emphasis on the important roles of the Slit-Robo pathway in tumorigenesis, cancer progression and metastasis. Herein we provide a comprehensive review on the role of these molecules and their associated signaling pathway in gastric and other gastrointestinal cancers. Improved knowledge of the Slit-Robo signaling pathway in gastric carcinoma will be useful for deep understanding the mechanisms of tumor development and identifying ideal targets of anticancer therapy in gastric carcinoma.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, PR China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, PR China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, PR China.
| |
Collapse
|
25
|
Chaturvedi S, Robinson LA. Slit2-Robo signaling in inflammation and kidney injury. Pediatr Nephrol 2015; 30:561-6. [PMID: 24777535 DOI: 10.1007/s00467-014-2825-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/03/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
Acute kidney injury is an increasingly common global health problem and is associated with severe morbidity and mortality. In addition to facing high mortality rates, the survivors of acute kidney injury are at increased risk of developing chronic kidney disease and end-stage renal disease. Renal ischemia-reperfusion injury (IRI) is the most common cause of acute kidney injury, and results from impaired delivery of oxygen and nutrients to the kidney. Massive leukocyte influx into the post-ischemic kidney is one of the hallmarks of IRI. The recruited leukocytes exacerbate tissue damage and, if uncontrolled, initiate the progressive changes that lead to renal fibrosis and chronic kidney disease. Early on, recruitment and activation of platelets promotes microthrombosis in the injured kidney, further exacerbating kidney damage. The diversity, complexity, and multiplicity of pathways involved in leukocyte recruitment and platelet activation make it extremely challenging to control these processes, and past efforts have met with limited success in human trials. A generalized strategy to inhibit infiltration of inflammatory leukocytes and platelets, thereby reducing inflammation and injury, may prove to be more beneficial. In this review, we summarize recent findings demonstrating that the neuronal guidance cues, Slit and Roundabout (Robo), prevent the migration of multiple leukocyte subsets towards diverse inflammatory chemoattractants, and have potent anti-platelet functions in vitro and in vivo. These properties uniquely position Slit2 as a novel therapeutic that could be used to prevent acute kidney injury associated with IRI.
Collapse
Affiliation(s)
- Swasti Chaturvedi
- Division of Nephrology, Department of Paediatrics, Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
26
|
Maiti GP, Ghosh A, Mondal P, Ghosh S, Chakraborty J, Roy A, Roychowdhury S, Panda CK. Frequent inactivation of SLIT2 and ROBO1 signaling in head and neck lesions: clinical and prognostic implications. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 119:202-12. [PMID: 25465073 DOI: 10.1016/j.oooo.2014.09.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The protein SLIT2 and its receptor ROBO1 regulate different cellular processes, such as proliferation, apoptosis, and migration. In this study our aim is to understand the alterations of these genes during development of head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS First, molecular alterations of the genes were analyzed in 30 dysplastic lesions, 128 primary HNSCC samples, and 1 HNSCC cell line. Then alterations were correlated with mRNA expression (n = 22) and protein expression (n = 29). Finally, the alterations were correlated with different clinicopathologic parameters and clinical outcomes of the patients. RESULTS ROBO1 had a comparatively high frequency of deletion (28.5%-54.2%) from dysplastic lesions and subsequent clinical stages than did SLIT2 (16.6-27%). On the contrary, SLIT2 had a high frequency (56.6%-81.2%) of promoter methylation from dysplastic lesions onward compared with ROBO1 (20%-32.8%). Interestingly, alterations of SLIT2 and ROBO1 were high in dysplastic lesions (80%), followed by comparable frequencies (92.5%-95.3%) in subsequent stages of tumor. Alterations of these genes showed concordance with their mRNA/protein expression and significant association with poor patient outcome. CONCLUSIONS Our data suggest that inactivation of SLIT2 and/or ROBO1 is one of the early events in development of dysplastic lesions of head and neck and has prognostic importance.
Collapse
Affiliation(s)
- Guru Prasad Maiti
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India; Department of Molecular Biology and Biotechnology, University of Kalyani, Nadia, India
| | - Amlan Ghosh
- Department of Biological Science, Presidency University, Kolkata, India
| | - Pinaki Mondal
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Susmita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jayanta Chakraborty
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- North Bengal Medical College, Sushruta Nagar, Darjeeling, West Bengal, India
| | - Susanta Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
27
|
Fibroblasts secrete Slit2 to inhibit fibrocyte differentiation and fibrosis. Proc Natl Acad Sci U S A 2014; 111:18291-6. [PMID: 25489114 DOI: 10.1073/pnas.1417426112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Monocytes leave the blood and enter tissues. In healing wounds and fibrotic lesions, some of the monocytes differentiate into fibroblast-like cells called fibrocytes. In healthy tissues, even though monocytes enter the tissue, for unknown reasons, very few monocytes differentiate into fibrocytes. In this report, we show that fibroblasts from healthy human tissues secrete the neuronal guidance protein Slit2 and that Slit2 inhibits human fibrocyte differentiation. In mice, injections of Slit2 inhibit bleomycin-induced lung fibrosis. In lung tissue from pulmonary fibrosis patients with relatively normal lung function, Slit2 has a widespread distribution whereas, in patients with advanced disease, there is less Slit2 in the fibrotic lesions. These data may explain why fibrocytes are rarely observed in healthy tissues, may suggest that the relative levels of Slit2 present in healthy tissue and at sites of fibrosis may have a significant effect on the decision of monocytes to differentiate into fibrocytes, and may indicate that modulating Slit2 signaling may be useful as a therapeutic for fibrosis.
Collapse
|
28
|
Gołos A, Wierzbowska A. The role of SLIT–ROBO pathway in crucial cell processes during physiological and pathological conditions. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.achaem.2014.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Wen P, Kong R, Liu J, Zhu L, Chen X, Li X, Nie Y, Wu K, Wu JY. USP33, a new player in lung cancer, mediates Slit-Robo signaling. Protein Cell 2014; 5:704-13. [PMID: 24981056 PMCID: PMC4145083 DOI: 10.1007/s13238-014-0070-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022] Open
Abstract
Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role of USP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1 in lung cancer cells, providing a previously unknown mechanism for USP33 function in mediating Slit activity in lung cancer cells. Taken together, USP33 is a new player in lung cancer that regulates Slit-Robo signaling. Our data suggest that USP33 may be a candidate tumor suppressor for lung cancer with potential as a prognostic marker.
Collapse
Affiliation(s)
- Pushuai Wen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, 121001 China
| | - Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaoping Chen
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611 USA
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, 710038 China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, 710032 China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, 710032 China
| | - Jane Y. Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611 USA
| |
Collapse
|
30
|
Abstract
Several lines of evidence exist that axon guidance genes are involved in cancer pathogenesis. Axon guidance genes ROBO1 and ROBO2 are candidate tumor suppressor genes (TSG). The aim of our study was to address whether ROBO1 and ROBO2 expressions are altered in prostate cancers (PCA). In this study, we analyzed ROBO1 and ROBO2 expressions in 107 PCAs. In the immunohistochemistry, loss of ROBO2 expression was identified in 66 % of PCAs and was significantly higher than that in normal cells (p < 0.001). By contrast, there was no significant difference of ROBO1 expression between normal and PCAs. Our results indicate that axon guidance protein ROBO2 is frequently lost in PCA and that ROBO2 might be involved in PCA pathogenesis as a candidate TSG.
Collapse
Affiliation(s)
- Youn Jin Choi
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701 South Korea
| | - Nam Jin Yoo
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701 South Korea
| | - Sug Hyung Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul, 137-701 South Korea
| |
Collapse
|
31
|
Yeh ML, Gonda Y, Mommersteeg MTM, Barber M, Ypsilanti AR, Hanashima C, Parnavelas JG, Andrews WD. Robo1 modulates proliferation and neurogenesis in the developing neocortex. J Neurosci 2014; 34:5717-31. [PMID: 24741061 PMCID: PMC3988420 DOI: 10.1523/jneurosci.4256-13.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/19/2014] [Accepted: 03/19/2014] [Indexed: 12/11/2022] Open
Abstract
The elaborate cytoarchitecture of the mammalian neocortex requires the timely production of its constituent pyramidal neurons and interneurons and their disposition in appropriate layers. Numerous chemotropic factors present in the forebrain throughout cortical development play important roles in the orchestration of these events. The Roundabout (Robo) family of receptors and their ligands, the Slit proteins, are expressed in the developing forebrain, and are known to play important roles in the generation and migration of cortical interneurons. However, few studies have investigated their function(s) in the development of pyramidal cells. Here, we observed expression of Robo1 and Slit genes (Slit1, Slit2) in cells lining the telencephalic ventricles, and found significant increases in progenitor cells (basal and apical) at embryonic day (E)12.5 and E14.5 in the developing cortex of Robo1(-/-), Slit1(-/-), and Slit1(-/-)/Slit2(-/-), but not in mice lacking the other Robo or Slit genes. Using layer-specific markers, we found that both early- and late-born pyramidal neuron populations were significantly increased in the cortices of Robo1(-/-) mice at the end of corticogenesis (E18.5). The excess number of cortical pyramidal neurons generated prenatally appears to die in early postnatal life. The observed increase in pyramidal neurons was due to prolonged proliferative activity of their progenitors and not due to changes in cell cycle events. This finding, confirmed by in utero electroporation with Robo1 short hairpin RNA (shRNA) or control constructs into progenitors along the ventricular zone as well as in dissociated cortical cell cultures, points to a novel role for Robo1 in regulating the proliferation and generation of pyramidal neurons.
Collapse
Affiliation(s)
- Mason L. Yeh
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6DE
| | - Yuko Gonda
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Mathilda T. M. Mommersteeg
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6DE
| | - Melissa Barber
- Institut Jacques-Monod, Université Paris Diderot/CNRS, 75201 Paris, France, and
| | | | - Carina Hanashima
- Laboratory for Neocortical Development, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - John G. Parnavelas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6DE
| | - William D. Andrews
- Department of Cell and Developmental Biology, University College London, London, United Kingdom WC1E 6DE
| |
Collapse
|
32
|
Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, Bueno R, Salgia R. Molecular pathways and therapeutic targets in lung cancer. Oncotarget 2014; 5:1392-433. [PMID: 24722523 PMCID: PMC4039220 DOI: 10.18632/oncotarget.1891] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is still the leading cause of cancer death worldwide. Both histologically and molecularly lung cancer is heterogeneous. This review summarizes the current knowledge of the pathways involved in the various types of lung cancer with an emphasis on the clinical implications of the increasing number of actionable molecular targets. It describes the major pathways and molecular alterations implicated in the development and progression of non-small cell lung cancer (adenocarcinoma and squamous cancer), and of small cell carcinoma, emphasizing the molecular alterations comprising the specific blueprints in each group. The approved and investigational targeted therapies as well as the immune therapies, and clinical trials exploring the variety of targeted approaches to treatment of lung cancer are the main focus of this review.
Collapse
|
33
|
Göhrig A, Detjen KM, Hilfenhaus G, Körner JL, Welzel M, Arsenic R, Schmuck R, Bahra M, Wu JY, Wiedenmann B, Fischer C. Axon guidance factor SLIT2 inhibits neural invasion and metastasis in pancreatic cancer. Cancer Res 2014; 74:1529-40. [PMID: 24448236 DOI: 10.1158/0008-5472.can-13-1012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) metastasizes by neural, vascular, and local invasion routes, which limit patient survival. In nerves and vessels, SLIT2 and its ROBO receptors constitute repellent guidance cues that also direct epithelial branching. Thus, the SLIT2-ROBO system may represent a key pinch point to regulate PDAC spread. In this study, we examined the hypothesis that escaping from repellent SLIT2-ROBO signaling is essential to enable PDAC cells to appropriate their local stromal infrastructure for dissemination. Through immunohistochemical analysis, we detected SLIT2 receptors ROBO1 and ROBO4 on epithelia, nerves, and vessels in healthy pancreas and PDAC specimens, respectively. SLIT2 mRNA expression was reduced in PDAC compared with nontransformed pancreatic tissues and cell lines, suggesting a reduction in SLIT2-ROBO pathway activity in PDAC. In support of this interpretation, restoring the SLIT2 expression in SLIT2-deficient PDAC cells inhibited their bidirectional chemoattraction with neural cells, and more specifically, impaired unidirectional PDAC cell navigation along outgrowing neurites in models of neural invasion. Restoring autocrine/paracrine SLIT2 signaling was also sufficient to inhibit the directed motility of PDAC cells, but not their random movement. Conversely, RNA interference-mediated silencing of ROBO1 stimulated the motility of SLIT2-competent PDAC cells. Furthermore, culture supernatants from SLIT2-competent PDAC cells impaired migration of endothelial cells (human umbilical vein endothelial cells), whereas an N-terminal SLIT2 cleavage fragment stimulated such migration. In vivo investigations of pancreatic tumors with restored SLIT2 expression demonstrated reduced invasion, metastasis, and vascularization, with opposing effects produced by ROBO1 silencing in tumor cells or sequestration of endogenous SLIT2. Analysis of clinical specimens of PDAC showed that those with low SLIT2 mRNA expression exhibited a higher incidence and a higher fraction of tumor-infiltrated lymph nodes. Taken together, our findings argue that disrupting SLIT2-ROBO signaling in PDAC may enhance metastasis and predispose PDAC cells to neural invasion.
Collapse
Affiliation(s)
- Andreas Göhrig
- Authors' Affiliations: Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany; Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie; Klinik für Viszeral-, Allgemein-, und Transplantationschirurgie; Institut für Pathologie, Charité-Universitätsmedizin Berlin, Germany; and Department of Neurology, Lurie Cancer Center, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang F, Moniz HA, Walcott B, Moremen KW, Linhardt RJ, Wang L. Characterization of the interaction between Robo1 and heparin and other glycosaminoglycans. Biochimie 2013; 95:2345-53. [PMID: 23994753 PMCID: PMC3871176 DOI: 10.1016/j.biochi.2013.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/18/2013] [Indexed: 11/19/2022]
Abstract
Roundabout 1 (Robo1) is the cognate receptor for secreted axon guidance molecule, Slits, which function to direct cellular migration during neuronal development and angiogenesis. The Slit2-Robo1 signaling is modulated by heparan sulfate, a sulfated linear polysaccharide that is abundantly expressed on the cell surface and in the extracellular matrix. Biochemical studies have further shown that heparan sulfate binds to both Slit2 and Robo1 facilitating the ligand-receptor interaction. The structural requirements for heparan sulfate interaction with Robo1 remain unknown. In this report, surface plasmon resonance (SPR) spectroscopy was used to examine the interaction between Robo1 and heparin and other GAGs and determined that heparin binds to Robo1 with an affinity of ~650 nM. SPR solution competition studies with chemically modified heparins further determined that although all sulfo groups on heparin are important for the Robo1-heparin interaction, the N-sulfo and 6-O-sulfo groups are essential for the Robo1-heparin binding. Examination of differently sized heparin oligosaccharides and different GAGs also demonstrated that Robo1 prefers to bind full-length heparin chains and that GAGs with higher sulfation levels show increased Robo1 binding affinities.
Collapse
Affiliation(s)
- Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Heather A. Moniz
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Benjamin Walcott
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kelley W. Moremen
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Robert J. Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
35
|
Je EM, Gwak M, Oh H, Choi MR, Choi YJ, Lee SH, Yoo NJ. Frameshift mutations of axon guidance genes ROBO1 and ROBO2 in gastric and colorectal cancers with microsatellite instability. Pathology 2013; 45:645-50. [PMID: 24247621 DOI: 10.1097/pat.0000000000000007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Several lines of evidence indicate that axon guidance genes are involved not only in neural development but also in cancer development. ROBO1 and ROBO2, crucial regulators of axon guidance, are considered potential tumour suppressor genes. The aim of this study was to explore whether ROBO1 and ROBO2 genes are somatically mutated and expressionally altered in gastric (GC) and colorectal cancers (CRC). METHODS In a public database, we observed that both ROBO1 and ROBO2 had mononucleotide repeats in their coding exons that could be mutation targets in cancers with microsatellite instability (MSI). We analysed mutations of these repeats in 77 GC and 88 CRC either with high MSI (MSI-H) or low MSI/microsatellite stability (MSI-L/MSS) by single-strand conformation polymorphism (SSCP) and DNA sequencing. We analysed ROBO1 and ROBO2 expressions in GC and CRC by immunohistochemistry as well. RESULTS Overall, we found five ROBO1 and five ROBO2 frameshift mutations in the repeats. They were detected exclusively in the cancers with MSI-H (10/70, 14.2%), but not in MSI-L/MSS (0/95, 0%) (p=0.018). In the immunohistochemistry, loss of ROBO2 expression was identified in 22 (29%) and 17 (19%) of GC and CRC, respectively, while increased expression of ROBO2 was found in 15 (20%) and 22 (25%) of GC and CRC, respectively. There were co-occurrences of mutation and loss of expression in both ROBO1 (4/5, 80% mutated cases, p<0.001) and ROBO2 (5/5, 100% mutated cases, p<0.05) genes. CONCLUSION This is the first report of ROBO1 and ROBO2 frameshift mutations in GC and CRC. Frameshift mutations of ROBO1 and ROBO2 genes and alteration of ROBO2 expression in GC and CRC suggest that both genes might play roles in the pathogenesis of GC and CRC.
Collapse
Affiliation(s)
- Eun Mi Je
- Department of Pathology and Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Ding L, Abebe T, Beyene J, Wilke RA, Goldberg A, Woo JG, Martin LJ, Rothenberg ME, Rao M, Hershey GKK, Chakraborty R, Mersha TB. Rank-based genome-wide analysis reveals the association of ryanodine receptor-2 gene variants with childhood asthma among human populations. Hum Genomics 2013; 7:16. [PMID: 23829686 PMCID: PMC3708719 DOI: 10.1186/1479-7364-7-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/29/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The standard approach to determine unique or shared genetic factors across populations is to identify risk alleles in one population and investigate replication in others. However, since populations differ in DNA sequence information, allele frequencies, effect sizes, and linkage disequilibrium patterns, SNP association using a uniform stringent threshold on p values may not be reproducible across populations. Here, we developed rank-based methods to investigate shared or population-specific loci and pathways for childhood asthma across individuals of diverse ancestry. We performed genome-wide association studies on 859,790 SNPs genotyped in 527 affected offspring trios of European, African, and Hispanic ancestry using publically available asthma database in the Genotypes and Phenotypes database. RESULTS Rank-based analyses showed that there are shared genetic factors for asthma across populations, more at the gene and pathway levels than at the SNP level. Although the top 1,000 SNPs were not shared, 11 genes (RYR2, PDE4D, CSMD1, CDH13, ROBO2, RBFOX1, PTPRD, NPAS3, PDE1C, SEMA5A, and CTNNA2) mapped by these SNPs were shared across populations. Ryanodine receptor 2 (RYR2, a statin response-related gene) showed the strongest association in European (p value=2.55×10(-7)) and was replicated in African (2.57×10(-4)) and Hispanic (1.18 × 10(-3)) Americans. Imputation analyses based on the 1000 Genomes Project uncovered additional RYR2 variants associated with asthma. Network and functional ontology analyses revealed that RYR2 is an integral part of dermatological or allergic disorder biological networks, specifically in the functional classes involving inflammatory, eosinophilic, and respiratory diseases. CONCLUSION Our rank-based genome-wide analysis revealed for the first time an association of RYR2 variants with asthma and replicated previously discovered PDE4D asthma gene across human populations. The replication of top-ranked asthma genes across populations suggests that such loci are less likely to be false positives and could indicate true associations. Variants that are associated with asthma across populations could be used to identify individuals who are at high risk for asthma regardless of genetic ancestry.
Collapse
Affiliation(s)
- Lili Ding
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Tilahun Abebe
- Department of Biology, University of Northern Iowa, Cedar Falls, IA 50614, USA
| | - Joseph Beyene
- Department of Clinical Epidemiology and Biostatistics, Program in Population Genomics, McMaster University, 1280 Main Street West, MDCL 3211, Hamilton, Ontario, L8S 4K1, Canada
| | - Russell A Wilke
- Department of Medicine, Division of Clinical Pharmacology, Oates Institute for Experimental Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Arnon Goldberg
- Sapir Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Jessica G Woo
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Lisa J Martin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Marc E Rothenberg
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Marepalli Rao
- Division of Epidemiology and Biostatistics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ranajit Chakraborty
- Department of Forensic and Investigative Genetics, Center for Computational Genomics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tesfaye B Mersha
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
37
|
Yang L, Li Q, Wang Q, Jiang Z, Zhang L. Silencing of miRNA-218 promotes migration and invasion of breast cancer via Slit2-Robo1 pathway. Biomed Pharmacother 2012; 66:535-40. [PMID: 22898079 DOI: 10.1016/j.biopha.2012.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 04/26/2012] [Indexed: 12/19/2022] Open
Abstract
MiRNAs play an important role in regulating tumor migration and invasion, and abnormal expression of miRNAs occurs in various kinds of human cancers. In this essay, it is reported that the level of miRNA-218 decreases in metastatic breast cancer cells, moreover, miRNA-218 suppresses breast cancer cells migration and invasion through binding Robo1 (one of Slit receptors) to its 3'UTR. MiRNA-218 restoration suppresses Robo1 expression and inhibits breast cancer cells invasion and migration. What the results describe is that the function of Robo1 regulated by miRNA-218 may provide a new strategy for inhibiting migration and invasion of breast cancer cells.
Collapse
Affiliation(s)
- Longqiu Yang
- Department of Anesthesia, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | | | | | | | | |
Collapse
|
38
|
Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet 2012; 44:1104-10. [PMID: 22941188 DOI: 10.1038/ng.2396] [Citation(s) in RCA: 1067] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 08/09/2012] [Indexed: 02/07/2023]
Abstract
Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis. We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4±1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analyses of the various data sets to identify pathogenetically relevant mutated genes. In all cases, we found evidence for inactivation of TP53 and RB1 and identified recurrent mutations in the CREBBP, EP300 and MLL genes that encode histone modifiers. Furthermore, we observed mutations in PTEN, SLIT2 and EPHA7, as well as focal amplifications of the FGFR1 tyrosine kinase gene. Finally, we detected many of the alterations found in humans in SCLC tumors from Tp53 and Rb1 double knockout mice. Our study implicates histone modification as a major feature of SCLC, reveals potentially therapeutically tractable genomic alterations and provides a generalizable framework for the identification of biologically relevant genes in the context of high mutational background.
Collapse
|
39
|
Nedelko T, Kollmus H, Klawonn F, Spijker S, Lu L, Heßman M, Alberts R, Williams RW, Schughart K. Distinct gene loci control the host response to influenza H1N1 virus infection in a time-dependent manner. BMC Genomics 2012; 13:411. [PMID: 22905720 PMCID: PMC3479429 DOI: 10.1186/1471-2164-13-411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/10/2012] [Indexed: 02/08/2023] Open
Abstract
Background There is strong but mostly circumstantial evidence that genetic factors modulate the severity of influenza infection in humans. Using genetically diverse but fully inbred strains of mice it has been shown that host sequence variants have a strong influence on the severity of influenza A disease progression. In particular, C57BL/6J, the most widely used mouse strain in biomedical research, is comparatively resistant. In contrast, DBA/2J is highly susceptible. Results To map regions of the genome responsible for differences in influenza susceptibility, we infected a family of 53 BXD-type lines derived from a cross between C57BL/6J and DBA/2J strains with influenza A virus (PR8, H1N1). We monitored body weight, survival, and mean time to death for 13 days after infection. Qivr5 (quantitative trait for influenza virus resistance on chromosome 5) was the largest and most significant QTL for weight loss. The effect of Qivr5 was detectable on day 2 post infection, but was most pronounced on days 5 and 6. Survival rate mapped to Qivr5, but additionally revealed a second significant locus on chromosome 19 (Qivr19). Analysis of mean time to death affirmed both Qivr5 and Qivr19. In addition, we observed several regions of the genome with suggestive linkage. There are potentially complex combinatorial interactions of the parental alleles among loci. Analysis of multiple gene expression data sets and sequence variants in these strains highlights about 30 strong candidate genes across all loci that may control influenza A susceptibility and resistance. Conclusions We have mapped influenza susceptibility loci to chromosomes 2, 5, 16, 17, and 19. Body weight and survival loci have a time-dependent profile that presumably reflects the temporal dynamic of the response to infection. We highlight candidate genes in the respective intervals and review their possible biological function during infection.
Collapse
Affiliation(s)
- Tatiana Nedelko
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, 38124, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The Slit family of secreted proteins and their transmembrane receptor, Robo, were originally identified in the nervous system where they function as axon guidance cues and branching factors during development. Since their discovery, a great number of additional roles have been attributed to Slit/Robo signaling, including regulating the critical processes of cell proliferation and cell motility in a variety of cell and tissue types. These processes are often deregulated during cancer progression, allowing tumor cells to bypass safeguarding mechanisms in the cell and the environment in order to grow and escape to new tissues. In the past decade, it has been shown that the expression of Slit and Robo is altered in a wide variety of cancer types, identifying them as potential therapeutic targets. Further, studies have demonstrated dual roles for Slits and Robos in cancer, acting as both oncogenes and tumor suppressors. This bifunctionality is also observed in their roles as axon guidance cues in the developing nervous system, where they both attract and repel neuronal migration. The fact that this signaling axis can have opposite functions depending on the cellular circumstance make its actions challenging to define. Here, we summarize our current understanding of the dual roles that Slit/Robo signaling play in development, epithelial tumor progression, and tumor angiogenesis.
Collapse
Affiliation(s)
- Mimmi S. Ballard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| |
Collapse
|
41
|
Taguchi A, Politi K, Pitteri SJ, Lockwood WW, Faça VM, Kelly-Spratt K, Wong CH, Zhang Q, Chin A, Park KS, Goodman G, Gazdar AF, Sage J, Dinulescu DM, Kucherlapati R, DePinho RA, Kemp CJ, Varmus HE, Hanash SM. Lung cancer signatures in plasma based on proteome profiling of mouse tumor models. Cancer Cell 2011; 20:289-99. [PMID: 21907921 PMCID: PMC3406925 DOI: 10.1016/j.ccr.2011.08.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/06/2011] [Accepted: 08/05/2011] [Indexed: 12/23/2022]
Abstract
We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models.
Collapse
Affiliation(s)
- Ayumu Taguchi
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Katerina Politi
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | - William W. Lockwood
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Vitor M. Faça
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Chee-Hong Wong
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Zhang
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alice Chin
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kwon-Sik Park
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gary Goodman
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Daniela M. Dinulescu
- Eugene Braunwald Research Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raju Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ronald A. DePinho
- Belfer Institute for Applied Cancer Science, Department of Medical Oncology, Department of Medicine and Department of Genetics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Harold E. Varmus
- Program in Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Samir M. Hanash
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
42
|
Dai CF, Jiang YZ, Li Y, Wang K, Liu PS, Patankar MS, Zheng J. Expression and roles of Slit/Robo in human ovarian cancer. Histochem Cell Biol 2011; 135:475-85. [PMID: 21465248 PMCID: PMC3280508 DOI: 10.1007/s00418-011-0806-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2011] [Indexed: 02/07/2023]
Abstract
The Slit glycoproteins and their Roundabout (Robo) receptors regulate migration and growth of many types of cells including human cancer cells. However, little is known about the expression and roles of Slit/Robo in human ovarian cancer. Herein, we examined the expression of Slit/Robo in human normal and malignant ovarian tissues and its potential participation in regulating migration and proliferation of human ovarian cancer cells using two ovarian cancer cell lines, OVCAR-3 and SKOV-3. We demonstrated that Slit2/3 and Robo1 were immunolocalized primarily in stromal cells in human normal ovaries and in cancer cells in many histotypes of ovarian cancer tissues. Protein expression of Slit2/3 and Robo1/4 was also identified in OVCAR-3 and SKOV-3 cells. However, recombinant human Slit2 did not significantly affect SKOV-3 cell migration, and OVCAR-3 and SKOV-3 cell proliferation. Slit2 also did not induce ERK1/2 and AKT1 phosphorylation in OVCAR-3 and SKOV-3 cells. The current findings indicate that three major members (Slit2/3 and Robo1) of Slit/Robo family are widely expressed in the human normal and malignant ovarian tissues and in OVCAR-3 and SKOV-3 cells. However, Slit/Robo signaling may not play an important role in regulating human ovarian cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Cai Feng Dai
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People’s Republic of China
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Yi Zhou Jiang
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Kai Wang
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Pei Shu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People’s Republic of China
| | - Manish S. Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, PAB1 Meriter Hospital, 202 S. Park St, Madison, WI 53715, USA
| |
Collapse
|
43
|
Ning Y, Sun Q, Dong Y, Xu W, Zhang W, Huang H, Li Q. Slit2-N inhibits PDGF-induced migration in rat airway smooth muscle cells: WASP and Arp2/3 involved. Toxicology 2011; 283:32-40. [PMID: 21315131 DOI: 10.1016/j.tox.2011.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Slit2 has been reported to be implicated in many kinds of cell migration. However little is known about the effect of Slit2 on airway smooth muscle cell migration. This study was to detect the expression of Slit2 in rat airway smooth muscle (RASM) cells stimulated by platelet-derived growth factor (PDGF) and characterized the effect of Slit2-N on PDGF-induced migration of RASM cells in vitro. METHODS mRNAs of Slit-Robo in RASM cells were examined by RT-PCR, and the effect of exogenous Slit2-N at different doses on PDGF-induced migration of RASM cells were examined by transwell and scrape-wound assays. Actin filaments (F-actin) were stained with rhodamine-conjugated phalloidin and the levels of protein expression were detected by western blot. RESULTS RASM cells were identified to express Slit2, Slit3, Robo1, Robo2 and Robo4 in vitro. Slit2-N caused a time- and dose-dependent inhibition of cell proliferation, while had no significantly effect on cell apoptosis. Slit2-N pretreatment attenuated the elongated morphologic characteristics, reduced lamellipodia formation, inhibited actin rearrangement and cell migration induced by PDGF. PDGF-induced increase of WASP and Arp2/3 proteins were dramatically inhibited by 100 ng/ml Slit2-N. CONCLUSION Slit2-N inhibits RASM cells migration at least partly through attenuating the expressions of WASP and Arp2/3, inhibiting actin rearrangement in vitro. The results contribute to provide new insights into the pathogenesis of airway remodeling in asthma and may be helpful for development of effective treatments.
Collapse
MESH Headings
- Actin Cytoskeleton/physiology
- Actin-Related Protein 2-3 Complex/physiology
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Becaplermin
- Blotting, Western
- Carrier Proteins/physiology
- Cell Growth Processes/drug effects
- Cell Growth Processes/physiology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cytoskeletal Proteins
- Flow Cytometry
- In Vitro Techniques
- Intercellular Signaling Peptides and Proteins/biosynthesis
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/physiology
- Male
- Microscopy, Fluorescence
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Platelet-Derived Growth Factor/pharmacology
- Proto-Oncogene Proteins c-sis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Roundabout Proteins
Collapse
Affiliation(s)
- Yunye Ning
- Department of Respiratory Medicine, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Mehlen P, Delloye-Bourgeois C, Chédotal A. Novel roles for Slits and netrins: axon guidance cues as anticancer targets? Nat Rev Cancer 2011; 11:188-97. [PMID: 21326323 DOI: 10.1038/nrc3005] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past few years, several genes, proteins and signalling pathways that are required for embryogenesis have been shown to regulate tumour development and progression by playing a major part in overriding antitumour safeguard mechanisms. These include axon guidance cues, such as Netrins and Slits. Netrin 1 and members of the Slit family are secreted extracellular matrix proteins that bind to deleted in colorectal cancer (DCC) and UNC5 receptors, and roundabout receptors (Robos), respectively. Their expression is deregulated in a large proportion of human cancers, suggesting that they could be tumour suppressor genes or oncogenes. Moreover, recent data suggest that these ligand-receptor pairs could be promising targets for personalized anticancer therapies.
Collapse
Affiliation(s)
- Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory-Equipe labellisée La Ligue-, CRCL UMR INSERM U1052 CNRS 5286, Université de Lyon, Centre Léon Bérard, 69008 Lyon, France.
| | | | | |
Collapse
|
45
|
Duncan WC, McDonald SE, Dickinson RE, Shaw JLV, Lourenco PC, Wheelhouse N, Lee KF, Critchley HOD, Horne AW. Expression of the repulsive SLIT/ROBO pathway in the human endometrium and Fallopian tube. Mol Hum Reprod 2010; 16:950-9. [PMID: 20651036 PMCID: PMC2992050 DOI: 10.1093/molehr/gaq055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We investigated whether the repulsive SLIT/ROBO pathway is expressed in the endometrium and is negatively regulated during implantation. We also examined whether deficient expression in the Fallopian tube (FT) may predispose to ectopic pregnancy (EP). Endometrium (n = 21) and FT (n = 17) were collected across the menstrual cycle from fertile women with regular cycles. Decidualized endometrium (n = 6) was obtained from women undergoing termination, and FT (n = 6) was obtained from women with EP. SLIT/ROBO expression was quantified by reverse transcription-PCR and protein localized by immunohistochemistry. The regulation of SLIT/ROBO expression in vitro, by sex steroids and hCG, was assessed in endometrial (hTERT-EEpC) epithelial cells, and the effects of Chlamydia trachomatis infection and smoking were studied in oviductal (OE-E6/E7) epithelial cells. Endometrial SLIT3 was highest in the mid-secretory phase (P = 0.0003) and SLIT1,2 and ROBO1 showed a similar trend. ROBO2 was highest in proliferative phase (P = 0.027) and ROBO3,4 showed a similar trend. SLIT2,3 and ROBO1, 4 were lower in decidua compared with mid-secretory endometrium (P < 0.05). SLITs and ROBOs, excepting ROBO2, were expressed in FT but there were no differences across the cycle or in EP. SLIT/ROBO proteins were localized to endometrial and FT epithelium. Treatment of hTERT-EEpC with a combination of estradiol and medroxyprogesterone acetate inhibited ROBO1 expression (P < 0.01) but hCG had no effect. Acute treatment of OE-E6/E7 with smoking metabolite, cotinine, and C. trachomatis had no effect. These findings imply a regulated role for the endometrial SLIT/ROBO interaction during normal development and pregnancy but that it may not be important in the aetiology of EP.
Collapse
Affiliation(s)
- W C Duncan
- Centre for Reproductive Biology, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4SB, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK, Chen L, Kaminoh Y, Chan AC, Passi SF, Day CW, Barnard DL, Zimmerman GA, Krasnow MA, Li DY. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2010; 2:23ra19. [PMID: 20375003 DOI: 10.1126/scitranslmed.3000678] [Citation(s) in RCA: 260] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The innate immune system provides a first line of defense against invading pathogens by releasing multiple inflammatory cytokines, such as interleukin-1beta and tumor necrosis factor-alpha, which directly combat the infectious agent and recruit additional immune responses. This exuberant cytokine release paradoxically injures the host by triggering leakage from capillaries, tissue edema, organ failure, and shock. Current medical therapies target individual pathogens with antimicrobial agents or directly either blunt or boost the host's immune system. We explored a third approach: activating with the soluble ligand Slit an endothelium-specific, Robo4-dependent signaling pathway that strengthens the vascular barrier, diminishing deleterious aspects of the host's response to the pathogen-induced cytokine storm. This approach reduced vascular permeability in the lung and other organs and increased survival in animal models of bacterial endotoxin exposure, polymicrobial sepsis, and H5N1 influenza. Thus, enhancing the resilience of the host vascular system to the host's innate immune response may provide a therapeutic strategy for treating multiple infectious agents.
Collapse
Affiliation(s)
- Nyall R London
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liao WX, Wing DA, Geng JG, Chen DB. Perspectives of SLIT/ROBO signaling in placental angiogenesis. Histol Histopathol 2010; 25:1181-90. [PMID: 20607660 PMCID: PMC8900672 DOI: 10.14670/hh-25.1181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel family of evolutionally conserved neuronal guidance cues, including ligands (i.e., Slit, netrin, epherin, and semaphorin) and their corresponding receptors (i.e., Robo, DCC/Unc5, Eph and plexin/ neuropilin), has been identified to play a crucial role in axon pathfinding and branching as well as neuronal cell migration. The presence of commonalities in both neural and vascular developments has led to some exciting discoveries recently, which have extended the functions of these systems to vascular formation (vasculogenesis) and development (angiogenesis). Some of these ligands and receptors have been found to be expressed in the vasculature and surrounding tissues in physiological and pathological conditions. It is postulated that they regulate the formation and integrity of blood vessels. In particular, it has been shown that the Slit/Robo pair plays a novel role in angiogenesis during tumorigenesis and vascular formation during embryogenesis. Herein we summarize briefly the characteristics of this family of neuronal guidance molecules and discuss the extra-neural expression and function of the Slit/Robo pair in angiogenesis in physiological and pathological settings. We report expression of Robo1 protein in capillary endothelium and co-expression of Slit2 and Robo1 proteins in syncytiotrophoblast in healthy term human placental villi. These cellular expression patterns implicate that the Slit/Robo signaling plays an autocrine and/or paracrine role in angiogenesis and trophoblast functions. We also speculate a possible role of this system in pathophysiological placental angiogenesis.
Collapse
Affiliation(s)
- Wu-xiang Liao
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA, USA
| | - Deborah A. Wing
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA, USA
| | - Jian-Guo Geng
- Vascular Biology Center and Division of Hematology, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Dong-bao Chen
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
48
|
Seki M, Watanabe A, Enomoto S, Kawamura T, Ito H, Kodama T, Hamakubo T, Aburatani H. Human ROBO1 is cleaved by metalloproteinases and gamma-secretase and migrates to the nucleus in cancer cells. FEBS Lett 2010; 584:2909-15. [PMID: 20471383 DOI: 10.1016/j.febslet.2010.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 05/05/2010] [Indexed: 01/10/2023]
Abstract
ROBO1 is a receptor mediating Slit-induced repulsive action on axon guidance and differentially expressed in human cancers. Although ROBO1 ectodomain has been detected, the cleavage site had not been determined. In this study we identified the precise cleavage site of ROBO1. We also report multi-step proteolysis of ROBO1 by metalloproteinases and gamma-secretase, producing two carboxy-terminal fragments, ROBO1-CTF1 at 129-kDa and ROBO1-CTF2 at 118-kDa. We have further demonstrated nuclear accumulation of ROBO1, which is abolished by either a metalloproteinase inhibitor TAPI-1 or a gamma-secretase inhibitor L-685,458. ROBO1 may function beyond the receptor through stepwise cleavages and translocation to the nucleus.
Collapse
Affiliation(s)
- Motoaki Seki
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dickinson RE, Duncan WC. The SLIT-ROBO pathway: a regulator of cell function with implications for the reproductive system. Reproduction 2010; 139:697-704. [PMID: 20100881 PMCID: PMC2971463 DOI: 10.1530/rep-10-0017] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The secreted SLIT glycoproteins and their Roundabout (ROBO) receptors were originally identified as important axon guidance molecules. They function as a repulsive cue with an evolutionarily conserved role in preventing axons from migrating to inappropriate locations during the assembly of the nervous system. In addition the SLIT-ROBO interaction is involved in the regulation of cell migration, cell death and angiogenesis and, as such, has a pivotal role during the development of other tissues such as the lung, kidney, liver and breast. The cellular functions that the SLIT/ROBO pathway controls during tissue morphogenesis are processes that are dysregulated during cancer development. Therefore inactivation of certain SLITs and ROBOs is associated with advanced tumour formation and progression in disparate tissues. Recent research has indicated that the SLIT/ROBO pathway could also have important functions in the reproductive system. The fetal ovary expresses most members of the SLIT and ROBO families. The SLITs and ROBOs also appear to be regulated by steroid hormones and regulate physiological cell functions in adult reproductive tissues such as the ovary and endometrium. Furthermore several SLITs and ROBOs are aberrantly expressed during the development of ovarian, endometrial, cervical and prostate cancer. This review will examine the roles this pathway could have in the development, physiology and pathology of the reproductive system and highlight areas for future research that could further dissect the influence of the SLIT/ROBO pathway in reproduction.
Collapse
Affiliation(s)
- Rachel E Dickinson
- MRC Human Reproductive Sciences Unit Division of Reproductive and Developmental Sciences, The Queen's Medical Research Institute, Centre for Reproductive Biology, The University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK.
| | | |
Collapse
|
50
|
Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, Guo X, Wang B, Gang Y, Zhang Y, Li Q, Qiao T, Zhao Q, Nie Y, Fan D. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet 2010; 6:e1000879. [PMID: 20300657 PMCID: PMC2837402 DOI: 10.1371/journal.pgen.1000879] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 02/10/2010] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis.
Collapse
Affiliation(s)
- Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yanglin Pan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lina Zhao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiren Sun
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuegang Guo
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Biaoluo Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yi Gang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongguo Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Quanjiang Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Taidong Qiao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|