1
|
Wang L, Liu Z, Bres C, Jin G, Fanin N. Coniferous Tree Species Identity and Leaf Aging Alter the Composition of Phyllosphere Communities Through Changes in Leaf Traits. MICROBIAL ECOLOGY 2024; 87:126. [PMID: 39382725 PMCID: PMC11464569 DOI: 10.1007/s00248-024-02440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Phyllosphere microorganisms are essential for plant growth and health. Although there are an increasing number of studies showing that the composition of phyllosphere communities varies among different plant species, it remains unclear whether and how their bacterial and fungal community composition predictably varies with plant traits and leaf age. In this study, we used high-throughput sequencing to explore the diversity and composition of phyllosphere communities in needles of different ages (originating from different cohorts) for three evergreen coniferous species (Pinus koraiensis, Picea koraiensis, and Abies nephrolepis). Our results indicated that Gammaproteobacteria (bacteria) and Dothideomycetes (fungi) were dominant in newly formed needles, whereas Actinobacteria (bacteria) and Eurotiomycetes (fungi) were dominant in perennial needles. Tree species identity and needle age were the main factors explaining the variations of the α diversity (species richness of phyllosphere communities) and β diversity (dissimilarity among phyllosphere communities). In particular, we found that leaf dry matter content, leaf mass per area, and total phosphorus content emerged as key predictors of composition and diversity of phyllosphere microbial communities, underscoring the major influence of tree species identity and needle age on phyllosphere communities through changes in plant functional traits. Finally, we found that the interaction between tree species identity and needle age also contributed significantly to explaining the diversity and composition of phyllosphere communities, probably because differences in plant functional traits or environmental conditions between new and perennial needles depend on tree growth rates and resource acquisition strategies. These findings provide new insights into the mechanisms of community assembly among different evergreen tree species and offer a better understanding of the interactions between plant traits and phyllosphere microorganisms during needle aging.
Collapse
Affiliation(s)
- Lei Wang
- School of Ecology, Northeast Forestry University, Harbin, 150040, China
- UMR 1391 ISPA, INRAE, Bordeaux Sciences Agro, 71 Avenue Edouard Bourlaux, CS 20032, F33882, Villenave-d'Ornon Cedex, France
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhili Liu
- School of Ecology, Northeast Forestry University, Harbin, 150040, China.
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, 150040, China.
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Cécile Bres
- UMR 1391 ISPA, INRAE, Bordeaux Sciences Agro, 71 Avenue Edouard Bourlaux, CS 20032, F33882, Villenave-d'Ornon Cedex, France
| | - Guangze Jin
- School of Ecology, Northeast Forestry University, Harbin, 150040, China
- Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, 150040, China
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Nicolas Fanin
- UMR 1391 ISPA, INRAE, Bordeaux Sciences Agro, 71 Avenue Edouard Bourlaux, CS 20032, F33882, Villenave-d'Ornon Cedex, France
| |
Collapse
|
2
|
Bard NW, Cronk QCB, Davies TJ. Fungal endophytes can modulate plant invasion. Biol Rev Camb Philos Soc 2024; 99:1652-1671. [PMID: 38629189 DOI: 10.1111/brv.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 09/03/2024]
Abstract
Symbiotic organisms may contribute to a host plant's success or failure to grow, its ability to maintain viable populations, and potentially, its probability of establishment and spread outside its native range. Intercellular and intracellular microbial symbionts that are asymptomatic in their plant host during some or all of their life cycle - endophytes - can form mutualistic, commensal, or pathogenic relationships, and sometimes novel associations with alien plants. Fungal endophytes are likely the most common endosymbiont infecting plants, with life-history, morphological, physiological, and plant-symbiotic traits that are distinct from other endophytic guilds. Here, we review the community dynamics of fungal endophytes during the process of plant invasion, and how their functional role may shift during the different stages of invasion: transport, introduction (colonisation), establishment, and spread. Each invasion stage presents distinct ecological filters that an alien plant must overcome to advance to the subsequent stage of invasion. Endophytes can alternately aid the host in overcoming stage-specific filters, or contribute to the barriers imposed by filters (e.g. biotic resistance), thereby affecting invasion pathways. A few fungi can be transported as seed endophytes from their native range and be vertically transmitted to future generations in the non-native range, especially in graminoids. In other plant groups, alien plants mostly acquire endophytes via horizontal transmission from the invaded plant community, and the host endophyte community is shaped by host filtering and biogeographic factors (e.g. dispersal limitation, environmental filtering). Endophytes infecting alien plants (both those transported with their host and those accumulated in the non-native range) may influence invasion success by affecting plant growth, reproduction, environmental tolerance, and pathogen and herbivory defences; however, the direction and magnitude of these effects can be contingent upon the host identity, life stage, ecological conditions, and invasion stage. This context dependence may cause endophytic fungi to shift to a non-endophytic (e.g. pathogenic) functional life stage in the same or different hosts, which can modify alien-native plant community dynamics. We conclude by identifying paths in which alien hosts can exploit the context dependency of endophyte function in novel abiotic and biotic conditions and at the different stages of invasion.
Collapse
Affiliation(s)
- Nicholas W Bard
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
| | - Quentin C B Cronk
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
- Beaty Biodiversity Museum, University of British Columbia, 2212 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - T Jonathan Davies
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Forest & Conservation Sciences, University of British Columbia, 3041-2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
3
|
Liu B, Li C, Zhao X, Zhang C, He X, Qu L, Zhang N. Contrasting Patterns of Fungal and Bacterial Endophytes Inhabiting Temperate Tree Leaves in Response to Thinning. J Fungi (Basel) 2024; 10:470. [PMID: 39057355 PMCID: PMC11277613 DOI: 10.3390/jof10070470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The phyllosphere is an important but underestimated habitat for a variety of microorganisms, with limited knowledge about leaf endophytes as a crucial component of the phyllosphere microbiome. In this study, we investigated the mechanisms of communities and co-occurrence networks of leaf endophytes in response to forest thinning in a temperate forest. As we expected, contrasting responses of fungal and bacterial endophytes were observed. Specifically, the diversity of leaf endophytic fungi and the complexity of their co-occurrence networks increased significantly with thinning intensity, whereas the complexity of endophytic bacterial co-occurrence networks decreased. In particular, microbiota inhabiting damaged leaves seem to be more intensively interacting, showing an evident fungi-bacteria trade-off under forest thinning. In damaged leaves, besides the direct effects of thinning, thinning-induced changes in neighbor tree diversity indirectly altered the diversity of leaf fungal and bacterial endophytes via modifying leaf functional traits such as leaf dry matter content and specific leaf area. These findings provide new experimental evidence for the trade-offs between leaf endophytic fungi and bacteria under the different magnitudes of deforestation, highlighting their dependence on the presence or absence of leaf damage.
Collapse
Affiliation(s)
- Beiping Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China; (B.L.); (C.L.); (X.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chunhuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China; (B.L.); (C.L.); (X.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China; (X.Z.); (C.Z.)
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing 100083, China; (X.Z.); (C.Z.)
| | - Xinyi He
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China; (B.L.); (C.L.); (X.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Laiye Qu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
| | - Naili Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing 100083, China; (B.L.); (C.L.); (X.H.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan 518000, China
| |
Collapse
|
4
|
Alam M, Pandit B, Moin A, Iqbal UN. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol 2024; 64:343-366. [PMID: 39011025 PMCID: PMC11246410 DOI: 10.1007/s12088-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant-microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern "-omics-based" technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as "-omics-based" technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.
Collapse
Affiliation(s)
- Masrure Alam
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Baishali Pandit
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
- Department of Botany, Surendranath College, 24/2 MG Road, Kolkata, West Bengal 700009 India
| | - Abdul Moin
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| | - Umaimah Nuzhat Iqbal
- Microbial Ecology and Physiology Lab, Department of Biological Sciences, Aliah University, IIA/27 New Town, Kolkata, West Bengal 700160 India
| |
Collapse
|
5
|
Wang X, Xiao H, Pang L, Wang F. Fungal Hyphae on the Assimilation Branches Are Beneficial for Haloxylon ammodendron to Absorb Atmospheric Water Vapor: Adapting to an Extreme Drought Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:1233. [PMID: 38732449 PMCID: PMC11085276 DOI: 10.3390/plants13091233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Research on endophytic fungi in desert plants, particularly the epiphytic or endophytic fungi of leaves, remains limited. In the extremely arid regions of northwest China, the ultra-xerophytic desert plant Haloxylon ammodendron harbors white fungi on its assimilating branches during autumn. The hyphae of these fungi intertwine, both internally and externally, comprising superficial, bridging, and endophytic types. The superficial hyphae attach to the surface of the assimilating branches and continuously grow and intersect, forming a thick layer of felt-like hyphae. This thick, felt-like layer of hyphae facilitates the adsorption of atmospheric water vapor on the surface of the hyphae or the assimilating branches, allowing H. ammodendron to capture atmospheric moisture, even under low humidity. Some superficial hyphae penetrate the cuticle into the epidermis, becoming bridging hyphae, which can rapidly transport water from the outside of the epidermis to the inside. The endophytic hyphae shuttle within the epidermis, achieving rapid water transfer within the epidermis of the assimilating branches. The presence of these three types of hyphae not only enables the assimilating branches of H. ammodendron to achieve rapid water absorption and transmission, but also facilitates the uptake of atmospheric water vapor under low humidity conditions. We discuss the mechanism by which the hyphae promote water absorption from the perspectives of hyphal composition, the formation of felt-like structures, and environmental conditions. We consider the presence of fungal hyphae on the surface of the H. ammodendron assimilating branches as an inevitable ecological process in arid environments. This study provides important theoretical insights into the mechanisms underlying the strong drought resistance of desert plants in extremely arid regions and offers strategies for desertification control.
Collapse
Affiliation(s)
- Xiaohua Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Water and Soil Resources Research Office in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Honglang Xiao
- Key Laboratory of Ecohydrology of Inland River Basin, Water and Soil Resources Research Office in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Lei Pang
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Fang Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Water and Soil Resources Research Office in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Wu CD, Fan YB, Chen X, Cao JW, Ye JY, Feng ML, Liu XX, Sun WJ, Liu RN, Wang AY. Analysis of endophytic bacterial diversity in seeds of different genotypes of cotton and the suppression of Verticillium wilt pathogen infection by a synthetic microbial community. BMC PLANT BIOLOGY 2024; 24:263. [PMID: 38594616 PMCID: PMC11005247 DOI: 10.1186/s12870-024-04910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND In agricultural production, fungal diseases significantly impact the yield and quality of cotton (Gossypium spp.) with Verticillium wilt posing a particularly severe threat. RESULTS This study is focused on investigating the effectiveness of endophytic microbial communities present in the seeds of disease-resistant cotton genotypes in the control of cotton Verticillium wilt. The technique of 16S ribosomal RNA (16S rRNA) amplicon sequencing identified a significant enrichment of the Bacillus genus in the resistant genotype Xinluzao 78, which differed from the endophytic bacterial community structure in the susceptible genotype Xinluzao 63. Specific enriched strains were isolated and screened from the seeds of Xinluzao 78 to further explore the biological functions of seed endophytes. A synthetic microbial community (SynCom) was constructed using the broken-rod model, and seeds of the susceptible genotype Xinluzao 63 in this community that had been soaked with the SynCom were found to significantly control the occurrence of Verticillium wilt and regulate the growth of cotton plants. Antibiotic screening techniques were used to preliminarily identify the colonization of strains in the community. These techniques revealed that the strains can colonize plant tissues and occupy ecological niches in cotton tissues through a priority effect, which prevents infection by pathogens. CONCLUSION This study highlights the key role of seed endophytes in driving plant disease defense and provides a theoretical basis for the future application of SynComs in agriculture.
Collapse
Affiliation(s)
- Chong-Die Wu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Yong-Bin Fan
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xue Chen
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Jiang-Wei Cao
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Jing-Yi Ye
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Meng-Lei Feng
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Xing-Xing Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Wen-Jing Sun
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Rui-Na Liu
- College of Life Sciences, Shihezi University, Shihezi, China
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China
| | - Ai-Ying Wang
- College of Life Sciences, Shihezi University, Shihezi, China.
- Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Xinjiang Production and Construction Corps, Shihezi, China.
| |
Collapse
|
7
|
Singha R, Sharma D, Saha AK, Das P. Foliar phenols and flavonoids level in pteridophytes: an insight to culturable fungal endophyte colonisation. Arch Microbiol 2024; 206:170. [PMID: 38491263 DOI: 10.1007/s00203-024-03880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
There are many available reports of secondary metabolites as bioactive molecules from culturable endophytes, nevertheless, there are scarce research pertaining to the levels of metabolites in plants with respect to the incidence and colonisation of fungal endophytes in the same foliar tissues. Therefore, the study was focussed to examine whether fungal endophyte colonisation and the accumulation of secondary metabolites, such as flavonoids and phenols, in the plants are related in any way. For this reason, the study aims to analyse phenols and flavonoids from the fronds of eleven pteridophytes along with the culture-dependent isolation of fungal endophytes from the host plants subsequently assigning them to morphological category and their quantitative analysis and further resolving its identities through molecular affiliation. The results revealed that nine morpho-categories of fungal endophytes were allotted based on culture attributes, hyphal patterns and reproductive structural characters. Highest numbers of species were isolated from Adiantum capillus-veneris and least was recorded from Pteris vittata and Dicranopteris linearis. Maximum phenol content was analysed from the fronds of P. vittata and lowest was recorded in A. capillus-veneris. Highest flavonoid content was measured in D. linearis and lowest was detected in Christella dentata. Significant negative correlation was observed between phenol content of ferns and species richness of fungi. Moreover, significant positive correlation was observed with the relative abundance of Chaetomium globosum and flavonoid content of ferns and negative significant relation was found between relative abundance of Pseudopestalotiopsis chinensis and phenol content of pteridophytes. The occurrence and the quantitative aspects of endophytes in ferns and their secondary metabolites are discussed.
Collapse
Affiliation(s)
- Royee Singha
- Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Dipashree Sharma
- Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Ajay Krishna Saha
- Mycology and Plant Pathology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Panna Das
- Microbiology Laboratory, Department of Botany, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
8
|
Holkar SK, Ghotgalkar PS, Markad HN, Bhanbhane VC, Saha S, Banerjee K. Current Status and Future Perspectives on Distribution of Fungal Endophytes and Their Utilization for Plant Growth Promotion and Management of Grapevine Diseases. Curr Microbiol 2024; 81:116. [PMID: 38489076 DOI: 10.1007/s00284-024-03635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/02/2024] [Indexed: 03/17/2024]
Abstract
Grapevine is one of the economically most important fruit crops cultivated worldwide. Grape production is significantly affected by biotic constraints leading to heavy crop losses. Changing climatic conditions leading to widespread occurrence of different foliar diseases in grapevine. Chemical products are used for managing these diseases through preventive and curative application in the vineyard. High disease pressure and indiscriminate use of chemicals leading to residue in the final harvest and resistance development in phytopathogens. To mitigate these challenges, the adoption of potential biocontrol control agents is necessary. Moreover, multifaceted benefits of endophytes made them eco-friendly, and environmentally safe approach. The genetic composition, physiological conditions, and ecology of their host plant have an impact on their dispersion patterns and population diversity. Worldwide, a total of more than 164 fungal endophytes (FEs) have been characterized originating from different tissues, varieties, crop growth stages, and geographical regions of grapevine. These diverse FEs have been used extensively for management of different phytopathogens globally. The FEs produce secondary metabolites, lytic enzymes, and organic compounds which are known to possess antimicrobial and antifungal properties. The aim of this review was to understand diversity, distribution, host-pathogen-endophyte interaction, role of endophytes in disease management and for enhanced, and quality production.
Collapse
Affiliation(s)
| | | | | | | | - Sujoy Saha
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Kaushik Banerjee
- ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| |
Collapse
|
9
|
Poma-Angamarca RA, Rojas JR, Sánchez-Rodríguez A, Ruiz-González MX. Diversity of Leaf Fungal Endophytes from Two Coffea arabica Varieties and Antagonism towards Coffee Leaf Rust. PLANTS (BASEL, SWITZERLAND) 2024; 13:814. [PMID: 38592839 PMCID: PMC11154406 DOI: 10.3390/plants13060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Coffee has immense value as a worldwide-appreciated commodity. However, its production faces the effects of climate change and the spread of severe diseases such as coffee leaf rust (CLR). The exploration of fungal endophytes associated with Coffea sp. has already found the existence of nearly 600 fungal species, but their role in the plants remains practically unknown. We have researched the diversity of leaf fungal endophytes in two Coffea arabica varieties: one susceptible and one resistant to CLR. Then, we conducted cross-infection essays with four common endophyte species (three Colletotrichum sp. and Xylaria sp. 1) and Hemileia vastatrix (CLR) in leaf discs, to investigate the interaction of the endophytes on CLR colonisation success and severity of infection. Two Colletotrichum sp., when inoculated 72 h before H. vastatrix, prevented the colonisation of the leaf disc by the latter. Moreover, the presence of endophytes prior to the arrival of H. vastatrix ameliorated the severity of CLR. Our work highlights both the importance of characterising the hidden biodiversity of endophytes and investigating their potential roles in the plant-endophyte interaction.
Collapse
Affiliation(s)
- Ruth A. Poma-Angamarca
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Jacqueline R. Rojas
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Aminael Sánchez-Rodríguez
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
| | - Mario X. Ruiz-González
- Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador; (R.A.P.-A.); (J.R.R.); (A.S.-R.)
- SENESCYT is the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación from the Government of Ecuador, Proyecto Prometeo SENESCYT, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| |
Collapse
|
10
|
U'Ren JM, Oita S, Lutzoni F, Miadlikowska J, Ball B, Carbone I, May G, Zimmerman NB, Valle D, Trouet V, Arnold AE. Environmental drivers and cryptic biodiversity hotspots define endophytes in Earth's largest terrestrial biome. Curr Biol 2024; 34:1148-1156.e7. [PMID: 38367618 DOI: 10.1016/j.cub.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/03/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024]
Abstract
Understanding how symbiotic associations differ across environmental gradients is key to predicting the fate of symbioses as environments change, and it is vital for detecting global reservoirs of symbiont biodiversity in a changing world.1,2,3 However, sampling of symbiotic partners at the full-biome scale is difficult and rare. As Earth's largest terrestrial biome, boreal forests influence carbon dynamics and climate regulation at a planetary scale. Plants and lichens in this biome host the highest known phylogenetic diversity of fungal endophytes, which occur within healthy photosynthetic tissues and can influence hosts' resilience to stress.4,5 We examined how communities of endophytes are structured across the climate gradient of the boreal biome, focusing on the dominant plant and lichen species occurring across the entire south-to-north span of the boreal zone in eastern North America. Although often invoked for understanding the distribution of biodiversity, neither a latitudinal gradient nor mid-domain effect5,6,7 can explain variation in endophyte diversity at this trans-biome scale. Instead, analyses considering shifts in forest characteristics, Picea biomass and age, and nutrients in host tissues from 46° to 58° N reveal strong and distinctive signatures of climate in defining endophyte assemblages in each host lineage. Host breadth of endophytes varies with climate factors, and biodiversity hotspots can be identified at plant-community transitions across the boreal zone at a global scale. Placed against a backdrop of global circumboreal sampling,4 our study reveals the sensitivity of endophytic fungi, their reservoirs of biodiversity, and their important symbiotic associations, to climate.
Collapse
Affiliation(s)
- Jana M U'Ren
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Shuzo Oita
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | - Bernard Ball
- Department of Biology, Duke University, Durham, NC 27708, USA; School of Biology and Environmental Science, University College Dublin, Science Centre Belfield, Dublin D04 V1W8, Ireland
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Georgiana May
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Naupaka B Zimmerman
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA
| | - Denis Valle
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Valerie Trouet
- Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ 85721, USA
| | - A Elizabeth Arnold
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, BIO5 Institute, Ecosystem Genomics Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
11
|
Batool R, Xuelian G, Hui D, Xiuzhen L, Umer MJ, Rwomushana I, Ali A, Attia KA, Jingfei G, Zhenying W. Endophytic Fungi-Mediated Defense Signaling in Maize: Unraveling the Role of WRKY36 in Regulating Immunity against Spodoptera frugiperda. PHYSIOLOGIA PLANTARUM 2024; 176:e14243. [PMID: 38467539 DOI: 10.1111/ppl.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/13/2024]
Abstract
Seed priming with beneficial endophytic fungi is an emerging sustainable strategy for enhancing plant resistance against insect pests. This study examined the effects of Beauvaria bassiana Bb20091317 and Metarhizium rileyi MrCDTLJ1 fungal colonization on maize growth, defence signalling, benzoxazinoid levels and gene expression. The colonization did not adversely affect plant growth but reduced larval weights of Spodoptera frugiperda. Maize leaves treated with M. rileyi exhibited higher levels of jasmonic acid, jasmonoyl-Isoleucine, salicylic acid, and indole acetic acid compared to control. B. bassiana and M. rileyi accelerated phytohormone increase upon S. frugiperda herbivory. Gene expression analysis revealed modulation of benzoxazinoid biosynthesis genes. We further elucidated the immune regulatory role of the transcription factor zmWRKY36 using virus-induced gene silencing (VIGS) in maize. zmWRKY36 positively regulates maize immunity against S. frugiperda, likely by interacting with defense-related proteins. Transient overexpression of zmWRKY36 in tobacco-induced cell death, while silencing in maize reduced chitin-triggered reactive oxygen species burst, confirming its immune function. Overall, B. bassiana and M. rileyi successfully colonized maize, impacting larval growth, defense signalling, and zmWRKY36-mediated resistance. This sheds light on maize-endophyte-insect interactions for sustainable plant protection.
Collapse
Affiliation(s)
- Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gou Xuelian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Dong Hui
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning Province, China
| | - Long Xiuzhen
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Muhammad Jawad Umer
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | | | - Abid Ali
- Department of Entomology, University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Guo Jingfei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wang Zhenying
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Christian N, Perlin MH. Plant-endophyte communication: Scaling from molecular mechanisms to ecological outcomes. Mycologia 2024; 116:227-250. [PMID: 38380970 DOI: 10.1080/00275514.2023.2299658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/22/2023] [Indexed: 02/22/2024]
Abstract
Diverse communities of fungal endophytes reside in plant tissues, where they affect and are affected by plant physiology and ecology. For these intimate interactions to form and persist, endophytes and their host plants engage in intricate systems of communication. The conversation between fungal endophytes and plant hosts ultimately dictates endophyte community composition and function and has cascading effects on plant health and plant interactions. In this review, we synthesize our current knowledge on the mechanisms and strategies of communication used by endophytic fungi and their plant hosts. We discuss the molecular mechanisms of communication that lead to organ specificity of endophytic communities and distinguish endophytes, pathogens, and saprotrophs. We conclude by offering emerging perspectives on the relevance of plant-endophyte communication to microbial community ecology and plant health and function.
Collapse
Affiliation(s)
- Natalie Christian
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Michael H Perlin
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| |
Collapse
|
13
|
Vlasselaer L, Crauwels S, Lievens B, De Coninck B. Unveiling the microbiome of hydroponically cultivated lettuce: impact of Phytophthora cryptogea infection on plant-associated microorganisms. FEMS Microbiol Ecol 2024; 100:fiae010. [PMID: 38317643 PMCID: PMC10872686 DOI: 10.1093/femsec/fiae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
Understanding the complex interactions between plants and their associated microorganisms is crucial for optimizing plant health and productivity. While microbiomes of soil-bound cultivated crops are extensively studied, microbiomes of hydroponically cultivated crops have received limited attention. To address this knowledge gap, we investigated the rhizosphere and root endosphere of hydroponically cultivated lettuce. Additionally, we sought to explore the potential impact of the oomycete pathogen Phytophthora cryptogea on these microbiomes. Root samples were collected from symptomatic and nonsymptomatic plants in three different greenhouses. Amplicon sequencing of the bacterial 16S rRNA gene revealed significant alterations in the bacterial community upon P. cryptogea infection, particularly in the rhizosphere. Permutational multivariate analysis of variance (perMANOVA) revealed significant differences in microbial communities between plants from the three greenhouses, and between symptomatic and nonsymptomatic plants. Further analysis uncovered differentially abundant zero-radius operational taxonomic units (zOTUs) between symptomatic and nonsymptomatic plants. Interestingly, members of Pseudomonas and Flavobacterium were positively associated with symptomatic plants. Overall, this study provides valuable insights into the microbiome of hydroponically cultivated plants and highlights the influence of pathogen invasion on plant-associated microbial communities. Further research is required to elucidate the potential role of Pseudomonas and Flavobacterium spp. in controlling P. cryptogea infections within hydroponically cultivated lettuce greenhouses.
Collapse
Affiliation(s)
- Liese Vlasselaer
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| | - Sam Crauwels
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Bart Lievens
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Center of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, Willem de Croylaan 46, B-3001 Leuven, Belgium
| | - Barbara De Coninck
- Plant Health and Protection Laboratory, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, B-3001 Leuven, Belgium
- KU Leuven Plant Institute, Kasteelpark Arenberg 31, B-3001 Leuven, Belgium
| |
Collapse
|
14
|
Muneer MA, Chen X, Wang H, Munir MZ, Afridi MS, Yan X, Ji B, Li W, Wu L, Zheng C. Unraveling two decades of phyllosphere endophytes: tracing research trends and insights through visualized knowledge maps, with emphasis on microbial interactions as emerging frontiers. STRESS BIOLOGY 2024; 4:12. [PMID: 38319560 PMCID: PMC10847081 DOI: 10.1007/s44154-024-00148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024]
Abstract
Phyllosphere endophytes play a critical role in a myriad of biological functions, such as maintaining plant health and overall fitness. They play a determinative role in crop yield and quality by regulating vital processes, such as leaf functionality and longevity, seed mass, apical growth, flowering, and fruit development. This study conducted a comprehensive bibliometric analysis aiming to review the prevailing research trajectories in phyllosphere endophytes and harness both primary areas of interest and emerging challenges. A total of 156 research articles on phyllosphere endophytes, published between 2002 and 2022, were retrieved from the Web of Science Core Collection (WoSCC). A systematic analysis was conducted using CiteSpace to visualize the evolution of publication frequency, the collaboration network, the co-citation network, and keywords co-occurrence. The findings indicated that initially, there were few publications on the topic of phyllosphere endophytes. However, from 2011 onwards, there was a notable increase in the number of publications on phyllosphere endophytes, gaining worldwide attention. Among authors, Arnold, A Elizabeth is widely recognized as a leading author in this research area. In terms of countries, the USA and China hold the highest rankings. As for institutional ranking, the University of Arizona is the most prevalent and leading institute in this particular subject. Collaborative efforts among the authors and institutions tend to be confined to small groups, and a large-scale collaborative network needs to be established. This study identified the influential journals, literature, and hot research topics. These findings also highlight the interconnected nature of key themes, e.g., phyllosphere endophyte research revolves around the four pillars: diversity, fungal endophytes, growth, and endophytic fungi. This study provides an in-depth perspective on phyllosphere endophytes studies, revealing the identification of biodiversity and microbial interaction of phyllosphere endophytes as the principal research frontiers. These analytical findings not only elucidate the recent trajectory of phyllosphere endophyte research but also provide invaluable insights for similar studies and their potential applications on a global scale.
Collapse
Affiliation(s)
- Muhammad Atif Muneer
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaohui Chen
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention; Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Hexin Wang
- Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention; Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Muhammad Zeeshan Munir
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199, Lishui Rd, Shenzhen, 518055, China
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras, MG, CEP 37200-900, Brazil
| | - Xiaojun Yan
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baoming Ji
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Wenqing Li
- Fujian Institute of Tobacco Sciences, Fuzhou, 350013, China
| | - Liangquan Wu
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaoyuan Zheng
- International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
15
|
Qin X, Xu J, An X, Yang J, Wang Y, Dou M, Wang M, Huang J, Fu Y. Insight of endophytic fungi promoting the growth and development of woody plants. Crit Rev Biotechnol 2024; 44:78-99. [PMID: 36592988 DOI: 10.1080/07388551.2022.2129579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/04/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Microorganisms play an important role in plant growth and development. In particular, endophytic fungi is one of the important kinds of microorganisms and has a mutually beneficial symbiotic relationship with host plants. Endophytic fungi have many substantial benefits to host plants, especially for woody plants, such as accelerating plant growth, enhancing stress resistance, promoting nutrient absorption, resisting pathogens and etc. However, the effects of endophytic fungi on the growth and development of woody plants have not been systematically summarized. In this review, the functions of endophytic fungi for the growth and development of woody plants have been mainly reviewed, including regulating plant growth (e.g., flowering, root elongation, etc.) by producing nutrients and plant hormones, and improving plant disease, insect resistance and heavy metal resistance by producing secondary metabolites. In addition, the diversity of endophytic fungi could improve the ability of woody plants to adapt to adverse environment. The components produced by endophytic fungi have excellent potential for the growth and development of woody plants. This review has systematically discussed the potential regulation mechanism of endophytic fungi regulating the growth and development of woody plants, it would be of great significance for the development and utilization of endophytic fungi resource from woody plants for the protection of forest resources.
Collapse
Affiliation(s)
- Xiangyu Qin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jian Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiaoli An
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jie Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Meijia Dou
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Minggang Wang
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| | - Jin Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, PR China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, Beijing, PR China
| |
Collapse
|
16
|
Ali S, Wright AH, Tanney JB, Renaud JB, Sumarah MW. Fungal Endophytes: Discovering What Lies within Some of Canada's Oldest and Most Resilient Grapevines. J Fungi (Basel) 2024; 10:105. [PMID: 38392777 PMCID: PMC10890244 DOI: 10.3390/jof10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Plant diseases and pests reduce crop yields, accounting for global crop losses of 30% to 50%. In conventional agricultural production systems, these losses are typically controlled by applying chemical pesticides. However, public pressure is mounting to curtail agrochemical use. In this context, employing beneficial endophytic microorganisms is an increasingly attractive alternative to the use of conventional chemical pesticides in agriculture. A multitude of fungal endophytes are naturally present in plants, producing enzymes, small peptides, and secondary metabolites due to their bioactivity, which can protect hosts from pathogens, pests, and abiotic stresses. The use of beneficial endophytic microorganisms in agriculture is an increasingly attractive alternative to conventional pesticides. The aim of this study was to characterize fungal endophytes isolated from apparently healthy, feral wine grapes in eastern Canada that have grown without agrochemical inputs for decades. Host plants ranged from unknown seedlings to long-lost cultivars not widely propagated since the 1800s. HPLC-MS was used to identify unique endophyte-derived chemical compounds in the host plants, while dual-culture competition assays showed a range in endophytes' ability to suppress the mycelial growth of Botrytis, which is typically controlled in viticulture with pesticides. Twelve of the most promising fungal endophytes isolated were identified using multilocus sequencing and morphology, while DNA barcoding was employed to identify some of their host vines. These fungal endophyte isolates, which consisted of both known and putative novel strains, belonged to seven genera in six families and five orders of Ascomycota. Exploring the fungal endophytes in these specimens may yield clues to the vines' survival and lead to the discovery of novel biocontrol agents.
Collapse
Affiliation(s)
- Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - A Harrison Wright
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - Joey B Tanney
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada
| | - Justin B Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| |
Collapse
|
17
|
Zhou H, Jia S, Gao Y, Li X, Lin Y, Yang F, Ni K. Characterization of phyllosphere endophytic lactic acid bacteria reveals a potential novel route to enhance silage fermentation quality. Commun Biol 2024; 7:117. [PMID: 38253824 PMCID: PMC10803313 DOI: 10.1038/s42003-024-05816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The naturally attached phyllosphere microbiota play a crucial role in plant-derived fermentation, but the structure and function of phyllosphere endophytes remain largely unidentified. Here, we reveal the diversity, specificity, and functionality of phyllosphere endophytes in alfalfa (Medicago sativa L.) through combining typical microbial culture, high-throughput sequencing, and genomic comparative analysis. In comparison to phyllosphere bacteria (PB), the fermentation of alfalfa solely with endophytes (EN) enhances the fermentation characteristics, primarily due to the dominance of specific lactic acid bacteria (LAB) such as Lactiplantibacillus, Weissella, and Pediococcus. The inoculant with selected endophytic LAB strains also enhances the fermentation quality compared to epiphytic LAB treatment. Especially, one key endophytic LAB named Pediococcus pentosaceus EN5 shows enrichment of genes related to the mannose phosphotransferase system (Man-PTS) and carbohydrate-metabolizing enzymes and higher utilization of carbohydrates. Representing phyllosphere, endophytic LAB shows great potential of promoting ensiling and provides a novel direction for developing microbial inoculant.
Collapse
Affiliation(s)
- Hongzhang Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Pais A, Ristaino J, Whetten R, Xiang QY(J. Metagenomic study reveals hidden relationships among fungal diversity, variation of plant disease, and genetic distance in Cornus florida (Cornaceae). FRONTIERS IN PLANT SCIENCE 2024; 14:1282188. [PMID: 38273942 PMCID: PMC10809005 DOI: 10.3389/fpls.2023.1282188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction Understanding patterns of plant-microbe interactions across plant species and populations is a critical yet poorly characterized aspect in the field of plant pathology. Microbial DNA sequences present as contaminants in omics data of plants obtained using next-generation sequencing methods provide a valuable source to explore the relationships among endophytic microbial diversity, disease and genetic differentiation of host plants, and environmental variation, but few such studies have been conducted. The flowering dogwood tree (Cornus florida L.), an ecologically important species in North America, is threatened by powdery mildew and dogwood anthracnose diseases, and knowledge of the microbial diversity harbored within genetically and environmental distinct populations of this species remains largely unknown. Methods We conducted a metagenomics study utilizing the sequences of RAD-tag/genotype-by-sequence libraries from leaf tissues of C. florida to examine such host-fungus interactions across the dogwood's US range. We performed various combinations of alignments to both host and pathogen genomes to obtain filtered sets sequences for metagenomics analysis. Taxonomic assignments were determined on each filtered set of sequences, followed by estimation of microbial diversity and correlation to environment and host-genetic variation. Results Our data showed that microbial community composition significantly differed between visually healthy and diseased sites. Several microbial taxa known to interact with dogwood were identified from these sequences. We found no correlation between microbial diversity and relative abundances of sequences aligning to draft genomes of either pathogen causing powdery mildew or dogwood anthracnose. We found a significant relationship between differences of fungal communities and geographic distances of plant populations, suggesting roles of environments in shaping fungal communities in leaf tissues. Significant correlations between the genetic differentiation of plant samples and fungal community dissimilarity (beta diversity) were also observed in certain sets of our analyses-suggesting the possibility of a relationship between microbial community composition and plant genetic distance. This relationship persisted in significance even after controlling for significant effects of geographic-bioclimatic variation of microbial diversity. Discussion Our results suggest that both genetics and the environment play a significant role in shaping foliar fungal communities. Our findings underscore the power of leveraging hidden microbial sequences within datasets originally collected for plant genetic studies to understand plant-pathogen interactions.
Collapse
Affiliation(s)
- Andrew Pais
- Department of Plant and Microbial Biology, North Carolina State University (NCSU), Raleigh, NC, United States
| | - Jean Ristaino
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, United States
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, United States
| | - Ross Whetten
- Department of Forestry and Environmental Resources, North Carolina State University (NCSU), Raleigh, NC, United States
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant and Microbial Biology, North Carolina State University (NCSU), Raleigh, NC, United States
| |
Collapse
|
19
|
Scott K, Konkel Z, Gluck-Thaler E, Valero David GE, Simmt CF, Grootmyers D, Chaverri P, Slot J. Endophyte genomes support greater metabolic gene cluster diversity compared with non-endophytes in Trichoderma. PLoS One 2023; 18:e0289280. [PMID: 38127903 PMCID: PMC10735191 DOI: 10.1371/journal.pone.0289280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/14/2023] [Indexed: 12/23/2023] Open
Abstract
Trichoderma is a cosmopolitan genus with diverse lifestyles and nutritional modes, including mycotrophy, saprophytism, and endophytism. Previous research has reported greater metabolic gene repertoires in endophytic fungal species compared to closely-related non-endophytes. However, the extent of this ecological trend and its underlying mechanisms are unclear. Some endophytic fungi may also be mycotrophs and have one or more mycoparasitism mechanisms. Mycotrophic endophytes are prominent in certain genera like Trichoderma, therefore, the mechanisms that enable these fungi to colonize both living plants and fungi may be the result of expanded metabolic gene repertoires. Our objective was to determine what, if any, genomic features are overrepresented in endophytic fungi genomes in order to undercover the genomic underpinning of the fungal endophytic lifestyle. Here we compared metabolic gene cluster and mycoparasitism gene diversity across a dataset of thirty-eight Trichoderma genomes representing the full breadth of environmental Trichoderma's diverse lifestyles and nutritional modes. We generated four new Trichoderma endophyticum genomes to improve the sampling of endophytic isolates from this genus. As predicted, endophytic Trichoderma genomes contained, on average, more total biosynthetic and degradative gene clusters than non-endophytic isolates, suggesting that the ability to create/modify a diversity of metabolites potential is beneficial or necessary to the endophytic fungi. Still, once the phylogenetic signal was taken in consideration, no particular class of metabolic gene cluster was independently associated with the Trichoderma endophytic lifestyle. Several mycoparasitism genes, but no chitinase genes, were associated with endophytic Trichoderma genomes. Most genomic differences between Trichoderma lifestyles and nutritional modes are difficult to disentangle from phylogenetic divergences among species, suggesting that Trichoderma genomes maybe particularly well-equipped for lifestyle plasticity. We also consider the role of endophytism in diversifying secondary metabolism after identifying the horizontal transfer of the ergot alkaloid gene cluster to Trichoderma.
Collapse
Affiliation(s)
- Kelsey Scott
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Coralie Farinas Simmt
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
| | - Django Grootmyers
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| | - Priscila Chaverri
- Department of Natural Sciences, Bowie State University, Bowie, MD, United States of America
- School of Biology and Natural Products Research Center (CIPRONA), University of Costa Rica, San José, Costa Rica
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States of America
- Center for Psychedelic Drug Research and Education, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
20
|
Russo A, Winkler JB, Ghirardo A, Monti MM, Pollastri S, Ruocco M, Schnitzler JP, Loreto F. Interaction with the entomopathogenic fungus Beauveria bassiana influences tomato phenome and promotes resistance to Botrytis cinerea infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1309747. [PMID: 38173923 PMCID: PMC10762804 DOI: 10.3389/fpls.2023.1309747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Plants are central to complex networks of multitrophic interactions. Increasing evidence suggests that beneficial microorganisms (BMs) may be used as plant biostimulants and pest biocontrol agents. We investigated whether tomato (Solanum lycopersicum) plants are thoroughly colonized by the endophytic and entomopathogenic fungus Beauveria bassiana, and how such colonization affects physiological parameters and the phenotype of plants grown under unstressed conditions or exposed to the pathogenic fungus Botrytis cinerea. As a positive control, a strain of the well-known biocontrol agent and growth inducer Trichoderma afroharzianum was used. As multitrophic interactions are often driven by (or have consequences on) volatile organic compounds (VOCs) released by plants constitutively or after induction by abiotic or biotic stresses, VOC emissions were also studied. Both B. bassiana and T. afroharzianum induced a significant but transient (one to two-day-long) reduction of stomatal conductance, which may indicate rapid activation of defensive (rejection) responses, but also limited photosynthesis. At later stages, our results demonstrated a successful and complete plant colonization by B. bassiana, which induced higher photosynthesis and lower respiration rates, improved growth of roots, stems, leaves, earlier flowering, higher number of fruits and yield in tomato plants. Beauveria bassiana also helped tomato plants fight B. cinerea, whose symptoms in leaves were almost entirely relieved with respect to control plants. Less VOCs were emitted when plants were colonized by B. bassiana or infected by B. cinerea, alone or in combination, suggesting no activation of VOC-dependent defensive mechanisms in response to both fungi.
Collapse
Affiliation(s)
- Assunta Russo
- University of Naples Federico II, Department of Agricultural Sciences, Portici, Italy
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Jana Barbro Winkler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Maurilia M. Monti
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Susanna Pollastri
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Michelina Ruocco
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Francesco Loreto
- National Research Council of Italy, Institute for Sustainable Plant Protection (CNR-IPSP), Portici, Italy
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Pellissier L, Gaudry A, Vilette S, Lecoultre N, Rutz A, Allard PM, Marcourt L, Ferreira Queiroz E, Chave J, Eparvier V, Stien D, Gindro K, Wolfender JL. Comparative metabolomic study of fungal foliar endophytes and their long-lived host Astrocaryum sciophilum: a model for exploring the chemodiversity of host-microbe interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1278745. [PMID: 38186589 PMCID: PMC10768666 DOI: 10.3389/fpls.2023.1278745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Introduction In contrast to the dynamics observed in plant/pathogen interactions, endophytic fungi have the capacity to establish enduring associations within their hosts, leading to the development of a mutually beneficial relationship that relies on specialized chemical interactions. Research indicates that the presence of endophytic fungi has the ability to significantly modify the chemical makeup of the host organism. Our hypothesis proposes the existence of a reciprocal exchange of chemical signals between plants and fungi, facilitated by specialized chemical processes that could potentially manifest within the tissues of the host. This research aimed to precisely quantify the portion of the cumulative fungal endophytic community's metabolome detectable within host leaves, and tentatively evaluate its relevance to the host-endophyte interplay. The understory palm Astrocaryum sciophilum (Miq.) Pulle was used as a interesting host plant because of its notable resilience and prolonged life cycle, in a tropical ecosystem. Method Using advanced metabolome characterization, including UHPLC-HRMS/MS and molecular networking, the study explored enriched metabolomes of both host leaves and 15 endophytic fungi. The intention was to capture a metabolomic "snapshot" of both host and endophytic community, to achieve a thorough and detailed analysis. Results and discussion This approach yielded an extended MS-based molecular network, integrating diverse metadata for identifying host- and endophyte-derived metabolites. The exploration of such data (>24000 features in positive ionization mode) enabled effective metabolome comparison, yielding insights into cultivable endophyte chemodiversity and occurrence of common metabolites between the holobiont and its fungal communities. Surprisingly, a minor subset of features overlapped between host leaf and fungal samples despite significant plant metabolome enrichment. This indicated that fungal metabolic signatures produced in vitro remain sparingly detectable in the leaf. Several classes of primary metabolites were possibly shared. Specific fungal metabolites and/or compounds of their chemical classes were only occasionally discernible in the leaf, highlighting endophytes partial contribution to the overall holobiont metabolome. To our knowledge, the metabolomic study of a plant host and its microbiome has rarely been performed in such a comprehensive manner. The general analytical strategy proposed in this paper seems well-adapted for any study in the field of microbial- or microbiome-related MS and can be applied to most host-microbe interactions.
Collapse
Affiliation(s)
- Leonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Arnaud Gaudry
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Salomé Vilette
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Nicole Lecoultre
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Jérôme Chave
- Laboratoire Evolution et diversité Biologique (Unité Mixte de Recherche (UMR) 5174), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III (UT3), Institut de Recherche pour le Développement (IRD), Université Toulouse 3, Toulouse, France
| | - Véronique Eparvier
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Didier Stien
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biodiversité et Biotechnologie Microbiennes, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| |
Collapse
|
22
|
Zhou W, Shi W, Soltis PS, Soltis DE, Xiang QY(J. Foliar endophyte diversity in Eastern Asian-Eastern North American disjunct tree species - influences of host identity, environment, phylogeny, and geographic isolation. FRONTIERS IN PLANT SCIENCE 2023; 14:1274746. [PMID: 38192694 PMCID: PMC10773735 DOI: 10.3389/fpls.2023.1274746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 01/10/2024]
Abstract
Introduction The well-known eastern Asian (EA) and eastern North American (ENA) floristic disjunction provides a unique system for biogeographic and evolutionary studies. Despite considerable interest in the disjunction, few studies have investigated the patterns and their underlying drivers of allopatric divergence in sister species or lineages isolated in the two areas. Endophyte diversity and assembly in disjunct sister taxa, as an ecological trait, may have played an important role in the processes of allopatric evolution, but no studies have examined endophytes in these lineages. Here we compared foliar endophytic fungi and bacteria-archaea (FEF and FEB) in 17 EA-ENA disjunct species or clade pairs from genera representing conifers and 10 orders of five major groups of angiosperms and 23 species of Cornus from EA and North America. Methods Metagenomic sequencing of fungal ITS and bacterial-archaeal 16S rDNA was used to capture the foliar endophytic communities. Alpha and beta diversity of fungi and bacteria were compared at multiple scales and dimensions to gain insights into the relative roles of historical geographic isolation, host identity, phylogeny, and environment from samples at different sites in shaping endophytic diversity patterns. Results We found that beta diversity of endophytes varied greatly among plant individuals within species and between species among genera at the same sampling site, and among three sampling sites, but little variation between region-of-origin of all plant species (EA vs ENA) and between EA-ENA disjunct counterparts within genera. Various numbers of indicator fungal species differing in abundance were identified for each plant genus and Cornus species. An overall significant correlation between endophyte community dissimilarity and phylogenetic distance of plants was detected among the disjunct genera but not among species of Cornus. However, significant correlations between beta diversities at different taxonomic scales of endophytes and phylogenetic distances of Cornus species were observed. Discussion Our results suggest important roles of host identity and environment (sampling sites), and a likely minor role of phylogenetic divergence and historical biogeographic isolation in shaping the pattern of foliar endophyte diversity and assembly in the EA-ENA disjunct genera and Cornus. The results lead to a hypothesis that the sister taxa in EA and ENA likely differ in FEF and FEB when growing in native habitats due to differences in local environments, which may potentially drive allopatric divergence of the functional features of species.
Collapse
Affiliation(s)
- Wenbin Zhou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Wei Shi
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, United States
| | - Pamela S. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Douglas E. Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States
- Department of Biology, University of Florida, Gainesville, FL, United States
| | - Qiu-Yun (Jenny) Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
23
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
24
|
Cheng J, Luo T, Wu M, Yang L, Chen W, Li G, Zhang J. The Identity, Virulence, and Antifungal Effects of the Didymellacesous Fungi Associated with the Rapeseed Blackleg Pathogen Leptosphaeria biglobosa. J Fungi (Basel) 2023; 9:1167. [PMID: 38132768 PMCID: PMC10744798 DOI: 10.3390/jof9121167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Eight fungal strains (P1 to P8) were isolated from rapeseed stems (Brassica napus) infected with the blackleg pathogen Leptosphaeria biglobosa (Lb). They formed pycnidia with similar morphology to those of Lb, and thus were considered as Lb relatives (LbRs). The species-level identification of these strains was performed. Their virulence on rapeseed and efficacy in the suppression of Lb infection were determined, and the biocontrol potential and biocontrol mechanisms of strain P2 were investigated. The results showed that the LbRs belong to two teleomorphic genera in the family Didymellaceae, Didymella for P1 to P7 and Boeremia for P8. Pathogenicity tests on rapeseed cotyledons and stems indicated the LbRs were weakly virulent compared to L. biglobosa. Co-inoculation assays on rapeseed cotyledons demonstrated that P1 to P7 (especially P1 to P4) had a suppressive effect on Lb infection, whereas P8 had a marginal effect on infection by L. biglobosa. Moreover, D. macrostoma P2 displayed a more aggressive behavior than L. biglobosa in the endophytic colonization of healthy rapeseed cotyledons. Cultures of P2 in potato dextrose broth (PDB) and pycnidiospore mucilages exuded from P2 pycnidia showed antifungal activity to L. biglobosa. Further leaf assays revealed that antifungal metabolites (AM) of strain P2 from PDB cultures effectively suppressed infection by L. biglobosa, Botrytis cinerea (gray mold), and Sclerotinia sclerotiorum (white mold). An antifungal metabolite, namely penicillither, was purified and identified from PDB cultures and detected in pycnidiospore mucilages of strain P2. This study suggests that the LbRs are a repertoire for screening biocontrol agents (BCAs) against rapeseed diseases, and D. macrostoma P2 is a multi-functional BCA, a penicillither producer, and an endophyte.
Collapse
Affiliation(s)
- Junyu Cheng
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Tao Luo
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Mingde Wu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Weidong Chen
- United States Department of Agriculture, Agricultural Research Service, Washington State University, Pullman, WA 99164, USA;
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| | - Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.C.); (T.L.); (M.W.); (L.Y.); (G.L.)
| |
Collapse
|
25
|
Durodola B, Blumenstein K, Akinbobola A, Kolehmainen A, Chano V, Gailing O, Terhonen E. Beyond the surface: exploring the mycobiome of Norway spruce under drought stress and with Heterobasidion parviporum. BMC Microbiol 2023; 23:350. [PMID: 37978432 PMCID: PMC10655427 DOI: 10.1186/s12866-023-03099-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
The mycobiome, comprising fungi inhabiting plants, potentially plays a crucial role in tree health and survival amidst environmental stressors like climate change and pathogenic fungi. Understanding the intricate relationships between trees and their microbial communities is essential for developing effective strategies to bolster the resilience and well-being of forest ecosystems as we adopt more sustainable forest management practices. The mycobiome can be considered an integral aspect of a tree's biology, closely linked to its genotype. To explore the influence of host genetics and environmental factors on fungal composition, we examined the mycobiome associated with phloem and roots of Norway spruce (Picea abies (L.) Karst.) cuttings under varying watering conditions. To test the "mycobiome-associated-fitness" hypothesis, we compared seedlings artificially inoculated with Heterobasidion parviporum and control plants to evaluate mycobiome interaction on necrosis development. We aimed to 1) identify specific mycobiome species for the Norway spruce genotypes/families within the phloem and root tissues and their interactions with H. parviporum and 2) assess stability in the mycobiome species composition under abiotic disturbances (reduced water availability). The mycobiome was analyzed by sequencing the ribosomal ITS2 region. Our results revealed significant variations in the diversity and prevalence of the phloem mycobiome among different Norway spruce genotypes, highlighting the considerable impact of genetic variation on the composition and diversity of the phloem mycobiome. Additionally, specific mycobiome genera in the phloem showed variations in response to water availability, indicating the influence of environmental conditions on the relative proportion of certain fungal genera in Norway spruce trees. In the root mycobiome, key fungi such as Phialocephala fortinii and Paraphaeosphaeria neglecta were identified as conferring inhibitory effects against H. parviporum growth in Norway spruce genotypes. Furthermore, certain endophytes demonstrated greater stability in root ecosystems under low water conditions than ectomycorrhizal fungi. This knowledge can contribute to developing sustainable forest management practices that enhance the well-being of trees and their ecosystems, ultimately bolstering forest resilience.
Collapse
Affiliation(s)
- Blessing Durodola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany.
| | - Kathrin Blumenstein
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Chair of Pathology of Trees, Institute of Forestry, Faculty of Environment and Natural Resources, University of Freiburg, Bertoldstr. 17, 79098, Freiburg, Germany
| | - Adedolapo Akinbobola
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Kolehmainen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Department of Cell Biology, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Victor Chano
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, Büsgen-Institute, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Eeva Terhonen
- Forest Pathology Research Group, Büsgen-Institute, Department of Forest Botany and Tree Physiology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
- Natural Resources Institute Finland (Luke), Forest Health and Biodiversity, Latokartanonkaari 9, 00790, Helsinki, Finland
| |
Collapse
|
26
|
Chen YJ, Chen HJ, Chung WH. Endophytic Fungal Diversity in Cirsium kawakamii from Taiwan. J Fungi (Basel) 2023; 9:1076. [PMID: 37998881 PMCID: PMC10671896 DOI: 10.3390/jof9111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The endophytic fungal diversity of Cirsium kawakamii, a herb indigenous to Taiwan, was analyzed in this study. In addition, some fungal isolates were evaluated for the risk they pose as plant pathogens. In total, 1836 endophytic fungi were isolated from C. kawakamii from Hehuanjian, Puli Township, and Tatachia. They were classified into 2 phyla, 8 classes, 40 families, and 68 genera. Colletotrichum, Fusarium, Phomopsis, and Xylaria, (Ascomycota, Sordariomycetes) were the dominant genera. The genus accumulation curve (based on the bootstrap estimator) was non-asymptotic, with estimated richness significantly exceeding the richness captured by our sampling to date. Considering the collection time, the data indicated significant differences in the proportions of the C. kawakamii endophyte genus from Hehuanjan, Puli Township (across two seasons), and Tatachia. The Shannon and Gini-Simpson indices revealed variations in diversity, with C. kawakamii endophytes (Puli Township in winter) significantly reducing alpha diversity compared with other seasons and locations. Meanwhile, the Gini-Simpson index suggested that there were no significant differences in richness among the four sampling sites. The PCA results unveiled distinct community structures across different locations and seasons, explaining 46.73% of the total variation in fungal community composition significantly affected diversity and richness. In addition, a considerable number of Fusarium isolates exhibited harmful properties towards wheat, potatoes, and apples. It is postulated that these fungi belong to the Fusarium tricinctum species complex (FTSC).
Collapse
Affiliation(s)
- Yi-Jeng Chen
- Department of Plant Medicine, National Chiayi University, Chiayi 600, Taiwan;
| | - Hui-Juan Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
| | - Wen-Hsin Chung
- Department of Plant Pathology, National Chung Hsing University, Taichung 402, Taiwan
- Master Program in Plant Medicine and Good Agricultural Practice, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
27
|
Schmidt JE, Puig AS, DuVal AE, Pfeufer EE. Phyllosphere microbial diversity and specific taxa mediate within-cultivar resistance to Phytophthora palmivora in cacao. mSphere 2023; 8:e0001323. [PMID: 37603690 PMCID: PMC10597403 DOI: 10.1128/msphere.00013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/08/2023] [Indexed: 08/23/2023] Open
Abstract
The oomycete pathogen Phytophthora palmivora, which causes black pod rot (BPR) on cacao (Theobroma cacao L.), is responsible for devastating yield losses worldwide. Genetic variation in resistance to Phytophthora spp. is well documented among cacao cultivars, but variation has also been observed in the incidence of BPR even among trees of the same cultivar. In light of evidence that the naturally occurring phyllosphere microbiome can influence foliar disease resistance in other host-pathogen systems, it was hypothesized that differences in the phyllosphere microbiome between two field accessions of the cultivar Gainesville II 164 could be responsible for their contrasting resistance to P. palmivora. Bacterial alpha diversity was higher but fungal alpha diversity was lower in the more resistant accession MITC-331, and the accessions harbored phyllosphere microbiomes with distinct community compositions. Six bacterial and 82 fungal amplicon sequence variants (ASVs) differed in relative abundance between MITC-333 and MITC-331, including bacterial putative biocontrol agents and a high proportion of fungal pathogens, and nine fungal ASVs were correlated with increased lesion development. The roles of contrasting light availability and host mineral nutrition, particularly potassium, are also discussed. Results of this preliminary study can be used to guide research into microbiome-informed integrated pest management strategies effective against Phytophthora spp. in cacao. IMPORTANCE Up to 40% of the world's cacao is lost each year to diseases, the most devastating of which is black pod rot, caused by Phytophthora palmivora. Though disease resistance is often attributed to cacao genotypes (i.e., disease-resistant rootstocks), this study highlights the role of the microbiome in contributing to differences in resistance even among accessions of the same cacao cultivar. Future studies of plant-pathogen interactions may need to account for variation in the host microbiome, and optimizing the cacao phyllosphere microbiome could be a promising new direction for P. palmivora resistance research.
Collapse
Affiliation(s)
| | - Alina S. Puig
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Fort Detrick, Frederick, Maryland, USA
| | | | - Emily E. Pfeufer
- Foreign Disease-Weed Science Research Unit, USDA-ARS, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
28
|
Dong X, Jiang F, Duan D, Tian Z, Liu H, Zhang Y, Hou F, Nan Z, Chen T. Contrasting Effects of Grazing in Shaping the Seasonal Trajectory of Foliar Fungal Endophyte Communities on Two Semiarid Grassland Species. J Fungi (Basel) 2023; 9:1016. [PMID: 37888272 PMCID: PMC10608051 DOI: 10.3390/jof9101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Fungal endophytes are harboured in the leaves of every individual plant host and contribute to plant health, leaf senescence, and early decomposition. In grasslands, fungal endophytes and their hosts often coexist with large herbivores. However, the influence of grazing by large herbivores on foliar fungal endophyte communities remains largely unexplored. We conducted a long-term (18 yr) grazing experiment to explore the effects of grazing on the community composition and diversity of the foliar fungal endophytes of two perennial grassland species (i.e., Artemisia capillaris and Stipa bungeana) across one growing season. Grazing significantly increased the mean fungal alpha diversity of A. capillaris in the early season. In contrast, grazing significantly reduced the mean fungal alpha diversity of endophytic fungi of S. bungeana in the late season. Grazing, growing season, and their interactions concurrently structured the community composition of the foliar fungal endophytes of both plant species. However, growing season consistently outperformed grazing and environmental factors in shaping the community composition and diversity of both plant species. Overall, our findings demonstrate that the foliar endophytic fungal community diversity and composition differed in response to grazing between A. capillaris and S. bungeana during one growing season. The focus on this difference will enhance our understanding of grazing's impact on ecological systems and improve land management practices in grazing regions. This variation in the effects of leaf nutrients and plant community characteristics on foliar endophytic fungal community diversity and composition may have a pronounced impact on plant health and plant-fungal interactions.
Collapse
Affiliation(s)
- Xin Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Feifei Jiang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Dongdong Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China
| | - Zhen Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Huining Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Yinan Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| | - Tao Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (X.D.); (F.J.); (D.D.); (Z.T.); (H.L.); (Y.Z.); (F.H.); (Z.N.)
| |
Collapse
|
29
|
Li P, Tedersoo L, Crowther TW, Wang B, Shi Y, Kuang L, Li T, Wu M, Liu M, Luan L, Liu J, Li D, Li Y, Wang S, Saleem M, Dumbrell AJ, Li Z, Jiang J. Global diversity and biogeography of potential phytopathogenic fungi in a changing world. Nat Commun 2023; 14:6482. [PMID: 37838711 PMCID: PMC10576792 DOI: 10.1038/s41467-023-42142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.
Collapse
Affiliation(s)
- Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu Kuang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Ting Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Songhan Wang
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, Essex, UK.
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| |
Collapse
|
30
|
Job N, Sarasan M, Philip R. Mangrove-associated endomycota: diversity and functional significance as a source of novel drug leads. Arch Microbiol 2023; 205:349. [PMID: 37789248 DOI: 10.1007/s00203-023-03679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Endophytic fungi are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the unexplored fungal diversity associated with mangroves, emphasizing their biodiversity, distribution, and methodological approaches targeting isolation, and identification. Also highlights the bioactive compounds reported from the mangrove fungal endophytes. The compounds are categorized according to their reported biological activities including antimicrobial, antioxidant and cytotoxic property. In addition, protein kinase, α-glucosidase, acetylcholinesterase, tyrosinase inhibition, antiangiogenic, DNA-binding affinity, and calcium/potassium channel blocking activity are also reported. Exploration of these endophytes as a source of pharmacologically important compounds will be highly promising in the wake of emerging antibiotic resistance among pathogens. Thus, the aim of this review is to present a detailed report of mangrove derived endophytic fungi and to open an avenue for researchers to discover the possibilities of exploring these hidden mycota in developing novel drug leads.
Collapse
Affiliation(s)
- Neema Job
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
- Department of Marine Biosciences, Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, Kerala, India
| | - Manomi Sarasan
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India
| | - Rosamma Philip
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, 682016, Kerala, India.
| |
Collapse
|
31
|
Bamisile BS, Afolabi OG, Siddiqui JA, Xu Y. Endophytic insect pathogenic fungi-host plant-herbivore mutualism: elucidating the mechanisms involved in the tripartite interactions. World J Microbiol Biotechnol 2023; 39:326. [PMID: 37776438 DOI: 10.1007/s11274-023-03780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Various techniques used by crop plants to evade insect pests and pathogen attacks have been documented. Among these, plant defense strategies induced by endophytic insect pathogenic fungi are arguably one of the most discussed. Endophytic fungi frequently colonize plants and inhabit their internal tissues for a portion of their lifespan without producing visible symptoms of the disease. This phenomenon is widespread and diverse in both natural and agricultural ecosystems, and is present in almost all plant organs. Many fungi can obtain nutrients by infecting and killing insects, and this ability has been developed numerous times in different fungal lineages. These species mainly consist of those in the order Hypocreales (Ascomycota), where the generalist insect pathogens, Beauveria sp. (Cordycipitaceae) and Metarhizium sp. (Clavicipitaceae) are two of the most studied endophytic entomopathogenic fungal genera. However, most fungi that kill insects do not survive in the tissues of living plants. The data published thus far show a high degree of variability and do not provide consistent explanations for the underlying mechanisms that may be responsible for these effects. This implies that available knowledge regarding the colonization of plant tissues by endophytic insect pathogenic fungi, the effects of colonization on plant metabolism, and how this contributes to a decrease in herbivore and pathogens damage is limited. To adequately utilize fungal-based products as biological control agents, these products must be effective and the reduction of pests and infection must be consistent and similar to that of chemical insecticides after application. This article discusses this possibility and highlights the benefits and the specific techniques utilized by endophytically challenged plants in invading insect pests and disease pathogens.
Collapse
Affiliation(s)
- Bamisope Steve Bamisile
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | | | - Junaid Ali Siddiqui
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Feng R, Wang H, Liu T, Wang F, Cai L, Chen X, Zhang S. Response of microbial communities in the phyllosphere ecosystem of tobacco exposed to the broad-spectrum copper hydroxide. Front Microbiol 2023; 14:1229294. [PMID: 37840714 PMCID: PMC10568630 DOI: 10.3389/fmicb.2023.1229294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Copper hydroxide is a broad-spectrum copper fungicide, which is often used to control crop fungal and bacterial diseases. In addition to controlling targeted pathogens, copper hydroxide may also affect other non-targeted microorganisms in the phyllosphere ecosystem. At four time points (before spraying, and 5, 10 and 15 days after fungicide application), the response of diseased and healthy tobacco phyllosphere microorganisms to copper hydroxide stress was studied by using Illumina high-throughput sequencing technology, and Biolog tools. The results showed that the microbiome communities of the healthy group were more affected than the disease group, and the fungal community was more sensitive than the bacterial community. The most common genera in the disease group were Alternaria, Boeremia, Cladosporium, Pantoea, Ralstonia, Pseudomonas, and Sphingomonas; while in the healthy group, these were Alternaria, Cladosporium, Symmetrospora, Ralstonia, and Pantoea. After spraying, the alpha diversity of the fungal community decreased at 5 days for both healthy and diseased groups, and then showed an increasing trend, with a significant increase at 15 days for the healthy group. The alpha diversity of bacterial community in healthy and diseased groups increased at 15 days, and the healthy group had a significant difference. The relative abundance of Alternaria and Cladosporium decreased while that of Boeremia, Stagonosporopsis, Symmetrospora, Epicoccum and Phoma increased in the fungal communities of healthy and diseased leaves. The relative abundance of Pantoea decreased first and then increased, while that of Ralstonia, Pseudomonas and Sphingomonas increased first and then decreased in the bacterial communities of healthy and diseased leaves. While copper hydroxide reduced the relative abundance of pathogenic fungi Alternaria and Cladosporium, it also resulted in the decrease of beneficial bacteria such as Actinomycetes and Pantoea, and the increase of potential pathogens such as Boeremia and Stagonosporopsis. After treatment with copper hydroxide, the metabolic capacity of the diseased group improved, while that of the healthy group was significantly suppressed, with a gradual recovery of metabolic activity as the application time extended. The results revealed changes in microbial community composition and metabolic function of healthy and diseased tobacco under copper hydroxide stress, providing a theoretical basis for future studies on microecological protection of phyllosphere.
Collapse
Affiliation(s)
- Ruichao Feng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Tingting Liu
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Liuti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xingjiang Chen
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Songbai Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co- construction by Ministry and Province), Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
33
|
Escudero-Leyva E, Quirós-Guerrero L, Vásquez-Chaves V, Pereira-Reyes R, Chaverri P, Tamayo-Castillo G. Differential Volatile Organic Compound Expression in the Interaction of Daldinia eschscholtzii and Mycena citricolor. ACS OMEGA 2023; 8:31373-31388. [PMID: 37663497 PMCID: PMC10468842 DOI: 10.1021/acsomega.3c03865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Fungi exhibit a wide range of ecological guilds, but those that live within the inner tissues of plants (also known as endophytes) are particularly relevant due to the benefits they sometimes provide to their hosts, such as herbivory deterrence, disease protection, and growth promotion. Recently, endophytes have gained interest as potential biocontrol agents against crop pathogens, for example, coffee plants (Coffea arabica). Published results from research performed in our laboratory showed that endophytic fungi isolated from wild Rubiaceae plants were effective in reducing the effects of the American leaf spot of coffee (Mycena citricolor). One of these isolates (GU11N) from the plant Randia grandifolia was identified as Daldinia eschscholtzii (Xylariales). Its antagonism mechanisms, effects, and chemistry against M. citricolor were investigated by analyzing its volatile profile alone and in the presence of the pathogen in contactless and dual culture assays. The experimental design involved direct sampling of agar plugs in vials for headspace (HS) and headspace solid-phase microextraction (HS-SPME) gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, we used ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS) to identify nonvolatile compounds from organic extracts of the mycelia involved in the interaction. Results showed that more volatile compounds were identified using HS-SPME (39 components) than those by the HS technique (13 components), sharing only 12 compounds. Statistical tests suggest that D. eschscholtzii inhibited the growth of M. citricolor through the release of VOCs containing a combination of 1,8-dimethoxynapththalene and terpene compounds affecting M. citricolor pseudopilei. The damaging effects of 1,8-dimethoxynaphthalene were corroborated in an in vitro test against M. citricolor pseudopilei; scanning electron microscopy (SEM) photographs confirmed structural damage. After analyzing the UHPLC-HRMS/MS data, a predominance of fatty acid derivatives was found among the putatively identified compounds. However, a considerable proportion of features (37.3%) remained unannotated. In conclusion, our study suggests that D. eschscholtzii has potential as a biocontrol agent against M. citricolor and that 1,8-dimethoxynaphthalene contributes to the observed damage to the pathogen's reproductive structures.
Collapse
Affiliation(s)
- Efraín Escudero-Leyva
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Biología, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
| | - Luis Quirós-Guerrero
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- School
of Pharmaceutical Sciences, University of
Geneva, 1205 Geneva, Switzerland
| | - Víctor Vásquez-Chaves
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
| | - Reinaldo Pereira-Reyes
- Laboratorio
Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología, 10109 San Jose, Costa Rica
| | - Priscila Chaverri
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Biología, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
- Department
of Natural Sciences, Bowie State University, Bowie, Maryland 20715, United States
| | - Giselle Tamayo-Castillo
- Centro
de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11520-2060 San José, Costa Rica
- Escuela
de Química, Universidad de Costa
Rica, 11520-2060 San José, Costa Rica
| |
Collapse
|
34
|
Luo K, Zhao G, Chen M, Tian X. Effects of maize resistance and leaf chemical substances on the structure of phyllosphere fungal communities. FRONTIERS IN PLANT SCIENCE 2023; 14:1241055. [PMID: 37645458 PMCID: PMC10461017 DOI: 10.3389/fpls.2023.1241055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
It is well known that plant genotype can regulate phyllosphere fungi at the species level. However, little is known about how plant varieties shape the fungal communities in the phyllosphere. In this study, four types of maize varieties with various levels of resistances to Exserohilum turcicum were subjected to high-throughput sequencing to reveal the properties that influences the composition of phyllosphere fungal communities. The dominant fungi genera for all four maize varieties were Alternaria at different relative abundances, followed by Nigrospora. Hierarchical clustering analysis, non-metric multidimensional scaling and similarity analysis confirmed that the fungal communities in the phyllosphere of the four varieties were significantly different and clustered into the respective maize variety they inhabited. The findings from Redundancy Analysis (RDA) indicated that both maize resistance and leaf chemical constituents, including nitrogen, phosphorus, tannins, and flavonoids, were the major drivers in determining the composition of phyllosphere fungal communities. Among these factors, maize resistance was found to be the most influential, followed by phosphorus. The co-occurrence network of the fungal communities in the phyllosphere of highly resistant variety had higher complexity, integrity and stability compared to others maize varieties. In a conclusion, maize variety resistance and leaf chemical constituents play a major role in shaping the phyllosphere fungal community. The work proposes a link between the assembled fungal communities within the phyllosphere with maize variety that is resistant to pathogenic fungi infection.
Collapse
Affiliation(s)
- Kun Luo
- Hunan Agricultural University, Changsha, Hunan, China
| | - Gonghua Zhao
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Mengfei Chen
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xueliang Tian
- Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang, Henan, China
| |
Collapse
|
35
|
Smith CA, Ashby B. Tolerance-conferring defensive symbionts and the evolution of parasite virulence. Evol Lett 2023; 7:262-272. [PMID: 37475754 PMCID: PMC10355178 DOI: 10.1093/evlett/qrad015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 07/22/2023] Open
Abstract
Defensive symbionts in the host microbiome can confer protection from infection or reduce the harms of being infected by a parasite. Defensive symbionts are therefore promising agents of biocontrol that could be used to control or ameliorate the impact of infectious diseases. Previous theory has shown how symbionts can evolve along the parasitism-mutualism continuum to confer greater or lesser protection to their hosts and in turn how hosts may coevolve with their symbionts to potentially form a mutualistic relationship. However, the consequences of introducing a defensive symbiont for parasite evolution and how the symbiont may coevolve with the parasite have received relatively little theoretical attention. Here, we investigate the ecological and evolutionary implications of introducing a tolerance-conferring defensive symbiont into an established host-parasite system. We show that while the defensive symbiont may initially have a positive impact on the host population, parasite and symbiont evolution tend to have a net negative effect on the host population in the long term. This is because the introduction of the defensive symbiont always selects for an increase in parasite virulence and may cause diversification into high- and low-virulence strains. Even if the symbiont experiences selection for greater host protection, this simply increases selection for virulence in the parasite, resulting in a net negative effect on the host population. Our results therefore suggest that tolerance-conferring defensive symbionts may be poor biocontrol agents for population-level infectious disease control.
Collapse
Affiliation(s)
- Cameron A Smith
- Corresponding author: Department of Mathematical Sciences, 4 West, Claverton Down, University of Bath, Bath, Somerset, BA2 7AY, United Kingdom.
| | - Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, Somerset, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, Somerset, United Kingdom
- Department of Mathematics, Simon Fraser University, Vancouver, British Colombia, Canada
- The Pacific Institute on Pathogens, Pandemics and Society (PIPPS), Simon Fraser University, Vancouver, British Colombia, Canada
| |
Collapse
|
36
|
Gibson E, Zimmerman NB. Urban biogeography of fungal endophytes across San Francisco. PeerJ 2023; 11:e15454. [PMID: 37547726 PMCID: PMC10399560 DOI: 10.7717/peerj.15454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/03/2023] [Indexed: 08/08/2023] Open
Abstract
In natural and agricultural systems, the plant microbiome-the microbial organisms associated with plant tissues and rhizosphere soils-has been shown to have important effects on host physiology and ecology, yet we know little about how these plant-microbe relationships play out in urban environments. Here we characterize the composition of fungal communities associated with living leaves of one of the most common sidewalk trees in the city of San Francisco, California. We focus our efforts on endophytic fungi (asymptomatic microfungi that live inside healthy leaves), which have been shown in other systems to have large ecological effects on the health of their plant hosts. Specifically, we characterized the foliar fungal microbiome of Metrosideros excelsa (Myrtaceae) trees growing in a variety of urban environmental conditions. We used high-throughput culturing, PCR, and Sanger sequencing of the internal transcribed spacer nuclear ribosomal DNA (ITS nrDNA) region to quantify the composition and structure of fungal communities growing within healthy leaves of 30 M. excelsa trees from six distinct sites, which were selected to capture the range of environmental conditions found within city limits. Sequencing resulted in 854 high-quality ITS sequences. These sequences clustered into 85 Operational Taxonomic Units (97% OTUs). We found that these communities encompass relatively high alpha (within) and beta (between-site) diversity. Because the communities are all from the same host tree species, and located in relatively close geographical proximity to one another, these analyses suggest that urban environmental factors such as heat islands or differences in vegetation or traffic density (and associated air quality) may potentially be influencing the composition of these fungal communities. These biogeographic patterns provide evidence that plant microbiomes in urban environments can be as dynamic and complex as their natural counterparts. As human populations continue to transition out of rural areas and into cities, understanding the factors that shape environmental microbial communities in urban ecosystems stands to become increasingly important.
Collapse
Affiliation(s)
- Emma Gibson
- Department of Biology, University of San Francisco, San Francisco, CA, United States of America
| | - Naupaka B. Zimmerman
- Department of Biology, University of San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
37
|
Chen T, Wang S, Jiang X, Huang Y, Mo M, Yu Z. New Species of Didymellaceae within Aquatic Plants from Southwestern China. J Fungi (Basel) 2023; 9:761. [PMID: 37504749 PMCID: PMC10381294 DOI: 10.3390/jof9070761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
Members of Didymellaceae have a wide geographical distribution throughout different ecosystems, and most species are associated with fruit, leaf, stem and root diseases of land plants. However, species that occur in aquatic plants are not clearly known. During a survey of the diversity of endophytes in aquatic plants in Yunnan, Sichuan, and Guizhou provinces, we obtained 51 isolates belonging to Didymellaceae based on internal transcribed spacer region (ITS) sequences. Further, the phylogenetic positions of these isolates were determined by combined sequences composed of ITS, partial large subunit nrRNA gene (28S nrDNA; LSU), RNA polymerase II second largest subunit (rpb2) and partial beta-tubulin gene (tub2). Combining morphological characteristics and multi-locus phylogenetic analyses, two new varieties belong to Boeremia and 12 new species distributed into seven genera were recognized from 51 isolates, i.e., Cumuliphoma, Didymella, Dimorphoma, Ectophoma, Leptosphaerulina, Remotididymella, and Stagonosporopsis. Among these species, only one species of Stagonosporopsis and two species of Leptosphaerulina show teleomorphic stages on OA, but have no anamorphic state. Each new species is described in detail, and the differences between new species and their phylogenetically related species are discussed here. The high frequency of new species indicates that aquatic plants may be a special ecological niche which highly promotes species differentiation. At the same time, the frequent occurrence of new species may indicate the need for extensive investigation of fungal resources in those aquatic environments where fungal diversity may be underestimated.
Collapse
Affiliation(s)
- Tong Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Siyuan Wang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xinwei Jiang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Ying Huang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Minghe Mo
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
| | - Zefen Yu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China; (T.C.); (S.W.); (X.J.); (Y.H.)
| |
Collapse
|
38
|
Tu J, Zhao X, Yang Y, Yi Y, Wang H, Wei B, Zeng L. Two Bacillus spp. Strains Improve the Structure and Diversity of the Rhizosphere Soil Microbial Community of Lilium brownii var. viridulum. Microorganisms 2023; 11:1229. [PMID: 37317201 DOI: 10.3390/microorganisms11051229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 06/16/2023] Open
Abstract
Lily Fusarium wilt disease caused by Fusarium spp. spreads rapidly and is highly destructive, leading to a severe reduction in yield. In this study, lily (Lilium brownii var. viridulum) bulbs were irrigated after planting with suspensions of two Bacillus strains that effectively control lily Fusarium wilt disease to assess their effects on the rhizosphere soil properties and microbial community. A high-throughput sequencing of microorganisms in the rhizosphere soil was performed and the soil physicochemical properties were measured. The FunGuild and Tax4Fun tools were used for a functional profile prediction. The results showed that Bacillus amyloliquefaciens BF1 and B. subtilis Y37 controlled lily Fusarium wilt disease with control efficacies of 58.74% and 68.93%, respectively, and effectively colonized the rhizosphere soil. BF1 and Y37 increased the bacterial diversity and richness of the rhizosphere soil and improved the physicochemical properties of the soil, thereby favoring the proliferation of beneficial microbes. The relative abundance of beneficial bacteria was increased and that of pathogenic bacteria was decreased. Bacillus abundance in the rhizosphere was positively correlated with most soil physicochemical properties, whereas Fusarium abundance was negatively correlated with most physicochemical properties. Functional prediction revealed that irrigation with BF1 and Y37 significantly upregulated glycolysis/gluconeogenesis among metabolism and absorption pathways. This study provides insights into the mechanism by which two Bacillus strains with antifungal activity, BF1 and Y37, antagonize plant pathogenic fungi and lays the foundation for their effective application as biocontrol agents.
Collapse
Affiliation(s)
- Jing Tu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Xin Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yuanru Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Yongjian Yi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Hongying Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Baoyang Wei
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China
| | - Liangbin Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| |
Collapse
|
39
|
Mohamed NZ, Shaban L, Safan S, El-Sayed ASA. Physiological and metabolic traits of Taxol biosynthesis of endophytic fungi inhabiting plants: Plant-microbial crosstalk, and epigenetic regulators. Microbiol Res 2023; 272:127385. [PMID: 37141853 DOI: 10.1016/j.micres.2023.127385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Attenuating the Taxol productivity of fungi with the subculturing and storage under axenic conditions is the challenge that halts the feasibility of fungi to be an industrial platform for Taxol production. This successive weakening of Taxol productivity by fungi could be attributed to the epigenetic down-regulation and molecular silencing of most of the gene clusters encoding Taxol biosynthetic enzymes. Thus, exploring the epigenetic regulating mechanisms controlling the molecular machinery of Taxol biosynthesis could be an alternative prospective technology to conquer the lower accessibility of Taxol by the potent fungi. The current review focuses on discussing the different molecular approaches, epigenetic regulators, transcriptional factors, metabolic manipulators, microbial communications and microbial cross-talking approaches on restoring and enhancing the Taxol biosynthetic potency of fungi to be industrial platform for Taxol production.
Collapse
Affiliation(s)
- Nabil Z Mohamed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Lamis Shaban
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Samia Safan
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab, Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
40
|
Davis EL, Weatherhead E, Koide RT. The potential saprotrophic capacity of foliar endophytic fungi from Quercus gambelii. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2022.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
The impact of polyphenolic compounds on the in vitro growth of oak-associated foliar endophytic and saprotrophic fungi. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
42
|
Lu J, Zeng L, Holford P, Beattie GAC, Wang Y. Discovery of Brassica Yellows Virus and Porcine Reproductive and Respiratory Syndrome Virus in Diaphorina citri and Changes in Virome Due to Infection with ' Ca. L. asiaticus'. Microbiol Spectr 2023; 11:e0499622. [PMID: 36943045 PMCID: PMC10100913 DOI: 10.1128/spectrum.04996-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/19/2023] [Indexed: 03/23/2023] Open
Abstract
Detection of new viruses or new virus hosts is essential for the protection of economically important agroecosystems and human health. Increasingly, metatranscriptomic data are being used to facilitate this process. Such data were obtained from adult Asian citrus psyllids (ACP) (Diaphorina citri Kuwayama) that fed solely on mandarin (Citrus ×aurantium L.) plants grafted with buds infected with 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium associated with the severe Asian variant of huanglongbing (HLB), the most destructive disease of citrus. Brassica yellows virus (BrYV), the causative agent of yellowing or leafroll symptoms in brassicaceous plants, and its associated RNA (named as BrYVaRNA) were detected in ACP. In addition, the porcine reproductive and respiratory syndrome virus (PRRSV), which affects pigs and is economically important to pig production, was also found in ACP. These viruses were not detected in insects feeding on plants grafted with CLas-free buds. Changes in the concentrations of insect-specific viruses within the psyllid were caused by coinfection with CLas. IMPORTANCE The cross transmission of pathogenic viruses between different farming systems or plant communities is a major threat to plants and animals and, potentially, human health. The use of metagenomics is an effective approach to discover viruses and vectors. Here, we collected buds from the CLas-infected and CLas-free mandarin (Citrus ×aurantium L. [Rutaceae: Aurantioideae: Aurantieae]) trees from a commercial orchard and grafted them onto CLas-free mandarin plants under laboratory conditions. Through metatranscriptome sequencing, we first identified the Asian citrus psyllids feeding on plants grafted with CLas-infected buds carried the plant pathogen, brassica yellows virus and its associated RNA, and the swine pathogen, porcine reproductive and respiratory syndrome virus. These discoveries indicate that both viruses can be transmitted by grafting and acquired by ACP from CLas+ mandarin seedlings.
Collapse
Affiliation(s)
- Jinming Lu
- College of Forestry and Biotechnology, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, China
- College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lixia Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou, Guangdong, China
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - George A. C. Beattie
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Yanjing Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, Zhejiang, China
| |
Collapse
|
43
|
Zhu C, Lin Y, Wang Z, Luo W, Zhang Y, Chu C. Community assembly and network structure of epiphytic and endophytic phyllosphere fungi in a subtropical mangrove ecosystem. Front Microbiol 2023; 14:1147285. [PMID: 37007520 PMCID: PMC10064055 DOI: 10.3389/fmicb.2023.1147285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Microorganisms can influence plant growth and health, ecosystem functioning, and stability. Community and network structures of mangrove phyllosphere fungi have rarely been studied although mangroves have very important ecological and economical values. Here, we used high throughput sequencing of the internal transcribed spacer 2 (ITS2) to assess epiphytic and endophytic phyllosphere fungal communities of six true mangrove species and five mangrove associates. Totally, we obtained 1,391 fungal operational taxonomic units (OTUs), including 596 specific epiphytic fungi, 600 specific endophytic fungi, and 195 shared fungi. The richness and community composition differed significantly for epiphytes and endophytes. Phylogeny of the host plant had a significant constraint on epiphytes but not endophytes. Network analyses showed that plant–epiphyte and plant–endophyte networks exhibited strong specialization and modularity but low connectance and anti-nestedness. Compared to plant–endophyte network, plant–epiphyte network showed stronger specialization, modularity, and robustness but lower connectance and anti-nestedness. These differences in community and network structures of epiphytes and endophytes may be caused by spatial niche partitioning, indicating their underlying ecological and environmental drivers are inconsistent. We highlight the important role of plant phylogeny in the assembly of epiphytic but not endophytic fungal communities in mangrove ecosystems.
Collapse
Affiliation(s)
- Chunchao Zhu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- *Correspondence: Chunchao Zhu,
| | | | - Zihui Wang
- Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yonghua Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Silva RMF, Neto WP, Oliveira RJ, Bezerra JD, Bezerra JL, de Lima VX, Vieira LC, Tabosa JN, Souza-Motta CM, Silva GA. Effect of climate and phenological stage on fungal endophytes community in Sorghum bicolor leaves. Mycol Prog 2023. [DOI: 10.1007/s11557-023-01870-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
45
|
Siddique AB, Menke L, Dinedurga M, Albrectsen BR. Molecular studies of rust on European aspen suggest an autochthonous relationship shaped by genotype. FRONTIERS IN PLANT SCIENCE 2023; 14:1111001. [PMID: 36890907 PMCID: PMC9986475 DOI: 10.3389/fpls.2023.1111001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Forests are at increasing risk from pathogen outbreak. Climate change for example enhance the risk of local disease outbreaks, and naturalization of exotic pathogens may follow human activities, warranting robust pest surveillance routines to support forest management. Melampsora pinitorqua (pine twisting rust) is of concern in Swedish forestry, and here we evaluate the use of visible rust scores (VRS) on its obligate summer host, European aspen (Populus tremula) as a tool for quantification of the pathogen. With use of species-specific primers, we could detect the native rust, but we failed to detect two exotic rusts (M. medusae and M. larici-populina). We found that aspen genotype determined the presence of fungal genetic markers (amplifying the ITS2 region of the fungal rDNA sequence) as well as DNA sequences specific to M. pinitorqua. We correlated VRS with the amount of fungal DNA in the same leaf, and we related the findings to aspen genotype-specific parameters such as the ability to synthesize and store leaf condensed tannins (CT). At the genotype level both positive and negative relationships were observed between CTs, fungal markers, and rust infestations. However, at the population level, foliar CT concentrations correlated negatively with general fungal- and rust-specific marker abundances. Our results, therefore, do not support the use of VRS to assess Melampsora infestation in Aspen. They do, however, suggest that the relationship between European aspen and rust infestation may be characterized as autochthonous in northern Sweden.
Collapse
|
46
|
Firoozbahr M, Kingshott P, Palombo EA, Zaferanloo B. Recent Advances in Using Natural Antibacterial Additives in Bioactive Wound Dressings. Pharmaceutics 2023; 15:644. [PMID: 36839966 PMCID: PMC10004169 DOI: 10.3390/pharmaceutics15020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound care is a global health issue with a financial burden of up to US $96.8 billion annually in the USA alone. Chronic non-healing wounds which show delayed and incomplete healing are especially problematic. Although there are more than 3000 dressing types in the wound management market, new developments in more efficient wound dressings will require innovative approaches such as embedding antibacterial additives into wound-dressing materials. The lack of novel antibacterial agents and the misuse of current antibiotics have caused an increase in antimicrobial resistance (AMR) which is estimated to cause 10 million deaths by 2050 worldwide. These ongoing challenges clearly indicate an urgent need for developing new antibacterial additives in wound dressings targeting microbial pathogens. Natural products and their derivatives have long been a significant source of pharmaceuticals against AMR. Scrutinising the data of newly approved drugs has identified plants as one of the biggest and most important sources in the development of novel antibacterial drugs. Some of the plant-based antibacterial additives, such as essential oils and plant extracts, have been previously used in wound dressings; however, there is another source of plant-derived antibacterial additives, i.e., those produced by symbiotic endophytic fungi, that show great potential in wound dressing applications. Endophytes represent a novel, natural, and sustainable source of bioactive compounds for therapeutic applications, including as efficient antibacterial additives for chronic wound dressings. This review examines and appraises recent developments in bioactive wound dressings that incorporate natural products as antibacterial agents as well as advances in endophyte research that show great potential in treating chronic wounds.
Collapse
Affiliation(s)
- Meysam Firoozbahr
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Enzo A. Palombo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
47
|
Bracalini M, Benigno A, Aglietti C, Panzavolta T, Moricca S. Thousand Cankers Disease in Walnut Trees in Europe: Current Status and Management. Pathogens 2023; 12:pathogens12020164. [PMID: 36839436 PMCID: PMC9959596 DOI: 10.3390/pathogens12020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Thousand cankers disease (TCD) is a new deadly disease in walnut trees (Juglans spp.), which is plaguing commercial plantations, natural groves, and ornamental black walnut trees (Juglans nigra) in their native and invasion areas in the US and, more recently, in artificial plantations and amenity trees in the newly-invaded areas in Europe (Italy). This insect/fungus complex arises from the intense trophic activity of the bark beetle vector Pityophthorus juglandis in the phloem of Juglans spp. and the subsequent development of multiple Geosmithia morbida cankers around beetles' entry/exit holes. After an analysis of the main biological and ecological traits of both members of this insect/fungus complex, this review explores the options available for TCD prevention and management. Special focus is given to those diagnostic tools developed for disease detection, surveillance, and monitoring, as well as to existing phytosanitary regulations, protocols, and measures that comply with TCD eradication and containment. Only integrated disease management can effectively curtail the pervasive spread of TCD, thus limiting the damage to natural ecosystems, plantations, and ornamental walnuts.
Collapse
|
48
|
Sun M, Shi C, Huang Y, Wang H, Li J, Cai L, Luo F, Xiang L, Wang F. Effect of disease severity on the structure and diversity of the phyllosphere microbial community in tobacco. Front Microbiol 2023; 13:1081576. [PMID: 36687583 PMCID: PMC9846082 DOI: 10.3389/fmicb.2022.1081576] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Tobacco target spot is a serious fungal disease and it is important to study the similarities and differences between fungal and bacterial community under different disease severities to provide guidance for the biological control of tobacco target spot. In this study, tobacco leaves at disease severity level of 1, 5, 7 and 9 (S1, S5, S7, and S9) were collected, both healthy and diseased leaf tissues for each level were sampled. The community structure and diversity of fungi and bacteria in tobacco leaves with different disease severities were compared using high-throughput sequencing technology. The results indicated that there was a significant differences in the community structure of fungi and bacteria for both healthy and diseased samples depending on the disease severity. In both healthy and diseased tobacco leaves for all four different disease severities, the most dominant fungal phylum was Basidiomycota with a high prevalence of genus Thanatephorus. The relative abundance of Thanatephorus was most found at S9 diseased samples. Proteobacteria represent the most prominent bacterial phylum, with Pseudomonas as predominant genus, followed by Pantoea. The relative abundance of Pseudomonas was most found at S7 healthy samples. In fungal community, the Alpha-diversity of healthy samples was higher than that of diseased samples. In contrast, in bacterial community, the Alpha-diversity of healthy samples was lower than that of diseased samples. LEfSe analysis showed that the most enrich fungal biomarker was Thanatephorus cucumeris in diseased samples. Clostridium disporicum and Ralstonia pickettii were the most enrich bacterial biomarker in healthy samples. FUNGuild analysis showed that the pathotroph mode was the most abundant trophic modes. The relative abundance of pathotroph mode in diseased samples changes insignificantly, but a peak at S5 was observed for healthy samples. PICRUSt analysis showed that most bacterial gene sequences seem to be independent of the disease severity. The results of this study provide scientific references for future studies on tobacco phyllosphere microecology aiming at prevention and control of tobacco target spot.
Collapse
Affiliation(s)
- Meili Sun
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, China
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Caihua Shi
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, China
- School of Food Science and Technology & School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yang Huang
- China Tobacco Sichuan Industrial Corporation Technical Centre, Chengdu, China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Jianjun Li
- College of Tropical Crops, Hainan University, Haikou Hainan, China
| | - Liuti Cai
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Fei Luo
- College of Life Science, Yangtze University, Jingzhou, China
| | - Ligang Xiang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, China
| | - Feng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, China
| |
Collapse
|
49
|
Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. J Fungi (Basel) 2023; 9:jof9010072. [PMID: 36675893 PMCID: PMC9860820 DOI: 10.3390/jof9010072] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Endophytic fungi are used as the most common microbial biological control agents (MBCAs) against phytopathogens and are ubiquitous in all plant parts. Most of the fungal species have roles against a variety of plant pathogens. Fungal endophytes provide different services to be used as pathogen control agents, using an important aspect in the form of enhanced plant growth and induced systemic resistance, produce a variety of antifungal secondary metabolites (lipopeptides, antibiotics and enzymes) through colonization, and compete with other pathogenic microorganisms for growth factors (space and nutrients). The purpose of this review is to highlight the biological control potential of fungal species with antifungal properties against different fungal plant pathogens. We focused on the introduction, biology, isolation, identification of endophytic fungi, and their antifungal activity against fungal plant pathogens. The endosymbionts have developed specific genes that exhibited endophytic behavior and demonstrated defensive responses against pathogens such as antibiosis, parasitism, lytic enzyme and competition, siderophore production, and indirect responses by induced systemic resistance (ISR) in the host plant. Finally, different microscopic detection techniques to study microbial interactions (endophytic and pathogenic fungal interactions) in host plants are briefly discussed.
Collapse
|
50
|
Farhat H, Urooj F, Irfan M, Sohail N, Majeed S, Ullah S, Shafique HA. Biological Control Potential of Endophytic Fungi with Amelioration of Systemic Resistance in Sunflower and GC-MS Metabolic Profiling of Talaromyces assiutensis. Curr Microbiol 2023; 80:61. [PMID: 36588145 DOI: 10.1007/s00284-022-03161-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023]
Abstract
Endophytic fungi live inside plant tissues but do not cause any disease. Several reports have now revealed that they have great influence on host. In this study, the beneficial role of endophytic fungi is highlighted and explored. Endophytic fungi isolated from healthy plants were identified as Aspergillus terreus, Curvularia lunata, C. hawaiiensis, Macrophomina phaseolina, Fusarium solani, Talaromyces assiutensis, and T. trachyspermus using 18S rRNA gene sequencing. In vitro, fungi evaluated for antimicrobial activity, showed significant activity. These fungi were tested in field application by exploring their broad spectrum. Talaromyces assiutensis and T. trachyspermus were applied in pots and field plot experiments using sunflower as test plants, along with endophytic Cephalosporium sp., and Chaetomium sp. Endophytic fungi showed significant activity against root rot pathogens affecting sunflower and improved plant biomass. They also improved production of plant defense biochemical markers (polyphenolic content and salicylic acid) with improvement in antioxidant potential. These fungi are used as biological control agents, so their culture filtrates are used to check the presence of metabolites by GC-MS. Several new compounds were isolated from T. assiutensis. The major bioactive compounds are Coumarin, 3,4-dihydro-6-methoxy-4,4-dimethyl, 1-Monolinoleoylglycerol trimethylsilyl ether, 1,2-Propanediol, 3-(octadecyloxy), Ethyl iso-allocholate, and 1H-Pyrazole, which possess antioxidant, antitumor, antibacterial, anticancer, and antimicrobial properties. These findings will lead to further in-depth research toward the potential use of these endophytic fungi for their possible use in agriculture and drug formation.
Collapse
Affiliation(s)
- Hafiza Farhat
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan.
| | - Faizah Urooj
- Department of Botany, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammed Irfan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Nida Sohail
- Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saima Majeed
- Aquatic Diagnostic Lab, Bahria University, Karachi, 75270, Pakistan
| | - Shahid Ullah
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan
| | | |
Collapse
|