1
|
Piva-Amaral R, Augusto Pires de Souza G, Carlos Vilela Vieira Júnior J, Fróes Goulart de Castro R, Permagnani Gozzi W, Pereira Lima Neto S, Cauvilla Dos Santos AL, Pavani Cassiano H, Christine Ferreira da Silva L, Dias Novaes R, Santos Abrahão J, Ervolino de Oliveira C, de Mello Silva B, de Paula Costa G, Cosme Cotta Malaquias L, Felipe Leomil Coelho L. Bovine serum albumin nanoparticles containing Poly (I:C) can enhance the neutralizing antibody response induced by envelope protein of Orthoflavivirus zikaense. Int Immunopharmacol 2024; 128:111523. [PMID: 38219440 DOI: 10.1016/j.intimp.2024.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Since the Orthoflavivirus zikaense (ZIKV) has been considered a risk for Zika congenital syndrome development, developing a safe and effective vaccine has become a high priority. Numerous research groups have developed strategies to prevent ZIKV infection and have identified the domain III of the ZIKV envelope protein (zEDIII) as a promising target. Subunit antigens are often poorly immunogenic, necessitating the use of adjuvants and/or delivery systems to induce optimal immune responses. The subject of nanotechnology has substantial expansion in recent years in terms of research and applications. Nanoparticles could be used as drug delivery systems and to increase the immunogenicity and stability of a given antigen. This work aims to characterize and validate the potential of a vaccine formulation composed of domain zEDIII and bovine serum albumin nanoparticles containing polyinosinic-polycytidylic acid (NPPI). NPPI were uptake in vitro by immature bone marrow dendritic cells and histological analysis of the skin of mice treated with NPPI showed an increase in cellularity. Immunization assay showed that mice immunized with zEDIII in the presence of NPPI produced neutralizing antibodies. Through the passive transfer of sera from immunized mice to ZIKV-infected neonatal mice, it was demonstrated that these antibodies provide protection, mitigating weight loss, clinical or neurological signs induced by infection, and significantly increased survival rates. Protection was further substantiated by the reduction in the number of viable infectious ZIKV, as well as a decrease in inflammatory cytokines and tissue alterations in the brains of infected mice. Taken together, data presented in this study shows that NPPI + zEDIII is a promising vaccine candidate for ZIKV.
Collapse
Affiliation(s)
- Raíne Piva-Amaral
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| | - Gabriel Augusto Pires de Souza
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil; Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - João Carlos Vilela Vieira Júnior
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Renato Fróes Goulart de Castro
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - William Permagnani Gozzi
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Sergio Pereira Lima Neto
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Ana Luisa Cauvilla Dos Santos
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Helena Pavani Cassiano
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | | | - Romulo Dias Novaes
- Instituto de Ciências Biomédicas, Departamento de Biologia Estrutural, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Instituto de Ciências Biológicas, Departamento de Microbiologia, Universidade Federal de Minas Gerais, Brazil
| | - Carine Ervolino de Oliveira
- Instituto de Ciências Biomédicas, Departamento de Patologia e Parasitologia, Universidade Federal de Alfenas, 37130-001 Minas Gerais, Brazil
| | - Breno de Mello Silva
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Guilherme de Paula Costa
- Núcleo de Pesquisas em Ciências Biológicas, NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Luiz Cosme Cotta Malaquias
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil
| | - Luiz Felipe Leomil Coelho
- Laboratório de Vacinas, Departamento de Microbiologia e Imunologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas 37130-001, Brazil.
| |
Collapse
|
2
|
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development. Chem Soc Rev 2023; 52:5172-5254. [PMID: 37462107 DOI: 10.1039/d2cs00848c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Vaccines comprising innovative adjuvants are rapidly reaching advanced translational stages, such as the authorized nanotechnology adjuvants in mRNA vaccines against COVID-19 worldwide, offering new strategies to effectively combat diseases threatening human health. Adjuvants are vital ingredients in vaccines, which can augment the degree, extensiveness, and longevity of antigen specific immune response. The advances in the modulation of physicochemical properties of nanoplatforms elevate the capability of adjuvants in initiating the innate immune system and adaptive immunity, offering immense potential for developing vaccines against hard-to-target infectious diseases and cancer. In this review, we provide an essential introduction of the basic principles of prophylactic and therapeutic vaccination, key roles of adjuvants in augmenting and shaping immunity to achieve desired outcomes and effectiveness, and the physiochemical properties and action mechanisms of clinically approved adjuvants for humans. We particularly focus on the preclinical and clinical progress of highly immunogenic emerging nanotechnology adjuvants formulated in vaccines for cancer treatment or infectious disease prevention. We deliberate on how the immune system can sense and respond to the physicochemical cues (e.g., chirality, deformability, solubility, topology, and chemical structures) of nanotechnology adjuvants incorporated in the vaccines. Finally, we propose possible strategies to accelerate the clinical implementation of nanotechnology adjuvanted vaccines, such as in-depth elucidation of nano-immuno interactions, antigen identification and optimization by the deployment of high-dimensional multiomics analysis approaches, encouraging close collaborations among scientists from different scientific disciplines and aggressive exploration of novel nanotechnologies.
Collapse
Affiliation(s)
- Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Yujie Xie
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Toll-Like Receptors: General Molecular and Structural Biology. J Immunol Res 2021; 2021:9914854. [PMID: 34195298 PMCID: PMC8181103 DOI: 10.1155/2021/9914854] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background/Aim Toll-like receptors (TLRs) are pivotal biomolecules in the immune system. Today, we are all aware of the importance of TLRs in bridging innate and adaptive immune system to each other. The TLRs are activated through binding to damage/danger-associated molecular patterns (DAMPs), microbial/microbe-associated molecular patterns (MAMPs), pathogen-associated molecular patterns (PAMPs), and xenobiotic-associated molecular patterns (XAMPs). The immunogenetic molecules of TLRs have their own functions, structures, coreceptors, and ligands which make them unique. These properties of TLRs give us an opportunity to find out how we can employ this knowledge for ligand-drug discovery strategies to control TLRs functions and contribution, signaling pathways, and indirect activities. Hence, the authors of this paper have a deep observation on the molecular and structural biology of human TLRs (hTLRs). Methods and Materials To prepare this paper and fulfill our goals, different search engines (e.g., GOOGLE SCHOLAR), Databases (e.g., MEDLINE), and websites (e.g., SCOPUS) were recruited to search and find effective papers and investigations. To reach this purpose, we tried with papers published in the English language with no limitation in time. The iCite bibliometrics was exploited to check the quality of the collected publications. Results Each TLR molecule has its own molecular and structural biology, coreceptor(s), and abilities which make them unique or a complementary portion of the others. These immunogenetic molecules have remarkable roles and are much more important in different sections of immune and nonimmune systems rather than that we understand to date. Conclusion TLRs are suitable targets for ligand-drug discovery strategies to establish new therapeutics in the fields of infectious and autoimmune diseases, cancers, and other inflammatory diseases and disorders.
Collapse
|
4
|
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2021; 11:622614. [PMID: 33679711 PMCID: PMC7930332 DOI: 10.3389/fimmu.2020.622614] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Collapse
Affiliation(s)
- Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
5
|
Choi JH, Jeong K, Kim SM, Ko MK, You SH, Lyoo YS, Kim B, Ku JM, Park JH. Synergistic effect of ribavirin and vaccine for protection during early infection stage of foot-and-mouth disease. J Vet Sci 2019; 19:788-797. [PMID: 30304889 PMCID: PMC6265586 DOI: 10.4142/jvs.2018.19.6.788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/25/2022] Open
Abstract
In many countries, vaccines are used for the prevention of foot-and-mouth disease (FMD). However, because there is no protection against FMD immediately after vaccination, research and development on antiviral agents is being conducted to induce protection until immunological competence is produced. This study tested whether well-known chemicals used as RNA virus treatment agents had inhibitory effects on FMD viruses (FMDVs) and demonstrated that ribavirin showed antiviral effects against FMDV in vitro/in vivo. In addition, it was observed that combining the administration of the antiviral agents orally and complementary therapy with vaccines synergistically enhanced antiviral activity and preserved the survival rate and body weight in the experimental animals. Antiviral agents mixed with an adjuvant were inoculated intramuscularly along with the vaccines, thereby inhibiting virus replication after injection and verifying that it was possible to induce early protection against viral infection prior to immunity being achieved through the vaccine. Finally, pigs treated with antiviral agents and vaccines showed no clinical signs and had low virus excretion. Based on these results, it is expected that this combined approach could be a therapeutic and preventive treatment for early protection against FMD.
Collapse
Affiliation(s)
- Joo-Hyung Choi
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Kwiwan Jeong
- Bio-Center, Gyeonggi Business & Science Accelerator, Suwon 16229, Korea
| | - Su-Mi Kim
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Mi-Kyeong Ko
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Su-Hwa You
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Byounghan Kim
- Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Jin-Mo Ku
- Bio-Center, Gyeonggi Business & Science Accelerator, Suwon 16229, Korea
| | | |
Collapse
|
6
|
Poynter SJ, DeWitte-Orr SJ. Understanding Viral dsRNA-Mediated Innate Immune Responses at the Cellular Level Using a Rainbow Trout Model. Front Immunol 2018; 9:829. [PMID: 29740439 PMCID: PMC5924774 DOI: 10.3389/fimmu.2018.00829] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022] Open
Abstract
Viruses across genome types produce long dsRNA molecules during replication [viral (v-) dsRNA]. dsRNA is a potent signaling molecule and inducer of type I interferon (IFN), leading to the production of interferon-stimulated genes (ISGs), and a protective antiviral state within the cell. Research on dsRNA-induced immune responses has relied heavily on a commercially available, and biologically irrelevant dsRNA, polyinosinic:polycytidylic acid (poly I:C). Alternatively, dsRNA can be produced by in vitro transcription (ivt-) dsRNA, with a defined sequence and length. We hypothesized that ivt-dsRNA, containing legitimate viral sequence and length, would be a more appropriate proxy for v-dsRNA, compared with poly I:C. This is the first study to investigate the effects of v-dsRNA on the innate antiviral response and to compare v-dsRNA to ivt-dsRNA-induced responses in fish cells, specifically rainbow trout. Previously, class A scavenger receptors (SR-As) were found to be surface receptors for poly I:C in rainbow trout cells. In this study, ivt-dsRNA binding was blocked by poly I:C and v-dsRNA, as well as SR-A competitive ligands, suggesting all three dsRNA molecules are recognized by SR-As. Downstream innate antiviral effects were determined by measuring IFN and ISG transcript levels using qRT-PCR and antiviral assays. Similar to what has been shown previously with ivt-dsRNA, v-dsRNA was able to induce IFN and ISG transcript production between 3 and 24 h, and its effects were length dependent (i.e., longer v-dsRNA produced a stronger response). Interestingly, when v-dsRNA and ivt-dsRNA were length and sequence matched both molecules induced statistically similar IFN and ISG transcript levels, which resulted in similar antiviral states against two aquatic viruses. To pursue sequence effects further, three ivt-dsRNA molecules of the same length but different sequences (including host and viral sequences) were tested for their ability to induce IFN/ISG transcripts and an antiviral state. All three induced responses similarly. This study is the first of its kind to look at the effects v-dsRNA in fish cells as well as to compare ivt-dsRNA to v-dsRNA, and suggests that ivt-dsRNA may be a good surrogate for v-dsRNA in the study of dsRNA-induced responses and potential future antiviral therapies.
Collapse
Affiliation(s)
- Sarah J. Poynter
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
7
|
Mamber SW, Lins J, Gurel V, Hutcheson DP, Pinedo P, Bechtol D, Krakowka S, Fields-Henderson R, Cummins JM. Low-dose oral interferon modulates expression of inflammatory and autoimmune genes in cattle. Vet Immunol Immunopathol 2016; 172:64-71. [PMID: 27032505 PMCID: PMC7173013 DOI: 10.1016/j.vetimm.2016.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/20/2022]
Abstract
While the safety and efficacy profiles of orally administered bovine interferon (IFN) alpha have been documented, the mechanism(s) that result in clinical benefits remain elusive. One approach to delineating the molecular pathways of IFN efficacy is through the use of gene expression profiling technologies. In this proof-of-concept study, different (0, 50, 200 and 800 units) oral doses of natural bovine IFN (type I) were tested in cattle to determine if oral IFN altered the expression of genes that may be pivotal to the development of systemic resistance to viral infections such as foot-and-mouth disease (FMD). Oral IFN was administered twice: Time 0 and 8h later. Blood was collected at 0, 8 and 24h after the first IFN administration, and DNA isolated from peripheral blood mononuclear cells (PBMCs) was employed in quantitative polymerase chain reaction (qPCR) microarray assays. Within 8h, 50 and 200 units of oral IFN induced significant (P<0.05) changes in expression of 41 of 92 tested autoimmune and inflammatory response-associated genes. These data suggest that orally administered IFN is a viable approach for providing short-term antiviral immunity to livestock exposed to viruses such as FMD virus (FMDV) until such a time that an effective vaccine can be produced and distributed to producers.
Collapse
Affiliation(s)
- Stephen W Mamber
- Beech Tree Labs, 117 Chapman Street, Providence, RI 02905, United States
| | - Jeremy Lins
- Beech Tree Labs, 117 Chapman Street, Providence, RI 02905, United States
| | - Volkan Gurel
- Beech Tree Labs, 117 Chapman Street, Providence, RI 02905, United States
| | - David P Hutcheson
- Animal Agricultural Consulting International, 63 Neches Court, Scroggins, TX 75480, United States
| | - Pablo Pinedo
- Texas A&M AgriLife Research Extension Center, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University System, Amarillo, TX 79106, United States
| | - David Bechtol
- Agri Research Center, 16851 Hope Road, Canyon, TX 79015, United States
| | - Steven Krakowka
- Department of Veterinary Sciences, Ohio State University, Columbus, OH 43210, United States
| | | | - Joseph M Cummins
- Bomunity Ltd., Co., 400 W. Walnut Street, Hereford, TX 79045, United States.
| |
Collapse
|
8
|
Bela-ong DB, Schyth BD, Zou J, Secombes CJ, Lorenzen N. Involvement of two microRNAs in the early immune response to DNA vaccination against a fish rhabdovirus. Vaccine 2015; 33:3215-22. [PMID: 25957662 DOI: 10.1016/j.vaccine.2015.04.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/22/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
Mechanisms that account for the high protective efficacy in teleost fish of a DNA vaccine expressing the glycoprotein (G) of Viral hemorrhagic septicemia virus (VHSV) are thought to involve early innate immune responses mediated by interferons (IFNs). Microribonucleic acids (miRNAs) are a diverse class of small (18-22 nucleotides) endogenous RNAs that potently mediate post-transcriptional silencing of a wide range of genes and are emerging as critical regulators of cellular processes, including immune responses. We have recently reported that miR-462 and miR-731 were strongly induced in rainbow trout infected with VHSV. In this study, we analyzed the expression of these miRNAs in fish following administration of the DNA vaccine and their potential functions. Quantitative RT-PCR analysis revealed the increased levels of miR-462, and miR-731 in the skeletal muscle tissue at the site of vaccine administration and in the liver of vaccinated fish relative to empty plasmid backbone-injected controls. The increased expression of these miRNAs in the skeletal muscle correlated with the increased levels of the type I interferon (IFN)-inducible gene Mx, type I IFN and IFN-γ genes at the vaccination site. Intramuscular injection of fish with either type I IFN or IFN-γ plasmid construct resulted in the upregulation of miR-462 and miR-731 at the site of injection, suggesting that the induction of these miRNAs is elicited by IFNs. To analyze the function of miR-462 and miR-731, specific silencing of these miRNAs using anti-miRNA oligonucleotides was conducted in poly I:C-treated rainbow trout fingerlings. Following VHSV challenge, anti-miRNA-injected fish had faster development of disease and higher mortalities than control fish, indicating that miR-462/731 may be involved in IFN-mediated protection conferred by poly I:C.
Collapse
Affiliation(s)
- Dennis Berbulla Bela-ong
- Fish Health Section, Department of Animal Science, University of Aarhus, Hangøvej 2, DK-8200 Århus N, Denmark; Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bulowsvej 27, DK-1870 Frederiksberg C, Denmark.
| | - Brian Dall Schyth
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bulowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, United Kingdom
| | - Niels Lorenzen
- Fish Health Section, Department of Animal Science, University of Aarhus, Hangøvej 2, DK-8200 Århus N, Denmark.
| |
Collapse
|
9
|
Habiela M, Seago J, Perez-Martin E, Waters R, Windsor M, Salguero FJ, Wood J, Charleston B, Juleff N. Laboratory animal models to study foot-and-mouth disease: a review with emphasis on natural and vaccine-induced immunity. J Gen Virol 2014; 95:2329-2345. [PMID: 25000962 PMCID: PMC4202264 DOI: 10.1099/vir.0.068270-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022] Open
Abstract
Laboratory animal models have provided valuable insight into foot-and-mouth disease virus (FMDV) pathogenesis in epidemiologically important target species. While not perfect, these models have delivered an accelerated time frame to characterize the immune responses in natural hosts and a platform to evaluate therapeutics and vaccine candidates at a reduced cost. Further expansion of these models in mice has allowed access to genetic mutations not available for target species, providing a powerful and versatile experimental system to interrogate the immune response to FMDV and to target more expensive studies in natural hosts. The purpose of this review is to describe commonly used FMDV infection models in laboratory animals and to cite examples of when these models have failed or successfully provided insight relevant for target species, with an emphasis on natural and vaccine-induced immunity.
Collapse
Affiliation(s)
- Mohammed Habiela
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Julian Seago
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | | | - Ryan Waters
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Miriam Windsor
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| | - Francisco J. Salguero
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, Surrey GU2 7TE, UK
| | - James Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | | | - Nicholas Juleff
- The Pirbright Institute, Ash Road, Woking, Surrey GU24 0NF, UK
| |
Collapse
|
10
|
Abstract
Economically, foot-and-mouth disease is the most important viral-induced livestock disease worldwide. The disease is highly contagious and foot-and-mouth disease virus replicates and spreads extremely rapidly. Recent outbreaks in previously foot-and-mouth disease-free countries and the potential use of foot-and-mouth disease virus by terrorist groups have demonstrated the vulnerability of countries and the need to develop control strategies that can rapidly inhibit or limit spread of the disease. The current vaccine, an inactivated whole-virus preparation, has a number of limitations for use in outbreaks in disease-free countries. This review discusses the potential of the antiviral agent, Type I interferon, to produce rapid protection and proposes a combination strategy of an antiviral agent and a foot-and-mouth disease vaccine to induce both immediate and long-lasting protective responses.
Collapse
Affiliation(s)
- Marvin J Grubman
- FMD Unit Plum Island Animal Disease Center, USDA, ARS, NAA, Greenport, NY 11944, USA.
| |
Collapse
|
11
|
microRNA control of interferons and interferon induced anti-viral activity. Mol Immunol 2013; 56:781-93. [PMID: 23962477 DOI: 10.1016/j.molimm.2013.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 12/22/2022]
Abstract
Interferons (IFNs) are cytokines that are spontaneously produced in response to virus infection. They act by binding to IFN-receptors (IFN-R), which trigger JAK/STAT cell signalling and the subsequent induction of hundreds of IFN-inducible genes, including both protein-coding and microRNA genes. IFN-induced genes then act synergistically to prevent virus replication and create an anti-viral state. miRNA are therefore integral to the innate response to virus infection and are important components of IFN-mediated biology. On the other hand viruses also encode miRNAs that in some cases interfere directly with the IFN response to infection. This review summarizes the important roles of miRNAs in virus infection acting both as IFN-stimulated anti-viral molecules and as critical regulators of IFNs and IFN-stimulated genes. It also highlights how recent knowledge in RNA editing influence miRNA control of virus infection.
Collapse
|
12
|
Rodríguez-Pulido M, Martín-Acebes MA, Escribano-Romero E, Blázquez AB, Sobrino F, Borrego B, Sáiz M, Saiz JC. Protection against West Nile virus infection in mice after inoculation with type I interferon-inducing RNA transcripts. PLoS One 2012; 7:e49494. [PMID: 23166685 PMCID: PMC3498145 DOI: 10.1371/journal.pone.0049494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/09/2012] [Indexed: 01/14/2023] Open
Abstract
West Nile virus (WNV) is a neurovirulent single stranded RNA mosquito-borne flavivirus, whose main natural hosts are birds, but it also infects humans and horses. Nowadays, no human vaccine is commercially available and clinical treatment is only supportive. Recently, it has been shown that RNA transcripts, mimicking structural domains in the non-coding regions (NCRs) of the foot-and mouth disease virus (FMDV) induce a potent IFN response and antiviral activity in transfected cultured cells, and also reduced mice susceptibility to FMDV. By using different transcripts combinations, administration schedules, and infecting routes and doses, we have demonstrated that these FMDV RNA transcripts protect suckling and adult mice against lethal challenge with WNV. The protective activity induced by the transcripts was systemic and dependent on the infection route and dose. These results confirm the antiviral potential of these synthetic RNAs for fighting viruses of different families relevant for human and animal health.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Subunit vaccines of the future: the need for safe, customized and optimized particulate delivery systems. Ther Deliv 2012; 2:1057-77. [PMID: 22826868 DOI: 10.4155/tde.11.68] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A major challenge for current vaccine development is the fact that many new subunit vaccines based on highly purified recombinant proteins are poorly immunogenic and mobilize insufficient immune responses for protective immunity. Adjuvants are therefore needed in vaccine formulations to enhance, direct and maintain the immune response to vaccine antigens. Few adjuvants are currently approved for human use that mainly induce humoral immunity, and there is therefore an unmet medical need for development of effective and safe adjuvants that in addition can stimulate cellular or mucosal immunity, or combinations thereof, depending on the requirements for protection against the specific disease. Vaccine delivery systems are important components of adjuvants that allow proper delivery of antigens to antigen-presenting cells. Moreover, they often possess intrinsic immunopotentiating activity and/or can be customized towards a given immunological profile by the appropriate combination with immunopotentiating compounds. This article reviews the current status of human-tailored vaccine delivery with special focus on how to design safe particulate vaccine delivery systems with respect to composition, physicochemical properties, antigen association and choice of administration route, in order to better customize vaccine formulations towards specific diseases in the future.
Collapse
|
14
|
Jin YH, Kaneyama T, Kang MH, Kang HS, Koh CS, Kim BS. TLR3 signaling is either protective or pathogenic for the development of Theiler's virus-induced demyelinating disease depending on the time of viral infection. J Neuroinflammation 2011; 8:178. [PMID: 22189096 PMCID: PMC3293102 DOI: 10.1186/1742-2094-8-178] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022] Open
Abstract
Background We have previously shown that toll-like receptor 3 (TLR3)-mediated signaling plays an important role in the induction of innate cytokine responses to Theiler's murine encephalomyelitis virus (TMEV) infection. In addition, cytokine levels produced after TMEV infection are significantly higher in the glial cells of susceptible SJL mice compared to those of resistant C57BL/6 mice. However, it is not known whether TLR3-mediated signaling plays a protective or pathogenic role in the development of demyelinating disease. Methods SJL/J and B6;129S-Tlr3tm1Flv/J (TLR3KO-B6) mice, and TLR3KO-SJL mice that TLR3KO-B6 mice were backcrossed to SJL/J mice for 6 generations were infected with Theiler's murine encephalomyelitis virus (2 × 105 PFU) with or without treatment with 50 μg of poly IC. Cytokine production and immune responses in the CNS and periphery of infected mice were analyzed. Results We investigated the role of TLR3-mediated signaling in the protection and pathogenesis of TMEV-induced demyelinating disease. TLR3KO-B6 mice did not develop demyelinating disease although they displayed elevated viral loads in the CNS. However, TLR3KO-SJL mice displayed increased viral loads and cellular infiltration in the CNS, accompanied by exacerbated development of demyelinating disease, compared to the normal littermate mice. Late, but not early, anti-viral CD4+ and CD8+ T cell responses in the CNS were compromised in TLR3KO-SJL mice. However, activation of TLR3 with poly IC prior to viral infection also exacerbated disease development, whereas such activation after viral infection restrained disease development. Activation of TLR3 signaling prior to viral infection hindered the induction of protective IFN-γ-producing CD4+ and CD8+ T cell populations. In contrast, activation of these signals after viral infection improved the induction of IFN-γ-producing CD4+ and CD8+ T cells. In addition, poly IC-pretreated mice displayed elevated PDL-1 and regulatory FoxP3+ CD4+ T cells in the CNS, while poly IC-post-treated mice expressed reduced levels of PDL-1 and FoxP3+ CD4+ T cells. Conclusions These results suggest that TLR3-mediated signaling during viral infection protects against demyelinating disease by reducing the viral load and modulating immune responses. In contrast, premature activation of TLR3 signal transduction prior to viral infection leads to pathogenesis via over-activation of the pathogenic immune response.
Collapse
Affiliation(s)
- Young-Hee Jin
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
15
|
Inoculation of newborn mice with non-coding regions of foot-and-mouth disease virus RNA can induce a rapid, solid and wide-range protection against viral infection. Antiviral Res 2011; 92:500-4. [PMID: 22020303 DOI: 10.1016/j.antiviral.2011.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 11/23/2022]
Abstract
We have recently described the ability of in vitro-transcribed RNAs, mimicking structural domains in the 5' and 3' non-coding regions (NCRs) of the foot-and-mouth disease virus (FMDV) genome, to trigger the innate immune response in porcine cultured cells and mice. In this work, the antiviral effect exerted in vivo by these small synthetic non-infectious RNA molecules was analyzed extensively. The susceptibility of transfected newborn Swiss mice to FMDV challenge was tested using a wide range of viral doses. The level of protection depended on the specific RNA inoculated and was dose-dependent. The RNA giving the best protection was the internal ribosome entry site (IRES), followed by the transcripts corresponding to the S fragment. The time course of resistance to FMDV of the RNA-transfected mice was studied. Our results show the efficacy of these RNAs to prevent viral infection as well as to contain ongoing FMDV infection in certain time intervals. Protection proved to be independent of the serotype of FMDV used for challenge. These results support the potential use of the FMDV NCR transcripts as both prophylactic and therapeutic molecules for new FMDV control strategies.
Collapse
|
16
|
RNA structural domains in noncoding regions of the foot-and-mouth disease virus genome trigger innate immunity in porcine cells and mice. J Virol 2011; 85:6492-501. [PMID: 21525336 DOI: 10.1128/jvi.00599-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The induction of type I interferons (alpha/beta interferon [IFN-α/β]) in response to viral infection is a crucial step leading to the antiviral state in the host. Viruses produce double-stranded RNA (dsDNA) during their replication cycle that is sensed as nonself by host cells through different receptors. A signaling cascade then is activated to block viral replication and spread. Foot-and-mouth disease virus (FMDV) is a picornavirus that is highly sensitive to IFN, and it causes one of the world's most important animal diseases. In this study, we showed the ability of structural domains predicted to enclose stable dsRNA regions in the 5'- and 3'-noncoding regions (NCRs) of the FMDV genome to trigger an IFN-α/β response in porcine kidney cultured cells and newborn mice. These RNAs, generated by in vitro transcription, were able to stimulate IFN-β transcription and induce an antiviral state in SK-6 cells. The induction levels elicited by the different NCR RNAs were compared. Among them, the 3'NCR was identified as a potent IFN activator, and the features in this region involved in signaling have been analyzed. To address whether the FMDV NCR transcripts were able to trigger the innate immune response in vivo, Swiss suckling mice were inoculated intraperitoneally with the RNAs. All transcripts induced the innate response in transfected animals, measured as IFN-α/β protein levels, antiviral activity in sera, and reduced susceptibility to FMDV infection. Our work provides new insight into innate responses against FMDV and identifies these small noninfectious RNA molecules as potential adjuvants for vaccine improvement and antiviral strategies against picornaviruses.
Collapse
|
17
|
Nordly P, Rose F, Christensen D, Nielsen HM, Andersen P, Agger EM, Foged C. Immunity by formulation design: induction of high CD8+ T-cell responses by poly(I:C) incorporated into the CAF01 adjuvant via a double emulsion method. J Control Release 2010; 150:307-17. [PMID: 21111765 DOI: 10.1016/j.jconrel.2010.11.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/13/2010] [Accepted: 11/17/2010] [Indexed: 12/24/2022]
Abstract
The combination of nucleic acid-based Toll-like receptor (TLR)-3 or TLR9 agonists and cationic liposomes constitutes an effective vaccine adjuvant approach for eliciting CD8+ T-cell responses. However, complexing cationic liposomes and oppositely charged oligonucleotides generally results in highly unstable and heterogeneous formulations with limited clinical applicability. The aim of this study was to design, formulate, and carefully characterize a stable CD8-inducing adjuvant based on the TLR3 ligand polyinosinic-polycytidylic acid [poly(I:C)] incorporated into a cationic adjuvant system (CAF01) composed of dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB). For this purpose, a modified double emulsion solvent evaporation method was investigated for complexation of high amounts of anionic poly(I:C) to gel-state DDA/TDB liposomes. Addition of a volatile, water-miscible co-solvent (ethanol) to the outer water phase enabled preparation of colloidally stable liposomes, presumably by reducing the poly(I:C)-enhanced rigidity of the lipid bilayer. Cryo-transmission electron microscopy (TEM) revealed the formation of unilamellar as well as multilamellar liposomes, the latter suggesting that poly(I:C) is intercalated between the membrane bilayers in an onion-like structure. Finally, immunization of mice with the model antigen ovalbumin (OVA) and DDA/TDB/poly(I:C) liposomes induced a remarkably strong, antigen-specific CD8+ T-cell response, which was maintained for more than two months. Importantly, whereas injection of soluble poly(I:C) led to rapid production of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in serum, administration of poly(I:C) in complex with the cationic DDA/TDB liposomes prevented this non-specific systemic pro-inflammatory response. These data emphasize the importance of improving the quality of the vaccine formulation to indeed overcome some of the major obstacles for using CD8-inducing agents such as poly(I:C) in future subunit vaccines.
Collapse
Affiliation(s)
- Pernille Nordly
- Faculty of Pharmaceutical Sciences, Department of Pharmaceutics and Analytical Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
18
|
Gerone PJ, Hill DA, Appell LH, Baron S. Inhibition of respiratory virus infections of mice with aerosols of synthetic double-stranded ribonucleic Acid. Infect Immun 2010; 3:323-7. [PMID: 16557972 PMCID: PMC416150 DOI: 10.1128/iai.3.2.323-327.1971] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerosols of double-stranded complexes of polyinosinic and polycytidylic acids (poly I:C) were useful in protecting mice infected with aerosols of influenza (A(2)/Taiwan/64) and parainfluenza type 1 (Sendai) viruses. Administration of poly I:C as an aerosol offers an advantage, particularly in therapy, by eliminating the risk of pulmonary dissemination of viral infections due to intranasally instilled fluids. Treatment of mice with aerosols of poly I:C reduced the infection rate with influenza virus but did not inhibit virus multiplication in the lungs of most of those animals where infection became established. Sendai virus infection rates were undiminished in mice treated with poly I:C, but lung-virus titers were significantly suppressed as compared with those of untreated animals. The maximum poly I:C doses (40 mug) administered by aerosol produced no evidence of toxicity in the mice.
Collapse
Affiliation(s)
- P J Gerone
- Biological Sciences Laboratories, Fort Detrick, Frederick, Maryland 21701
| | | | | | | |
Collapse
|
19
|
Straub OC, Ahl R. Lokale Interferonbildung beim Rind nach intranasaler Infektion mit avirulentem IBR/IPV-Virus und deren Wirkung auf eine anschließende Infektion mit Maul- und Klauenseuche-Virus. ACTA ACUST UNITED AC 2010. [DOI: 10.1111/j.1439-0450.1976.tb01627.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Innate immune defenses induced by CpG do not promote vaccine-induced protection against foot-and-mouth disease virus in pigs. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1151-7. [PMID: 19553550 DOI: 10.1128/cvi.00018-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Emergency vaccination as part of the control strategies against foot-and-mouth disease virus (FMDV) has the potential to limit virus spread and reduce large-scale culling. To reduce the time between vaccination and the onset of immunity, immunostimulatory CpG was tested for its capacity to promote early protection against FMDV challenge in pigs. To this end, CpG 2142, an efficient inducer of alpha interferon, was injected intramuscularly. Increased transcription of Mx1, OAS, and IRF-7 was identified as a sensitive measurement of CpG-induced innate immunity, with increased levels detectable to at least 4 days after injection of CpG formulated with Emulsigen. Despite this, CpG combined with an FMD vaccine did not promote protection. Pigs vaccinated 2 days before challenge had disease development, which was at least as acute as that of unvaccinated controls. All pigs vaccinated 7 days before challenge were protected without a noticeable effect of CpG. In summary, our results demonstrate the caution required when translating findings from mouse models to natural hosts of FMDV.
Collapse
|
21
|
Stahl-Hennig C, Eisenblätter M, Jasny E, Rzehak T, Tenner-Racz K, Trumpfheller C, Salazar AM, Überla K, Nieto K, Kleinschmidt J, Schulte R, Gissmann L, Müller M, Sacher A, Racz P, Steinman RM, Uguccioni M, Ignatius R. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques. PLoS Pathog 2009; 5:e1000373. [PMID: 19360120 PMCID: PMC2660151 DOI: 10.1371/journal.ppat.1000373] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 03/10/2009] [Indexed: 01/12/2023] Open
Abstract
Toll-like receptor (TLR) ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C), a synthetic double-stranded RNA (dsRNA), is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c.) with keyhole limpet hemocyanin (KLH) or human papillomavirus (HPV)16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002) or 6 mg/animal poly I:C12U (p = 0.001) when compared with immunization with KLH alone. Notably, poly ICLC—but not CpG-C given at the same dose—also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell–activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01). This was paralleled by the reduced production of the homeostatic T cell–attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants for virus-specific Th1 and humoral immune responses in nonhuman primates. Novel adjuvants that facilitate the induction of strong cellular immunity could be of help in the design of vaccine strategies to combat infections such as HIV or tuberculosis. Our immune cells possess archaic receptors recognizing structures of infectious pathogens, and the interaction of these receptors with their ligands results in an activation of the immune system. Here we exploited synthetic forms of one of these ligands, i.e., dsRNA, to define an adjuvant for the induction of cellular immune responses in primates. We injected model and viral proteins together with three different forms of dsRNA subcutaneously (s.c.) in rhesus macaques, and all compounds served as adjuvants for the induction of cellular immunity without the incidence of major side effects. These adjuvant effects depended on the adjuvant dose and coincided with profound alterations in the chemokine production in the draining lymph nodes. dsRNA also helped to induce cellular and humoral immune responses against capsomeres of low immunogenicity derived from the human papillomavirus 16, the causative agent in about 50% of all cases of cervical cancer worldwide. Therefore, formulations involving synthetic dsRNA are promising candidates for development of novel vaccines.
Collapse
Affiliation(s)
| | - Martin Eisenblätter
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité–University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm, Berlin, Germany
| | - Edith Jasny
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité–University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm, Berlin, Germany
| | - Tamara Rzehak
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | | | - Christine Trumpfheller
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, United States of America
| | | | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Karen Nieto
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Kleinschmidt
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reiner Schulte
- Laboratory of Infection Models, German Primate Center, Göttingen, Germany
| | - Lutz Gissmann
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Martin Müller
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Sacher
- Infection and Cancer Research Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Paul Racz
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Ralph M. Steinman
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, New York, New York, United States of America
| | | | - Ralf Ignatius
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité–University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm, Berlin, Germany
- * E-mail:
| |
Collapse
|
22
|
Innate immune responses against foot-and-mouth disease virus: Current understanding and future directions. Vet Immunol Immunopathol 2009; 128:205-10. [DOI: 10.1016/j.vetimm.2008.10.296] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Kamstrup S, Frimann TH, Barfoed AM. Protection of Balb/c mice against infection with FMDV by immunostimulation with CpG oligonucleotides. Antiviral Res 2006; 72:42-8. [PMID: 16678920 DOI: 10.1016/j.antiviral.2006.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/14/2006] [Accepted: 03/22/2006] [Indexed: 11/27/2022]
Abstract
Oligodeoxynucleotides (ODN) containing unmethylated CpG motifs are potent stimulators of the innate immune system, and are capable of aborting several infections in a non-specific manner. We here report studies of the capacity of such ODN to protect mice against infection with foot and mouth disease virus (FMDV). Susceptibility of Balb/c mice to infection with isolates from the different serotypes of FMDV was investigated, and, at the same time, the capacity of CpG ODN to modulate the infection was evaluated. Treatment with CpG significantly reduced viremia, disease and death in five of six serotypes, when compared to no treatment or treatment with a control ODN. The effect was observed when ODN was administered simultaneously with, or up to 12h after, infection with FMDV, and lasted for 14 days post treatment. The potential application of CpG ODN for control of FMDV during an outbreak is discussed.
Collapse
Affiliation(s)
- Søren Kamstrup
- Danish Institute for Food and Veterinary Research, Lindholm, DK-4771 Kalvehave, Denmark.
| | | | | |
Collapse
|
24
|
Rollinson EA. Prospects for Antiviral Chemotherapy in Veterinary Medicine: 2. Avian, Piscine, Canine, Porcine, Bovine and Equine Virus Diseases. Antivir Chem Chemother 1992. [DOI: 10.1177/095632029200300601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper, which is published in two parts, reviews the literature pertaining to antiviral chemotherapy of viruses of veterinary importance. While early reports in the 1970s referred to the chemotherapy of a number of different RNA and DNA viruses, there was considerable focus in the 1980s, initially on herpesviruses and latterly on retroviruses, and particularly in cats. Details are given of the successful treatments of FeLV and FIV, which have been used as animal models for HIV therapy. Therapy of equine, canine, bovine, porcine, avian, and fish diseases is also considered. The high costs of developing and registering a new chemical entity, especially for food species in which extensive toxicity/residue data are required, is the main reason why specific antiviral compounds are not currently available for veterinary use, although some non-specific immune modulators are now emerging. Concurrent availability of appropriate diagnostic tools is a prerequisite for successful veterinary antiviral chemotherapy, as is a greater understanding of the pathogenesis of virus infections in animals and the development of more sophisticated means of drug delivery, appropriate to both food animal species and companion animals (dogs, cats, and horses). Additionally, antiviral agents are valuable as research tools per se, as opposed to solely as chemotherapeutic agents. Part 1 covers the feline virus diseases, while part 2 includes the other viruses of veterinary importance, in dogs, horses, cattle, pigs, birds, and fish.
Collapse
Affiliation(s)
- E. A. Rollinson
- Pitman Moore Europe, Breakspear Road South, Harefield, Oxbridge UB9 6LS, UK
| |
Collapse
|
25
|
Cunliffe HR, Richmond JY, Campbell CH. Interferon inducers and foot-and-mouth disease vaccines: influence of two synthetic polynucleotides on antibody response and immunity in guinea pigs and swine. CANADIAN JOURNAL OF COMPARATIVE MEDICINE : REVUE CANADIENNE DE MEDECINE COMPAREE 1977; 41:117-21. [PMID: 188530 PMCID: PMC1277702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyriboadenylic-polybouridylic acid enhanced the immunological response of guinea pigs to aqueous foot-and-mouth disease virus vaccine. Polyriboninosinic-polyribocytidylic acid enhanced the early antibody production of swine to oil emulsified foot-and-mouth disease virus vaccine. Polyriboninosinic-polyribocytidylic acid alone did not stimulate resistance to foot-and-mouth disease in swine.
Collapse
|
26
|
Teng CT, Chen MC, Hamilton LD. Poly(inosinic acid)-poly(cytidylic acid) inhibition of DNA synthesis in synchronized HeLa cells. Proc Natl Acad Sci U S A 1973; 70:3904-8. [PMID: 4521216 PMCID: PMC427354 DOI: 10.1073/pnas.70.12.3904] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inhibition by double-stranded polyribonucleotides of DNA synthesis in synchronized HeLa cultures is dose- and time-dependent. Inhibition by poly(I.C) primarily affected late G(1) and early S phases of the cell cycle. Single-stranded polynucleotides, native calf-thymus DNA, and yeast RNA had no effect. Radioautography showed that after 2-hr exposure the synthetic polyribonucleotides were predominantly inside the nucleus. The results extend the spectrum of action of double-stranded RNA.
Collapse
|
27
|
McVicar JW, Richmond JY, Campbell CH, Hamilton LD. Observations of cattle, goats and pigs after administration of synthetic interferon inducers and subsequent exposure to foot and mouth disease virus. CANADIAN JOURNAL OF COMPARATIVE MEDICINE : REVUE CANADIENNE DE MEDECINE COMPAREE 1973; 37:362-8. [PMID: 4356316 PMCID: PMC1319793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Polyriboinosinic-polyribocytidylic acid (poly [rI.rC]) was administered intravenously to 11 cattle and 13 goats in doses of 0.25 to 4.0, and 1.0 to 5.0 mg/kg, respectively. Subsequent exposure of these and untreated control animals to foot and mouth disease virus (FMDV) failed to demonstrate any differences in either the course or severity of the disease. Serum interferon was detected in cattle one hour after the intravenous administration of poly (rI.rC). Six pigs given 4, 20, or 100 mg/kg of itaconic-acrylic acid copolymer (IAA, HMW) intraperitoneally reacted clinically the same as six untreated control pigs after contact exposure to FMDV. Three pigs given 50, 100, or 200 mg/kg of divinyl ether-maleic anhydride copolymer (DVE/MA, pyran) intraperitoneally similarly failed to show any difference in clinical reaction from three untreated control pigs after intranasal instillation of FMDV. Three pigs given 100, 200 or 400 mg/kg of DVE/MA intraperitoneally developed rapid diffuse peritonitis causing the death of one in 48 hours.
Collapse
|
28
|
Richmond JY, Campbell CH. Foot-and-mouth disease virus: protection induced in infected mice by two orally-administered interferon inducers. Brief report. ARCHIV FUR DIE GESAMTE VIRUSFORSCHUNG 1973; 42:102-5. [PMID: 4749257 DOI: 10.1007/bf01250512] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Cotzias GC, Tang LC, Mena I. Effects of inhibitors and stimulators of protein synthesis on the cerebral actions of L-dopa. NEUROSCIENCES RESEARCH 1973; 5:97-108. [PMID: 4276183 DOI: 10.1016/b978-0-12-512505-5.50011-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Richmond JY, Campbell CH. Influence of divinyl ether-maleic anhydride (pyran) on foot-and-mouth disease virus infection: effect on adsorption and multiplication in mouse tissues. ARCHIV FUR DIE GESAMTE VIRUSFORSCHUNG 1972; 36:232-9. [PMID: 4336491 DOI: 10.1007/bf01249854] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
|
32
|
Morahan PS, Regelson W, Munson AE. Pyran and polyribonucleotides: differences in biological activities. Antimicrob Agents Chemother 1972; 2:16-22. [PMID: 4670655 PMCID: PMC444259 DOI: 10.1128/aac.2.1.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Maleic anhydride-divinyl ether copolymer (pyran) and the polyribonucleotides are both large polyanions with potent antiviral activity. However, they are biologically quite different. Interferon levels of 100 units or more/ml were associated with antiviral activity of polyribonucleotides. Interferon induction by pyran compounds was not primarily involved in antiviral resistance because preparations that did not induce interferon possessed antiviral activity equal to that of interferoninducing preparations. Both polyriboinosinic-cytidylic acid [poly (rI.rC)] and pyran increased the immune response to sheep erythrocytes in the Jerne hemolytic plaque-forming cell (PFC) assay, but their modes of immunoadjuvant action differed. On peak day, poly (rI.rC)-treated mice demonstrated 5.1 x 10(4) PFC/spleen (557 PFC/10(6) nucleated cells) and pyran-treated mice exhibited 4.5 x 10(4) PFC/spleen (299 PFC/10(6) nucleated cells), as compared with 2.7 x 10(4) PFC/spleen (261 PFC/10(6) nucleated cells) in controls. The compounds also differed in phagocytic alteration; polyribonucleotides did not affect phagocytosis whereas pyran produced a biphasic response. Both polyanions exhibited toxic inhibition of liver microsomal enzyme metabolism of type I and type II drugs. However, whereas pyran sensitized mice 50-fold to the lethal effects of endotoxin, the polyribonucleotides did not significantly sensitize mice to endotoxin.
Collapse
|
33
|
Morahan PS, Munson AE, Regelson W, Commerford SL, Hamilton LD. Antiviral activity and side effects of polyriboinosinic-cytidylic acid complexes as affected by molecular size. Proc Natl Acad Sci U S A 1972; 69:842-6. [PMID: 4337241 PMCID: PMC426577 DOI: 10.1073/pnas.69.4.842] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The decrease of the molecular size of poly(I.C) to less than 10(6) decreases its ability to induce interferon, protect mice against virus, or enhance the immune response. Immune adjuvant activity appeared more sensitive to molecular weight than the other protective activities. The composition of the complex-the molecular size of the individual homopolymers when one was large and the other small-did not affect antiviral activity; the activity of a complex made from large poly(I) and small poly(C) was similar to one made from small poly(I) and large poly(C). Molecular size of the complex did not profoundly alter the side effects of poly(I.C). At 2 mg/kg, none of the complexes markedly altered phagocytic function. Only the largest complex sensitized the mouse to endotoxin. However, all of the complexes studied profoundly inhibited drug metabolism by the liver microsomal enzymes between 24 and 72 hr after their inoculation. Decreasing the molecular weight did not alter this inhibition.
Collapse
|
34
|
Tytell AA, Field AK. Interferons and host resistance: with particular emphasis on induction by complexed polynucleotides. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1972; 1:1-32. [PMID: 4570576 DOI: 10.3109/10409237209102542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Richmond JY. Diethylaminoethyl-dextran requirement for Poly I:C-induced interferon effective against foot-and-mouth disease virus in vitro. ARCHIV FUR DIE GESAMTE VIRUSFORSCHUNG 1971; 33:242-50. [PMID: 4329635 DOI: 10.1007/bf01254680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Leunen J, Desmyter J, De Somer P. Effects of oxyamylose and polyacrylic acid on foot-and-mouth disease and hog cholera virus infections. Appl Microbiol 1971; 21:203-8. [PMID: 5544281 PMCID: PMC377150 DOI: 10.1128/am.21.2.203-208.1971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two interferon-inducing polycarboxylates were tested for antiviral activity on foot-and-mouth disease (FMD) virus infections in mice, guinea pigs, and swine. Polyacrylic acid, given intraperitoneally, had a protective effect on infection by FMD virus administered in the peritoneal cavity of mice and in the foot pad of guinea pigs. Chlorite-oxidized oxyamylose (COAM) was effective in mice at a dosage of 2 mg/kg. Swine were not protected against naturally transmitted FMD by 120 mg/kg of COAM nor by polyacrylic acid. Swine were not totally unresponsive to COAM since it delayed symptoms of hog cholera. Interferon was not detected in the serum of COAM-treated swine. With FMD virus, an example was found of activity of interferon inducers in experimental hosts and lack of activity in a natural host.
Collapse
|
37
|
Richmond JY. Mouse Resistance Against Foot-and-Mouth Disease Virus Induced by Injections of Pyran. Infect Immun 1971; 3:249-53. [PMID: 16557961 PMCID: PMC416139 DOI: 10.1128/iai.3.2.249-253.1971] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse resistance to foot-and-mouth disease virus (FMDV) was induced by intraperitoneal injections of pyran copolymer. A biphasic pattern of protection occurred with greatest resistance 4 and 48 hr after injection of this polyanion. Viremia was not detectable in pretreated mice challenge-exposed with FMDV. Incubation of virus with pyran did not alter viral infectivity in mice or tissue culture. Serum interferon was demonstrated 1 and 2 days after pyran administration.
Collapse
Affiliation(s)
- J Y Richmond
- Plum Island Animal Disease Laboratory, Veterinary Sciences Research Division, Agricultural Research Service, U.S. Department of Agriculture, Greenport, New York 11944
| |
Collapse
|
38
|
Bhargava PM, Shanmugam G. Uptake of nonviral nucleic acids by mammalian cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1971; 11:103-92. [PMID: 4934248 DOI: 10.1016/s0079-6603(08)60327-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
De Clercq E, Nuwer MR, Merigan TC. The role of interferon in the protective effect of a synthetic double-stranded polyribonucleotide against intranasal vesicular stomatitis virus challenge in mice. J Clin Invest 1970; 49:1565-77. [PMID: 4317283 PMCID: PMC322636 DOI: 10.1172/jci106374] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Intravenous injection of polyinosinic acid/polycytidylic acid [(poly rI).(poly rC)] offered significant protection against intranasal challenge of young mice with vesicular stomatitis virus (VSV). Optimal protection was obtained when a single dose was administered 2 hr before virus challenge, but repeated doses were effective when started as late as 3 days after virus challenge. The therapeutic ratio or ratio of maximum tolerated dose to minimum effective dose for a single intravenous injection of (poly rI).(poly rC) 2 hr before virus inoculation was >/=8 mg/kg:0.004 mg/kg or >/=200.Dose-response curves for interferon production and antiviral protection by (poly rI).(poly rC) were closely parallel. Equivalent doses of poly rI or poly rC alone did not exert any interferon-inducing capacity or protective effect on intranasal VSV challenge. Several factors, which are known to potentiate or antagonize interferon production, increased or decreased the interferon-inducing capacity and antiviral protection of either (poly rI).(poly rC) or maleic acid/divinyl ether copolymer (MA/DVE) in parallel. Interferon production and antiviral protection by MA/DVE were enhanced by arginine but abolished by prior treatment with MA/DVE; DEAE-dextran (intraperitoneally), kinetin riboside and isopentenyladenosine, and prior injection of endotoxin reduced both interferon production and antiviral protection by (poly rI).(poly rC). Treatment with exogenous interferon in amounts which closely mimicked the levels of circulating interferon produced endogenously by an effective dose of (poly rI).(poly rC) gave protection against intranasal VSV which was identical with that dose of (poly rI).(poly rC). This strongly suggests that interferon production accounts for the whole protective effect of (poly rI).(poly rC) in the intranasal VSV assay.
Collapse
|
40
|
Hamilton LD, Babcock VI, Southam CM. Inhibition of herpes simplex virus by synthetic double-stranded RNA (polyriboadenylic and polyribouridylic acids and polyriboinosinic and polyribocytidylic acids). Proc Natl Acad Sci U S A 1969; 64:878-83. [PMID: 4313333 PMCID: PMC223316 DOI: 10.1073/pnas.64.3.878] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Two-stranded polyriboadenylic and polyribouridylic acids and polyriboinosinic and polyribocytidylic acids protect against herpes simplex virus-induced cytopathogenicity in HEp 2 cultures, systemic herpes simplex virus infection in mice, and herpes simplex virus-induced keratoconjunctivitis in rabbits.
Collapse
|