1
|
Singer ZS, Pabón J, Huang H, Sun W, Luo H, Grant KR, Obi I, Coker C, Rice CM, Danino T. Engineered bacteria launch and control an oncolytic virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.09.28.559873. [PMID: 37808855 PMCID: PMC10557668 DOI: 10.1101/2023.09.28.559873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The ability of bacteria and viruses to selectively replicate in tumors has led to synthetic engineering of new microbial therapies. Here we design a cooperative strategy whereby S. typhimurium bacteria transcribe and deliver the Senecavirus A RNA genome inside host cells, launching a potent oncolytic viral infection. "Encapsidated" by bacteria, the viral genome can further bypass circulating antiviral antibodies to reach the tumor and initiate replication and spread within immune mice. Finally, we engineer the virus to require a bacterially delivered protease to achieve virion maturation, demonstrating bacterial control over the virus. This work extends bacterially delivered therapeutics to viral genomes, and shows how a consortium of microbes can achieve a cooperative aim.
Collapse
|
2
|
Heggie A, Thurston TLM, Ellis T. Microbial messengers: nucleic acid delivery by bacteria. Trends Biotechnol 2025; 43:145-161. [PMID: 39117490 DOI: 10.1016/j.tibtech.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The demand for diverse nucleic acid delivery vectors, driven by recent biotechnological breakthroughs, offers opportunities for continuous improvements in efficiency, safety, and delivery capacity. With their enhanced safety and substantial cargo capacity, bacterial vectors offer significant potential across a variety of applications. In this review, we explore methods to engineer bacteria for nucleic acid delivery, including strategies such as engineering attenuated strains, lysis circuits, and conjugation machinery. Moreover, we explore pioneering techniques, such as manipulating nanoparticle (NP) coatings and outer membrane vesicles (OMVs), representing the next frontier in bacterial vector engineering. We foresee these advancements in bacteria-mediated nucleic acid delivery, through combining bacterial pathogenesis with engineering biology techniques, as a pivotal step forward in the evolution of nucleic acid delivery technologies.
Collapse
Affiliation(s)
- Alison Heggie
- Centre for Bacterial Resistance Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Teresa L M Thurston
- Centre for Bacterial Resistance Biology, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, SW7 2AZ, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Renteria-Flores FI, García-Chagollán M, Jave-Suárez LF. Bactofection, Bacterial-Mediated Vaccination, and Cancer Therapy: Current Applications and Future Perspectives. Vaccines (Basel) 2024; 12:968. [PMID: 39340000 PMCID: PMC11435753 DOI: 10.3390/vaccines12090968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
From the first report in 1891 by Dr. Coley of the effective treatment of tumors in 1000 patients with Streptococcus and the first successful use of bacterial vectors for transferring therapeutic genes in 1980 by Dr. Schnaffer, bactofection has been shown to be a promising strategy in the fields of vaccination, gene therapy, and cancer therapy. This review describes the general theory of bactofection and its advantages, disadvantages, challenges, and expectations, compiling the most notable advances in 14 vaccination studies, 27 cancer therapy studies, and 13 clinical trials. It also describes the current scope of bactofection and promising results. The extensive knowledge of Salmonella biology, as well as the multiple adequacies of the Ty21a vaccination platform, has allowed notable developments worldwide that have mainly been reflected in therapeutic efforts against cancer. In this regard, we strongly recommend the creation of a recombinant Ty21a model that constitutively expresses the GtgE protease from S. typhimurium, allowing this vector to be used in animal trials, thus enhancing the likelihood of favorable results that could quickly transition to clinical trials. From the current perspective, it is necessary to explore a greater diversity of bacterial vectors and find the best combination of implemented attenuations, generating personalized models that guarantee the maximum effectiveness in cancer therapy and vaccination.
Collapse
Affiliation(s)
- Francisco Israel Renteria-Flores
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Mariel García-Chagollán
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis Felipe Jave-Suárez
- Division of Immunology, Biomedical Research Centre of the West, Mexican Social Security Institute, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
4
|
García-Álvarez R, Vallet-Regí M. Bacteria and cells as alternative nano-carriers for biomedical applications. Expert Opin Drug Deliv 2022; 19:103-118. [PMID: 35076351 PMCID: PMC8802895 DOI: 10.1080/17425247.2022.2029844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Nano-based systems have received a lot of attention owing to their particular properties and, hence, have been proposed for a wide variety of biomedical applications. These nanosystems could be potentially employed for diagnosis and therapy of different medical issues. Although these nanomaterials are designed for specific tasks, interactions, and transformations when administered to the human body affect their performance and behavior. In this regard, bacteria and other cells have been presented as alternative nanocarriers. These microorganisms can be genetically modified and customized for a more specific therapeutic action and, in combination with nanomaterials, can lead to bio-hybrids with a unique potential for biomedical purposes. AREAS COVERED Literature regarding bacteria and cells employed in combination with nanomaterials for biomedical applications is revised and discussed in this review. The potential as well as the limitations of these novel bio-hybrid systems are evaluated. Several examples are presented to show the performance of these alternative nanocarriers. EXPERT OPINION Bio-hybrid systems have shown their potential as alternative nanocarriers as they contribute to better performance than traditional nano-based systems. Nevertheless, their limitations must be studied, and advantages and drawbacks assessed before their application to medicine.
Collapse
Affiliation(s)
- Rafaela García-Álvarez
- Departamento de Química En Ciencias Farmacéuticas, Unidad de Química Inorgánica Y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre I+12, Madrid, Spain
- Ciber de Bioingeniería, Biomateriales Y Nanomedicina, Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química En Ciencias Farmacéuticas, Unidad de Química Inorgánica Y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre I+12, Madrid, Spain
- Ciber de Bioingeniería, Biomateriales Y Nanomedicina, Madrid, Spain
| |
Collapse
|
5
|
Li T, Gao L, Zhang B, Nie G, Xie Z, Zhang H, Ågren H. Material-based engineering of bacteria for cancer diagnosis and therapy. APPLIED MATERIALS TODAY 2021; 25:101212. [DOI: 10.1016/j.apmt.2021.101212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
6
|
Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021; 10:pathogens10020119. [PMID: 33503845 PMCID: PMC7911756 DOI: 10.3390/pathogens10020119] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mycoplasma pneumoniae is a major causative agent of community-acquired pneumonia which can lead to both acute upper and lower respiratory tract inflammation, and extrapulmonary syndromes. Refractory pneumonia caused by M. pneumonia can be life-threatening, especially in infants and the elderly. Here, based on a comprehensive review of the scientific literature related to the respective area, we summarize the virulence factors of M. pneumoniae and the major pathogenic mechanisms mediated by the pathogen: adhesion to host cells, direct cytotoxicity against host cells, inflammatory response-induced immune injury, and immune evasion. The increasing rate of macrolide-resistant strains and the harmful side effects of other sensitive antibiotics (e.g., respiratory quinolones and tetracyclines) in young children make it difficult to treat, and increase the health risk or re-infections. Hence, there is an urgent need for development of an effective vaccine to prevent M. pneumoniae infections in children. Various types of M. pneumoniae vaccines have been reported, including whole-cell vaccines (inactivated and live-attenuated vaccines), subunit vaccines (involving M. pneumoniae protein P1, protein P30, protein P116 and CARDS toxin) and DNA vaccines. This narrative review summarizes the key pathogenic mechanisms underlying M. pneumoniae infection and highlights the relevant vaccines that have been developed and their reported effectiveness.
Collapse
|
7
|
Coelho-Rocha ND, Barroso FAL, Tavares LM, Dos Santos ESS, Azevedo V, Drumond MM, Mancha-Agresti P. Main Features of DNA-Based Vectors for Use in Lactic Acid Bacteria and Update Protocols. Methods Mol Biol 2021; 2197:285-304. [PMID: 32827144 DOI: 10.1007/978-1-0716-0872-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA vaccines have been used as a promising strategy for delivery of immunogenic and immunomodulatory molecules into the host cells. Although, there are some obstacles involving the capability of the plasmid vector to reach the cell nucleus in great number to promote the expected benefits. In order to improve the delivery and, consequently, increase the expression levels of the target proteins carried by DNA vaccines, alternative methodologies have been explored, including the use of non-pathogenic bacteria as delivery vectors to carry, deliver, and protect the DNA from degradation, enhancing plasmid expression.
Collapse
Affiliation(s)
- Nina D Coelho-Rocha
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda A L Barroso
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laísa M Tavares
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ester S S Dos Santos
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana M Drumond
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Center of Federal Education of Minas Gerais (CEFET-MG), Belo Horizonte, Minas Gerais, Brazil
| | - Pamela Mancha-Agresti
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Brown DM, Glass JI. Technology used to build and transfer mammalian chromosomes. Exp Cell Res 2020; 388:111851. [PMID: 31952951 DOI: 10.1016/j.yexcr.2020.111851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/05/2023]
Abstract
In the near twenty-year existence of the human and mammalian artificial chromosome field, the technologies for artificial chromosome construction and installation into desired cell types or organisms have evolved with the rest of modern molecular and synthetic biology. Medical, industrial, pharmaceutical, agricultural, and basic research scientists seek the as yet unrealized promise of human and mammalian artificial chromosomes. Existing technologies for both top-down and bottom-up approaches to construct these artificial chromosomes for use in higher eukaryotes are very different but aspire to achieve similar results. New capacity for production of chromosome sized synthetic DNA will likely shift the field towards more bottom-up approaches, but not completely. Similarly, new approaches to install human and mammalian artificial chromosomes in target cells will compete with the microcell mediated cell transfer methods that currently dominate the field.
Collapse
|
9
|
Jazayeri SD, Poh CL. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet Res 2019; 50:78. [PMID: 31601266 PMCID: PMC6785882 DOI: 10.1186/s13567-019-0698-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Veterinary vaccines need to have desired characteristics, such as being effective, inexpensive, easy to administer, suitable for mass vaccination and stable under field conditions. DNA vaccines have been proposed as potential solutions for poultry diseases since they are subunit vaccines with no risk of infection or reversion to virulence. DNA vaccines can be utilized for simultaneous immunizations against multiple pathogens and are relatively easy to design and inexpensive to manufacture and store. Administration of DNA vaccines has been shown to stimulate immune responses and provide protection from challenges in different animal models. Although DNA vaccines offer advantages, setbacks including the inability to induce strong immunity, and the fact that they are not currently applicable for mass vaccination impede the use of DNA vaccines in the poultry industry. The use of either biological or physical carriers has been proposed as a solution to overcome the current delivery limitations of DNA vaccines for veterinary applications. This review presents an overview of the recent development of carriers for delivery of veterinary DNA vaccines against avian pathogens.
Collapse
Affiliation(s)
- Seyed Davoud Jazayeri
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
10
|
Increasing the bactofection capacity of a mammalian expression vector by removal of the f1 ori. Cancer Gene Ther 2018; 26:183-194. [PMID: 30100607 PMCID: PMC6760541 DOI: 10.1038/s41417-018-0039-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/18/2018] [Accepted: 07/07/2018] [Indexed: 01/18/2023]
Abstract
Bacterial-mediated cancer therapy has shown great promise in in vivo tumour models with increased survival rates post-bacterial treatment. Improving efficiency of bacterial-mediated tumour regression has focused on controlling and exacerbating bacterial cytotoxicity towards tumours. One mechanism that has been used to carry this out is the process of bactofection where post-invasion, bacteria deliver plasmid-borne mammalian genes into target cells for expression. Here we utilised the cancer-targeting Salmonella Typhimurium strain, SL7207, to carry out bactofection into triple negative breast cancer MDA-MB-231 cells. However, we noted that post-transformation with the commonly used mammalian expression vector pEGFP, S. Typhimurium became filamentous, attenuated and unable to invade target cells efficiently. Filamentation did not occur in Escherichia coli-transformed with the same plasmid. Further investigation identified the region inducing S. Typhimurium filamentation as being the f1 origin of replication (f1 ori), an artefact of historic use of mammalian plasmids for single stranded DNA production. Other f1 ori-containing plasmids also induced the attenuated phenotype, while removal of the f1 ori from pEGFP restored S. Typhimurium virulence and increased the bactofection capacity. This work has implications for interpretation of prior bactofection studies employing f1 ori-containing plasmids in S. Typhimurium, while also indicating that future use of S. Typhimurium in targeting tumours should avoid the use of these plasmids.
Collapse
|
11
|
Darbey A, Smith LB. Deliverable transgenics & gene therapy possibilities for the testes. Mol Cell Endocrinol 2018; 468:81-94. [PMID: 29191697 DOI: 10.1016/j.mce.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
Abstract
Male infertility and hypogonadism are clinically prevalent conditions with a high socioeconomic burden and are both linked to an increased risk in cardiovascular-metabolic diseases and earlier mortality. Therefore, there is an urgent need to better understand the causes and develop new treatments for these conditions that affect millions of men. The accelerating advancement in gene editing and delivery technologies promises improvements in both diagnosis as well as affording the opportunity to develop bespoke treatment options which would both prove beneficial for the millions of individuals afflicted with these reproductive disorders. In this review, we summarise the systems developed and utilised for the delivery of gene therapy and discuss how each of these systems could be applied for the development of a gene therapy system in the testis and how they could be of use for the future diagnosis and repair of common male reproductive disorders.
Collapse
Affiliation(s)
- Annalucia Darbey
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Lee B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
12
|
Green MR, Sambrook J. Preparation of Single-Stranded Bacteriophage M13 DNA by Precipitation with Polyethylene Glycol. Cold Spring Harb Protoc 2017; 2017:pdb.prot093419. [PMID: 29093199 DOI: 10.1101/pdb.prot093419] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bacteriophage M13 single-stranded DNA is prepared from virus particles secreted by infected bacteria into the surrounding medium. Several methods are available to purify the polymorphic filamentous particles. In this protocol, the particles are concentrated by precipitation with polyethylene glycol (PEG) in the presence of high salt. Subsequent extraction with phenol releases the single-stranded DNA, which is then collected by precipitation with ethanol. The resulting preparation is pure enough to be used as a template for DNA sequencing. A yield of 5-10 µg of single-stranded DNA/mL of infected cells may be expected from recombinant bacteriophages bearing inserts of 300-1000 nt.
Collapse
|
13
|
Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliv Rev 2016; 106:27-44. [PMID: 27641944 DOI: 10.1016/j.addr.2016.09.007] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022]
Abstract
The use of bacterial cells as agents of medical therapy has a long history. Research that was ignited over a century ago with the accidental infection of cancer patients has matured into a platform technology that offers the promise of opening up new potential frontiers in medical treatment. Bacterial cells exhibit unique characteristics that make them well-suited as smart drug delivery agents. Our ability to genetically manipulate the molecular machinery of these cells enables the customization of their therapeutic action as well as its precise tuning and spatio-temporal control, allowing for the design of unique, complex therapeutic functions, unmatched by current drug delivery systems. Early results have been promising, but there are still many important challenges that must be addressed. We present a review of promises and challenges of employing bioengineered bacteria in drug delivery systems and introduce the biohybrid design concept as a new additional paradigm in bacteria-based drug delivery.
Collapse
|
14
|
Hamdane N, Herdman C, Mars JC, Stefanovsky V, Tremblay MG, Moss T. Depletion of the cisplatin targeted HMGB-box factor UBF selectively induces p53-independent apoptotic death in transformed cells. Oncotarget 2016; 6:27519-36. [PMID: 26317157 PMCID: PMC4695006 DOI: 10.18632/oncotarget.4823] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022] Open
Abstract
Cisplatin-DNA adducts act as strong decoys for the Upstream Binding Factor UBF (UBTF) and have been shown to inhibit transcription of the ribosomal RNA genes by RNA polymerase I. However, it is unclear if this plays a significant role in the chemotherapeutic activity of cis- or carboplatin. We find that cisplatin in fact induces a very rapid displacement of UBF from the ribosomal RNA genes and strong inhibition of ribosomal RNA synthesis, consistent with this being an important factor in its cytotoxicity. Using conditional gene deletion, we recently showed that UBF is an essential factor for transcription of the ribosomal RNA genes and for ribosome biogenesis. We now show that loss of UBF arrests cell proliferation and induces fully penetrant, rapid and synchronous apoptosis, as well as nuclear disruption and cell death, specifically in cells subjected to oncogenic stress. Apoptosis is not affected by homozygous deletion of the p53 gene and occurs equally in cells transformed by SV40 T antigens, by Myc or by a combination of Ras & Myc oncogenes. The data strongly argue that inhibition of UBF function is a major factor in the cytotoxicity of cisplatin. Hence, drug targeting of UBF may be a preferable approach to the use of the highly toxic platins in cancer therapy.
Collapse
Affiliation(s)
- Nourdine Hamdane
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada.,Present address: Inserm, U1110, Institute of Viral and Liver Diseases, Strasbourg, France
| | - Chelsea Herdman
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Jean-Clement Mars
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Victor Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
| | - Michel G Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Québec, QC, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
15
|
Jones CH, Hill A, Chen M, Pfeifer BA. Contemporary approaches for nonviral gene therapy. DISCOVERY MEDICINE 2015; 19:447-54. [PMID: 26175402 PMCID: PMC9892924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Gene therapy is the manipulation of gene expression patterns in specific cells to treat genetic and pathological diseases. This manipulation is accomplished by the controlled introduction of exogenous nucleic acids into target cells. Given the size and negative charge of these biomacromolecules, the delivery process is driven by the carrier vector, of which the usage of viral vectors dominates. Taking into account the limitations of viral vectors, nonviral alternatives have gained significant attention due to their flexible design, low cytotoxicity and immunogenicity, and their gene delivery efficacy. That stated, the field of nonviral vectors has been dominated by research dedicated to overcoming barriers in gene transfer. Unfortunately, these traditional nonviral vectors have failed to completely overcome the barriers required for clinical translation and thus, have failed to match the delivery outcomes of viral vector. This has consequently encouraged the development of new, more radical approaches that have the potential for higher clinical translation. In this review, we discuss recent advances in vector technology and nucleic acid chemistry that have challenged the current understanding of nonviral systems. The diversity of these approaches highlights the numerous alternative avenues for overcoming innate and technical barriers associated with gene delivery.
Collapse
Affiliation(s)
- Charles H. Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Andrew Hill
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York, USA,Corresponding authors. Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260-4200, USA, Phone: 716-645-1198, Fax: 716-645-3822.
| |
Collapse
|
16
|
Zhang X, Kong W, Wanda SY, Xin W, Alamuri P, Curtiss R. Generation of influenza virus from avian cells infected by Salmonella carrying the viral genome. PLoS One 2015; 10:e0119041. [PMID: 25742162 PMCID: PMC4351096 DOI: 10.1371/journal.pone.0119041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/09/2015] [Indexed: 12/14/2022] Open
Abstract
Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 10⁷ 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.
Collapse
Affiliation(s)
- Xiangmin Zhang
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| | - Wei Kong
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Wei Xin
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Praveen Alamuri
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | - Roy Curtiss
- The Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
- School of Life Science, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
17
|
Jones CH, Hakansson AP, Pfeifer BA. Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design. J Mater Chem B 2014; 46:8053-8068. [PMID: 29887986 PMCID: PMC5990286 DOI: 10.1039/c4tb01058b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| |
Collapse
|
18
|
Hamdane N, Stefanovsky VY, Tremblay MG, Németh A, Paquet E, Lessard F, Sanij E, Hannan R, Moss T. Conditional inactivation of Upstream Binding Factor reveals its epigenetic functions and the existence of a somatic nucleolar precursor body. PLoS Genet 2014; 10:e1004505. [PMID: 25121932 PMCID: PMC4133168 DOI: 10.1371/journal.pgen.1004505] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/24/2014] [Indexed: 11/21/2022] Open
Abstract
Upstream Binding Factor (UBF) is a unique multi-HMGB-box protein first identified as a co-factor in RNA polymerase I (RPI/PolI) transcription. However, its poor DNA sequence selectivity and its ability to generate nucleosome-like nucleoprotein complexes suggest a more generalized role in chromatin structure. We previously showed that extensive depletion of UBF reduced the number of actively transcribed ribosomal RNA (rRNA) genes, but had little effect on rRNA synthesis rates or cell proliferation, leaving open the question of its requirement for RPI transcription. Using gene deletion in mouse, we now show that UBF is essential for embryo development beyond morula. Conditional deletion in cell cultures reveals that UBF is also essential for transcription of the rRNA genes and that it defines the active chromatin conformation of both gene and enhancer sequences. Loss of UBF prevents formation of the SL1/TIF1B pre-initiation complex and recruitment of the RPI-Rrn3/TIF1A complex. It is also accompanied by recruitment of H3K9me3, canonical histone H1 and HP1α, but not by de novo DNA methylation. Further, genes retain penta-acetyl H4 and H2A.Z, suggesting that even in the absence of UBF the rRNA genes can maintain a potentially active state. In contrast to canonical histone H1, binding of H1.4 is dependent on UBF, strongly suggesting that it plays a positive role in gene activity. Unexpectedly, arrest of rRNA synthesis does not suppress transcription of the 5S, tRNA or snRNA genes, nor expression of the several hundred mRNA genes implicated in ribosome biogenesis. Thus, rRNA gene activity does not coordinate global gene expression for ribosome biogenesis. Loss of UBF also unexpectedly induced the formation in cells of a large sub-nuclear structure resembling the nucleolar precursor body (NPB) of oocytes and early embryos. These somatic NPBs contain rRNA synthesis and processing factors but do not associate with the rRNA gene loci (NORs). Upstream Binding Factor (UBF) is multi-HMGB-box protein found in all vertebrates. Although this protein has been implicated in transcription of the ribosomal RNA (rRNA) gene in vitro, little is known of its function in vivo. We previously found that UBF creates a nucleosome-like structure on DNA, and that this structure is remodeled by MAP-kinase phosphorylation. Using conditional gene deletion in mouse and mouse cells we show that UBF defines the active chromatin domains of the rRNA genes and is essential for transcription of these genes. Using this system we show that, contrary to expectation, rRNA gene activity does not coordinate ribosome production. We further show that in the complete absence of rRNA synthesis a somatic nucleolar precursor body is formed. Our data show that UBF determines a dynamic transition between the active and inactive rRNA gene states that is independent of changes in DNA methylation.
Collapse
Affiliation(s)
- Nourdine Hamdane
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Victor Y. Stefanovsky
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Michel G. Tremblay
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Attila Németh
- Department of Biochemistry III, Biochemistry Center Regensburg, University of Regensburg, Regensburg, Germany
| | - Eric Paquet
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
| | - Frédéric Lessard
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
| | - Elaine Sanij
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Ross Hannan
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Tom Moss
- Laboratory of Growth and Development, St-Patrick Research Group in Basic Oncology, Cancer Division of the Quebec University Hospital Research Centre, Edifice St Patrick, Québec, Québec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Laval University, Québec, Québec, Canada
- * E-mail:
| |
Collapse
|
19
|
Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat Protoc 2014; 9:743-50. [PMID: 24603933 DOI: 10.1038/nprot.2014.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Direct cell-to-cell transfer of genomes from bacteria to yeast facilitates genome engineering for bacteria that are not amenable to genetic manipulation by allowing instead for the utilization of the powerful yeast genetic tools. Here we describe a protocol for transferring whole genomes from bacterial cells to yeast spheroplasts without any DNA purification process. The method is dependent on the treatment of the bacterial and yeast cellular mixture with PEG, which induces cell fusion, engulfment, aggregation or lysis. Over 80% of the bacterial genomes transferred in this way are complete, on the basis of structural and functional tests. Excluding the time required for preparing starting cultures and for incubating cells to form final colonies, the protocol can be completed in 3 h.
Collapse
|
20
|
Pereira VB, Zurita-Turk M, Saraiva TDL, De Castro CP, Souza BM, Mancha Agresti P, Lima FA, Pfeiffer VN, Azevedo MSP, Rocha CS, Pontes DS, Azevedo V, Miyoshi A. DNA Vaccines Approach: From Concepts to Applications. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/wjv.2014.42008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Stoeckli ET, Kilinc D, Kunz B, Kunz S, Lee GU, Martines E, Rader C, Suter D. Analysis of cell-cell contact mediated by Ig superfamily cell adhesion molecules. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; 61:9.5.1-9.5.85. [PMID: 24510806 DOI: 10.1002/0471143030.cb0905s61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell-cell adhesion is a fundamental requirement for all multicellular organisms. The calcium-independent cell adhesion molecules of the immunoglobulin superfamily (IgSF-CAMs) represent a major subgroup. They consist of immunoglobulin folds alone or in combination with other protein modules, often fibronectin type-III folds. More than 100 IgSF-CAMs have been identified in vertebrates and invertebrates. Most of the IgSF-CAMs are cell surface molecules that are membrane-anchored either by a single transmembrane segment or by a glycosylphosphatidylinositol (GPI) anchor. Some of the IgSF-CAMs also occur in soluble form, e.g., in the cerebrospinal fluid or in the vitreous fluid of the eye, due to naturally occurring cleavage of the GPI anchor or the membrane-proximal peptide segment. Some IgSF-CAMs, such as NCAM, occur in various forms that are generated by alternative splicing. This unit contains a series of protocols that have been used to study the function of IgSF-CAMs in vitro and in vivo.
Collapse
Affiliation(s)
- Esther T Stoeckli
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Devrim Kilinc
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gil U Lee
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Elena Martines
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Christoph Rader
- Department of Cancer Biology, Scripps Florida, Jupiter, Florida
| | - Daniel Suter
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
22
|
Jones CH, Rane S, Patt E, Ravikrishnan A, Chen CK, Cheng C, Pfeifer BA. Polymyxin B treatment improves bactofection efficacy and reduces cytotoxicity. Mol Pharm 2013; 10:4301-8. [PMID: 24093973 PMCID: PMC5232419 DOI: 10.1021/mp4003927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Improvements to bacterial vectors have resulted in nonviral gene therapy vehicles that are easily prepared and can achieve high levels of transfection efficacy. However, these vectors are plagued by potential cytotoxicity and immunogenicity, prompting means of attenuation to reduce unwanted biological outcomes while maintaining transfection efficiency. In this study, listeriolysin O (LLO) producing Escherichia coli BL21(DE3) strains were pretreated with polymyxin B (PLB), a pore-forming antibiotic, and tested as a delivery vector for gene transfer to a murine RAW264.7 macrophage cell line using a 96-well high-throughput assay. PLB treatment resulted in statistically significant higher levels of gene delivery and lower cytotoxicity. The results suggest a fine balance between bacterial cellular damage, heightened gene and protein release, and increased mammalian cell gene delivery. Overall, the approach presented provides a simple and effective way to enhance bacterial gene delivery while simultaneously reducing unwanted outcomes as a function of using a biological vector.
Collapse
Affiliation(s)
- Charles H. Jones
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Snehal Rane
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Emily Patt
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Anitha Ravikrishnan
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Chih-Kaung Chen
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
23
|
de Azevedo M, Karczewski J, Lefévre F, Azevedo V, Miyoshi A, Wells JM, Langella P, Chatel JM. In vitro and in vivo characterization of DNA delivery using recombinant Lactococcus lactis expressing a mutated form of L. monocytogenes Internalin A. BMC Microbiol 2012; 12:299. [PMID: 23253484 PMCID: PMC3541092 DOI: 10.1186/1471-2180-12-299] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/14/2012] [Indexed: 12/20/2022] Open
Abstract
Background The use of food-grade Lactic Acid Bacteria (LAB) as DNA delivery vehicles represents an attractive strategy to deliver DNA vaccines at the mucosal surfaces as they are generally regarded as safe (GRAS). We previously showed that either native Lactococcus lactis (LL) or recombinant invasive LL expressing Fibronectin Binding Protein A of Staphylococcus aureus (LL-FnBPA+) or Internalin A of Listeria monocytogenes (LL-InlA+), were able to deliver and trigger DNA expression by epithelial cells, either in vitro or in vivo. InlA does not bind to its receptor, the murine E-cadherin, thus limiting the use of LL-InlA+ in in vivo murine models. Moreover, FnBPA binds to its receptors, integrins, via fibronectin introducing another limiting factor. In order to avoid the limitations of LL-InlA+ and LL-FnBPA+, a new L. lactis strain was engineered to produce a previously described mutated form of InlA (LL-mInlA+) allowing the binding of mInlA on murine E-cadherin. Results After showing the expression of mInLA at the surface of LL-mInlA+ strain, in vitro gentamycin survival assay in Caco-2 cells showed that LL-mInlA+ is 1000 times more invasive than LL. LL-mInlA+ invasivity was also validated by fluorescence microscopy. LL and LL-mInlA+ were transformed with pValacBLG, a plasmid containing the cDNA of bovine β-Lactoglobulin (BLG), resulting in strains LL-BLG and LL-mInlA+BLG. The plasmid transfer in vitro using LL-mInlA+BLG was increased 10 times compared to LL-BLG. Moreover, the number of mice producing BLG in isolated enterocytes after oral administration of LL-mInlA+BLG in vivo was slightly higher than after oral administration of LL-BLG. Conclusions We confirmed in this study that the production of mInlA at the surface of L. lactis is a promising strategy for plasmid transfer in vitro and in vivo.
Collapse
Affiliation(s)
- Marcela de Azevedo
- INRA, UMR1319 Micalis, Commensals and Probiotics-Host Interactions Laboratory, Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Siddique MR, Shynder S, Ashraf MA, Yusoff I, Wajid A. Retracted: Luciferase-transfected colon adenocarcinoma cell line (DLD-1) for use in Orthotopic Xenotransplantation studies. Chem Cent J 2012; 6:69. [PMID: 22809083 PMCID: PMC3737038 DOI: 10.1186/1752-153x-6-69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/02/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Renilla Luciferase reporter gene (rLuc) GL4.82 and GL4.13 promoter are key player in transfection, but precise knowledge of its targets in colon cancer remains limited. The aim of this study was to characterize the best transfection technique to produce a stable transfected colon DLD1 (colorectal adenocarcinoma cell line), therefore imaging based approaches were employed. RESULTS DLD1 cells were transfected with a Plasmid (SV40-RLuc) carrying Renilla luciferase under the control of the SV-40 promoter, by using two different transfection techniques. Cells expressing the required DNA were isolated after antibiotic (Puramycin) selection. Clones of DLD-1/SV40-RLuc were produced using two different techniques (96 well plates and Petri dish) and their florescence intensity was recorded using IVIS machine (Calliper Life Sciences, Hopkinton, USA). Both techniques were characterized with the help of serial dilution technique. Results from this study substantiated that electroporation is the best. As expected, clones varied in their specific luciferase activity along with the dilutions. With the increase in cell concentration increase in intensity of florescence was recorded. CONCLUSIONS Based on the results we are confident that this transfected cell line DLD-1/SV40-RLuc (colorectal adenocarcinoma cell line) is the best for further Orthotopic Xenotransplantation Studies and in-vivo experiments as well. Investigation shows that DLD1/SV-rLuc cells have gained little bit resistance against both drugs therefore further study is suggested to know the reasons.
Collapse
Affiliation(s)
| | - Steve Shynder
- Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | | | - Ismail Yusoff
- Department of Geology, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Abdul Wajid
- Department of Chemistry, The Islamia University of Bahawlapur, Bahawlapur 63100, Pakistan
| |
Collapse
|
25
|
Employing Live Microbes for Vaccine Delivery. DEVELOPMENT OF NOVEL VACCINES 2012. [PMCID: PMC7123214 DOI: 10.1007/978-3-7091-0709-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
26
|
Attenuated Salmonella typhimurium carrying shRNA-expressing vectors elicit RNA interference in murine bladder tumors. Acta Pharmacol Sin 2011; 32:368-74. [PMID: 21372828 DOI: 10.1038/aps.2010.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIM To examine whether attenuated Salmonella typhimurium (S typhimurium) could be used as an anti-cancer agent or a tumor-targeting vehicle for delivering shRNA-expressing pDNA into cancer cells in a mouse tumor model. METHODS Mouse bladder transitional cancer cell line (BTT-T739) expressing GFP was used, in which the GFP expression level served as an indicator of RNA interference (RNAi). BTT-T739-GFP tumor-bearing mice (4-6 weeks) were treated with S typhimurium carrying plasmids encoding shRNA against gfp or scrambled shRNA. The mRNA and protein expression levels of GFP were assessed 5 d after the bacteria administration, and the antitumor effects of S typhimurium were evaluated. RESULTS In BTT-T739-GFP tumor-bearing mice, S typhimurium (1×10(9) cfu, po) preferentially accumulated within tumors for as long as 40 d, and formed a tumor-to-normal tissue ratio that exceeded 1000/1. S typhimurium carrying plasmids encoding shRNA against gfp inhibited the expression of GFP in tumor cells by 73.4%. Orally delivered S typhimurium significantly delayed tumor growth and prolonged the survival of tumor-bearing mice. CONCLUSION This study demonstrates that attenuated S typhimurium can be used for both delivering shRNA-expressing vectors into tumor cells and eliciting RNAi, thus exerting anti-tumor activity, which may represent a new strategy for the treatment of solid tumors.
Collapse
|
27
|
Pérez-Luz S, Díaz-Nido J. Prospects for the use of artificial chromosomes and minichromosome-like episomes in gene therapy. J Biomed Biotechnol 2010; 2010:642804. [PMID: 20862363 PMCID: PMC2938438 DOI: 10.1155/2010/642804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/02/2010] [Accepted: 07/05/2010] [Indexed: 01/19/2023] Open
Abstract
Artificial chromosomes and minichromosome-like episomes are large DNA molecules capable of containing whole genomic loci, and be maintained as nonintegrating, replicating molecules in proliferating human somatic cells. Authentic human artificial chromosomes are very difficult to engineer because of the difficulties associated with centromere structure, so they are not widely used for gene-therapy applications. However, OriP/EBNA1-based episomes, which they lack true centromeres, can be maintained stably in dividing cells as they bind to mitotic chromosomes and segregate into daughter cells. These episomes are more easily engineered than true human artificial chromosomes and can carry entire genes along with all their regulatory sequences. Thus, these constructs may facilitate the long-term persistence and physiological regulation of the expression of therapeutic genes, which is crucial for some gene therapy applications. In particular, they are promising vectors for gene therapy in inherited diseases that are caused by recessive mutations, for example haemophilia A and Friedreich's ataxia. Interestingly, the episome carrying the frataxin gene (deficient in Friedreich's ataxia) has been demonstrated to rescue the susceptibility to oxidative stress which is typical of fibroblasts from Friedreich's ataxia patients. This provides evidence of their potential to treat genetic diseases linked to recessive mutations through gene therapy.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | |
Collapse
|
28
|
Ou-Lee TM, Turgeon R, Wu R. Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat, and sorghum. Proc Natl Acad Sci U S A 2010; 83:6815-9. [PMID: 16593757 PMCID: PMC386600 DOI: 10.1073/pnas.83.18.6815] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial chloramphenicol acetyltransferase (CAT) gene was expressed in protoplasts of three important graminaceous plant species after introduction of the gene by electroporation. Gene transfer occurred when high-voltage electric pulses were applied either directly or indirectly (without anode contact) to a solution containing plasmid DNA and protoplasts of rice, wheat, or sorghum. The indirect method was more rapid, resulted in higher protoplast viability, and was less subject to contamination than the direct-contact method. Gene expression of approximately equal magnitude resulted when the CAT gene was fused to either the 35S promoter of cauliflower mosaic virus or the copia long terminal repeat promoter of Drosophila. Together with recent advances in regeneration of callus and whole plants from protoplasts, this system makes it possible to study inheritance and expression of genes introduced into graminaceous monocotyledonous plants.
Collapse
Affiliation(s)
- T M Ou-Lee
- Section of Plant Biology, Division of Biological Sciences, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
29
|
Lebeurier G, Hirth L, Hohn B, Hohn T. In vivo recombination of cauliflower mosaic virus DNA. Proc Natl Acad Sci U S A 2010; 79:2932-6. [PMID: 16593187 PMCID: PMC346322 DOI: 10.1073/pnas.79.9.2932] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
LIGATION AND RECOMBINATION OF THE DNA OF CAULIFLOWER MOSAIC VIRUS (CAMV) IS DEMONSTRATED BY THE FOLLOWING EXPERIMENTS: (i) Ligation: Different noninfectious fragments of the CaMV genome (obtained after insertion into plasmid pBR322 followed by enzymatic excision) regained infectivity when mixtures of them were used to inoculate their host. The symptom appearance was delayed by comparison with a typical CaMV infection, and only the newly formed leaves were affected. (ii) Recombination: Pairs of noninfectious recombinant full-length CaMV genomes (integrated into pBR322 at different restriction endonuclease sites) regained infectivity upon simultaneous inoculation of a sensitive host. The symptomatology of the resulting infection was indistinguishable from that of a typical CaMV infection. We show that progeny DNA had the same characteristics (size, structure, restriction endonuclease digestion pattern) as bona fide CaMV DNA, and that the vector pBR322 had been completely eliminated. A cloned tandem dimer of CaMV DNA with a partial deletion similarly was infectious in the plant assays. This system should be useful to study the expression of mutant genomes, thus allowing characterization of the CaMV genes.
Collapse
Affiliation(s)
- G Lebeurier
- Laboratoire des Virus des Plantes, Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, 15 rue Descartes, 67000 Strasbourg, France
| | | | | | | |
Collapse
|
30
|
Abstract
The discovery that genes can be functionally transferred from bacteria to mammalian cells has suggested the possible use of bacterial vectors as gene delivery vehicles for vaccines. Attenuated invasive human intestinal bacteria, such as Salmonella and Shigella, have been used as plasmid DNA vaccine carriers and their potency has been evaluated in several animal models. This delivery system allows the administration of DNA vaccines together with associated bacterial immunostimulators directly to professional antigen presenting cells via human mucosal surfaces. Various strategies have been taken to improve the use of this delivery system to achieve robust immune responses at both mucosal and systemic sites of the immunized animals.
Collapse
Affiliation(s)
- F Xu
- Vaccine Research Department, Chiron Corporation, Emeryville, CA 94608, USA.
| | | |
Collapse
|
31
|
A high-throughput comparison of recombinant gene expression parameters for E. coli-mediated gene transfer to P388D1 macrophage cells. J Biotechnol 2008; 137:59-64. [PMID: 18694790 DOI: 10.1016/j.jbiotec.2008.07.1815] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/20/2008] [Accepted: 07/07/2008] [Indexed: 11/20/2022]
Abstract
Escherichia coli strain BL21(DE3) was tested as a delivery vector for gene transfer to a murine P388D1 macrophage cell line using a 96-well high-throughput assay. Five recombinant strains of E. coli were compared to identify the effect recombinant listeriolysin O (LLO) and associated gene expression parameters had on final delivery of a luciferase reporter gene. Listeriolysin O, native to Listeria monocytogenes and used here in an effort to improve final gene delivery, was expressed from plasmid and chromosomal locations under the control of constitutive Tet or inducible T7 promoters. The E. coli vectors delivered the luciferase reporter gene to the P388D1 line with success assessed by recording luciferase luminescence activity within the macrophage cells. The assay allowed rapid analysis and evaluation of each E. coli strain tested with strain BL21(DE3) harboring a chromosomal copy of the T7-driven LLO gene showing the greatest relative measure of gene delivery. Strains were separately assayed for LLO activity and exhibited a trend of maximum gene delivery between the lowest and highest recorded LLO activities.
Collapse
|
32
|
In vivo transfer of plasmid from food-grade transiting lactococci to murine epithelial cells. Gene Ther 2008; 15:1184-90. [PMID: 18418419 DOI: 10.1038/gt.2008.59] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We recently demonstrated that noninvasive food-grade Lactococcus lactis (L. lactis) can deliver eukaryotic expression plasmid in mammalian cells in vitro. Here, we evaluated, in vivo, whether a eukaryotic expression plasmid carried by lactococci can translocate to the epithelial cells of the intestinal membrane. The strain LL(pLIG:BLG1) carrying one plasmid containing a eukaryotic expression cassette encoding beta-lactoglobulin (BLG), a major allergen of cow's milk, was orally administered by gavage to mice. BLG cDNA was detected in the epithelial membrane of the small intestine of 40% of the mice and BLG was produced in 53% of the mice. Oral administration of LL(pLIG:BLG1) induced a low and transitory Th1-type immune response counteracting a Th2 response in case of further sensitization. We demonstrated for the first time the transfer of a functional plasmid to the epithelial membrane of the small intestine in mice by noninvasive food-grade lactococci.
Collapse
|
33
|
Kuntzen C, Zazzeroni F, Pham CG, Papa S, Bubici C, Knabb JR, Franzoso G. A method for isolating prosurvival targets of NF-kappaB/Rel transcription factors. Methods Mol Biol 2008; 399:99-124. [PMID: 18309928 DOI: 10.1007/978-1-59745-504-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NF-KappaB/Rel transcription factors are critical regulators of immunity, inflammation, development, and cell survival. Activation of NF-KB inhibits programmed cell death (PCD) triggered by tumor necrosis factor alpha (TNFalpha) and several other stimuli. The prosurvival activity of NF-KB is also crucial to lymphopoiesis, neuroprotection, tumorigenesis, and cancer chemoresistance. The characterization of the downstream targets that mediate the prosurvival activity of NF-KB is therefore a topic of intense investigation. Early screens aimed at identifying these genes were mainly based on expression criteria and so were poised to only isolate genes already known to have protective effects. Here, we describe a new method for the identification of these genes, whereby expression libraries are screened for their ability to halt PCD in NF-KB-deficient cells. This complementation approach provides substantial advantages over other approaches, as it enables functional assessment of isolated genes without any preconceived notion about their sequence or presumed role. Expression libraries are generated from cells that are resistant to TNFalpha-induced cytotoxicity and are then enriched in prosurvival genes upon selection with TNFa in NF-kappaB/RelA-null cells, which are highly susceptible instead to this cytotoxicity. Upon enrichment, libraries are screened through a randomized two-step approach, whereby cDNAs are first tested for cytoprotective function and then for differential expression in NF-kappaB-proficient and NF-KappaB-deficient cells.
Collapse
Affiliation(s)
- Christian Kuntzen
- The Ben May Institute for Cancer Research, The University of Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Four bacterial hosts are reviewed in the context of either native or heterologous natural product production. E. coli, B. subtilis, pseudomonads, and Streptomyces bacterial systems are presented with each having either a long-standing or more recent application to the production of therapeutic natural compounds. The four natural product classes focused upon include the polyketides, nonribosomal peptides, terpenoids, and flavonoids. From the perspective of both innate and heterologous production potential, each bacterial host is evaluated according to biological properties that would either hinder or facilitate natural product biosynthesis.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
35
|
Loessner H, Endmann A, Leschner S, Bauer H, Zelmer A, zur Lage S, Westphal K, Weiss S. Improving live attenuated bacterial carriers for vaccination and therapy. Int J Med Microbiol 2007; 298:21-6. [PMID: 17702649 DOI: 10.1016/j.ijmm.2007.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Live attenuated bacteria are well established as vaccines. Thus, their use as carriers for prophylactic and therapeutic macromolecules is a logical consequence. Here we describe several experimental applications of bacteria to carry heterologous macromolecules into the murine host. First, Listeria monocytogenes are described that are able to transfer eukaryotic expression plasmids into host cells for gene therapy. High multiplicities of infection are still required for efficient gene transfer and we point out some of the bottlenecks that counteract a more efficient transfer and application in vivo. Then, we describe Salmonella enterica serovar Typhimurium (S. typhimurium) as an expression plasmid transfer vehicle for oral DNA vaccination of mice. We demonstrate that the stabilization of the plasmid transformants results in an improved immune response. Stabilization was achieved by replacing the origin of replication of the original high-copy-number plasmid by a low-copy-number origin. Finally, we describe Salmonella carriers for the improved expression of heterologous proteins. We introduce a system in which the plasmid is carried as a single copy during cultivation but is amplified several fold upon infection of the host. Using the same in vivo inducible promoter for both protein expression and plasmid amplification, a substantial increase in antigen expression in vivo can be achieved. A modification of this approach is the introduction of inducible gene expression in vivo with a low-molecular-weight compound. Using P(BAD) promoter and L-arabinose as inducer we were able to deliberately activate genes in the bacterial carrier. No background activity could be observed with P(BAD) such that an inducible suicide gene could be introduced. This is adding an important safety feature to such live attenuated carrier bacteria.
Collapse
Affiliation(s)
- Holger Loessner
- Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Reisinger H, Sevcsik E, Vorauer-Uhl K, Lohner K, Katinger H, Kunert R. Serum-free transfection of CHO-cells with tailor-made unilamellar vesicles. Cytotechnology 2007; 54:157-68. [PMID: 19003008 PMCID: PMC2267506 DOI: 10.1007/s10616-007-9070-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Accepted: 03/28/2007] [Indexed: 10/23/2022] Open
Abstract
At present, a number of transfection techniques are available to introduce foreign DNA into cells, but still minimal intrusion or interference with normal cell physiology, low toxicity, reproducibility, cost efficiency and successful creation of stable transfectants are highly desirable properties for improved transfection techniques.For all previous transfection experiments done in our labs, using serum-free cultivated host cell lines, an efficiency value of approximately 0.1% for selection of stable cell lines has not been exceeded, consequently we developed and improved a transfection system based on defined liposomes, so-called large unilamellar vesicles, consisting of different lipid compositions to facilitate clone selection and increase the probability for creation of recombinant high-production clones. DNA and DOTAP/DOPE or CHEMS/DOPE interact by electrostatic means forming so-called lipoplexes (Even-Chen and Barenholz 2000) and the lipofection efficiency of those lipoplexes has been determined via confocal microscopy.In addition, the expression of the EGFP was determined by FACS to investigate transient as well as stable transfection and the transfection efficiency of a selection of different commercially available transfection reagents and kits has been compared to our tailor-made liposomes.
Collapse
Affiliation(s)
- Hannes Reisinger
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Eva Sevcsik
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstraβe 6, 8042 Graz, Austria
| | - Karola Vorauer-Uhl
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Karl Lohner
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedlstraβe 6, 8042 Graz, Austria
| | - Hermann Katinger
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
- Polymun Scientific Immunbiologische Forschung GmbH, Nußdorfer Lände 11, 1190 Vienna, Austria
| | - Renate Kunert
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
37
|
Parsa S, Pfeifer B. Engineering bacterial vectors for delivery of genes and proteins to antigen-presenting cells. Mol Pharm 2007; 4:4-17. [PMID: 17233543 DOI: 10.1021/mp0600889] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacterial vectors offer a biological route to gene and protein delivery with this article featuring delivery to antigen-presenting cells (APCs). Primarily in the context of immune stimulation against infectious disease or cancer, the goal of bacterially mediated delivery is to overcome the hurdles to effective macromolecule delivery. This review will present several bacterial vectors as macromolecule (protein or gene) delivery devices with both innate and acquirable (or engineered) biological features to facilitate delivery to APCs. The review will also present topics related to large-scale manufacture, storage, and distribution that must be considered if the bacterial delivery devices are ever to be used in a global market.
Collapse
Affiliation(s)
- Saba Parsa
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
38
|
Guimarães VD, Innocentin S, Lefèvre F, Azevedo V, Wal JM, Langella P, Chatel JM. Use of native lactococci as vehicles for delivery of DNA into mammalian epithelial cells. Appl Environ Microbiol 2006; 72:7091-7. [PMID: 16963550 PMCID: PMC1636207 DOI: 10.1128/aem.01325-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The use of the food-grade bacterium Lactococcus lactis as a DNA delivery vehicle at the mucosal level is an attractive DNA vaccination strategy. Previous experiments showed that recombinant L. lactis expressing the Listeria monocytogenes inlA gene can deliver a functional gene into mammalian cells. Here, we explored the potential use of noninvasive L. lactis strains as a DNA delivery vehicle. We constructed two Escherichia coli-L. lactis shuttle plasmids, pLIG:BLG1 and pLIG:BLG2, containing a eukaryotic expression cassette with the cDNA of bovine beta-lactoglobulin (BLG). The greatest BLG expression after transfection of Cos-7 cells was obtained with pLIG:BLG1, which was then used to transform L. lactis MG1363. The resulting L. lactis strain MG1363(pLIG:BLG1) was not able to express BLG. The potential of L. lactis as a DNA delivery vehicle was analyzed by detection of BLG in Caco-2 human colon carcinoma cells after 3 h of coincubation with (i) purified pLIG:BLG1, (ii) MG1363(pLIG:BLG1), (iii) a mix of MG1363(pLIG) and purified pLIG:BLG1, and (iv) MG1363. Both BLG cDNA and BLG expression were detected only in Caco-2 cells coincubated with MG1363(pLIG:BLG1). There was a decrease in the BLG cDNA level in Caco-2 cells between 24 and 48 h after coincubation. BLG expression by Caco-2 cells started at 24 h and increased between 24 and 72 h. BLG secretion by Caco-2 cells started 48 h after coincubation with MG1363(pLIG:BLG1). We conclude that lactococci can deliver BLG cDNA into mammalian epithelial cells, demonstrating their potential to deliver in vivo a DNA vaccine.
Collapse
|
39
|
Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, McCoy RL, Silvanovich A. Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J Appl Microbiol 2005; 99:7-23. [PMID: 15960661 DOI: 10.1111/j.1365-2672.2005.02595.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Pálffy R, Gardlík R, Hodosy J, Behuliak M, Resko P, Radvánský J, Celec P. Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Ther 2005; 13:101-5. [PMID: 16163379 DOI: 10.1038/sj.gt.3302635] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent advances in gene therapy can be attributed to improvements of gene delivery vectors. New viral and nonviral transport vehicles that considerably increase the efficiency of transfection have been prepared. However, these vectors still have many disadvantages that are difficult to overcome, thus, a new approach is needed. The approach of bacterial delivery could in the future be important for gene therapy applications. In this article we try to summarize the most important modifications that are used for the preparation of applied strains, difficulties that are related with bacterial gene delivery and the current use of bactofection in animal experiments and clinical trials. Important differences to the alternative gene therapy (AGT) are discussed. AGT resembles bacteria-mediated protein delivery, as the therapeutical proteins are produced not by host cells but by the bacteria in situ and the expression can be regulated exogenously. Although the procedure of bacterial gene delivery is far from being definitely solved, bactofection remains a promising technique for transfection in human gene therapy.
Collapse
Affiliation(s)
- R Pálffy
- BiomeD Research and Publishing Group, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The use of live attenuated bacterial vaccine strains allows the targeted delivery of macromolecules to mammalian cells and tissues via the mucosal route. Depending on their specific virulence mechanisms and inherent metabolic preferences, bacteria invade certain cell types and body niches where they consequently deliver their cargo. Recently, the ability of attenuated strains of Salmonella, Shigella and Yersinia spp., as well as Listeria monocytogenes and invasive Escherichia coli, to deliver eukaryotic expression plasmids into mammalian cells in vitro and in vivo has been discovered. The great potential of bacteria-mediated transfer of plasmid DNA encoding vaccine antigens and/or therapeutic molecules was demonstrated in experimental animal models of infectious diseases, tumours and gene deficiencies. The exact mechanism of DNA transfer from the bacterial vector into the mammalian host is not yet completely known. The understanding of molecular events during bacterial DNA transfer, however, will further the development of bacterial vector systems with great promise for various clinical applications.
Collapse
Affiliation(s)
- Holger Loessner
- Molecular Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | |
Collapse
|
42
|
Schoen C, Stritzker J, Goebel W, Pilgrim S. Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol 2004; 294:319-35. [PMID: 15532991 DOI: 10.1016/j.ijmm.2004.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genetic immunization with plasmid DNA vaccines has proven to be a promising tool in conferring protective immunity in various experimental animal models of infectious diseases or tumors. Recent research focuses on the use of bacteria, in particular enteroinvasive species, as effective carriers for DNA vaccines. Attenuated strains of Shigella flexneri, Salmonella spp., Yersinia enterocolitica or Listeria monocytogenes have shown to be attractive candidates to target DNA vaccines to immunological inductive sites at mucosal surfaces. This review summarizes recent progress in bacteria-mediated delivery of plasmid DNA vaccines in the field of infectious diseases and cancer.
Collapse
Affiliation(s)
- Christoph Schoen
- Department of Microbiology, Biocenter of the University, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
43
|
Weiss S. Transfer of eukaryotic expression plasmids to mammalian hosts by attenuated Salmonella spp. Int J Med Microbiol 2003; 293:95-106. [PMID: 12755370 DOI: 10.1078/1438-4221-00248] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transkingdom transfer of DNA from bacteria to other organisms, well established for bacteria, yeast and plants, was recently also extended to mammalian host cells. Attenuated intracellular bacteria or non-pathogenic bacteria equipped with adhesion and invasion properties have been demonstrated to transfer eukaryotic expression plasmids in vitro and in vivo. Here the mucosal application of attenuated Salmonella enterica spp. as DNA carrier for the induction of immune responses towards protein antigens encoded by expression plasmids, their use to complement genetic defects or deliver immunotherapeutic proteins is reviewed. Plasmid transfer has been reported for Salmonella typhimurium, S. typhi and S. choleraesuis so far but clearly other Salmonella strains should be able to transfer expression plasmids as well. Transfer of DNA is effected most likely by bacterial death within the host cell resulting from metabolic attenuation. Since these bacteria remain in the phagocytic vacuole it is unclear how the DNA from such dying bacteria is delivered to the nucleus of infected cells. Nevertheless, the efficiency that has been observed was astonishingly high, reaching close to 100% under certain conditions. Gene transfer in vivo was mainly directed towards vaccination strategies either as vaccination against infectious microorganisms or model tumors. Interestingly, in some cases tolerance against autologous antigens could be broken. In general, this type of immunization was more efficacious than either direct application of antigen, vaccination with naked DNA or using the same bacterium as a heterologous carrier expressing the antigen via a prokaryotic promoter. The ease of generating such vehicles for gene transfer combined with technology validated for mass vaccination programs and the efficacy of induction of protective immune responses makes Salmonella as carrier for mucosal DNA vaccination a highly attractive area for further research and development.
Collapse
Affiliation(s)
- Siegfried Weiss
- Molecular Immunology, GBF, German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| |
Collapse
|
44
|
Weiss S, Chakraborty T. Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers. Curr Opin Biotechnol 2001; 12:467-72. [PMID: 11604322 DOI: 10.1016/s0958-1669(00)00247-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The concept of transkingom transfer of DNA from bacteria to other organisms has recently been extended to include eukaryotic host cells. Intracellular bacteria have been shown to transfer eukaryotic expression plasmids to mammalian host cells in vitro and in vivo. This can be used to induce immune responses towards protein antigens encoded by the plasmid, to complement genetic defects or even to direct the production of proteins in appropriate organs. The ease of generating such vehicles makes this a highly attractive area for further research.
Collapse
Affiliation(s)
- S Weiss
- Molecular Immunology, Gesellschaft für Biotechnologische Forschung mbH (GBF), German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124, Braunschweig, Germany.
| | | |
Collapse
|
45
|
Sonderegger P, Kunz S, Rader C, Suter DM, Stoeckli ET. Analysis of Cell‐Cell Contact Mediated by Ig Superfamily Cell Adhesion Molecules. ACTA ACUST UNITED AC 2001; Chapter 9:Unit 9.5. [DOI: 10.1002/0471143030.cb0905s11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Stefan Kunz
- The Scripps Research Institute La Jolla California
| | | | | | | |
Collapse
|
46
|
Harrier LA, Millam S. Biolistic transformation of arbuscular mycorrhizal fungi. Progress and perspectives. Mol Biotechnol 2001; 18:25-33. [PMID: 11439697 DOI: 10.1385/mb:18:1:25] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene transfer systems have proved effective for the transformation of a range of organisms for both fundamental and applied studies. Biolistic transformation is a powerful method for the gene transfer into various organisms and tissues that have proved recalcitrant to more conventional means. For fungi, the biolistic approach is particularly effective where protoplasts are difficult to obtain and/or the organisms are difficult to culture. This is particularly applicable to arbuscular mycorrhizal (AM) fungi, being as they are obligate symbionts that can only be propagated in association with intact plants or root explants. Furthermore, these fungi are aseptate and protoplasts cannot be released. Recent advancements in gene transformation systems have enabled the use of biolistic technology to introduce foreign DNA linked to molecular markers into these fungi. In this review we discuss the development of transformation strategies for AM fungi by biolistics and highlight the areas of this technology which require further development for the stable transformation of these elusive organisms.
Collapse
Affiliation(s)
- L A Harrier
- Plant and Crop Science Division, Scottish Agricultural College, West Mains Road, Edinburgh, West Lothian, Scotland, UK.
| | | |
Collapse
|
47
|
Weiss S, Krusch S. Bacteria-mediated transfer of eukaryotic expression plasmids into mammalian host cells. Biol Chem 2001; 382:533-41. [PMID: 11405218 DOI: 10.1515/bc.2001.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Invasive intracellular bacteria are able to transfer eukaryotic expression plasmids into mammalian host cells in vitro and in vivo. This can be used to induce immune responses toward protein antigens encoded by the plasmid or to complement genetic defects. Plasmid transfer takes place when the recombinant bacterium dies within the host cell, either due to metabolic attenuation or induction of autolysis. Alternatively, antibiotics can be used and spontaneous transfer has also been observed, indicating that this phenomenon might also occur under physiological conditions. Plasmid transfer has been reported for Shigella flexneri, Salmonella typhimurium and S. typhi, Listeria monocytogenes and recombinant Escherichia coli, but other invasive bacteria should also share this property. In vivo attempts were mainly directed toward vaccination using shigella and salmonella as carrier. So far a wide variety of antigens have been used succesfully in mice. Often this type of immunization was superior over direct application of antigen or using the same bacterium as a heterologous carrier expressing the antigen via a prokaryotic promoter. Characterization of the host cells revealed that macrophages and dendritic cells might be responsible for immune stimulation by either expressing the antigen or cross-presenting the antigen after uptake of apoptotic antigen expressing cells.
Collapse
Affiliation(s)
- S Weiss
- German Research Centre for Biotechnology (GBF), Molecular Immunology, Braunschweig
| | | |
Collapse
|
48
|
|
49
|
Abstract
A plasmid including a mouse immunoglobulin mu gene was transfected into the IgG-secreting human lymphoid line HMy2 and mouse B- and pre-B-cell lines WEHI 231 and 18-81; stably transfected cells were selected. Transfected HMy2 cells synthesized mouse immunoglobulin mu chains as a major secreted protein but the WEHI 231 and 18-81 transfectants transcribed the introduced mu gene at lower levels. In HMy2 transfectants, most of the transcription of the introduced heavy chain gene initiated 40 and 62 bp upstream of the beginning of the VH exon translation start, although a small proportion of transcripts initiating further upstream was detected. WEHI 231 and 18-81 transfectants gave a much higher proportion of upstream initiation. Transient expression of the VH exon was monitored following transfection of mouse myeloma with the VH gene DNA in various plasmid constructs. VH transcription was only observed if the plasmids contained a segment derived from the large VH-CH intron of the immunoglobulin heavy chain locus. This segment, located between JH and switch regions, functioned both downstream of the VH exon and upstream in either orientation. The existence of a transcription enhancer element in this region is therefore proposed.
Collapse
|
50
|
Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P. Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 1998; 16:862-6. [PMID: 9743121 DOI: 10.1038/nbt0998-862] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We provide evidence of direct transfer of functional DNA from bacteria to mammalian cells. An Escherichia coli K12 diaminopimelate auxotroph made invasive by cloning the invasin gene from Yersinia pseudotuberculosis transfers DNA after simple co-incubation, into a variety of mammalian cell lines. Transfer efficiency was enhanced in some cells by coexpression of the gene for listeriolysin from Listeria monocytogenes. Expression of the acquired genes occurs in both dividing and quiescent cells. The only requirement for bacteria to transfer genetic material into nonprofessional phagocytic cells and macrophages is the ability to invade the host cell.
Collapse
|