1
|
Kuburich NA, Kiselka JM, den Hollander P, Karam AA, Mani SA. The Cancer Chimera: Impact of Vimentin and Cytokeratin Co-Expression in Hybrid Epithelial/Mesenchymal Cancer Cells on Tumor Plasticity and Metastasis. Cancers (Basel) 2024; 16:4158. [PMID: 39766058 PMCID: PMC11674825 DOI: 10.3390/cancers16244158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The epithelial-mesenchymal transition (EMT) program is critical to metastatic cancer progression. EMT results in the expression of mesenchymal proteins and enhances migratory and invasive capabilities. In a small percentage of cells, EMT results in the expression of stemness-associated genes that provide a metastatic advantage. Although EMT had been viewed as a binary event, it has recently become clear that the program leads to a spectrum of phenotypes, including hybrid epithelial/mesenchymal (E/M) cells that have significantly greater metastatic capability than cells on the epithelial or mesenchymal ends of the spectrum. As hybrid E/M cells are rarely observed in physiological, non-diseased states in the adult human body, these cells are potential biomarkers and drug targets. Hybrid E/M cells are distinguished by the co-expression of epithelial and mesenchymal proteins, such as the intermediate filament proteins cytokeratin (CK; epithelial) and vimentin (VIM; mesenchymal). Although these intermediate filaments have been extensively used for pathological characterization and detection of aggressive carcinomas, little is known regarding the interactions between CK and VIM when co-expressed in hybrid E/M cells. This review describes the characteristics of hybrid E/M cells with a focus on the unique co-expression of VIM and CK. We will discuss the structures and functions of these two intermediate filament proteins and how they may interact when co-expressed in hybrid E/M cells. Additionally, we review what is known about cell-surface expression of these intermediate filament proteins and discuss their potential as predictive biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Nick A. Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Julia M. Kiselka
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Andrew A. Karam
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A. Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; (N.A.K.); (J.M.K.); (P.d.H.); (A.A.K.)
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Sacco JL, Gomez EW. Epithelial-Mesenchymal Plasticity and Epigenetic Heterogeneity in Cancer. Cancers (Basel) 2024; 16:3289. [PMID: 39409910 PMCID: PMC11475326 DOI: 10.3390/cancers16193289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment comprises various cell types and experiences dynamic alterations in physical and mechanical properties as cancer progresses. Intratumoral heterogeneity is associated with poor prognosis and poses therapeutic challenges, and recent studies have begun to identify the cellular mechanisms that contribute to phenotypic diversity within tumors. This review will describe epithelial-mesenchymal (E/M) plasticity and its contribution to phenotypic heterogeneity in tumors as well as how epigenetic factors, such as histone modifications, histone modifying enzymes, DNA methylation, and chromatin remodeling, regulate and maintain E/M phenotypes. This review will also report how mechanical properties vary across tumors and regulate epigenetic modifications and E/M plasticity. Finally, it highlights how intratumoral heterogeneity impacts therapeutic efficacy and provides potential therapeutic targets to improve cancer treatments.
Collapse
Affiliation(s)
- Jessica L. Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Jang J, Park HJ, Seong W, Kim J, Kim C. Vimentin-mediated buffering of internal integrin β1 pool increases survival of cells from anoikis. BMC Biol 2024; 22:139. [PMID: 38915055 PMCID: PMC11197373 DOI: 10.1186/s12915-024-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND The intermediate filament protein vimentin is widely recognized as a molecular marker of epithelial-to-mesenchymal transition. Although vimentin expression is strongly associated with cancer metastatic potential, the exact role of vimentin in cancer metastasis and the underlying mechanism of its pro-metastatic functions remain unclear. RESULTS This study revealed that vimentin can enhance integrin β1 surface expression and induce integrin-dependent clustering of cells, shielding them against anoikis cell death. The increased integrin β1 surface expression in suspended cells was caused by vimentin-mediated protection of the internal integrin β1 pool against lysosomal degradation. Additionally, cell detachment was found to induce vimentin Ser38 phosphorylation, allowing the translocation of internal integrin β1 to the plasma membrane. Furthermore, the use of an inhibitor of p21-activated kinase PAK1, one of the kinases responsible for vimentin Ser38 phosphorylation, significantly reduced cancer metastasis in animal models. CONCLUSIONS These findings suggest that vimentin can act as an integrin buffer, storing internalized integrin β1 and releasing it when needed. Overall, this study provides insights regarding the strong correlation between vimentin expression and cancer metastasis and a basis for blocking metastasis using this novel therapeutic mechanism.
Collapse
Affiliation(s)
- Jiyoung Jang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Jung Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Republic of Korea
| | - Wonyoung Seong
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jiyoon Kim
- Donnelly Centre, University of Toronto, ON, Toronto, M5S 3E1, Canada
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Kuburich NA, den Hollander P, Castaneda M, Pietilä M, Tang X, Batra H, Martínez-Peña F, Visal TH, Zhou T, Demestichas BR, Dontula RV, Liu JY, Maddela JJ, Padmanabhan RS, Phi LTH, Rosolen MJ, Sabapathy T, Kumar D, Giancotti FG, Lairson LL, Raso MG, Soundararajan R, Mani SA. Stabilizing vimentin phosphorylation inhibits stem-like cell properties and metastasis of hybrid epithelial/mesenchymal carcinomas. Cell Rep 2023; 42:113470. [PMID: 37979166 PMCID: PMC11062250 DOI: 10.1016/j.celrep.2023.113470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 09/01/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) empowers epithelial cells with mesenchymal and stem-like attributes, facilitating metastasis, a leading cause of cancer-related mortality. Hybrid epithelial-mesenchymal (E/M) cells, retaining both epithelial and mesenchymal traits, exhibit heightened metastatic potential and stemness. The mesenchymal intermediate filament, vimentin, is upregulated during EMT, enhancing the resilience and invasiveness of carcinoma cells. The phosphorylation of vimentin is critical to its structure and function. Here, we identify that stabilizing vimentin phosphorylation at serine 56 induces multinucleation, specifically in hybrid E/M cells with stemness properties but not epithelial or mesenchymal cells. Cancer stem-like cells are especially susceptible to vimentin-induced multinucleation relative to differentiated cells, leading to a reduction in self-renewal and stemness. As a result, vimentin-induced multinucleation leads to sustained inhibition of stemness properties, tumor initiation, and metastasis. These observations indicate that a single, targetable phosphorylation event in vimentin is critical for stemness and metastasis in carcinomas with hybrid E/M properties.
Collapse
Affiliation(s)
- Nick A Kuburich
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Maria Castaneda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mika Pietilä
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Janssen Pharmaceutical Companies of Johnson & Johnson, Espoo, Uusimaa, Finland
| | - Ximing Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Harsh Batra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Tanvi H Visal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tieling Zhou
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Breanna R Demestichas
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Ritesh V Dontula
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jojo Y Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joanna Joyce Maddela
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Reethi S Padmanabhan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lan Thi Hanh Phi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew J Rosolen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thiru Sabapathy
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sendurai A Mani
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
5
|
SPINK7 expression changes accompanied by HER2, P53 and RB1 can be relevant in predicting oral squamous cell carcinoma at a molecular level. Sci Rep 2021; 11:6939. [PMID: 33767253 PMCID: PMC7994578 DOI: 10.1038/s41598-021-86208-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
The oral squamous cell carcinoma (OSCC), which has a high morbidity rate, affects patients worldwide. Changes in SPINK7 in precancerous lesions could promote oncogenesis. Our aim was to evaluate SPINK7 as a potential molecular biomarker which predicts OSCC stages, compared to: HER2, TP53, RB1, NFKB and CYP4B1. This study used oral biopsies from three patient groups: dysplasia (n = 33), less invasive (n = 28) and highly invasive OSCC (n = 18). The control group consisted of clinically suspicious cases later to be confirmed as normal mucosa (n = 20). Gene levels of SPINK7, P53, RB, NFKB and CYP4B1 were quantified by qPCR. SPINK7 levels were correlated with a cohort of 330 patients from the TCGA. Also, SPINK7, HER2, TP53, and RB1, were evaluated by immunohistofluorescence. One-way Kruskal–Wallis test and Dunn's post-hoc with a p < 0.05 significance was used to analyze data. In OSCC, the SPINK7 expression had down regulated while P53, RB, NFKB and CYP4B1 had up regulated (p < 0.001). SPINK7 had also diminished in TCGA patients (p = 2.10e-6). In less invasive OSCC, SPINK7 and HER2 proteins had decreased while TP53 and RB1 had increased with respect to the other groups (p < 0.05). The changes of SPINK7 accompanied by HER2, P53 and RB1 can be used to classify the molecular stage of OSCC lesions allowing a diagnosis at molecular and histopathological levels.
Collapse
|
6
|
Leggett SE, Hruska AM, Guo M, Wong IY. The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal 2021; 19:32. [PMID: 33691719 PMCID: PMC7945251 DOI: 10.1186/s12964-021-00713-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 01/04/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) is intrinsically linked to alterations of the intracellular cytoskeleton and the extracellular matrix. After EMT, cells acquire an elongated morphology with front/back polarity, which can be attributed to actin-driven protrusion formation as well as the gain of vimentin expression. Consequently, cells can deform and remodel the surrounding matrix in order to facilitate local invasion. In this review, we highlight recent bioengineering approaches to elucidate EMT and functional changes in the cytoskeleton. First, we review transitions between multicellular clusters and dispersed individuals on planar surfaces, which often exhibit coordinated behaviors driven by leader cells and EMT. Second, we consider the functional role of vimentin, which can be probed at subcellular length scales and within confined spaces. Third, we discuss the role of topographical patterning and EMT via a contact guidance like mechanism. Finally, we address how multicellular clusters disorganize and disseminate in 3D matrix. These new technologies enable controlled physical microenvironments and higher-resolution spatiotemporal measurements of EMT at the single cell level. In closing, we consider future directions for the field and outstanding questions regarding EMT and the cytoskeleton for human cancer progression. Video Abstract.
Collapse
Affiliation(s)
- Susan E Leggett
- Department of Chemical and Biological Engineering, Princeton University, William St, Princeton, NJ, 08544, USA
| | - Alex M Hruska
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, MIT, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, and Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA.
| |
Collapse
|
7
|
Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat Commun 2020; 11:834. [PMID: 32047143 PMCID: PMC7012886 DOI: 10.1038/s41467-020-14581-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/07/2020] [Indexed: 01/09/2023] Open
Abstract
The protein inhibitor of activated STAT1 (PIAS1) is an E3 SUMO ligase that plays important roles in various cellular pathways. Increasing evidence shows that PIAS1 is overexpressed in various human malignancies, including prostate and lung cancers. Here we used quantitative SUMO proteomics to identify potential substrates of PIAS1 in a system-wide manner. We identified 983 SUMO sites on 544 proteins, of which 62 proteins were assigned as putative PIAS1 substrates. In particular, vimentin (VIM), a type III intermediate filament protein involved in cytoskeleton organization and cell motility, was SUMOylated by PIAS1 at Lys-439 and Lys-445 residues. VIM SUMOylation was necessary for its dynamic disassembly and cells expressing a non-SUMOylatable VIM mutant showed a reduced level of migration. Our approach not only enables the identification of E3 SUMO ligase substrates but also yields valuable biological insights into the unsuspected role of PIAS1 and VIM SUMOylation on cell motility. PIAS1 is an E3 SUMO ligase involved in various cellular processes. Here, the authors use quantitative proteomics to identify potential PIAS1 substrates in human cells and elucidate the biological consequences of PIAS1-mediated SUMOylation of vimentin.
Collapse
|
8
|
Jolly MK, Somarelli JA, Sheth M, Biddle A, Tripathi SC, Armstrong AJ, Hanash SM, Bapat SA, Rangarajan A, Levine H. Hybrid epithelial/mesenchymal phenotypes promote metastasis and therapy resistance across carcinomas. Pharmacol Ther 2018; 194:161-184. [PMID: 30268772 DOI: 10.1016/j.pharmthera.2018.09.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer metastasis and therapy resistance are the major unsolved clinical challenges, and account for nearly all cancer-related deaths. Both metastasis and therapy resistance are fueled by epithelial plasticity, the reversible phenotypic transitions between epithelial and mesenchymal phenotypes, including epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). EMT and MET have been largely considered as binary processes, where cells detach from the primary tumor as individual units with many, if not all, traits of a mesenchymal cell (EMT) and then convert back to being epithelial (MET). However, recent studies have demonstrated that cells can metastasize in ways alternative to traditional EMT paradigm; for example, they can detach as clusters, and/or occupy one or more stable hybrid epithelial/mesenchymal (E/M) phenotypes that can be the end point of a transition. Such hybrid E/M cells can integrate various epithelial and mesenchymal traits and markers, facilitating collective cell migration. Furthermore, these hybrid E/M cells may possess higher tumor-initiation and metastatic potential as compared to cells on either end of the EMT spectrum. Here, we review in silico, in vitro, in vivo and clinical evidence for the existence of one or more hybrid E/M phenotype(s) in multiple carcinomas, and discuss their implications in tumor-initiation, tumor relapse, therapy resistance, and metastasis. Together, these studies drive the emerging notion that cells in a hybrid E/M phenotype may occupy 'metastatic sweet spot' in multiple subtypes of carcinomas, and pathways linked to this (these) hybrid E/M state(s) may be relevant as prognostic biomarkers as well as a promising therapeutic targets.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| | - Jason A Somarelli
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Maya Sheth
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Adrian Biddle
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Andrew J Armstrong
- Duke Cancer Institute and Department of Medicine, Duke University Medical Center, Durham, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, UT MD Anderson Cancer Center, Houston, USA
| | - Sharmila A Bapat
- National Center for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Annapoorni Rangarajan
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Okuyama K, Suzuki K, Yanamoto S, Naruse T, Tsuchihashi H, Yamashita S, Umeda M. Anaplastic transition within the cancer microenvironment in early-stage oral tongue squamous cell carcinoma is associated with local recurrence. Int J Oncol 2018; 53:1713-1720. [PMID: 30085337 DOI: 10.3892/ijo.2018.4515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/29/2018] [Indexed: 11/06/2022] Open
Abstract
The cancer microenvironment (CME) promotes malignant progression of cancer cells by stimulating cell growth, migration and invasion. Cancer-associated fibroblasts (CAFs), prominent features of the CME, interact directly with cancer cells and facilitate epithelial-mesenchymal transition (EMT). The present study examined the spatial distribution of CAFs and EMT on cancer cells in patients with early-stage tongue squamous cell carcinoma (TSCC) and their association with local recurrence. The present study included 14 patients with early-stage TSCC who had undergone glossectomy between 2006 and 2015, of which 7 experienced local recurrence (LR group) and 7 did not (control group). Multiple immunofluorescent analysis (MIA) of PCNA, αSMA, vimentin, E-cadherin and cytokeratin 14 (CK14) was performed on slides obtained from surgical specimens to identify the expression of various cell-specific markers. The number of CAFs in the CME was significantly increased in the LR group (P=0.001). Furthermore, the neighbouring cancer cells were positive for vimentin expression, indicating EMT. However, the present study also identified concurrent expression of CK14 in all vimentin-positive cancer cells, whilst epithelial markers, including E-cadherin, were expressed in certain vimentin-positive cancer cells. Concurrent expression of CK14 and vimentin is not defined as EMT or partial EMT. Therefore, the present study proposed a novel mechanism of anaplastic transition (APT), in which epithelial cancer cells concurrently develop mesenchymal features, which is achieved by pathways other than EMT. APT is characterized such that epithelial cancer cells differentiate into more primitive states, which is different from EMT or partial EMT, and it may be associated with LR. The concept aids in improving knowledge regarding tumor recurrence in patients with early-stage TSCC.
Collapse
Affiliation(s)
- Kohei Okuyama
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Souichi Yanamoto
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Tomofumi Naruse
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Hiroki Tsuchihashi
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki-shi, Nagasaki 852-8588, Japan
| |
Collapse
|
10
|
Liu S, Liu L, Ye W, Ye D, Wang T, Guo W, Liao Y, Xu D, Song H, Zhang L, Zhu H, Deng J, Zhang Z. High Vimentin Expression Associated with Lymph Node Metastasis and Predicated a Poor Prognosis in Oral Squamous Cell Carcinoma. Sci Rep 2016; 6:38834. [PMID: 27966589 PMCID: PMC5155220 DOI: 10.1038/srep38834] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common public health problem worldwide with poor prognosis, which is largely due to lymph node metastasis and recurrence. Identification of specific molecular markers of OSCC with lymph node metastasis would be very important for early and specific diagnosis. In this study, we screened for the potential prognosis markers via unbiased transcriptomic microarray analysis in paired two OSCC cell lines, a lymph node metastatic HN12 cell line and a low metastatic parental HN4 cell line. The results showed that vimentin, with 87-fold increase of expression, was on the top of all upregulated genes in metastatic HN12 cells compared to non-metastatic HN4 cells. Treatment of non-metastatic HN4 cells with TGF-β1 induced epithelial to mesenchymal transition (EMT), with increased vimentin expression as well as enhanced migration activity. Consistently, knockdown of vimentin via siRNA resulted in suppressed invasion and migration activities of HN12 cells, suggesting an essential role of vimentin in EMT-related functions of OSCC cells. Finally, immunohistochemical (IHC) staining analysis showed that high vimentin expression was strongly associated with high lymph node metastases (p < 0.05), and poor overall survival (p < 0.05) in OSCC patients. Thus, high vimentin expression is strongly associated with increased metastatic potential, and may serve as a prediction marker for poor prognosis in OSCC patients.
Collapse
Affiliation(s)
- Shuli Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liu Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Ye
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxia Ye
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzheng Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanguang Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Deng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Translation Medicine Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Castro-Muñozledo F, Meza-Aguilar DG, Domínguez-Castillo R, Hernández-Zequinely V, Sánchez-Guzmán E. Vimentin as a Marker of Early Differentiating, Highly Motile Corneal Epithelial Cells. J Cell Physiol 2016; 232:818-830. [DOI: 10.1002/jcp.25487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Federico Castro-Muñozledo
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | - Diana G. Meza-Aguilar
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | - Rocío Domínguez-Castillo
- Department of Molecular Biomedicine; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | | | - Erika Sánchez-Guzmán
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| |
Collapse
|
12
|
Clinicopathological Significance of Vimentin and Cytokeratin Protein in the Genesis of Squamous Cell Carcinoma of Cervix. Obstet Gynecol Int 2016; 2016:8790120. [PMID: 27190522 PMCID: PMC4848446 DOI: 10.1155/2016/8790120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/19/2016] [Accepted: 02/14/2016] [Indexed: 11/20/2022] Open
Abstract
Cervical cancer is one of the commonest types of cancers worldwide especially in developing countries. Intermediate filaments protein family has shown a role in the diagnosis of various cancers, but a few studies are available about the vimentin and cytokeratin roles in the cervical cancer. This case control study aimed to interpret the expression of vimentin and cytokeratin proteins in the development and progression of cervical cancer and its correlation with clinicopathological features. The cytoplasmic expression of vimentin was observed in 40% of cases, but not in inflammatory lesions of cervix. It was noticed that vimentin expression was increasing significantly with high grade of the tumour. Cytokeratin expression was observed in 48.33% and it was noticed that the expression was 62.5% in well differentiated (G1), 45% in moderately differentiated (G2), and 41.66% in poorly differentiated carcinoma, yet statistically insignificant. The expression of vimentin and cytokeratin proteins was not significantly associated with age groups. The current findings concluded a possible role of vimentin in the development and progression of cervical cancer and vimentin marker will be useful in the diagnosis and grading of cervical cancer.
Collapse
|
13
|
Epithelial cell migration requires the interaction between the vimentin and keratin intermediate filaments. Sci Rep 2016; 6:24389. [PMID: 27072292 PMCID: PMC4829867 DOI: 10.1038/srep24389] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/29/2016] [Indexed: 11/08/2022] Open
Abstract
Epithelial migration plays a central role in development, wound repair and tumor metastasis, but the role of intermediate filament in this important event is unknown. We showed recently that vimentin coexists in the same cell with keratin-KRT14 at the leading edge of the migrating epidermal cells, and knockdown of vimentin impaired colony growth. Here we demonstrate that vimentin co-localizes and co-immunoprecipitates with keratin-KRT14, and mutations in the -YRKLLEGEE- sequence of vimentin significantly reduced migration of the keratinocytes. Our data demonstrates that keratinocyte migration requires the interaction between vimentin and keratins at the -YRKLLEGEE- sequence at the helical 2B domain of vimentin. These findings have broad implications for understanding the roles of vimentin intermediate filaments in normal and neoplastic epithelial cells.
Collapse
|
14
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [PMID: 26878854 DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
15
|
Yang X, Yuan W, Li D, Zhang X. Study on an improved bio-electrode made with glucose oxidase immobilized mesoporous carbon in biofuel cells. RSC Adv 2016. [DOI: 10.1039/c5ra27111h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Response surface methodology (RSM) was used for process optimization to immobilize glucose oxidase (GOx) on ordered mesoporous carbon (OMC).
Collapse
Affiliation(s)
- Xuewei Yang
- College of Life Science
- Shenzhen University
- Shenzhen
- China
- Department of Biological and Agricultural Engineering
| | - Wenqiao Yuan
- Department of Biological and Agricultural Engineering
- North Carolina State University
- Raleigh
- USA
| | - Dawei Li
- Department of Textile Engineering
- Chemistry and Science
- North Carolina State University
- Raleigh
- USA
| | - Xiangwu Zhang
- Department of Textile Engineering
- Chemistry and Science
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
16
|
Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, Onuchic JN, Levine H. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol 2015; 5:155. [PMID: 26258068 PMCID: PMC4507461 DOI: 10.3389/fonc.2015.00155] [Citation(s) in RCA: 495] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
Transitions between epithelial and mesenchymal phenotypes – the epithelial to mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Bioengineering, Rice University , Houston, TX , USA
| | - Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Institute of Physics, University of São Paulo , São Paulo , Brazil
| | - Bin Huang
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Chemistry, Rice University , Houston, TX , USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Graduate Program in Systems, Synthetic and Physical Biology, Rice University , Houston, TX , USA
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; School of Physics and Astronomy, and The Sagol School of Neuroscience, Tel-Aviv University , Tel-Aviv , Israel ; Department of Biosciences, Rice University , Houston, TX , USA
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Chemistry, Rice University , Houston, TX , USA ; Department of Physics and Astronomy, Rice University , Houston, TX , USA ; Department of Biosciences, Rice University , Houston, TX , USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University , Houston, TX , USA ; Department of Bioengineering, Rice University , Houston, TX , USA ; Department of Physics and Astronomy, Rice University , Houston, TX , USA ; Department of Biosciences, Rice University , Houston, TX , USA
| |
Collapse
|
17
|
Castro-Muñozledo F, Velez-DelValle C, Marsch-Moreno M, Hernández-Quintero M, Kuri-Harcuch W. Vimentin is necessary for colony growth of human diploid keratinocytes. Histochem Cell Biol 2014; 143:45-57. [PMID: 25142512 DOI: 10.1007/s00418-014-1262-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 01/08/2023]
Abstract
The role of vimentin (Vim) in diploid epithelial cells is not well known. To understand its biological function, we cultured human epidermal keratinocytes under conditions that support migration, proliferation, stratification and terminal differentiation. We identified a keratinocyte subpopulation that shows a p63(+)/α5β1(bright) phenotype and displays Vim intermediate filaments (IFs) besides their keratin IF network. These cells were mainly located at the proliferative/migratory rim of the growing colonies; but also, they were scarce and scattered or formed small groups of basal cells in confluent stratified epithelia. Stimulation of cells with EGF and wounding experiments in confluent arrested epithelia increased the number of Vim(+) keratinocytes in an extent higher to the expected for a cell population doubling. BrdU labeling demonstrated that most of the proliferative cells located at the migratory border of the colony have Vim, in contrast with proliferative cells located at the basal layer at the center of big colonies which lacked of Vim IFs, suggesting that Vim expression was not solely linked to proliferation. Therefore, we silenced Vim mRNA in the cultured keratinocytes and observed an inhibition of colony growth. Such results, together with long-term cultivation assays which showed that Vim might be associated to pattern formation in cultured epithelia, suggest that Vim expression is essential for a highly motile phenotype, which is necessary for keratinocyte colony growth and possibly for development and wound healing. Vim(+)/p63(+)/α5β1(bright) epithelial cells may play a significant physiological role in embryonic morphogenetic movements; wound healing and other pathologies such as carcinomas and hyperproliferative diseases.
Collapse
Affiliation(s)
- Federico Castro-Muñozledo
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN Apdo, Postal 14-740, 07000, Mexico City, Mexico,
| | | | | | | | | |
Collapse
|
18
|
Balasundaram P, Singh MK, Dinda AK, Thakar A, Yadav R. Study of β-catenin, E-cadherin and vimentin in oral squamous cell carcinoma with and without lymph node metastases. Diagn Pathol 2014; 9:145. [PMID: 25047112 PMCID: PMC4223686 DOI: 10.1186/1746-1596-9-145] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/09/2014] [Indexed: 11/24/2022] Open
Abstract
Abstract Virtual slides The virtual slide(s) for this article can be found here:
http://www.diagnosticpathology.diagnomx.eu/vs/6506095201182002.
Collapse
Affiliation(s)
| | - Manoj Kumar Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India.
| | | | | | | |
Collapse
|
19
|
Mercer SE, Cheng CH, Atkinson DL, Krcmery J, Guzman CE, Kent DT, Zukor K, Marx KA, Odelberg SJ, Simon HG. Multi-tissue microarray analysis identifies a molecular signature of regeneration. PLoS One 2012; 7:e52375. [PMID: 23300656 PMCID: PMC3530543 DOI: 10.1371/journal.pone.0052375] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
The inability to functionally repair tissues that are lost as a consequence of disease or injury remains a significant challenge for regenerative medicine. The molecular and cellular processes involved in complete restoration of tissue architecture and function are expected to be complex and remain largely unknown. Unlike humans, certain salamanders can completely regenerate injured tissues and lost appendages without scar formation. A parsimonious hypothesis would predict that all of these regenerative activities are regulated, at least in part, by a common set of genes. To test this hypothesis and identify genes that might control conserved regenerative processes, we performed a comprehensive microarray analysis of the early regenerative response in five regeneration-competent tissues from the newt Notophthalmus viridescens. Consistent with this hypothesis, we established a molecular signature for regeneration that consists of common genes or gene family members that exhibit dynamic differential regulation during regeneration in multiple tissue types. These genes include members of the matrix metalloproteinase family and its regulators, extracellular matrix components, genes involved in controlling cytoskeleton dynamics, and a variety of immune response factors. Gene Ontology term enrichment analysis validated and supported their functional activities in conserved regenerative processes. Surprisingly, dendrogram clustering and RadViz classification also revealed that each regenerative tissue had its own unique temporal expression profile, pointing to an inherent tissue-specific regenerative gene program. These new findings demand a reconsideration of how we conceptualize regenerative processes and how we devise new strategies for regenerative medicine.
Collapse
Affiliation(s)
- Sarah E. Mercer
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - Chia-Ho Cheng
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts, United States of America
| | - Donald L. Atkinson
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jennifer Krcmery
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - Claudia E. Guzman
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| | - David T. Kent
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Katherine Zukor
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kenneth A. Marx
- Department of Chemistry, University of Massachusetts-Lowell, Lowell, Massachusetts, United States of America
| | - Shannon J. Odelberg
- Department of Internal Medicine, Division of Cardiology, University of Utah, Salt Lake City, Utah, United States of America
| | - Hans-Georg Simon
- Department of Pediatrics, Northwestern University, Feinberg School of Medicine and Children’s Memorial Research Center, Chicago, Illinois, United States of America
| |
Collapse
|
20
|
Alam H, Kundu ST, Dalal SN, Vaidya MM. Loss of keratins 8 and 18 leads to alterations in α6β4-integrin-mediated signalling and decreased neoplastic progression in an oral-tumour-derived cell line. J Cell Sci 2011; 124:2096-106. [PMID: 21610092 DOI: 10.1242/jcs.073585] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Keratins 8 and 18 (K8 and K18) are predominantly expressed in simple epithelial tissues and perform both mechanical and regulatory functions. Aberrant expression of K8 and K18 is associated with neoplastic progression and invasion in squamous cell carcinomas (SCCs). To understand the molecular basis by which K8 promotes neoplastic progression in oral SCC (OSCC), K8 expression was inhibited in AW13516 cells. The K8-knockdown clones showed a significant reduction in tumorigenic potential, which was accompanied by a reduction in cell motility, cell invasion, decreased fascin levels, alterations in the organization of the actin cytoskeleton and changes in cell shape. Furthermore, K8 knockdown led to a decrease in α6β4 integrin levels and α6β4-integrin-dependent signalling events, which have been reported to play an important role in neoplastic progression in epithelial tissues. Therefore, modulation of α6β4 integrin signalling might be one of the mechanisms by which K8 and K18 promote malignant transformation and/or progression in OSCCs.
Collapse
Affiliation(s)
- Hunain Alam
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410210, India
| | | | | | | |
Collapse
|
21
|
The Utility of Pax-2 and Renal Cell Carcinoma Marker Immunohistochemistry in Distinguishing Papillary Renal Cell Carcinoma From Nonrenal Cell Neoplasms With Papillary Features. Appl Immunohistochem Mol Morphol 2010; 18:494-8. [DOI: 10.1097/pai.0b013e3181e78ff8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Arachidonic acid promotes epithelial-to-mesenchymal-like transition in mammary epithelial cells MCF10A. Eur J Cell Biol 2010; 89:476-88. [PMID: 20207443 DOI: 10.1016/j.ejcb.2009.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies and animal models suggest an association between high levels of dietary fat intake and an increased risk of breast cancer. Cancer progression requires the development of metastasis, which is characterized by an increase in cell motility and invasion. Epithelial-to-mesenchymal transition (EMT) is a process, by which epithelial cells are transdifferentiated to a more mesenchymal state. A similar process takes place during tumor progression, when carcinoma cells stably or transiently lose epithelial polarities and acquire a mesenchymal phenotype. Arachidonic acid (AA) is a fatty acid that mediates cellular processes, such as cell survival, angiogenesis, chemotaxis, mitogenesis, migration and apoptosis. However, the role of AA on the EMT process in human mammary epithelial cells remains to be studied. We demonstrate here that AA promotes an increase in vimentin and N-cadherin expression, MMP-9 secretion, a decrease in E-cadherin junctional levels, and the activation of FAK, Src and NF-kappaB in MCF10A cells. Furthermore, AA also promotes cell migration in an Src kinase activity-dependent fashion. In conclusion, our results demonstrate, for the first time, that AA promotes an epithelial-to-mesenchymal-like transition in MCF10A human mammary non-tumorigenic epithelial cells.
Collapse
|
23
|
Upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol 2010; 23:213-24. [PMID: 19915524 DOI: 10.1038/modpathol.2009.160] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oral squamous cell carcinoma is a challenging oncology problem. A reliable biomarker for metastasis or high-risk prognosis in oral cancer patients remains undefined. Using quantitative immunohistochemistry, we examined the expression of vimentin, E-cadherin, and beta-catenin in 83 oral squamous cell carcinoma patients, and the relationships between the expression of these markers and specific clinicopathological features were analysed. The high expression of vimentin was observed in 23 of 43 (53%) tumours from patients who eventually developed a recurrent tumour and was associated with recurrence and death (P<0.001 and <0.001, respectively). The decreased expression of E-cadherin was observed in 36 of 43 (84%) tumours from patients who eventually developed a recurrent tumour and was also associated with recurrence and death (P<0.001 and <0.001, respectively). Although no correlation between beta-catenin expression in whole-tumour sections and clinicopathological features was observed, decreased beta-catenin expression at the tumour invasive front was closely associated with recurrence and death (P=0.002 and 0.002, respectively). The expression of vimentin and that of E-cadherin were associated with survival and were independent prognostic factors in univariate and multivariate analyses. Our data show that the overexpression of vimentin was closely associated with recurrence and death in oral squamous cell carcinoma patients. The combination of the upregulation of vimentin and aberrant expression of E-cadherin/beta-catenin complexes at the tumour invasive front may provide a useful prognostic marker in oral squamous cell carcinoma.
Collapse
|
24
|
Fortier AM, Van Themsche C, Asselin E, Cadrin M. Akt isoforms regulate intermediate filament protein levels in epithelial carcinoma cells. FEBS Lett 2010; 584:984-8. [PMID: 20109457 DOI: 10.1016/j.febslet.2010.01.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/11/2009] [Accepted: 01/11/2010] [Indexed: 11/16/2022]
Abstract
Keratin 8 and 18 are simple epithelial intermediate filament (IF) proteins, whose expression is differentiation- and tissue-specific, and is maintained during tumorigenesis. Vimentin IF is often co-expressed with keratins in cancer cells. Recently, IF have been proposed to be involved in signaling pathways regulating cell growth, death and motility. The PI3K/Akt pathway plays a pivotal role in these processes. Thus, we investigated the role of Akt (1 and 2) in regulating IF expression in different epithelial cancer cell lines. Over-expression of Akt1 increases K8/18 proteins. Akt2 up-regulates K18 and vimentin expression by an increased mRNA stability. To our knowledge, these results represent the first indication that Akt isoforms regulate IF expression and support the hypothesis that IFs are involved in PI3K/Akt pathway.
Collapse
Affiliation(s)
- Anne-Marie Fortier
- Department of Chemistry-Biology, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada G9A 5H7
| | | | | | | |
Collapse
|
25
|
Gokden N, Gokden M, Phan DC, McKenney JK. The Utility of PAX-2 in Distinguishing Metastatic Clear Cell Renal Cell Carcinoma From its Morphologic Mimics. Am J Surg Pathol 2008; 32:1462-7. [DOI: 10.1097/pas.0b013e318176dba7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Chu S, Xu H, Ferro TJ, Rivera PX. Poly(ADP-ribose) polymerase-1 regulates vimentin expression in lung cancer cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1127-34. [PMID: 17720873 DOI: 10.1152/ajplung.00197.2007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Vimentin is one of the mammalian intermediate filament proteins. It is expressed in cells of mesenchymal origin and is characteristic of proliferating cells at the fetal stage. During malignancy, vimentin expression is activated in certain lung epithelial cells. Examination of a group of lung cancer cells showed a marked difference in their vimentin expression. The difference in vimentin expression among lung cancer cells is due to differential regulation at the transcriptional level. Analysis of the vimentin promoter revealed a 102-bp promoter sequence that is important for promoter activity in a lung cancer cell line in which vimentin is strongly expressed. This promoter region interacts with poly(ADP-ribose) polymerase-1 (PARP-1), which is also a transcription regulator. Exogenous expression of PARP-1 increased vimentin promoter activity. A shortened PARP-1 without the COOH-terminal catalytic domain showed the same promoter activation effect. Treatment of cells with H(2)O(2) reduced PARP-1 and vimentin expression at the protein level. H(2)O(2) also dose dependently suppressed vimentin promoter activity in cells overexpressing PARP-1. These results demonstrate that vimentin expression in lung cancer cells is regulated at the transcriptional level and that PARP-1 binds and activates the vimentin promoter independent of its catalytic domain and may play a role in H(2)O(2)-induced inhibition of vimentin expression.
Collapse
Affiliation(s)
- Shijian Chu
- McGuire VA Medical Center, Virginia Commonwealth University, Richmond, Virginia 23249, USA.
| | | | | | | |
Collapse
|
27
|
Oikawa H, Oka K, Nagakura S, Fukunaga M, Sando N, Kashimura J, Hakozaki H. Spindle and giant cell type undifferentiated carcinoma arising in the common bile duct: a case report. Pathol Res Pract 2007; 203:179-84. [PMID: 17307306 DOI: 10.1016/j.prp.2006.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/06/2006] [Accepted: 12/18/2006] [Indexed: 11/30/2022]
Abstract
We report on a 61-year-old Japanese male with a pedunculated tumor in the common bile duct. The tumor consisted of two types of neoplastic cells. The majority showed atypical spindle- and giant-shaped features and proliferated densely in an inflammatory stroma, revealing a sarcomatous pattern. They expressed vimentin, KL-1, and CAM5.2. The remaining minority showed glandular and tubular features, occupied only less than 5%, located only in the tumor surface, and expressed wide spectrum keratin, KL-1, CAM5.2, epithelial membrane antigen, AE1/AE3, and carcinoembryonic antigen. CD68-positive osteoclast-like giant cells were also observed. Therefore, the patient was diagnosed as having an undifferentiated carcinoma, spindle and giant cell type.
Collapse
Affiliation(s)
- Haruna Oikawa
- Department of Surgery, Mito Saiseikai General Hospital, 3-3-10 Futabadai, Mito, Ibaraki 311-4198, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Hair is a proteinaceous fibre with a strongly hierarchical organization of subunits, from the alpha-keratin chains, via intermediate filaments, to the fibre. The chemistry of the different morphological compartments results in exciting physical properties, including the hydrophilic/hydrophobic paradox. The present tutorial review will be of interest for protein- as well as polymer chemists, who want to learn from nature, and also for biochemists interested in the cytoskeleton and particularly in intermediate filaments; it also presents a scientific basis for hair cosmetics.
Collapse
Affiliation(s)
- Crisan Popescu
- DWI an der RWTH Aachen e.V., Pauwelsstrasse 8, D-52074 Aachen, Germany.
| | | |
Collapse
|
29
|
Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noël A, van Roy F, Berx G, Foidart JM, Gilles C. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene 2006; 25:4975-85. [PMID: 16568083 DOI: 10.1038/sj.onc.1209511] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The expression of Smad interacting protein-1 (SIP1; ZEB2) and the de novo expression of vimentin are frequently involved in epithelial-to-mesenchymal transitions (EMTs) under both normal and pathological conditions. In the present study, we investigated the potential role of SIP1 in the regulation of vimentin during the EMT associated with breast tumor cell migration and invasion. Examining several breast tumor cell lines displaying various degrees of invasiveness, we found SIP1 and vimentin expression only in invasive cell lines. Also, using a model of cell migration with human mammary MCF10A cells, we showed that SIP1 is induced specifically in vimentin-positive migratory cells. Furthermore, transfection of SIP1 cDNA in MCF10A cells increased their vimentin expression both at the mRNA and protein levels and enhanced their migratory abilities in Boyden Chamber assays. Inversely, inhibition of SIP1 expression by RNAi strategies in BT-549 cells and MCF10A cells decreased vimentin expression. We also showed that SIP1 transfection did not activate the TOP-FLASH reporter system, suggesting that the beta-catenin/TCF pathway is not implicated in the regulation of vimentin by SIP1. Our results therefore implicate SIP1 in the regulation of vimentin observed in the EMT associated with breast tumor cell migration, a pathway that may contribute to the metastatic progression of breast cancer.
Collapse
Affiliation(s)
- S Bindels
- Laboratory of Tumor and Developmental Biology, Center for Biomedical Integrated Genoproteomics, University of Liège, CHU Sart-Tilman, Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fillies T, Werkmeister R, Packeisen J, Brandt B, Morin P, Weingart D, Joos U, Buerger H. Cytokeratin 8/18 expression indicates a poor prognosis in squamous cell carcinomas of the oral cavity. BMC Cancer 2006; 6:10. [PMID: 16412231 PMCID: PMC1379654 DOI: 10.1186/1471-2407-6-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 01/13/2006] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Intermediary filaments are involved in cell motility and cancer progression. In a variety of organs, the expression of distinct intermediary filaments are associated with patient prognosis. In this study, we seeked to define the prognostic potential of cytokeratin and vimentin expression patterns in squamous cell carcinomas (SCC's) of the oral cavity. METHODS 308 patients with histologically proven and surgically treated squamous cell carcinomas of the oral cavity were investigated for the immunohistochemical expression of a variety of intermediary filaments including high- and low-molecular weight cytokeratins (Ck's), such as Ck 5/6, Ck 8/18, Ck 1, CK 10, Ck 14, Ck 19 and vimentin, using the tissue microarray technique. Correlations between clinical features and the expression of Cytokeratins and vimentin were evaluated statistically by Kaplan-Meier curves and multivariate Cox regression analysis. RESULTS The expression of Ck 8/18 and Ck 19 were overall significantly correlated with a poor clinical prognosis (Ck 8/18 p = 0.04; Ck19 p < 0.01). These findings could also be reproduced for Ck 8/18 in primary nodal-negative SCC's and held true in multivariate-analysis. No significant correlation with patient prognosis could be found for the expression of the other cytokeratins and for vimentin. CONCLUSION The expression of Ck 8/18 in SCC's of the oral cavity is an independent prognostic marker and indicates a decreased overall and progression free survival. These results provide an extended knowledge about the role of intermediary filament expression patterns in SCC's.
Collapse
Affiliation(s)
- Thomas Fillies
- Department of Cranio-Maxillofacial Surgery, University of Muenster, Waldeyerstrasse 30, 48129 Muenster, Germany
| | - Richard Werkmeister
- Department of Oral and Maxillofacial Surgery, Central German Armed Forces Hospital, Rübenacher Str. 170, 56072 Koblenz, Germany
| | | | - Burkhard Brandt
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20146 Hamburg, Germany
| | - Philippe Morin
- Department of Maxillofacial Surgery, Katharinenhospital Stuttgart, Kriegsbergstrasse 60, 70174 Stuttgart, Germany
| | - Dieter Weingart
- Department of Maxillofacial Surgery, Katharinenhospital Stuttgart, Kriegsbergstrasse 60, 70174 Stuttgart, Germany
| | - Ulrich Joos
- Department of Cranio-Maxillofacial Surgery, University of Muenster, Waldeyerstrasse 30, 48129 Muenster, Germany
| | - Horst Buerger
- Institute of Pathology, University of Muenster, Domagkstraβe 17, 48149 Muenster, Germany
| |
Collapse
|
31
|
Gordon LA, Mulligan KT, Maxwell-Jones H, Adams M, Walker RA, Jones JL. Breast cell invasive potential relates to the myoepithelial phenotype. Int J Cancer 2003; 106:8-16. [PMID: 12794751 DOI: 10.1002/ijc.11172] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
On the basis of marker profile, the majority of breast carcinomas are thought to be derived from luminal epithelial cells; however, a subgroup of tumours with more mesenchymal characteristics are associated with a worse prognosis. The hypothesis of our study is that some breast carcinomas exhibit myoepithelial rather than pure mesenchymal differentiation and that acquisition of myoepithelial characteristics confers an aggressive phenotype. Pure luminal epithelial cells and fibroblasts are readily distinguished by many markers but distinguishing between myoepithelial and fibroblast cell lineages is more problematic. The markers found to be most discriminating in our study were CK14, alpha6beta4 integrin and the myoepithelial-associated desmosomal cadherin DSg3. These markers were applied to a series of breast cell lines and purified normal breast cell populations and the expression profile related to in vitro invasive behaviour. This demonstrated that expression of one or more myoepithelial markers by tumour cells (MDA MB 231, MDA MB 468, MDA MB 436) was associated with a high invasive capacity compared with cells with a pure luminal phenotype (MCF-7, T47D, ZR75). To address why myoepithelial characteristics are associated with higher invasion, the in vitro behaviour of normal myoepithelial cells and two other nontumourigenic breast cell lines (MCF-10A, HBL100) was also analysed. Primary myoepithelial cells from normal human breast exhibit a high invasive capacity when grown at low density, suggesting that invasive capacity is part of the myoepithelial phenotype. In keeping with this, both nontumourigenic cell lines exhibited features of the myoepithelial phenotype and a high invasive capacity. These results suggest that tumours that exhibit a myoepithelial phenotype may be clinically more aggressive because a high invasive capacity is intrinsic to the myoepithelial phenotype.
Collapse
Affiliation(s)
- Linda A Gordon
- Department of Pathology, University of Leicester, Clinical Sciences, Glenfield Hospital, Leicester, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Shiratsuchi H, Oshiro Y, Saito T, Itakura E, Kinoshita Y, Tamiya S, Oda Y, Komiyama S, Tsuneyoshi M. Cytokeratin subunits of inclusion bodies in rhabdoid cells: immunohistochemical and clinicopathological study of malignant rhabdoid tumor and epithelioid sarcoma. Int J Surg Pathol 2001; 9:37-48. [PMID: 11469343 DOI: 10.1177/106689690100900107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extrarenal malignant rhabdoid tumor (MRT), which is recognized as being histologically similar to renal MRT, is characterized by the presence of "rhabdoid cell" (RC) and a highly aggressive biological behavior. Recently it has been proposed that "proximal variant" of epithelioid sarcoma (ES), whose morphology is similar to that of MRT, actually has a more aggressive clinical course than classical type ES. Detailed immunohistochemical analysis of cytokeratin (CK) subunits was performed in 3 cases of extrarenal MRT, 3 cases of renal MRT, and 11 cases of ES comprising 2 "proximal variants" and 9 classical types. Renal and extrarenal MRTs showed positive immunoreactivity for both CK8 and CK18. Classical type ESs were diffusely positive, not only for CK8 and CK18, but also for other cytokeratin subunits including CK4, 6, 10, 13, 16, 17, and "high-molecular-weight" CKs (CK1, 5, 10, and 14). On the other hand, proximal ES revealed limited immunohistochemical reactivity for cytokeratins, compared with classical ES. In conclusion, the inclusion bodies of RCs show immunoreactivity confined to CK8, CK18, and vimentin. Furthermore, ES has additional CK expressions, while proximal ES possesses characteristics intermediate between those of classical ES and those of external MRT.
Collapse
Affiliation(s)
- H Shiratsuchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Langa F, Kress C, Colucci-Guyon E, Khun H, Vandormael-Pournin S, Huerre M, Babinet C. Teratocarcinomas induced by embryonic stem (ES) cells lacking vimentin: an approach to study the role of vimentin in tumorigenesis. J Cell Sci 2000; 113 Pt 19:3463-72. [PMID: 10984437 DOI: 10.1242/jcs.113.19.3463] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vimentin is a class III intermediate filament protein widely expressed in the developing embryo and in cells of mesenchymal origin in the adult. Vimentin knock-out mice develop and reproduce without any obvious defect. This is an unexpected finding in view of the high degree of conservation of the vimentin gene among vertebrates. However, it does not exclude the possibility of a role for vimentin in pathological conditions, like tumorigenesis. To address this question directly, we have used a teratocarcinoma model involving the injection of ES cells into syngeneic mice. ES cells lacking vimentin were generated from 129/Sv Vim-/- mice with high efficiency. The absence of vimentin did not affect ES cell morphology, viability or growth rate in vitro. Tumours were induced by subcutaneous injection of either Vim-/- or Vim+/+ ES cells into Vim+/+ and Vim-/- mice, in order to analyse the effect of the absence of vimentin in either the tumorigenic cells or the host mice. No significant differences were found in either tumour incidence, size or vascularization of teratocarcinomas obtained with all possible combinations. Vim-/- ES-derived tumours showed the same cellular composition typical of teratocarcinomas induced by wild-type ES cells together with a very similar apoptotic pattern. Taken together, these results demonstrate that in this model vimentin is not essential for efficient tumour growth and differentiation in vivo.
Collapse
Affiliation(s)
- F Langa
- Unité de Biologie du Développement, URA C.N.R.S. Institut Pasteur, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
34
|
Arai K, Yamada T, Nozawa R. Immunohistochemical investigation of migration inhibitory factor-related protein (MRP)-14 expression in hepatocellular carcinoma. Med Oncol 2000; 17:183-8. [PMID: 10962528 DOI: 10.1007/bf02780526] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Migration inhibitory factor-related protein (MRP)-8 and -14 belong to the S-100 protein family and are associated with myeloid cell differentiation. MRP is also expressed in some epithelia. However, there are few reports for the investigation on carcinomas. Using the monoclonal antibody 60B8 against MRP-14, we carried out the immunohistochemical evalution of MRP-14 expression in 70 cases of hepatocellular carcinoma (HCC), and examined the relation to tumor differentiation and vascular invasion. Positively stained tumor cells were detected in 32 cases, all of which belonged to grade II (7/30) or grade III (25/25) of the Edmondson-Steiner classification. In particular, the grade III HCC showed a significantly greater positive reaction. Immunopositivity in the non-carcinomatous hepatocytes and bile duct epithelia was not observed. These findings suggested that malignant hepatocytes newly express MRP-14 and that the neo-expression in differentiated HCC is related to the tumor differentiation and shows higher correlation in the poorly differentiated carcinomas. Furthermore, the cholangiocellular carcinoma and metastatic adenocarcinoma as control materials also presented a more marked immunoreactivity for MRP-14 in the poorly differentiated carcinomas, in a similar manner with the findings of the HCC. Accordingly, MRP is considered to be frequently neo-expressed in poorly differentiated carcinomas. MRP-14 expression rate in the 48 HCC cases with vascular invasion was 56%, showing no significant difference compared with non-invasive tumors.
Collapse
Affiliation(s)
- K Arai
- Department of Pathology, Shizuoka General Hospital, Kitaando, Shizuoka, Japan
| | | | | |
Collapse
|
35
|
Enjoji M, Nakashima M, Nakamuta M, Nawata H. Transforming growth factor-alpha induces the differentiation of sarcomatoid cholangiocarcinoma cells. Jpn J Cancer Res 2000; 91:223-30. [PMID: 10761710 PMCID: PMC5926319 DOI: 10.1111/j.1349-7006.2000.tb00935.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A sarcomatoid cholangiocarcinoma cell line, ETK-1, was established from a patient. Phenotypically, the cells corresponded to immature biliary epithelial cells. Because a small number of ETK-1 cells appeared to differentiate spontaneously along a biliary epithelial lineage in continuous culture, we examined the factors that initiate and/or promote the differentiation of the cells. Transforming growth factor-alpha (TGFalpha) induced significant changes in ETK-1 cells. After stimulation with the factor, ETK-1 cells displayed morphologic transformation at a much higher frequency, with the appearance of many large cells with intracytoplasmic vacuoles, and the production of mucinous substances. These morphologically transformed cells were phenotypically similar to well-differentiated adenocarcinoma cells. The expression pattern of integrins after TGFalpha treatment also supported the maturation of the ETK-1 cells. The antibody against the receptor of TGFalpha inhibited these changes by TGFalpha. Moreover, the proliferation rate of ETK-1 cells was suppressed by TGFalpha. Our data suggest that TGFalpha can act as a differentiation factor along a biliary epithelial lineage.
Collapse
Affiliation(s)
- M Enjoji
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka.
| | | | | | | |
Collapse
|
36
|
Dejmek A, Hjerpe A. Reactivity of six antibodies in effusions of mesothelioma, adenocarcinoma and mesotheliosis: stepwise logistic regression analysis. Cytopathology 2000; 11:8-17. [PMID: 10714371 DOI: 10.1046/j.1365-2303.2000.00211.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anti-CEA, anti-vimentin, CAM5.2, BerEp4, Leu-M1 and anti-EMA were applied to effusions from 36 mesotheliomas, 53 adenocarcinomas and 24 reactive mesothelial proliferations. Stepwise logistic regression analysis selected three criteria of major importance for distinguishing between adenocarcinoma and mesothelioma: BerEp4, CEA and EMA accentuated at the cell membrane (mEMA), these three being of similar diagnostic value. The pattern BerEp4-, CEA- and mEMA+ was fully predictive for mesothelioma (sensitivity 47%), whereas the opposite pattern was fully predictive for adenocarcinoma (sensitivity 80%). Only EMA seemed to distinguish between mesotheliosis and mesothelioma. Comparison of reactivity in cytological and histological material from the same mesotheliomas showed similar staining frequencies for CEA and CAM5.2, with some random variation for Leu-M1 and EMA, whereas vimentin and BerEp4 reactivity was more frequent in cytological specimens.
Collapse
MESH Headings
- Adenocarcinoma/diagnosis
- Adenocarcinoma/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Neoplasm/immunology
- Antibody Specificity
- Antigens, Neoplasm
- Antigens, Surface/analysis
- Antigens, Surface/immunology
- Biomarkers
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/immunology
- Carcinoembryonic Antigen/analysis
- Carcinoembryonic Antigen/immunology
- Diagnosis, Differential
- Epithelium/immunology
- Humans
- Hyperplasia
- Immunoenzyme Techniques
- Keratins/analysis
- Keratins/immunology
- Lewis X Antigen
- Logistic Models
- Lung Neoplasms/diagnosis
- Lung Neoplasms/immunology
- Mesothelioma/diagnosis
- Mesothelioma/immunology
- Mucin-1/analysis
- Mucin-1/immunology
- Neoplasm Proteins/analysis
- Neoplasm Proteins/immunology
- Pleural Effusion, Malignant/diagnosis
- Pleural Effusion, Malignant/immunology
- Sensitivity and Specificity
- Vimentin/analysis
- Vimentin/immunology
Collapse
Affiliation(s)
- A Dejmek
- Department of Clinical Cytology and Pathology, Lund University, Malmö Academic Hospital, Sweden
| | | |
Collapse
|
37
|
Gilles C, Polette M, Zahm JM, Tournier JM, Volders L, Foidart JM, Birembaut P. Vimentin contributes to human mammary epithelial cell migration. J Cell Sci 1999; 112 ( Pt 24):4615-25. [PMID: 10574710 DOI: 10.1242/jcs.112.24.4615] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Vimentin expression in human mammary epithelial MCF10A cells was examined as a function of their migratory status using an in vitro wound-healing model. Analysis of the trajectories of the cells and their migratory speeds by time lapse-video microscopy revealed that vimentin mRNA and protein expression were exclusively induced in cells at the wound's edge which were actively migrating towards the center of the lesion. Actin labeling showed the reorganization of actin filaments in cells at the wound's edge which confirmed the migratory phenotype of this cell subpopulation. Moreover, the vimentin protein disappeared when the cells became stationary after wound closure. Using cells transfected with the vimentin promoter controlling the green fluorescent protein gene, we also demonstrated the specific activation of the vimentin promoter in the migratory cells at the wound's edge. Transfection of the antisense vimentin cDNA into MCF10A cells clearly reduced both their ability to express vimentin and their migratory speed. Taken together, these observations demonstrate that vimentin is transiently associated with, and could be functionally involved in, the migratory status of human epithelial cells.
Collapse
Affiliation(s)
- C Gilles
- Laboratory of Tumor and Developmental Biology, University of Li¿ege, CHU Sart-Tilman, B23, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Rutka JT, Ivanchuk S, Mondal S, Taylor M, Sakai K, Dirks P, Jun P, Jung S, Becker LE, Ackerley C. Co-expression of nestin and vimentin intermediate filaments in invasive human astrocytoma cells. Int J Dev Neurosci 1999; 17:503-15. [PMID: 10571412 DOI: 10.1016/s0736-5748(99)00049-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Intermediate filaments (IFs) are highly diverse intracytoplasmic proteins within the cytoskeleton which exhibit cell type specificity of expression. A growing body of evidence suggests that IFs may be involved as collaborators in complex cellular processes controlling astrocytoma cell morphology, adhesion and proliferation. As the co-expression of different IF subtypes has been linked to enhanced motility and invasion in a number of different cancer subtypes, we undertook the present study to examine the expression of vimentin and nestin in a panel of human astrocytoma cell lines whose tumorigenicity, invasiveness and cytoskeletal protein profiles are well known. Astrocytoma cells were examined for IF protein expression by immunofluorescence confocal and immunoelectron microscopy. The motility of all cell lines was determined by computerized time-lapse videomicroscopy. Invasive potential of astrocytoma cells was determined using Matrigel as a barrier to astrocytoma cell invasion in vitro. Vimentin was expressed by all astrocytoma cell lines. On the other hand, nestin was variably expressed among the different cell lines. The most motile and invasive astrocytoma cell line in our study was antisense GFAP-transfected U251 (asU251) astrocytoma cells which showed marked up-regulation of nestin expression compared to the U251 parental cell line and controls. The U87 astrocytoma cell line also demonstrated high nestin expression levels and was associated with an increased basal motility rate and a high degree of invasiveness through Matrigel. U343 astrocytoma cells did not express nestin, but had high levels of GFAP. It had the lowest motility rate and invasiveness of all the astrocytoma cell lines examined. Taken together, these data suggest that for the astrocytoma cell lines examined in this study, nestin and vimentin co-expression may serve as a marker for an astrocytoma cell type with enhanced motility and invasive potential. Further studies are required to determine the mechanism by which dual-IF protein expression alters other cytoskeletal or cell surface receptor protein components important in the process of astrocytoma invasion.
Collapse
Affiliation(s)
- J T Rutka
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Division of Neurosurgery, The University of Toronto, Ont., Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Differences in treatment solution affect the efficiency of keratin extraction in cultured human squamous cell carcinomas, malignant melanomas, and melanocytes. Using an aqueous solution that is excellent for cultured cells, we focused this study on the expression of keratin subunits in the spontaneously immortalized human keratinocyte cell line HaCaT. We extracted several keratin (K) subunits, namely K4, K7, K8, K15, K17, and K18, and ATP synthase alpha-chain, in addition to those previously reported by Boukamp et al. (J Cell Biol 1988;106:761-771) in human HaCaT keratinocytes. In particular, K8 and K18 subunits, which are related to tumorigenesis, may be very important subunits within the specificities of immortalized HaCaT cells. Vimentin, which is frequently co-expressed in cultured epithelial cell lines, was not expressed.
Collapse
Affiliation(s)
- Y Katagata
- Department of Dermatology, Yamagata University School of Medicine, Japan
| | | | | |
Collapse
|
40
|
Frontelo P, González-Garrigues M, Vilaró S, Gamallo C, Fabra A, Quintanilla M. Transforming growth factor beta 1 induces squamous carcinoma cell variants with increased metastatic abilities and a disorganized cytoskeleton. Exp Cell Res 1998; 244:420-32. [PMID: 9806792 DOI: 10.1006/excr.1998.4219] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous studies indicated that mouse transformed keratinocytes undergo an epithelial-fibroblastic conversion when cultured in the presence of TGF-beta1. This conversion is associated in vivo with a squamous-spindle carcinoma transition. We derived epithelioid (A6, FPA6) and spindle (B5) clonal cell variants from a squamous carcinoma cell line (PDV) after treatment with TGF-beta1. FPA6 cells were isolated from the ascites fluid of an A6-tumor-bearing mouse. FPA6 and A6 cell lines produced in nude mice mixed carcinomas with a squamous and poorly differentiated component. Both cell lines coexpressed keratins and vimentin and synthesized E-cadherin protein, although FPA6 cells cultured at early passages (FPA6-ep) had reduced levels of E-cadherin mRNA and increased synthesis of keratin K8, a marker of malignant progression. Immunofluorescence analysis revealed that FPA6-ep cells exhibited a disorganized cytoskeleton with keratins forming focal juxtanuclear aggregates and loss of F-actin stress fibers and cortical bundles, and E-cadherin was localized in the cytoplasm out of cell-cell contact areas. Sporadic cells in A6 and PDV cultures also presented those anomalous keratin structures, suggesting that FPA6 cells originated from a subpopulation of A6 tumor cells that metastasized into the peritoneal cavity. The analysis of the spontaneous and experimental metastatic potentials of the cell lines showed that epithelioid and fibroblastic cell variants had acquired metastatic abilities compared to PDV which was nonmetastatic. The FPA6-ep cell line exhibited a highly aggressive behavior, killing the animals at about 17 days after intravenous injection of the cells into athymic mice. The phenotype of FPA6-ep cells was unstable and reverted at later passages in which the normal organization of keratin and F-actin in filaments and the localization of E-cadherin at cell-cell contacts were restored. This phenotypic reversion occurred concomitantly with a reduction of the experimental metastatic potential of FPA6 cells.
Collapse
Affiliation(s)
- P Frontelo
- Instituto de Investigaciones Biomédicas del CSIC, Madrid, 28029, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
New techniques in surgical pathology at the cellular and molecular levels offer the clinician help in determining modalities of treatment of specific diseases. In addition to routine staining, adjunctive tests such as immunohistochemical analysis, and the various methods of evaluating nucleic acid have helped make this possible. The efficacy of fine-needle aspiration biopsy has been enhanced by these diagnostic aids that enable the assessment of information from small amounts of tissue.
Collapse
|
42
|
Daly N, Meleady P, Walsh D, Clynes M. Regulation of keratin and integrin gene expression in cancer and drug resistance. Cytotechnology 1998; 27:321-44. [PMID: 19002802 PMCID: PMC3449561 DOI: 10.1023/a:1008066216490] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- N Daly
- National Cell and Tissue Culture Centre, BioResearch Ireland, Dublin City University, Glasnevin, Dublin 9, Ireland.,
| | | | | | | |
Collapse
|
43
|
Chen YK, Lin CC, Chen CH, Yan YH, Lin LM. Spindle Cell Carcinoma of the Tongue: Case report and immunohistochemical study. ACTA ACUST UNITED AC 1998. [DOI: 10.3353/omp.3.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Kerpel SM, Fornatora M, Freedman PD. Advances and New Concepts in Oral and Maxillofacial Pathology. Oral Maxillofac Surg Clin North Am 1997. [DOI: 10.1016/s1042-3699(20)30366-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
|
46
|
Ohshio G, Imamura T, Okada N, Yamaki K, Suwa H, Imamura M, Sakahara H. Cytokeratin 19 fragment in serum and tissues of patients with pancreatic diseases. INTERNATIONAL JOURNAL OF PANCREATOLOGY : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION OF PANCREATOLOGY 1997; 21:235-41. [PMID: 9322122 DOI: 10.1007/bf02821609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CONCLUSION The present study has shown that increased serum levels of cytokeratin 19 fragment reflect increases in the size of the pancreatic carcinomas, although the sensitivity for detecting small pancreatic carcinomas was low. BACKGROUND Cytokeratin is a member of the intermediate family of filaments in epithelial cells. The cytokeratin 19 fragment is an acidic cytokeratin, which is found in various epithelial tissues. Recently, the serum fragment of cytokeratin 19 has been measured and found to be a good marker for squamous cell carcinoma. Cytokeratin 19 is known to be expressed in normal pancreatic tissues and pancreatic carcinomas. However, serum cytokeratin 19 levels in pancreatic diseases have not been precisely detailed. METHODS In this study, we evaluated serum cytokeratin 19 levels and the immunohistochemical expression of cytokeratin 19 in various pancreatic diseases. RESULTS Serum cytokeratin 19 levels were high (> 2 ng/mL) in 51 of 99 (52%) cases of pancreatic duct cell carcinoma, but were low in all 24 cases of chronic pancreatitis and in 7 cases of islet cell tumors. The sensitivity of the cytokeratin 19 assay increased with increased size of the pancreatic carcinomas, but was not influenced by the presence of obstructive jaundice. Immunohistochemical studies using a monoclonal anticytokeratin 19 antibody showed that staining for cytokeratin was positive in all 38 of the pancreatic carcinomas examined and in 2 of 6 islet tumors.
Collapse
Affiliation(s)
- G Ohshio
- Department of Surgery, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Pankov R, Simcha I, Zöller M, Oshima RG, Ben-Ze'ev A. Contrasting effects of K8 and K18 on stabilizing K19 expression, cell motility and tumorigenicity in the BSp73 adenocarcinoma. J Cell Sci 1997; 110 ( Pt 8):965-74. [PMID: 9152022 DOI: 10.1242/jcs.110.8.965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The co-expression of vimentin and keratin-type intermediate filaments in the same cell was often reported to correlate with increased invasiveness and a more aggressive tumorigenic phenotype. To address the possible physiological relevance of these observations, we transfected simple keratins (K8 and 18) either individually, or in combination, into a tumorigenic but non-metastatic pancreatic adenocarcinoma that expresses vimentin but no keratins. Expression of K8 resulted in the stabilization of endogenous K19 in these cells, and formation of keratin filaments containing K8 and K19. Transfection of K18 yielded unstable K18 protein, but K18 could be stabilized when K8 was co-expressed in the same cells. Clones expressing K18 alone, or together with K8, displayed a reduced ability to grow in soft agar and decreased motility when compared to control, or K8/19 expressing cells. Moreover, K18 expressing cells were dramatically inhibited in their ability to form tumors when injected into syngeneic animals. The extent of suppression in the tumorigenicity of these cells correlated with the level of K18 expressed by these cells. The results show that K18 expression in cells may result in the suppression of the motile and tumorigenic abilities of this adenocarcinoma.
Collapse
Affiliation(s)
- R Pankov
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- M J Hendrix
- Department of Anatomy, College of Medicine, University of Iowa, Iowa City 52242-1109, USA
| |
Collapse
|
49
|
Hendrix MJ, Seftor EA, Chu YW, Trevor KT, Seftor RE. Role of intermediate filaments in migration, invasion and metastasis. Cancer Metastasis Rev 1996; 15:507-25. [PMID: 9034607 DOI: 10.1007/bf00054016] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The expression of intermediate filament proteins is remarkably tissue-specific which suggests that the intermediate filament (IF) type(s) present in cells is somehow related to their biological function. However, in some cancers-particularly malignant melanoma and breast carcinoma, there is a strong indication that vimentin and keratin IFs are coexpressed, thus presenting as a dedifferentiated or interconverted (between epithelial and mesenchymal) phenotype. In this review, two in vitro models are presented which recapitulate the interconverted phenotype in human melanoma and breast carcinoma, and allow, for the first time, unique observations to be made with respect to the role of IFs in cancer progression. These studies have provided direct evidence linking overexpression of keratin IFs in human melanoma with increased migratory and invasive activity in vitro, which can be down-regulated by substituting dominant-negative keratin mutants. Overexpression of vimentin IFs in the breast carcinoma model leads to augmentation of motility and invasiveness in vitro, which can be transiently down-regulated by treatment with antisense oligonucleotides to vimentin. Additional experimental evidence suggests that the mechanism(s) responsible for the differential expression of metastatic properties associated with the interconverted phenotype rest(s) in the unique interaction, either direct or indirect, of IFs with specific integrins interacting with the extracellular matrix. In this review, we discuss the observations derived from the human melanoma and breast carcinoma models to address the hypothesis that the ability to coexpress vimentin and keratins confers a selective advantage to tumor cells in their interpretation of and response to signaling cues from the extracellular matrix. The ramifications of these observations are discussed with respect to the patholophysiology of the respective in situ tumors.
Collapse
Affiliation(s)
- M J Hendrix
- Department of Anatomy, College of Medicine, University of Iowa, Iowa City 52242-1109, USA
| | | | | | | | | |
Collapse
|
50
|
Tomson AM, Scholma J, Meijer B, Koning JG, de Jong KM, van der Werf M. Adhesion properties, intermediate filaments and malignant behaviour of head and neck squamous cell carcinoma cells in vitro. Clin Exp Metastasis 1996; 14:501-11. [PMID: 8970580 DOI: 10.1007/bf00115110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study compared phenotype and behaviour of seven head and neck squamous cell carcinoma (HNSCC) cell lines and normal epithelial cells. Indications were found that in HNSCC cells: 1) loss of the cell-cell adhesion molecule E-cadherin was correlated with loss of epithelioid cell morphology but not with loss of cell-cell cohesion; 2) reduced expression of the cell-cell adhesion molecule desmoglein was unrelated to cell shape or motility; 3) high expression of the cell-substrate adhesion molecule alpha 6 beta 4, a receptor for laminin, corresponded with epithelioid colony formation while, in our adhesion assay, low expression of alpha 6 beta 4 paradoxically coincided with an increased adhesion to laminin; 4) presence of vimentin intermediate filaments coincided with loss of anchorage dependency. We propose that by simultaneous downregulation of E-cadherin, replacement of alpha 6 beta 4 by an aberrant laminin receptor and co-expression of vimentin a malignant phenotype arises of spindle-shaped, motile, anchorage-independent HNSCC cells with enhanced laminin-binding capacity.
Collapse
Affiliation(s)
- A M Tomson
- Department of Otorhinolaryngology, University Hospital Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|