1
|
Neumann J, Hofmann B, Kirchhefer U, Dhein S, Gergs U. Function and Role of Histamine H 1 Receptor in the Mammalian Heart. Pharmaceuticals (Basel) 2023; 16:734. [PMID: 37242517 PMCID: PMC10223319 DOI: 10.3390/ph16050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Histamine can change the force of cardiac contraction and alter the beating rate in mammals, including humans. However, striking species and regional differences have been observed. Depending on the species and the cardiac region (atrium versus ventricle) studied, the contractile, chronotropic, dromotropic, and bathmotropic effects of histamine vary. Histamine is present and is produced in the mammalian heart. Thus, histamine may exert autocrine or paracrine effects in the mammalian heart. Histamine uses at least four heptahelical receptors: H1, H2, H3 and H4. Depending on the species and region studied, cardiomyocytes express only histamine H1 or only histamine H2 receptors or both. These receptors are not necessarily functional concerning contractility. We have considerable knowledge of the cardiac expression and function of histamine H2 receptors. In contrast, we have a poor understanding of the cardiac role of the histamine H1 receptor. Therefore, we address the structure, signal transduction, and expressional regulation of the histamine H1 receptor with an eye on its cardiac role. We point out signal transduction and the role of the histamine H1 receptor in various animal species. This review aims to identify gaps in our knowledge of cardiac histamine H1 receptors. We highlight where the published research shows disagreements and requires a new approach. Moreover, we show that diseases alter the expression and functional effects of histamine H1 receptors in the heart. We found that antidepressive drugs and neuroleptic drugs might act as antagonists of cardiac histamine H1 receptors, and believe that histamine H1 receptors in the heart might be attractive targets for drug therapy. The authors believe that a better understanding of the role of histamine H1 receptors in the human heart might be clinically relevant for improving drug therapy.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube Straße 40, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Domagkstraße 12, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
2
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
3
|
Garthwaite J. NO as a multimodal transmitter in the brain: discovery and current status. Br J Pharmacol 2019; 176:197-211. [PMID: 30399649 PMCID: PMC6295412 DOI: 10.1111/bph.14532] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
NO operates throughout the brain as an intercellular messenger, initiating its varied physiological effects by activating specialized GC-coupled receptors, resulting in the formation of cGMP. In line with the widespread expression of this pathway, NO participates in numerous different brain functions. This review gives an account of the discovery of NO as a signalling molecule in the brain, experiments that originated in the search for a mysterious cGMP-stimulating factor released from central neurones when their NMDA receptors were stimulated, and summarizes the subsequent key steps that helped establish its status as a central transmitter. Currently, various modes of operation are viewed to underlie its diverse behaviour, ranging from very local signalling between synaptic partners (in the orthograde or retrograde directions) to a volume-type transmission whereby NO synthesized by multiple synchronous sources summate spatially and temporally to influence intermingled neuronal or non-neuronal cells, irrespective of anatomical connectivity. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- John Garthwaite
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| |
Collapse
|
4
|
Monczor F, Fernandez N. Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands. Mol Pharmacol 2016; 90:640-648. [PMID: 27625037 DOI: 10.1124/mol.116.105981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
H1 and H2 histamine receptor antagonists, although developed many decades ago, are still effective for the treatment of allergic and gastric acid-related conditions. This article focuses on novel aspects of the pharmacology and molecular mechanisms of histamine receptors that should be contemplated for optimizing current therapies, repositioning histaminergic ligands for new therapeutic uses, or even including agonists of the histaminergic system in the treatment of different pathologies such as leukemia or neurodegenerative disorders. In recent years, new signaling phenomena related to H1 and H2 receptors have been described that make them suitable for novel therapeutic approaches. Crosstalk between histamine receptors and other membrane or nuclear receptors can be envisaged as a way to modulate other signaling pathways and to potentiate the efficacy of drugs acting on different receptors. Likewise, biased signaling at histamine receptors seems to be a pharmacological feature that can be exploited to investigate nontraditional therapeutic uses for H1 and H2 biased agonists in malignancies such as acute myeloid leukemia and to avoid undesired side effects when used in standard treatments. It is hoped that the molecular mechanisms discussed in this review contribute to a better understanding of the different aspects involved in histamine receptor pharmacology, which in turn will contribute to increased drug efficacy, avoidance of adverse effects, or repositioning of histaminergic ligands.
Collapse
Affiliation(s)
- Federico Monczor
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernandez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R, Liu WLS, Stark H, Thurmond RL, Haas HL. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors. Pharmacol Rev 2016; 67:601-55. [PMID: 26084539 DOI: 10.1124/pr.114.010249] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Histamine is a developmentally highly conserved autacoid found in most vertebrate tissues. Its physiological functions are mediated by four 7-transmembrane G protein-coupled receptors (H1R, H2R, H3R, H4R) that are all targets of pharmacological intervention. The receptors display molecular heterogeneity and constitutive activity. H1R antagonists are long known antiallergic and sedating drugs, whereas the H2R was identified in the 1970s and led to the development of H2R-antagonists that revolutionized stomach ulcer treatment. The crystal structure of ligand-bound H1R has rendered it possible to design new ligands with novel properties. The H3R is an autoreceptor and heteroreceptor providing negative feedback on histaminergic and inhibition on other neurons. A block of these actions promotes waking. The H4R occurs on immuncompetent cells and the development of anti-inflammatory drugs is anticipated.
Collapse
Affiliation(s)
- Pertti Panula
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Paul L Chazot
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Marlon Cowart
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Ralf Gutzmer
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Rob Leurs
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Wai L S Liu
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Holger Stark
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Robin L Thurmond
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| | - Helmut L Haas
- Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry and Institute of Neurophysiology, Medical Faculty, Westfalische-Wilhelms-University, Muenster, Germany (H.L.H.); Heinrich-Heine-University Duesseldorf, Germany (H.S.); and Janssen Research & Development, LLC, San Diego, California (R.L.T.)
| |
Collapse
|
6
|
Tanaka S, Sugiyama N, Takahashi Y, Mantoku D, Sawabe Y, Kuwabara H, Nakano T, Shimamoto C, Matsumura H, Marunaka Y, Nakahari T. PPARα autocrine regulation of Ca²⁺-regulated exocytosis in guinea pig antral mucous cells: NO and cGMP accumulation. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1169-79. [PMID: 25342048 DOI: 10.1152/ajpgi.00311.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In antral mucous cells, acetylcholine (ACh, 1 μM) activates Ca(2+)-regulated exocytosis, consisting of a peak in exocytotic events that declines rapidly (initial phase) followed by a second slower decline (late phase) lasting during ACh stimulation. GW7647 [a peroxisome proliferation activation receptor α (PPARα) agonist] enhanced the ACh-stimulated initial phase, and GW6471 (a PPARα antagonist) abolished the GW7647-induced enhancement. However, GW6471 produced the delayed, but transient, increase in the ACh-stimulated late phase, and it also decreased the initial phase and produced the delayed increase in the late phase during stimulation with ACh alone. A similar delayed increase in the ACh-stimulated late phase is induced by an inhibitor of the PKG, Rp8BrPETcGMPS, suggesting that GW6471 inhibits cGMP accumulation. An inhibitor of nitric oxide synthase 1 (NOS1), N(5)-[imino(propylamino)methyl]-L-ornithine hydrochloride (N-PLA), also abolished the GW7647-induced-enhancement of ACh-stimulated initial phase but produced the delayed increase in the late phase. However, in the presence of N-PLA, an NO donor or 8BrcGMP enhanced the ACh-stimulated initial phase and abolished the delayed increase in the late phase. Moreover, GW7647 and ACh stimulated NO production and cGMP accumulation in antral mucosae, which was inhibited by GW6471 or N-PLA. Western blotting and immunohistochemistry revealed that NOS1 and PPARα colocalize in antral mucous cells. In conclusion, during ACh stimulation, a PPARα autocrine mechanism, which accumulates NO via NOS1 leading to cGMP accumulation, modulates the Ca(2+)-regulated exocytosis in antral mucous cells.
Collapse
Affiliation(s)
- Saori Tanaka
- Nakahari Project of Central Research Laboratory, Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Nanae Sugiyama
- Nakahari Project of Central Research Laboratory, Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Yuko Takahashi
- Nakahari Project of Central Research Laboratory, Mechanobiology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan, and
| | - Daiki Mantoku
- Nakahari Project of Central Research Laboratory, Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Yukinori Sawabe
- Nakahari Project of Central Research Laboratory, Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Kuwabara
- Nakahari Project of Central Research Laboratory, Department of Pathology, and
| | - Takashi Nakano
- Nakahari Project of Central Research Laboratory, Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Japan
| | - Chikao Shimamoto
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Hitoshi Matsumura
- Laboratory of Pharmacotherapy, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Yoshinori Marunaka
- Nakahari Project of Central Research Laboratory, Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Nakahari
- Nakahari Project of Central Research Laboratory, Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Tanaka S, Tanaka R, Harada S, Kohda Y, Matsumura H, Shimamoto C, Sawabe Y, Marunaka Y, Kuwabara H, Takahashi Y, Ito S, Nakahari T. A PKG inhibitor increases Ca(2+)-regulated exocytosis in guinea pig antral mucous cells: cAMP accumulation via PDE2A inhibition. Am J Physiol Gastrointest Liver Physiol 2013; 304:G773-80. [PMID: 23449671 DOI: 10.1152/ajpgi.00281.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In antral mucous cells, acetylcholine (ACh, 1 μM) activates Ca(2+)-regulated exocytosis, consisting of an initial peak that declines rapidly (initial transient phase) followed by a second slower decline (late phase) lasting during ACh stimulation. The addition of 8-bromo-cGMP (8-BrcGMP) enhanced the initial phase, which was inhibited by the protein kinase G (PKG) inhibitor guanosine 3',5'-cyclic monophosphorothoiate, β-phenyl-1,N(2)-etheno-8-bromo, Rp-isomer, sodium salt (Rp-8-BrPETcGMPS, 100 nM). However, Rp-8-BrPETcGMPS produced a delayed, but transient, increase in the exocytotic frequency during the late phase that was abolished by a protein kinase A (PKA) inhibitor (PKI-amide), suggesting that Rp-8-BrPETcGMPS accumulates cAMP. The cGMP-dependent phosphodiesterase 2 (PDE2), which degrades cAMP, may exist in antral mucous cells. The PDE2 inhibitor BAY-60-7550 (250 nM) mimicked the effect of Rp-8-BrPETcGMPS on ACh-stimulated exocytosis. Measurement of the cGMP and cAMP contents in antral mucosae revealed that ACh stimulates the accumulation of cGMP and that BAY-60-7550 accumulates cAMP similarly to Rp-8-BrPETcGMPS during ACh stimulation. Analyses of Western blot and immunohistochemistry demonstrated that PDE2A exists in antral mucous cells. In conclusion, Rp-8-BrPETcGMPS accumulates cAMP by inhibiting PDE2 in ACh-stimulated antral mucous cells, leading to the delayed, but transient, increase in the frequency of Ca(2+)-regulated exocytosis. PDE2 may prevent antral mucous cells from excessive mucin secretion caused by the cAMP accumulation.
Collapse
Affiliation(s)
- Saori Tanaka
- Nakahari Project of Central Research Laboratory, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sawabe Y, Shimamoto C, Sakai A, Kuwabara H, Saad AH, Nakano T, Takitani K, Tamai H, Mori H, Marunaka Y, Nakahari T. Peroxisome proliferation activation receptor α modulation of Ca2+-regulated exocytosis via arachidonic acid in guinea-pig antral mucous cells. Exp Physiol 2010; 95:858-68. [DOI: 10.1113/expphysiol.2010.053603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Peng Y, Lei T, Yuan J, Chen X, Long Q, Zhang J, Lei P, Feng B, Yang Z. Arachidonic acid induces acetyl-CoA carboxylase 1 expression via activation of CREB1. Endocrine 2009; 36:491-7. [PMID: 19842072 DOI: 10.1007/s12020-009-9241-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 09/18/2009] [Indexed: 11/28/2022]
Abstract
Acetyl-CoA carboxylase (ACC; EC 6.4.1.2) is the major enzyme of fatty acid synthesis and oxidation in response to dietary changes. In animals, there are two major isoforms of ACCs, ACC1 and ACC2, which are encoded by different genes and display distinct tissue and cellular distribution. We examined the effect of high concentration of arachidonic acid (AA) on the expression of ACC1 mRNA in HepG2 hepatoma cells cultured in the absence of insulin. After 12 h of treatment, AA was found to significantly up-regulate ACC1 mRNA level as well as that of cAMP regulatory element binding protein 1 (CREB1), implying the possible interactions between ACC1 and CREB1. In support of the hypothesis, several potential CREB1 binding sites were identified within the PII promoter of ACC1. Further experiments demonstrated that transient over-expression of CREB1 in HepG2 cells activates ACC1 PII promoter and induces the production of triacylglycerol in response to AA, indicating that the effect of AA on ACC1 is possibly regulated via CREB1.
Collapse
Affiliation(s)
- Yin Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Histamine is a transmitter in the nervous system and a signaling molecule in the gut, the skin, and the immune system. Histaminergic neurons in mammalian brain are located exclusively in the tuberomamillary nucleus of the posterior hypothalamus and send their axons all over the central nervous system. Active solely during waking, they maintain wakefulness and attention. Three of the four known histamine receptors and binding to glutamate NMDA receptors serve multiple functions in the brain, particularly control of excitability and plasticity. H1 and H2 receptor-mediated actions are mostly excitatory; H3 receptors act as inhibitory auto- and heteroreceptors. Mutual interactions with other transmitter systems form a network that links basic homeostatic and higher brain functions, including sleep-wake regulation, circadian and feeding rhythms, immunity, learning, and memory in health and disease.
Collapse
Affiliation(s)
- Helmut L Haas
- Institute of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
11
|
Breyer A, Elstner M, Gillessen T, Weiser D, Elstner E. Glutamate-induced cell death in neuronal HT22 cells is attenuated by extracts from St. John's wort (Hypericum perforatum L.). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2007; 14:250-5. [PMID: 17346956 DOI: 10.1016/j.phymed.2007.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Glutamate-induced cell death of hippocampal HT22 cells is a model system for neuronal disorders due to depletion of glutathione levels and increase of intracellular reactive oxygen species. Standardized extracts of Hypericum perforatum (HPE) contain flavonoids known for antioxidative properties. In the above model, cytoprotective effects at a concentration of 0.05% HPE by attenuation of calcium fluxes and cellular energy statuses are reported.
Collapse
Affiliation(s)
- Anja Breyer
- Institute of Phytopathology, Laboratory of Applied Biochemistry, Technical University of Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
12
|
Saud K, Arriagada C, Cárdenas AM, Shimahara T, Allen DD, Caviedes R, Caviedes P. Neuronal dysfunction in Down syndrome: contribution of neuronal models in cell culture. ACTA ACUST UNITED AC 2006; 99:201-10. [PMID: 16646156 DOI: 10.1016/j.jphysparis.2005.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Down syndrome (DS) in humans, or trisomy of autosome 21, represents the hyperdiploidy that most frequently survives gestation, reaching an incidence of 1 in 700 live births. The condition is associated with multisystemic anomalies, including those affecting the central nervous system (CNS), determining a characteristic mental retardation. At a neuronal level, our group and others have shown that the condition determines marked alterations of action potential and ionic current kinetics, which may underlie abnormal processing of information by the CNS. Since the use of human tissue presents both practical and ethical problems, animal models of the human condition have been sought. Murine trisomy 16 (Ts16) is a model of the human condition, due to the great homology between human autosome 21 and murine 16. Both conditions share the same alterations of electrical membrane properties. However, the murine Ts16 condition is unviable (animals die in utero), thus limiting the quantity of tissue procurable. To overcome this obstacle, we have established immortal cell lines from normal and Ts16 mice with a method developed by our group that allows the stable in vitro immortalization of mammalian tissue, yielding cell lines which retain the characteristics of the originating cells. Cell lines derived from cerebral cortex, hippocampus, spinal cord and dorsal root ganglion of Ts16 animals show alterations of intracellular Ca2+ signals in response to several neurotransmitters (glutamate, acetylcholine, and GABA). Gene overdose most likely underlies these alterations in cell function, and the identification of the relative contribution of DS associated genes on such specific neuronal dysfunction should be investigated. This could enlighten our understanding on the contribution of these genes in DS, and identify new therapeutic targets.
Collapse
Affiliation(s)
- Katherine Saud
- Program of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
13
|
Fujiwara S, Shimamoto C, Nakanishi Y, Katsu KI, Kato M, Nakahari T. Enhancement of Ca2+-regulated exocytosis by indomethacin in guinea-pig antral mucous cells: arachidonic acid accumulation. Exp Physiol 2005; 91:249-59. [PMID: 16263797 DOI: 10.1113/expphysiol.2005.032482] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ca2+-regulated exocytosis is enhanced by an autocrine mechanism via the PGE2-cAMP pathway in antral mucous cells of guinea-pigs. The inhibition of the PGE2-cAMP pathway by H-89 (an inhibitor of protein kinase A, PKA) or aspirin (ASA, an inhibitor of cyclo-oxygenase, COX) decreased the frequency of ACh-stimulated exocytotic events by 60%. Indomethacin (IDM, an inhibitor of COX), however, decreased the frequency of ACh-stimulated exocytotic events only by 30%. Moreover, IDM increased the frequency of ACh-stimulated exocytotic events by 50% in H-89-treated or ASA-treated cells. IDM inhibits the synthesis of Prostaglandin (PGG/H) and (15R)-15-hydroxy-5,8,11 cis-13-trans-eicosatetraenoic acid (15R-HPETE), while ASA inhibits only the synthesis of PGG/H. Thus, IDM may accumulate arachidonic acid (AA). AACOCF3 or N-(p-amylcinnamoyl) anthranilic acid (ACA; both inhibitors of phospholipase A2, PLA2), which inhibits AA synthesis, decreased the frequency of ACh-stimulated exocytotic events by 60%. IDM, however, did not increase the frequency in AACOCF3-treated cells. AA increased the frequency of ACh-stimulated exocytotic events in AACOCF3- or ASA-treated cells, similar to IDM in ASA- and H-89-treated cells. Moreover, in the presence of AA, IDM did not increase the frequency of ACh-stimulated exocytotic events in ASA-treated cells. The PGE2 release from antral mucosa indicates that inhibition of PLA2 by ACA inhibits the AA accumulation in unstimulated and ACh-stimulated antral mucosa. The dose-response study of AA and IDM demonstrated that the concentration of intracellular AA accumulated by IDM is less than 100 nm. In conclusion, IDM modulates the ACh-stimulated exocytosis via AA accumulation in antral mucous cells.
Collapse
Affiliation(s)
- Shoko Fujiwara
- Department of Physiology, Osaka Medical College, 2-7 Daigakucho, Takatsuki 569-8686, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Watson EL, Jacobson KL, Singh JC, DiJulio DH. Arachidonic acid regulates two Ca2+ entry pathways via nitric oxide. Cell Signal 2004; 16:157-65. [PMID: 14636886 DOI: 10.1016/s0898-6568(03)00102-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several regulated Ca2+ entry pathways have been identified, with capacitative Ca2+ entry (CCE) being the most characterized. In the present study, we examined Ca2+ entry pathways regulated by arachidonic acid (AA) in mouse parotid acini. AA induced Ca2+ release from intracellular stores, and increased Ca2+ entry. AA inhibited thapsigargin (Tg)-induced CCE, whereas AA activated Ca2+ entry when CCE was blocked by gadolinium (Gd3+). AA-induced Ca2+ entry was associated with depletion of calcium from ryanodine-sensitive stores; both AA-induced Ca2+ release and Ca2+ entry were inhibited by tetracaine and the nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7-NI). The nitric oxide (NO) donor, 1,2,3,4-ox-triazolium,5-amino-3-(3,4-dichlorophenyl)-chloride (GEA 3162), but not 8-bromo-cGMP, mimicked the effects of AA in inhibiting CCE. Results suggest that AA acts via nitric acid to inhibit the CCE pathway that is selective for Ca2+, and to activate a second Ca2+ entry pathway that is dependent on depletion of Ca2+ from ryanodine-sensitive stores.
Collapse
Affiliation(s)
- Eileen L Watson
- Department of Oral Biology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
15
|
Marin P, Lafon-Cazal M, Bockaert J. A Nitric Oxide Synthase Activity Selectively Stimulated by NMDA Receptors Depends on Protein Kinase C Activation in Mouse Striatal Neurons. Eur J Neurosci 2002; 4:425-432. [PMID: 12106351 DOI: 10.1111/j.1460-9568.1992.tb00892.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mouse striatal neurons in primary culture, the maximal increase in intracellular cyclic guanosine monophosphate level evoked by N-methyl-d-aspartic acid (NMDA) receptor activation was twice that induced by kainate, KCl and ionomycin. Quisqualate was almost inactive. All responses were mediated by nitric oxide (NO) production since they were blocked by haemoglobin (a NO scavenger) and by l-NG-monomethylarginine and l-NG-nitroarginine, the effects of both arginine analogues being reversed by an excess of l-arginine. Several results indicate that NMDA receptors stimulate a specific NO synthase activity. This specifically NMDA-activated NO synthase was blocked by nanomolar concentrations of l-NG-nitroarginine, whereas the responses evoked by other agents, including kainate, KCl and ionomycin, were only blocked by micromolar concentrations of this NO synthase inhibitor. The NMDA response could not be totally reproduced by an increase in cytosolic calcium (Ca2+) alone. In contrast, in the presence of staurosporine, an inhibitor of protein kinases C (PKC), as well as after desensitization of PKC induced by long-term treatment with the phorbol ester, phorbol-12, 13-dibutyrate, NMDA-stimulated NO production was selectively reduced, reaching the level evoked by kainate or Ca2+ increase. In conclusion, our results suggest that in striatal neurons, NMDA selectively stimulates a NO synthase activity which is inhibited by low concentrations of l-NG-nitro-arginine, through a mechanism involving PKC.
Collapse
Affiliation(s)
- P. Marin
- Centre CNRS - INSERM de Pharmacologie - Endocrinologie, Rue de la Cardonille, 34094 Montpellier Cedex 5, France
| | | | | |
Collapse
|
16
|
Canals S, Casarejos MJ, de Bernardo S, Rodríguez-Martín E, Mena MA. Glutathione depletion switches nitric oxide neurotrophic effects to cell death in midbrain cultures: implications for Parkinson's disease. J Neurochem 2001; 79:1183-95. [PMID: 11752059 DOI: 10.1046/j.1471-4159.2001.00635.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) exerts neurotrophic and neurotoxic effects on dopamine (DA) function in primary midbrain cultures. We investigate herein the role of glutathione (GSH) homeostasis in the neurotrophic effects of NO. Fetal midbrain cultures were pretreated with GSH synthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO), 24 h before the addition of NO donors (diethylamine/nitric oxide-complexed sodium and S-nitroso-N-acetylpenicillamine) at doses tested previously as neurotrophic. Under these conditions, the neurotrophic effects of NO disappeared and turned on highly toxic. Reduction of GSH levels to 50% of baseline induced cell death in response to neurotrophic doses of NO. Soluble guanylate cyclase (sGC) and cyclic GMP-dependent protein kinase (PKG) inhibitors protected from cell death for up to 10 h after NO addition; the antioxidant ascorbic acid also protected from cell death but its efficacy decreased when it was added after NO treatment (40% protection 2 h after NO addition). The pattern of cell death was characterized by an increase in chromatin condensed cells with no DNA fragmentation and with breakdown of plasmatic membrane. The inhibition of RNA and protein synthesis and of caspase activity also protected from cell death. This study shows that alterations in GSH levels change the neurotrophic effects of NO in midbrain cultures into neurotoxic. Under these conditions, NO triggers a programmed cell death with markers of both apoptosis and necrosis characterized by an early step of free radicals production followed by a late requirement for signalling on the sGC/cGMP/PKG pathway.
Collapse
Affiliation(s)
- S Canals
- Departamento de Investigación, Servicio de Neurobiología, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | |
Collapse
|
17
|
Gupta BB, Spessert R, Rimoldi S, Vollrath L. Sulfhydryl G proteins and phospholipase A(2)-associated G proteins are involved in adrenergic signal transduction in the rat pineal gland. Gen Comp Endocrinol 2001; 122:320-8. [PMID: 11356044 DOI: 10.1006/gcen.2001.7645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rat pineal gland with its circadian noradrenaline-regulated melatonin rhythm is an excellent model for studying adrenergic signal transduction with respect to cAMP and cGMP formation. The stimulatory G(s) proteins play a well-established role in this process. In contrast, the potential roles of the inhibitory G(i) proteins, the functionally unclear other G(o) proteins, and a number of G protein subtypes are not known. The present study examines the effects on beta(1)- and beta(1)-plus-alpha(1)-stimulated cAMP and cGMP formation of a number of G protein modulators in rat pinealocyte suspension cultures. The effects of the nitric oxide donor sodium nitroprusside on cGMP were also examined. The results showed that drugs that activate G proteins of the G(i)/G(o) family, i.e., pertussis toxin, mastoparan, and compound 48/80, had no effect on unstimulated, isoproterenol (beta(1))-stimulated, or combined isoproterenol/phenylephrine (beta(1)-plus()-alpha(1))-stimulated cAMP and cGMP accumulation. However, in this experimental paradigm, the inhibitors of sulfhydryl G proteins (N-ethylmaleimide) and those of phospholipase A2-related G proteins (isotetrandrine) exerted a clear inhibitory effect. Sodium-nitroprusside-stimulated cGMP accumulation was also inhibited. These results confirm a previous report that members of the G(i)/G(o) family, which are present in the rat pineal gland, do not play a major role in adrenergic signal transduction. The new finding that sulfhydryl G proteins and phospholipase A2-associated G proteins exert a clear stimulatory effect on adrenergic signal transduction suggests that they are subtypes of G(s) proteins.
Collapse
Affiliation(s)
- B B Gupta
- Department of Anatomy, Johannes Gutenberg University, Mainz, D-55099, Germany
| | | | | | | |
Collapse
|
18
|
Hawkins RD, Son H, Arancio O. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus. PROGRESS IN BRAIN RESEARCH 1999; 118:155-72. [PMID: 9932440 DOI: 10.1016/s0079-6123(08)63206-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide (NO) is widespread in the nervous system and is thought to play a role in a variety of different neuronal functions, including learning and memory (see other chapters, this volume). A number of behavioral studies have indicated that NO is involved in several types of learning such as motor learning (Yanagihara and Kondo, 1996), avoidance learning (Barati and Kopf, 1996; Myslivecek et al., 1996), olfactory learning (Okere et. al., 1996; Kendrick et al., 1997), and spatial learning (Holscher et al., 1995; Yamada et al., 1996) (for review of earlier papers see Hawkins, 1996). Moreover, NO is thought to be involved in neuronal plasticity contributing to these different types of learning in different brain areas including the cerebellum (chapter by R. Tsien, this volume) and hippocampus. In this chapter we review evidence on the role of NO in long-term potentiation (LTP), a type of synaptic plasticity in hippocampus that is believed to contribute to declarative forms of learning such as spatial learning.
Collapse
Affiliation(s)
- R D Hawkins
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
19
|
Chen EC, King TS, Chang X, Norris C, Schenken RS, Javors MA. Thrombin-stimulated increases in cytosolic Ca2+ level and gonadotropin-releasing hormone release in GT1-7 neurons. Peptides 1999; 20:859-64. [PMID: 10477087 DOI: 10.1016/s0196-9781(99)00073-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of thrombin on cytosolic calcium levels ([Ca2+]cyt), and on gonadotropin-releasing hormone (GnRH) release, were characterized in cultured GT1-7 neurons. GnRH release from GT1-7 neurons was pulsatile with an average pulse amplitude of 14.3+/-5.8 pg x min x ml(-1) and an average pulse duration of 21.3+/-4.2 min. The [Ca2+]cyt response to 0.005 to 0.2 U/ml thrombin was saturable and concentration dependent (EC50 = 0.0268 U/ml). Ethyleneglycotetraacetic acid (EGTA) chelation of extracellular Ca2+ resulted in an approximately 70% attenuation of thrombin-stimulated increase in [Ca2+]cyt. By use of a special superfusion system, a 5-min exposure to 0.1 U/ml thrombin significantly increased the amplitude (193.2+/-67.8 pg x min x ml(-1); P = 0.001) but not the duration (22.5+/-2.4 min; P = 0.8) of GnRH release. These results suggest that thrombin increases [Ca2+]cyt and GnRH release from GT1-7 neurons via specific membrane-bound receptors.
Collapse
Affiliation(s)
- E C Chen
- Department of Obstetrics and Gynecology, The University of Texas Health Science Center, San Antonio 78284, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus. Learn Mem 1999; 6:63-76. [PMID: 10355525 PMCID: PMC311275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Perfusion of hippocampal slices with an inhibitor nitric oxide (NO) synthase blocked induction of long-term potentiation (LTP) produced by a one-train tetanus and significantly reduced LTP by a two-train tetanus, but only slightly reduced LTP by a four-train tetanus. Inhibitors of heme oxygenase, the synthetic enzyme for carbon monoxide (CO), significantly reduced LTP by either a two-train or four-train tetanus. These results suggest that NO and CO are both involved in LTP but may play somewhat different roles. One possibility is that NO serves a phasic, signaling role, whereas CO provides tonic, background stimulation. Another possibility is that NO and CO are phasically activated under somewhat different circumstances, perhaps involving different receptors and second messengers. Because NO is known to be activated by stimulation of NMDA receptors during tetanus, we investigated the possibility that CO might be activated by stimulation of metabotropic glutamate receptors (mGluRs). Consistent with this idea, long-lasting potentiation by the mGluR agonist tACPD was blocked by inhibitors of heme oxygenase but not NO synthase. Potentiation by tACPD was also blocked by inhibitors of soluble guanylyl cyclase (a target of both NO and CO) or cGMP-dependent protein kinase, and guanylyl cyclase was activated by tACPD in hippocampal slices. However, biochemical assays indicate that whereas heme oxygenase is constitutively active in hippocampus, it does not appear to be stimulated by either tetanus or tACPD. These results are most consistent with the possibility that constitutive (tonic) rather than stimulated (phasic) heme oxygenase activity is necessary for potentiation by tetanus or tACPD, and suggest that mGluR activation stimulates guanylyl cyclase phasically through some other pathway.
Collapse
Affiliation(s)
- M Zhuo
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia University, Howard Hughes Medical Institute, New York, New York 10032, USA
| | | | | | | |
Collapse
|
21
|
Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the Respective Roles of Nitric Oxide and Carbon Monoxide in Long-Term Potentiation in the Hippocampus. Learn Mem 1999. [DOI: 10.1101/lm.6.1.63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Perfusion of hippocampal slices with an inhibitor nitric oxide (NO) synthase blocked induction of long-term potentiation (LTP) produced by a one-train tetanus and significantly reduced LTP by a two-train tetanus, but only slightly reduced LTP by a four-train tetanus. Inhibitors of heme oxygenase, the synthetic enzyme for carbon monoxide (CO), significantly reduced LTP by either a two-train or four-train tetanus. These results suggest that NO and CO are both involved in LTP but may play somewhat different roles. One possibility is that NO serves a phasic, signaling role, whereas CO provides tonic, background stimulation. Another possibility is that NO and CO are phasically activated under somewhat different circumstances, perhaps involving different receptors and second messengers. Because NO is known to be activated by stimulation of NMDA receptors during tetanus, we investigated the possibility that CO might be activated by stimulation of metabotropic glutamate receptors (mGluRs). Consistent with this idea, long-lasting potentiation by the mGluR agonist tACPD was blocked by inhibitors of heme oxygenase but not NO synthase. Potentiation by tACPD was also blocked by inhibitors of soluble guanylyl cyclase (a target of both NO and CO) or cGMP-dependent protein kinase, and guanylyl cyclase was activated by tACPD in hippocampal slices. However, biochemical assays indicate that whereas heme oxygenase is constitutively active in hippocampus, it does not appear to be stimulated by either tetanus or tACPD. These results are most consistent with the possibility that constitutive (tonic) rather than stimulated (phasic) heme oxygenase activity is necessary for potentiation by tetanus or tACPD, and suggest that mGluR activation stimulates guanylyl cyclase phasically through some other pathway.
Collapse
|
22
|
Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the Respective Roles of Nitric Oxide and Carbon Monoxide in Long-Term Potentiation in the Hippocampus. Learn Mem 1998. [DOI: 10.1101/lm.5.6.467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Perfusion of hippocampal slices with an inhibitor of nitric oxide (NO) synthase-blocked induction of long-term potentiation (LTP) produced by a one-train tetanus and significantly reduced LTP by a two-train tetanus, but only slightly reduced LTP by a four-train tetanus. Inhibitors of heme oxygenase, the synthetic enzyme for carbon monoxide (CO), significantly reduced LTP by either a two-train or four-train tetanus. These results suggest that NO and CO are both involved in LTP but may play somewhat different roles. One possibility is that NO serves a phasic, signaling role, whereas CO provides tonic, background stimulation. Another possibility is that NO and CO are phasically activated under somewhat different circumstances, perhaps involving different receptors and second messengers. Because NO is known to be activated by stimulation of NMDA receptors during tetanus, we investigated the possibility that CO might be activated by stimulation of metabotropic glutamate receptors (mGluRs). Consistent with this idea, long-lasting potentiation by the mGluR agonist tACPD was blocked by inhibitors of heme oxygenase but not NO synthase. Potentiation by tACPD was also blocked by inhibitors of soluble guanylyl cyclase (a target of both NO and CO) or cGMP-dependent protein kinase, and guanylyl cyclase was activated by tACPD in hippocampal slices. However, biochemical assays indicate that whereas heme oxygenase is constitutively active in hippocampus, it does not appear to be stimulated by either tetanus or tACPD. These results are most consistent with the possibility that constitutive (tonic) rather than stimulated (phasic) heme oxygenase activity is necessary for potentiation by tetanus or tACPD, and suggest that mGluR activation stimulates guanylyl cyclase phasically through some other pathway.
Collapse
|
23
|
Zhuo M, Laitinen JT, Li XC, Hawkins RD. On the respective roles of nitric oxide and carbon monoxide in long-term potentiation in the hippocampus. Learn Mem 1998; 5:467-80. [PMID: 10489262 PMCID: PMC311257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Perfusion of hippocampal slices with an inhibitor of nitric oxide (NO) synthase-blocked induction of long-term potentiation (LTP) produced by a one-train tetanus and significantly reduced LTP by a two-train tetanus, but only slightly reduced LTP by a four-train tetanus. Inhibitors of heme oxygenase, the synthetic enzyme for carbon monoxide (CO), significantly reduced LTP by either a two-train or four-train tetanus. These results suggest that NO and CO are both involved in LTP but may play somewhat different roles. One possibility is that NO serves a phasic, signaling role, whereas CO provides tonic, background stimulation. Another possibility is that NO and CO are phasically activated under somewhat different circumstances, perhaps involving different receptors and second messengers. Because NO is known to be activated by stimulation of NMDA receptors during tetanus, we investigated the possibility that CO might be activated by stimulation of metabotropic glutamate receptors (mGluRs). Consistent with this idea, long-lasting potentiation by the mGluR agonist tACPD was blocked by inhibitors of heme oxygenase but not NO synthase. Potentiation by tACPD was also blocked by inhibitors of soluble guanylyl cyclase (a target of both NO and CO) or cGMP-dependent protein kinase, and guanylyl cyclase was activated by tACPD in hippocampal slices. However, biochemical assays indicate that whereas heme oxygenase is constitutively active in hippocampus, it does not appear to be stimulated by either tetanus or tACPD. These results are most consistent with the possibility that constitutive (tonic) rather than stimulated (phasic) heme oxygenase activity is necessary for potentiation by tetanus or tACPD, and suggest that mGluR activation stimulates guanylyl cyclase phasically through some other pathway.
Collapse
Affiliation(s)
- M Zhuo
- Center for Neurobiology and Behavior, College of Physicians and Surgeons of Columbia, Howard Hughes Medical Institute, New York, New York 10032, USA
| | | | | | | |
Collapse
|
24
|
Son H, Lu YF, Zhuo M, Arancio O, Kandel ER, Hawkins RD. The specific role of cGMP in hippocampal LTP. Learn Mem 1998; 5:231-45. [PMID: 10454367 PMCID: PMC313807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Previous results have suggested that cGMP is involved in hippocampal long-term potentiation (LTP), perhaps as the presynaptic effector of a retrograde messenger. However, other studies have failed to replicate some of those results, making the role of cGMP uncertain. We therefore reexamined this question and identified several variables that can affect the contribution of cGMP. First, brief perfusion with 8-Br-cGMP before weak tetanic stimulation produced long-lasting potentiation in the CA1 region of hippocampal slices, but more prolonged perfusion with 8-Br-cGMP before the tetanus did not produce long-lasting potentiation. Second, the activity-dependent long-lasting potentiation by cGMP analogs was reduced when NMDA receptors were completely blocked, indicating that NMDA receptor activation contributes to, but is not required for, the potentiation. The amount of reduction of the potentiation differed with different protocols, and in some cases could be complete. Third, LTP produced by strong tetanic stimulation in the stratum radiatum of CA1 (which expresses eNOS) was blocked by inhibitors of soluble guanylyl cyclase or cGMP-dependent protein kinase, but LTP in the stratum oriens (which does not express eNOS) was not. The results of these experiments should help to explain some of the discrepant findings from previous studies, and, in addition, may provide insights into the mechanisms and functional role of the cGMP-dependent component of LTP.
Collapse
Affiliation(s)
- H Son
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
25
|
Son H, Lu YF, Zhuo M, Arancio O, Kandel ER, Hawkins RD. The Specific Role of cGMP in Hippocampal LTP. Learn Mem 1998. [DOI: 10.1101/lm.5.3.231] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous results have suggested that cGMP is involved in hippocampal long-term potentiation (LTP), perhaps as the presynaptic effector of a retrograde messenger. However, other studies have failed to replicate some of those results, making the role of cGMP uncertain. We therefore reexamined this question and identified several variables that can affect the contribution of cGMP. First, brief perfusion with 8-Br–cGMP before weak tetanic stimulation produced long-lasting potentiation in the CA1 region of hippocampal slices, but more prolonged perfusion with 8-Br–cGMP before the tetanus did not produce long-lasting potentiation. Second, the activity-dependent long-lasting potentiation by cGMP analogs was reduced when NMDA receptors were completely blocked, indicating that NMDA receptor activation contributes to, but is not required for, the potentiation. The amount of reduction of the potentiation differed with different protocols, and in some cases could be complete. Third, LTP produced by strong tetanic stimulation in the stratum radiatum of CA1 (which expresses eNOS) was blocked by inhibitors of soluble guanylyl cyclase or cGMP-dependent protein kinase, but LTP in the stratum oriens (which does not express eNOS) was not. The results of these experiments should help to explain some of the discrepant findings from previous studies, and, in addition, may provide insights into the mechanisms and functional role of the cGMP-dependent component of LTP.
Collapse
|
26
|
Li Y, Maher P, Schubert D. Requirement for cGMP in nerve cell death caused by glutathione depletion. J Cell Biol 1997; 139:1317-24. [PMID: 9382876 PMCID: PMC2140210 DOI: 10.1083/jcb.139.5.1317] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/1997] [Revised: 09/25/1997] [Indexed: 02/05/2023] Open
Abstract
Glutathione depletion occurs in several forms of apoptosis and is associated with Parkinson's disease and HIV toxicity. The neurotransmitter glutamate kills immature cortical neurons and a hippocampal nerve cell line via an oxidative pathway associated with glutathione depletion. It is shown here that soluble guanylyl cyclase (sGC) activity is required for nerve cell death caused by glutathione depletion. Inhibitors of sGC block glutamate toxicity and a cGMP analogue potentiates cell death. Glutamate also induces an elevation of cGMP that occurs late in the cell death pathway. The resultant cGMP modulates the increase in intracellular calcium that precedes cell death because sGC inhibitors prevent calcium elevation and the cGMP analogue potentiates the increase in intracellular calcium. These results suggest that the final pathway of glutamate induced nerve cell death is through a cGMP-modulated calcium channel.
Collapse
Affiliation(s)
- Y Li
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
27
|
Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock. J Neurosci 1997. [PMID: 8987788 DOI: 10.1523/jneurosci.17-02-00659.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine has long been implicated in nocturnal phase adjustment of circadian rhythms, yet the subject remains controversial. Although the suprachiasmatic nucleus (SCN), site of the circadian clock, contains no intrinsic cholinergic somata, it receives choline acetyltransferase-immunopositive projections from basal forebrain and mesopontine tegmental nuclei that contribute to sleep and wakefulness. We have demonstrated that the SCN of inbred rats in a hypothalamic brain slice is sensitive to cholinergic phase adjustment via muscarinic receptors (mAChRs) only at night. We used this paradigm to probe the muscarinic signal transduction mechanism and the site(s) gating nocturnal responsiveness. The cholinergic agonist carbachol altered the circadian rhythm of SCN neuronal activity in a pattern closely resembling that for analogs of cGMP; nocturnal gating of clock sensitivity of each is preserved in vitro. Specific inhibitors of guanylyl cyclase (GC) and cGMP-dependent protein kinase (PKG), key elements in the cGMP signal transduction cascade, blocked phase shifts induced by carbachol. Further, carbachol administration to the SCN at night increased cGMP production and PKG activity. The carbachol-induced increase in cGMP was blocked both by atropine, an mAChR antagonist, and by LY83583, a GC inhibitor. We conclude that (1) mAChR regulation of the SCN is mediated via GC-->cGMP-->PKG, (2) nocturnal gating of this pathway is controlled by the circadian clock, and (3) a gating site is positioned downstream from cGMP. This study is among the first to identify a functional context for mAChR-cGMP coupling in the CNS.
Collapse
|
28
|
Abstract
An early and highly specific decrease in glutathione (GSH) in the substantia nigra is associated with Parkinson's disease, and low levels of GSH lead to the degeneration of cultured dopaminergic neurons. Using immature cortical neurons and a clonal nerve cell line, it is shown that a decrease in GSH triggers the activation of neuronal 12-lipoxygenase (12-LOX), which leads to the production of peroxides, the influx of Ca2+, and ultimately to cell death. The supporting evidence includes: 1) inhibitors of arachidonate metabolism and 12-LOX block cell death induced by GSH depletion; 2) there is an increase in 12-LOX activity and a membrane translocation in HT22 cells, and an induction of the enzyme in primary cortical neurons following the reduction of GSH; 3) 12-LOX is directly inhibited by GSH; and 4) exogenous arachidonic acid potentiates cell death. These data show that the LOX pathway is a critical intermediate in at least some forms of neuronal degeneration.
Collapse
Affiliation(s)
- Y Li
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
29
|
Liu C, Ding JM, Faiman LE, Gillette MU. Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock. J Neurosci 1997; 17:659-66. [PMID: 8987788 PMCID: PMC6573238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/1996] [Revised: 10/17/1996] [Accepted: 11/12/1996] [Indexed: 02/03/2023] Open
Abstract
Acetylcholine has long been implicated in nocturnal phase adjustment of circadian rhythms, yet the subject remains controversial. Although the suprachiasmatic nucleus (SCN), site of the circadian clock, contains no intrinsic cholinergic somata, it receives choline acetyltransferase-immunopositive projections from basal forebrain and mesopontine tegmental nuclei that contribute to sleep and wakefulness. We have demonstrated that the SCN of inbred rats in a hypothalamic brain slice is sensitive to cholinergic phase adjustment via muscarinic receptors (mAChRs) only at night. We used this paradigm to probe the muscarinic signal transduction mechanism and the site(s) gating nocturnal responsiveness. The cholinergic agonist carbachol altered the circadian rhythm of SCN neuronal activity in a pattern closely resembling that for analogs of cGMP; nocturnal gating of clock sensitivity of each is preserved in vitro. Specific inhibitors of guanylyl cyclase (GC) and cGMP-dependent protein kinase (PKG), key elements in the cGMP signal transduction cascade, blocked phase shifts induced by carbachol. Further, carbachol administration to the SCN at night increased cGMP production and PKG activity. The carbachol-induced increase in cGMP was blocked both by atropine, an mAChR antagonist, and by LY83583, a GC inhibitor. We conclude that (1) mAChR regulation of the SCN is mediated via GC-->cGMP-->PKG, (2) nocturnal gating of this pathway is controlled by the circadian clock, and (3) a gating site is positioned downstream from cGMP. This study is among the first to identify a functional context for mAChR-cGMP coupling in the CNS.
Collapse
Affiliation(s)
- C Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign 61801, USA
| | | | | | | |
Collapse
|
30
|
Dhillon HS, Yang L, Padmaperuma B, Dempsey RJ, Fiscus RR, Renuka Prasad M. Regional concentrations of cyclic nucleotides after experimental brain injury. J Neurotrauma 1995; 12:1035-43. [PMID: 8742132 DOI: 10.1089/neu.1995.12.1035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Regional concentrations of lactate, glucose, cAMP, and cGMP were measured after lateral fluid percussion brain injury in rats. At 5 min after injury, while tissue concentrations of lactate were elevated in the cortices and hippocampi of both the ipsilateral and contralateral hemispheres, those of glucose were decreased in these brain regions. By 20 min after injury, increases of lactate concentrations and decreases of glucose concentrations were observed only in the cortices and in the hippocampus of the ipsilateral hemisphere. Whereas the cAMP concentrations were unchanged in the cortices and hippocampi of the ipsilateral and contralateral hemispheres at 5 min after injury, decreases were found in the injured cortex and ipsilateral hippocampus at 20 min after injury. The tissue concentrations of cGMP were found to be elevated only in the ipsilateral hippocampus at 5 min after injury. The present observation that tissue glucose decreases in the injured cortex and the ipsilateral hippocampus are consistent with the published findings of increased hyperglycolysis and oxidative metabolism in brain immediately after injury. The present findings that the concentrations of cAMP and cGMP change in the cortex and hippocampus provide biochemical evidence for the neurotransmitter's surge after brain injury.
Collapse
Affiliation(s)
- H S Dhillon
- Department of Surgery, University of Kentucky, Lexington 40536-0084, USA
| | | | | | | | | | | |
Collapse
|
31
|
Morton DB, Simpson PJ. Eclosion hormone-stimulated cGMP levels in the central nervous system of Manduca sexta: inhibition by lipid metabolism blockers, increase in inositol(1,4,5)trisphosphate and further evidence against the involvement of nitric oxide. J Comp Physiol B 1995; 165:417-27. [PMID: 8576454 DOI: 10.1007/bf00261295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previous studies have shown that the neuropeptide, eclosion hormone, stimulates a nitric oxide-independent increase in the levels of cGMP in the nervous system of Manduca sexta. By contrast, recent results in Bombyx mori suggest that eclosion hormone increases cGMP via the production of nitric oxide. In view of these conflicting results we have carried out additional studies to test whether nitric oxide is involved in this process in Manduca. Evidence presented here supports our earlier observations that in Manduca the eclosion hormone-stimulated increase in cGMP is nitric oxide- and carbon monoxide-independent. In addition, we show that a wide variety of inhibitors of lipid metabolism block the eclosion hormone-stimulated cGMP increase. This supports the hypothesis that the activation of the guanylate cyclase is mediated by a lipid messenger. We also show that eclosion hormone stimulates an increase in the levels of inositol(1,4,5)trisphosphate. The time-course of this increase is consistent with the hypothesis that eclosion hormone stimulation of a phospholipase C is an early event in the cascade that results in an increase in cGMP. Receptor-mediated lipid hydrolysis is often mediated by G protein-coupled receptors. Experiments using pertussis toxin show that the eclosion hormone-stimulated increase in cGMP is not mediated by a pertussis toxin-sensitive G protein.
Collapse
Affiliation(s)
- D B Morton
- Arizona Research Laboratories, University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
32
|
Abstract
There is now wide acceptance that ATP and other nucleotides are ubiquitous extracellular chemical messengers. ATP and diadenosine polyphosphates can be released from synaptosomes. They act on a large and diverse family of P2 purinoceptors, four of which have been cloned. This receptor family can be divided into two distinct classes: ligand-gated ion channels for P2X receptors and G protein-coupled receptors for P2Y, P2U, P2T and P2D receptors. The P2Y, P2U and P2D receptors have a fairly wide tissue distribution, while the P2X receptor is mainly found in neurons and muscles and the P2T and P2Z receptors confined to platelets and immune cells, respectively. Inositol phosphate and calcium signalling appear to be the predominant mechanisms for transducing the G-protein linked P2 receptor signals. Multiple P2 receptors are expressed by neurons and glia in the CNS and also in neuroendocrine cells. ATP and other nucleotides may therefore have important roles not only as a neurotransmitter but also as a neuroendocrine regulatory messenger.
Collapse
Affiliation(s)
- Z P Chen
- Department of Medicine, University of Bristol, Bristol Royal Infirmary, UK
| | | | | |
Collapse
|
33
|
Hawkins RD, Zhuo M, Arancio O. Nitric oxide and carbon monoxide as possible retrograde messengers in hippocampal long-term potentiation. JOURNAL OF NEUROBIOLOGY 1994; 25:652-65. [PMID: 8071665 DOI: 10.1002/neu.480250607] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have been investigating the hypothesis that the membrane-permeant molecules nitric oxide (NO) and carbon monoxide (CO) may act as retrograde messengers during long-term potentiation (LTP). Inhibitors of either NO synthase or heme oxygenase, the enzyme that produces CO, blocked induction of LTP in the CA1 region of hippocampal slices. Brief application of either NO or CO to slices produced a rapid and long-lasting increase in the size of synaptic potentials if, and only if, the application occurred at the same time as weak tetanic stimulation of the presynaptic fibers. The long-term enhancement by NO or CO was spatially restricted to synapses from active presynaptic fibers and appeared to involve mechanisms utilized by LTP, occluding the subsequent induction of LTP by strong tetanic stimulation. The enhancement by NO or CO was not blocked by the NMDA receptor blocker APV, suggesting that NO and CO act downstream from the NMDA receptor. In other systems, both NO and CO produce many of their effects by activation of soluble guanylyl cyclase and cGMP-dependent protein kinase. An inhibitor of soluble guanylyl cyclase blocked the induction of normal LTP. Conversely, the membrane-permeable analog 8-Br-cGMP produced a rapid onset and long-lasting synaptic enhancement if, and only if, it was applied at the same time as weak presynaptic stimulation. Similarly, two inhibitors of cGMP-dependent protein kinase blocked the induction of normal LTP, and a selective activator of cGMP-dependent protein kinase produced activity-dependent long-lasting synaptic enhancement. 8-Br-cGMP also produced an activity-dependent, long-lasting increase in the amplitude of evoked synaptic currents between pairs of hippocampal neurons in dissociated cell culture. In addition, 8-Br-cGMP, like NO, produced a long-lasting increase in the frequency of spontaneous miniature synaptic currents. These results are consistent with the hypothesis that NO and CO, either alone or in combination, serve as retrograde messengers that produce activity-dependent presynaptic enhancement, perhaps by stimulating soluble guanylyl cyclase and cGMP-dependent protein kinase, during LTP in hippocampus.
Collapse
Affiliation(s)
- R D Hawkins
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University
| | | | | |
Collapse
|
34
|
Zhuo M, Hu Y, Schultz C, Kandel ER, Hawkins RD. Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 1994; 368:635-9. [PMID: 7908417 DOI: 10.1038/368635a0] [Citation(s) in RCA: 366] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several lines of evidence suggest that cyclic GMP might be involved in long-term potentiation (LTP) in the hippocampus. Arachidonic acid, nitric oxide and carbon monoxide, three molecules that have been proposed to act as retrograde messengers in LTP, all activate soluble guanylyl cyclase. We report here that an inhibitor of guanylyl cyclase blocks the induction of LTP in the CA1 region of hippocampal slices. Conversely, cGMP analogues produce long-lasting enhancement of the excitatory postsynaptic potential if they are applied at the same time as weak tetanic stimulation of the presynaptic fibres. The enhancement is spatially restricted, is not blocked by valeric acid (APV), nifedipine, or picrotoxin, and partially occludes LTP. This synaptic enhancement may be mediated by the cGMP-dependent protein kinase (PKG). Inhibitors of PKG block the induction of LTP, and activators of PKG produce activity-dependent long-lasting enhancement. These results suggest that guanylyl cyclase and PKG contribute to LTP, possibly as activity-dependent presynaptic effectors of retrograde messengers.
Collapse
Affiliation(s)
- M Zhuo
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, New York, New York
| | | | | | | | | |
Collapse
|
35
|
Fenton JW, Ofosu FA. Thrombin-Mediated Events Implicated in Post-Thrombotic Recovery. Angiogenesis 1994. [DOI: 10.1007/978-1-4757-9188-4_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Fenton JW, Ofosu FA, Brezniak DV, Hassouna HI. Understanding Thrombin and Hemostasis. Hematol Oncol Clin North Am 1993. [DOI: 10.1016/s0889-8588(18)30201-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Hu J, el-Fakahany EE. Role of intercellular and intracellular communication by nitric oxide in coupling of muscarinic receptors to activation of guanylate cyclase in neuronal cells. J Neurochem 1993; 61:578-85. [PMID: 8101558 DOI: 10.1111/j.1471-4159.1993.tb02161.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Muscarinic receptor-mediated cyclic GMP formation and release of nitric oxide (NO) (or a precursor thereof) were compared in mouse neuroblastoma N1E-115 cells. [3H]Cyclic GMP was assayed in cells prelabeled with [3H]guanine. Release of NO upon the addition of muscarinic agonists to unlabeled neuroblastoma cells (NO donor cells) was quantitated indirectly by its ability to increase the [3H]cyclic GMP level in labeled cells whose muscarinic receptors were inactivated by irreversible alkylation (NO detector cells). Carbachol increased NO release in a concentration-dependent manner, with half-maximal stimulation at 173 microM (compared to 96 microM for direct activation of cyclic GMP formation). The maximal effect of carbachol in stimulating release of NO when measured indirectly was lower than that in elevating [3H]cyclic GMP directly in donor cells. Hemoglobin was more effective in blocking the actions of released NO than in attenuating direct stimulation of [3H]cyclic GMP synthesis. There was a good correlation between the ability of a series of muscarinic agonists to release NO or to activate [3H]cyclic GMP formation directly, and the potency of pirenzepine in inhibiting the two responses. Furthermore, there was a similar magnitude of desensitization of both responses by prolonged receptor activation or stimulation of protein kinase C. NO release was also regulated in relation to the cellular growth phase. A model is proposed in which a fraction of NO generated upon receptor activation does not diffuse extracellularly and stimulates cyclic GMP synthesis within the same cell where it is formed (locally acting NO). The remainder of NO that is extruded extracellularly might travel to neighboring cells (neurotransmitter NO) or might be taken back into the cells of origin (homing NO).
Collapse
Affiliation(s)
- J Hu
- Division of Neuroscience Research in Psychiatry, University of Minnesota Medical School, Minneapolis 55455
| | | |
Collapse
|
38
|
Spessert R, Layes E, Vollrath L. Adrenergic stimulation of cyclic GMP formation requires NO-dependent activation of cytosolic guanylate cyclase in rat pinealocytes. J Neurochem 1993; 61:138-43. [PMID: 8099948 DOI: 10.1111/j.1471-4159.1993.tb03548.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclic GMP (cGMP) formation in rat pinealocytes is regulated through a synergistic dual receptor mechanism involving beta- and alpha 1-adrenergic receptors. The effects of NG-monomethyl-L-arginine (NMMA), which inhibits nitric oxide (NO) synthase and NO-mediated activation of cytosolic guanylate cyclase, and methylene blue (MB), which inhibits cytosolic guanylate cyclase, were investigated in an attempt to understand the role of NO in adrenergic cGMP formation. Both NMMA and MB inhibited beta-adrenergic stimulation of cGMP formation as well as alpha 1-adrenergic potentiation of beta-adrenergic stimulation of cGMP formation, whereas they had no effect in unstimulated pinealocytes. The inhibitory action of NMMA was antagonized by addition of L-arginine. On the basis of these findings it can be concluded that the adrenergic stimulation of cGMP formation involves NO synthesis followed by activation of cytosolic guanylate cyclase.
Collapse
Affiliation(s)
- R Spessert
- Department of Anatomy, Johannes Gutenberg University, Mainz, F.R.G
| | | | | |
Collapse
|
39
|
Grassi-Kassisse DM, Ribeiro-DaSilva G. Canatoxin triggers histamine secretion from rat peritoneal mast cells. AGENTS AND ACTIONS 1992; 37:204-9. [PMID: 1284189 DOI: 10.1007/bf02028110] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Canatoxin, a toxic protein present in the seeds of Canavalia ensiformis, induces the secretion of serotonin, dopamine and insulin through activation of the lipoxygenase pathway. The purpose of the present study was to verify if canatoxin causes histamine release from rat peritoneal mast cells and to perform a detailed study of this phenomenon. Our results indicate that canatoxin is capable of activating mast cells to release histamine. The process is time- and concentration-dependent, occurs without cell damage and requires metabolic energy as well as the presence of divalent cations (Ca2+ and Mg2+). Optimal release occurs at 37 degrees C and at physiological pH. Extremes of temperature (0 degree C and 45 degrees C) inhibit the process. We conclude that canatoxin induces histamine release from rat peritoneal mast cells by an active secretory process.
Collapse
Affiliation(s)
- D M Grassi-Kassisse
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Brazil
| | | |
Collapse
|
40
|
Morton DB, Giunta MA. Eclosion Hormone Stimulates Cyclic GMP Levels in Manduca sexta Nervous Tissue via Arachidonic Acid Metabolism with Little or No Contribution from the Production of Nitric Oxide. J Neurochem 1992; 59:1522-30. [PMID: 1357096 DOI: 10.1111/j.1471-4159.1992.tb08469.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The neuropeptide eclosion hormone acts directly on the nervous system of the tobacco hornworm, Manduca sexta, to trigger ecdysis behavior at the end of each molt. Previous studies have shown that the action of eclosion hormone is mediated via the intracellular messenger cyclic GMP. In the present study we have investigated the mechanisms involved in the eclosion hormone-stimulated increases in cyclic GMP. No stimulation of guanylate cyclase was seen in homogenized nervous tissue, suggesting that eclosion hormone does not directly stimulate a membrane-bound form of guanylate cyclase. Nitric oxide synthase inhibitors, N-methylarginine and nitroarginine, had no effect on eclosion hormone-stimulated cyclic GMP levels. By contrast, 4-bromophenacyl bromide, an inhibitor of arachidonic acid release, and nordihydroguaiaretic acid, an inhibitor of arachidonic acid metabolism, almost completely abolished the eclosion hormone-stimulated cyclic GMP increase. We hypothesize that eclosion hormone receptors are coupled to a lipase, activation of which causes the release of arachidonic acid. Either the arachidonic acid directly stimulates the soluble guanylate cyclase or further metabolism of arachidonic acid yields compounds that activate guanylate cyclase.
Collapse
Affiliation(s)
- D B Morton
- Arizona Research Laboratories, Division of Neurobiology, University of Arizona, Tucson 85721
| | | |
Collapse
|
41
|
Pivovarov AS, Drozdova EI, Kotlyar BI. Arachidonic acid and its acyclic derivatives regulate short-term plasticity of the cholinoreceptors of neurons of the edible snail. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1992; 22:393-400. [PMID: 1331852 DOI: 10.1007/bf01186631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The influence of eicosanoids on the dynamics of the extinction of the inward current, induced by repeated iontophoretic applications of acetylcholine to the soma has been demonstrated in identified RPa3 and LPa3 neurons of the edible snail by means of bielectrode recording of the membrane potential. The extracellular action of arachidonic acid (50-100 mumole/l) intensifies the extinction. Quinacrine (100-600 mumole/l), an inhibitor of phospholipase A2, which decreases the content of arachidonic acid in the cells, acts ambiguously. Nordihydroguaiaretic acid (3-10 mumole/l), which is an inhibitor of the lipoxygenase oxidation of arachidonic acid, attenuates the extinction. Indomethacin (10-50 mumole/l), a blocker of cyclooxygenase oxidation of arachidonic acid, does not influence extinction. All of the compounds investigated decrease the amplitude of the inward current induced by acetylcholine. The results obtained make it possible to hypothesize that arachidonic acid and its acyclic metabolites, which are formed as a result of lipoxygenase oxidation, regulate short-term plasticity of the cholinoreceptors of neurons of the edible snail. The cyclic eicosanoids which are formed during the cyclooxygenase oxidation of arachidonic acid do not exert a regulatory effect on the plasticity of the cholinoreceptors.
Collapse
Affiliation(s)
- A S Pivovarov
- Department of Higher Nervous Activity of the Biological Faculty, M.V. Lomonosov Moscow State University
| | | | | |
Collapse
|
42
|
de Vente J, Steinbusch HW. On the stimulation of soluble and particulate guanylate cyclase in the rat brain and the involvement of nitric oxide as studied by cGMP immunocytochemistry. Acta Histochem 1992; 92:13-38. [PMID: 1349785 DOI: 10.1016/s0065-1281(11)80138-8] [Citation(s) in RCA: 123] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The localization of the particulate and soluble guanylate cyclase in the rat brain was studied using cGMP-immunocytochemistry. The cGMP was fixed to tissue protein using a formaldehyde fixative, and an antibody against cGMP was used which was raised against a cGMP-formaldehyde-thyroglobulin conjugate. We used the atrial natriuretic factor (ANF) as a model compound to stimulate the particulate enzyme and sodium nitroprusside (SNP) to stimulate the soluble enzyme. Sequential immunostaining for cGMP and glial fibrillary acidic protein (GFAP) showed that the great majority of the ANF-responsive, cGMP-producing cells were astrocytes. These ANF-responsive cells were found in discrete parts of the CNS; not all astrocytes in these regions were responsive to ANF. SNP stimulated cGMP in abundantly present neuronal fibres throughout the CNS; few neuronal cell bodies showed increased cGMP production after SNP. Moreover, SNP also raised cGMP in astrocytes, however, not all astrocytes showed the response to SNP. These results suggest that cells might be present in the CNS which contain both the soluble and the particulate guanylate cyclase. It was demonstrated that in the immature cerebellum, the cGMP was raised in glial structures in response to N-methyl-D-aspartate (NMDA), ANF, SNP, and kainic acid. The response to NMDA and kainic acid was sensitive to inhibition of the nitric oxide synthesis from L-arginine by NG-methyl-L-arginine. Surprisingly the response to ANF localized in the molecular layer and the granular layer was also sensitive to inhibition by NG-methyl-L-arginine, whereas the response to ANF in the deep nuclei was not. A small depolarization induced by 10 to 20 mmol/l K+ induced an increase in cGMP in chopped hippocampus tissue which showed a biphasic temporal characteristic. The initial, fast (30 sec), peak was shown to be localized in varicose fibres throughout the hippocampus, whereas the slower response (10 min) was localized in astrocytes. These studies demonstrate that the different enzymes which synthesize cGMP are differently localized. However, there is also a time dependency in the activation of the guanylate cyclases, which becomes apparent in different structures at different times. The possible role of cGMP as a regulator of ion homeostase is discussed.
Collapse
Affiliation(s)
- J de Vente
- Department of Pharmacology, Faculty of Medicine, Free University, Amsterdam, The Netherlands
| | | |
Collapse
|
43
|
Kanba S, Sasakawa N, Nakaki T, Kanba KS, Yagi G, Kato R, Richelson E. Two possibly distinct prostaglandin E1 receptors in N1E-115 clone: one mediating inositol trisphosphate formation, cyclic GMP formation, and intracellular calcium mobilization and the other mediating cyclic AMP formation. J Neurochem 1991; 57:2011-5. [PMID: 1658230 DOI: 10.1111/j.1471-4159.1991.tb06416.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Prostaglandin E1 (PGE1)-mediated transmembrane signal control systems were investigated in intact murine neuroblastoma cells (clone N1E-115). PGE1 increased intracellular levels of total inositol phosphates (IP), cyclic GMP, cyclic AMP, and calcium ([Ca2+]i). PGE1 transiently increased inositol 1,4,5-trisphosphate formation, peaking at 20 s. There was more than a 10-fold difference between the ED50 for PGE1 at cyclic AMP formation (70 nM) and its ED50 values at IP accumulation (1 microM), cyclic GMP formation (2 microM), and [Ca2+]i increase (5 microM). PGE1-mediated IP accumulation, cyclic GMP formation, and [Ca2+]i increase depended on both the concentration of PGE1 and extracellular calcium ions. PGE1 had more potent intrinsic activity in cyclic AMP formation, IP accumulation, and cyclic GMP formation than did PGE2, PGF2 alpha, or PGD2. A protein kinase C activator, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate, had opposite effects on PGE1-mediated IP release and cyclic GMP formation (inhibitory) and cyclic AMP formation (stimulatory). These data suggest that there may be subtypes of the PGE1 receptor in this clone: a high-affinity receptor mediating cyclic AMP formation, and a low-affinity receptor mediating IP accumulation, cyclic GMP formation, and intracellular calcium mobilization.
Collapse
Affiliation(s)
- S Kanba
- Department of Neuro-psychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Strosznajder J, Samochocki M. Ca(2+)-independent, Ca(2+)-dependent, and carbachol-mediated arachidonic acid release from rat brain cortex membrane. J Neurochem 1991; 57:1198-206. [PMID: 1910075 DOI: 10.1111/j.1471-4159.1991.tb08280.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synaptoneurosomes obtained from the cortex of rat brain prelabeled with [14C]arachidonic acid [( 14C]AA) were used as a source of substrate and enzyme in studies on the regulation of AA release. A significant amount of AA is liberated in the presence of 2 mM EGTA, independently of Ca2+, primarily from phosphatidic acid and polyphosphoinositides (poly-PI). Quinacrine, an inhibitor of phospholipase A2 (PLA2), suppressed AA release by about 60% and neomycin, a putative inhibitor of phospholipase C (PLC), reduced AA release by about 30%. An additive effect was exhibited when both inhibitors were given together. Ca2+ activated AA release. The level of Ca2+ present in the synaptoneurosomal preparation (endogenous level) and 5 microM CaCl2 enhance AA liberation by approximately 25%, whereas 2 mM CaCl2 resulted in a 50% increase in AA release relative to EGTA. The source for Ca(2+)-dependent AA release is predominantly phosphatidylinositol (PI); however, a small pool may also be liberated from neutral lipids. Carbachol, an agonist of the cholinergic receptor, stimulated Ca(2+)-dependent AA release by about 17%. Bradykinin enhanced the effect of carbachol by about 10-15%. This agonist-mediated AA release occurs specifically from phosphoinositides (PI + poly-PI). Quinacrine almost completely suppresses calcium-and carbachol-mediated AA release. Neomycin inhibits this process by about 30% and totally suppresses the effect of bradykinin. Our results indicate that both phospholipases PLA2 and PLC with subsequent action of DAG lipase are responsible for Ca(2+)-independent AA release. Ca(2+)-dependent and carbachol-mediated AA liberation occurs mainly as the result of PLA2 action. A small pool of AA is probably also released by PLC, which seems to be exclusively responsible for the effect of bradykinin.
Collapse
Affiliation(s)
- J Strosznajder
- Department of Neurochemistry, Polish Academy of Sciences, Warsaw
| | | |
Collapse
|
45
|
Petitti N, Etgen AM. Protein kinase C and phospholipase C mediate alpha 1- and beta-adrenoceptor intercommunication in rat hypothalamic slices. J Neurochem 1991; 56:628-35. [PMID: 1846402 DOI: 10.1111/j.1471-4159.1991.tb08196.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
These experiments examined the mechanism by which phenylephrine enhances beta-adrenoceptor-stimulated cyclic AMP formation in rat hypothalamic and preoptic area slices. To this end we manipulated phospholipase C. phospholipase A2, and protein kinase C activity in slices and assessed the effects of these manipulations on phenylephrine augmentation of isoproterenol-stimulated cyclic AMP generation. Since previous work indicated that estrogen enhances the alpha 1-component of cyclic AMP formation, we examined slices from both gonadectomized and estrogen-treated animals. The alpha 1-antagonist prazosin eliminated phenylephrine augmentation of the beta-response, suggesting that alpha 1-adrenergic receptors mediate the potentiation of cyclic AMP formation. Inhibition of protein kinase C by H7 attenuated the alpha 1-augmentation of beta-stimulated cyclic AMP formation. Staurosporine, a more potent protein kinase C inhibitor, completely abolished the alpha 1-augmenting response. In addition, phenylephrine potentiation of the isoproterenol response was not observed if protein kinase C was first stimulated directly with a synthetic diacylglycerol (1-oleoyl-2-acetyl-sn-glycerol) or phorbol ester (phorbol 12,13-dibutyrate). Neomycin, an inhibitor of phospholipase C, decreased alpha 1-receptor enhancement of beta-stimulated cyclic AMP formation, whereas quinacrine, an inhibitor of phospholipase A2, did not. The data suggest that the postreceptor mechanism involved in alpha 1-adrenergic receptor potentiation of cyclic AMP generation in hypothalamic and preoptic area slices includes activation of phospholipase C and protein kinase C.
Collapse
Affiliation(s)
- N Petitti
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
46
|
Lazarewicz JW, Wroblewski JT, Costa E. N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J Neurochem 1990; 55:1875-81. [PMID: 2172463 DOI: 10.1111/j.1471-4159.1990.tb05771.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In primary cultures of cerebellar granule cells, glutamate, aspartate, and N-methyl-D-aspartate (NMDA) induced a dose-dependent release of [3H]arachidonic acid ([3H]AA) which was selective for these agonists and was inhibited by NMDA receptor antagonists. The agonist-induced [3H]AA release was reduced by quinacrine at concentrations that inhibited phospholipase A2 (PLA2) but affected neither the activity of phospholipase C (PLC) nor the hydrolysis of phosphoinositides induced by glutamate or quisqualate. Thus, the increased formation of AA was due to the receptor-mediated activation of PLA2 rather than to the action of PLC followed by diacylglycerol lipase. The receptor-mediated [3H]AA release was dependent on the presence of extracellular Ca2+ and was mimicked by the Ca2+ ionophore ionomycin. Pretreatment of granule cells with either pertussis or cholera toxin failed to inhibit the receptor-mediated [3H]AA release. Hence, in cerebellar granule cells, the stimulation of NMDA-sensitive glutamate receptors leads to the activation of PLA2 that is mediated by Ca2+ ions entering through the cationic channels functioning as effectors of NMDA receptors. A coupling through a toxin-sensitive GTP-binding protein can be excluded.
Collapse
Affiliation(s)
- J W Lazarewicz
- Fidia-Georgetown Institute for the Neurosciences, Georgetown University School of Medicine, Washington, D.C
| | | | | |
Collapse
|
47
|
Fink DW, Guroff G. Nerve growth factor stimulation of arachidonic acid release from PC12 cells: independence from phosphoinositide turnover. J Neurochem 1990; 55:1716-26. [PMID: 2170582 DOI: 10.1111/j.1471-4159.1990.tb04961.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of nerve growth factor on the metabolism of arachidonic acid and the hydrolysis of phosphatidylinositol in PC12 cells was examined. Addition of nerve growth factor to PC12 cells isotopically labeled with [3H]arachidonic acid caused an increased release of radioactivity. In a similar manner, treatment of PC12 cells prelabeled with [3H]inositol increased inositol monophosphate accumulation in the presence of LiCl. Stimulation of [3H]arachidonic acid release by nerve growth factor was concentration dependent, attaining a maximum at 0.5 nM. Concentrations of nerve growth factor above 0.5 nM caused less than maximal stimulation. In contrast, nerve growth factor-stimulated accumulation of [3H]inositol monophosphate exhibited a sigmoidal dose-response curve with an apparent maximum at 8 nM. Increased accumulation of [3H]inositol monophosphate could be detected as early as 60 s after nerve growth factor addition, whereas nerve growth factor-stimulated release of [3H]arachidonic acid was not observed until 5 min after nerve growth factor treatment. The nerve growth factor-stimulated release of [3H]arachidonic acid was independent of extracellular calcium concentration. Increased [3H]inositol monophosphate accumulation elicited by nerve growth factor was dependent on the presence of extracellular calcium. These results suggest that the increased metabolism of arachidonic acid and the enhanced hydrolysis of phosphatidylinositol are separately regulated by nerve growth factor.
Collapse
Affiliation(s)
- D W Fink
- Section on Growth Factors, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Md 20892
| | | |
Collapse
|
48
|
Reiser G. Endothelin and a Ca2+ ionophore raise cyclic GMP levels in a neuronal cell line via formation of nitric oxide. Br J Pharmacol 1990; 101:722-6. [PMID: 1963807 PMCID: PMC1917739 DOI: 10.1111/j.1476-5381.1990.tb14147.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
1. The vasoconstrictor peptide endothelin-1 caused a fast, transient rise in guanosine 3':5'-cyclic monophosphate (cyclic GMP) levels in a neuronal cell line (mouse neuroblastoma x rat glioma hybrid cells 108CC15). The mechanism of activation of guanylate cyclase by endothelin-1 was investigated. The endothelin-1-induced rise depended on the release of internal Ca2+. 2. The stimulation of cyclic GMP synthesis induced by endothelin-1 was suppressed after preincubating the cells in medium containing haemoglobin (IC50 3 microM). Similarly, pretreatment of the cells with the L-arginine analogues, L-canavanine (IC50 60 microM) or NG-monomethyl-L-arginine (IC50 2.5 microM), inhibited the cyclic GMP response to endothelin-1. Therefore, endothelin-1 activates guanylate cyclase most probably via formation of nitric oxide, which is released from L-arginine. 3. The Ca2+ ionophore ionomycin induced a transient rise in cyclic GMP levels, which was also suppressed by preincubation in the presence of either haemoglobin or the L-arginine analogues L-canavanine or NG-monomethyl-L-arginine. Therefore, we conclude that ionomycin can activate guanylate cyclase by a mechanism involving nitric oxide formation, similar to that induced by endothelin-1. 4. The alkaloid veratridine, which activates Na+ channels and also causes influx of Ca2+ induced a transient rise of cyclic GMP levels in the neuronal cell line. This stimulation was blocked by pretreating the cells with L-canavanine, NG-monomethyl-L-arginine or haemoglobin. 5. Loading the cells with the Ca2+ chelator BAPTA suppresed the cyclic GMP response to application of endothelin-1, ionomycin, or veratridine. Thus, in the neuronal cell line a rise in cytosolic Ca2 + activity seems to be sufficient to stimulate the nitric oxide forming enzyme which synthesizes the activator of soluble guanylate cyclase.
Collapse
Affiliation(s)
- G Reiser
- Physiologisch-Chemisches Institut der Universität Tübingen, F.R.G
| |
Collapse
|
49
|
Greenberg SS, Diecke FP, Curro FA, Peevy K, Tanaka TP. Presynaptic modulation of sympathetic neurotransmitter release by modulators of cyclic 3',5'-guanosine monophosphate in canine vascular smooth muscle. Ann N Y Acad Sci 1990; 604:305-22. [PMID: 1977353 DOI: 10.1111/j.1749-6632.1990.tb32002.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- S S Greenberg
- Department of Physiology, UMDNJ-New Jersey Medical School, Newark 07103
| | | | | | | | | |
Collapse
|
50
|
Pivovarov AS, Drozdova EI, Kotlyar BI. The role of cGMP in the extinction of the reactions of identified neurons of the edible snail in response to acetylcholine. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1990; 20:323-30. [PMID: 1980526 DOI: 10.1007/bf01236326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The possible role of cGMP in the regulation of the extinction of the reactions of the RPa4, RPa3, and LPa3 neurons of the edible snail in response to acetylcholine (ACh), applied rhythmically to the soma of the neuron by means of microiontophoresis, has been investigated. It was demonstrated that activators of guanylate cyclase which increased the level of cGMP in the cell, namely, sodium nitroprusside and sodium azide (5.10(-4)-10(-3) mole/liter), when applied intracellularly, intensify the extinction of inward transmembrane current and of depolarization of the membrane in response to ACh. The hypothesis of the participation of cGMP-dependent phosphorylation of membrane proteins in the regulation of the rate of development, depth, and duration of short-lived plasticity of the cholinoreceptors of the neuron is proposed.
Collapse
Affiliation(s)
- A S Pivovarov
- Department of Higher Nervous Activity, M. V. Lomonosov Moscow State University
| | | | | |
Collapse
|