1
|
Kremer M, Schulze S, Eisenbruch N, Nagel F, Vogt R, Berndt L, Dörre B, Palm GJ, Hoppen J, Girbardt B, Albrecht D, Sievers S, Delcea M, Baumann U, Schnetz K, Lammers M. Bacteria employ lysine acetylation of transcriptional regulators to adapt gene expression to cellular metabolism. Nat Commun 2024; 15:1674. [PMID: 38395951 PMCID: PMC10891134 DOI: 10.1038/s41467-024-46039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.
Collapse
Affiliation(s)
- Magdalena Kremer
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Sabrina Schulze
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Nadja Eisenbruch
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Felix Nagel
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Robert Vogt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Leona Berndt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Babett Dörre
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Gottfried J Palm
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Jens Hoppen
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Britta Girbardt
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Susanne Sievers
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Felix-Hausdorff-Str. 8, 17489, Greifswald, Germany
| | - Mihaela Delcea
- Institute of Biochemistry, Department of Biophysical Chemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Michael Lammers
- Institute of Biochemistry, Department of Synthetic and Structural Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
2
|
Nie M, Wang J, Zhang K. A novel strategy for L-arginine production in engineered Escherichia coli. Microb Cell Fact 2023; 22:138. [PMID: 37495979 PMCID: PMC10373293 DOI: 10.1186/s12934-023-02145-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND L-arginine is an important amino acid with applications in diverse industrial and pharmaceutical fields. N-acetylglutamate, synthesized from L-glutamate and acetyl-CoA, is a precursor of the L-arginine biosynthetic branch in microorganisms. The enzyme that produces N-acetylglutamate, N-acetylglutamate synthase, is allosterically inhibited by L-arginine. L-glutamate, as a central metabolite, provides carbon backbone for diverse biological compounds besides L-arginine. When glucose is the sole carbon source, the theoretical maximum carbon yield towards L-arginine is 96.7%, but the experimental highest yield was 51%. The gap of L-arginine yield indicates the regulation complexity of carbon flux and energy during the L-arginine biosynthesis. Besides endogenous biosynthesis, N-acetylglutamate, the key precursor of L-arginine, can be obtained by chemical acylation of L-glutamate with a high yield of 98%. To achieve high-yield production of L-arginine, we demonstrated a novel approach by directly feeding precursor N-acetylglutamate to engineered Escherichia coli. RESULTS We reported a new approach for the high yield of L-arginine production in E. coli. Gene argA encoding N-acetylglutamate synthase was deleted to disable endogenous biosynthesis of N-acetylglutamate. The feasibility of external N-acetylglutamate towards L-arginine was verified via growth assay in argA- strain. To improve L-arginine production, astA encoding arginine N-succinyltransferase, speF encoding ornithine decarboxylase, speB encoding agmatinase, and argR encoding an arginine responsive repressor protein were disrupted. Based on overexpression of argDGI, argCBH operons, encoding enzymes of the L-arginine biosynthetic pathway, ~ 4 g/L L-arginine was produced in shake flask fermentation, resulting in a yield of 0.99 mol L-arginine/mol N-acetylglutamate. This strain was further engineered for the co-production of L-arginine and pyruvate by removing genes adhE, ldhA, poxB, pflB, and aceE, encoding enzymes involved in the conversion and degradation of pyruvate. The resulting strain was shown to produce 4 g/L L-arginine and 11.3 g/L pyruvate in shake flask fermentation. CONCLUSIONS Here, we developed a novel approach to avoid the strict regulation of L-arginine on ArgA and overcome the metabolism complexity in the L-arginine biosynthesis pathway. We achieve a high yield of L-arginine production from N-acetylglutamate in E. coli. Co-production pyruvate and L-arginine was used as an example to increase the utilization of input carbon sources.
Collapse
Affiliation(s)
- Mengzhen Nie
- Zhejiang University, Hangzhou, 310027, Zhejiang, China
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Jingyu Wang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China
| | - Kechun Zhang
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou, 310030, Zhejiang, China.
| |
Collapse
|
3
|
Jiang S, Wang D, Wang R, Zhao C, Ma Q, Wu H, Xie X. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline. Metab Eng 2021; 68:220-231. [PMID: 34688880 DOI: 10.1016/j.ymben.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
L-citrulline is a high-value amino acid with promising application in medicinal and food industries. Construction of highly efficient microbial cell factories for L-citrulline production is still an open issue due to complex metabolic flux distribution and L-arginine auxotrophy. In this study, we constructed a nonauxotrophic cell factory in Escherichia coli for high-titer L-citrulline production by coupling modular engineering strategies with dynamic pathway regulation. First, the biosynthetic pathway of L-citrulline was enhanced after blockage of the degradation pathway and introduction of heterologous biosynthetic genes from Corynebacterium glutamicum. Specifically, a superior recycling biosynthetic pathway was designed to replace the native linear pathway by deleting native acetylornithine deacetylase. Next, the carbamoyl phosphate and L-glutamate biosynthetic modules, the NADPH generation module, and the efflux module were modified to increase L-citrulline titer further. Finally, a toggle switch that responded to cell density was designed to dynamically control the expression of the argG gene and reconstruct a nonauxotrophic pathway. Without extra supplement of L-arginine during fermentation, the final CIT24 strain produced 82.1 g/L L-citrulline in a 5-L bioreactor with a yield of 0.34 g/g glucose and a productivity of 1.71 g/(L ⋅ h), which were the highest values reported by microbial fermentation. Our study not only demonstrated the successful design of cell factory for high-level L-citrulline production but also provided references of coupling the rational module engineering strategies and dynamic regulation strategies to produce high-value intermediate metabolites.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Dehu Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Ruirui Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Chunguang Zhao
- Ningxia Eppen Biotech Co, Ltd, Ningxia, 750000, PR China
| | - Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Heyun Wu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, PR China; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
4
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
5
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
6
|
Charlier D, Nguyen Le Minh P, Roovers M. Regulation of carbamoylphosphate synthesis in Escherichia coli: an amazing metabolite at the crossroad of arginine and pyrimidine biosynthesis. Amino Acids 2018; 50:1647-1661. [PMID: 30238253 PMCID: PMC6245113 DOI: 10.1007/s00726-018-2654-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
In all organisms, carbamoylphosphate (CP) is a precursor common to the synthesis of arginine and pyrimidines. In Escherichia coli and most other Gram-negative bacteria, CP is produced by a single enzyme, carbamoylphosphate synthase (CPSase), encoded by the carAB operon. This particular situation poses a question of basic physiological interest: what are the metabolic controls coordinating the synthesis and distribution of this high-energy substance in view of the needs of both pathways? The study of the mechanisms has revealed unexpected moonlighting gene regulatory activities of enzymes and functional links between mechanisms as diverse as gene regulation and site-specific DNA recombination. At the level of enzyme production, various regulatory mechanisms were found to cooperate in a particularly intricate transcriptional control of a pair of tandem promoters. Transcription initiation is modulated by an interplay of several allosteric DNA-binding transcription factors using effector molecules from three different pathways (arginine, pyrimidines, purines), nucleoid-associated factors (NAPs), trigger enzymes (enzymes with a second unlinked gene regulatory function), DNA remodeling (bending and wrapping), UTP-dependent reiterative transcription initiation, and stringent control by the alarmone ppGpp. At the enzyme level, CPSase activity is tightly controlled by allosteric effectors originating from different pathways: an inhibitor (UMP) and two activators (ornithine and IMP) that antagonize the inhibitory effect of UMP. Furthermore, it is worth noticing that all reaction intermediates in the production of CP are extremely reactive and unstable, and protected by tunneling through a 96 Å long internal channel.
Collapse
Affiliation(s)
- Daniel Charlier
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Phu Nguyen Le Minh
- Research Group of Microbiology, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | - Martine Roovers
- LABIRIS Institut de Recherches, Av. Emile Gryson 1, 1070, Brussels, Belgium
| |
Collapse
|
7
|
Wu H, Li Y, Ma Q, Li Q, Jia Z, Yang B, Xu Q, Fan X, Zhang C, Chen N, Xie X. Metabolic engineering of Escherichia coli for high-yield uridine production. Metab Eng 2018; 49:248-256. [PMID: 30189293 DOI: 10.1016/j.ymben.2018.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 01/14/2023]
Abstract
Uridine is a kind of pyrimidine nucleoside that has been widely applied in the pharmaceutical industry. Although microbial fermentation is a promising method for industrial production of uridine, an efficient microbial cell factory is still lacking. In this study, we constructed a metabolically engineered Escherichia coli capable of high-yield uridine production. First, we developed a CRISPR/Cas9-mediated chromosomal integration strategy to integrate large DNA into the E. coli chromosome, and a 9.7 kb DNA fragment including eight genes in the pyrimidine operon of Bacillus subtilis F126 was integrated into the yghX locus of E. coli W3110. The resultant strain produced 3.3 g/L uridine and 4.5 g/L uracil in shake flask culture for 32 h. Subsequently, five genes involved in uridine catabolism were knocked out, and the uridine titer increased to 7.8 g/L. As carbamyl phosphate, aspartate, and 5'-phosphoribosyl pyrophosphate are important precursors for uridine synthesis, we further modified several metabolism-related genes and synergistically improved the supply of these precursors, leading to a 76.9% increase in uridine production. Finally, nupC and nupG encoding nucleoside transport proteins were deleted, and the extracellular uridine accumulation increased to 14.5 g/L. After 64 h of fed-batch fermentation, the final engineered strain UR6 produced 70.3 g/L uridine with a yield and productivity of 0.259 g/g glucose and 1.1 g/L/h, respectively. To the best of our knowledge, this is the highest uridine titer and productivity ever reported for the fermentative production of uridine.
Collapse
Affiliation(s)
- Heyun Wu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Ma
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qiang Li
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zifan Jia
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Yang
- The Institute of Seawater Desalination and Multipurpose Utilization, SOA, Tianjin 300192, China
| | - Qingyang Xu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoguang Fan
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenglin Zhang
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
8
|
Nguyen Le Minh P, Nadal M, Charlier D. The trigger enzyme PepA (aminopeptidase A) ofEscherichia coli, a transcriptional repressor that generates positive supercoiling. FEBS Lett 2016; 590:1816-25. [DOI: 10.1002/1873-3468.12224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Phu Nguyen Le Minh
- Research Group of Microbiology; Department of Bioengineering Sciences; Vrije Universiteit Brussel; Belgium
| | - Marc Nadal
- Institut Jacques Monod; CNRS-Université Paris Diderot; Paris Cedex 13 France
| | - Daniel Charlier
- Research Group of Microbiology; Department of Bioengineering Sciences; Vrije Universiteit Brussel; Belgium
| |
Collapse
|
9
|
Zhuo T, Rou W, Song X, Guo J, Fan X, Kamau GG, Zou H. Molecular study on the carAB operon reveals that carB gene is required for swimming and biofilm formation in Xanthomonas citri subsp. citri. BMC Microbiol 2015; 15:225. [PMID: 26494007 PMCID: PMC4619228 DOI: 10.1186/s12866-015-0555-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The carA and carB genes code the small and large subunits of carbamoyl-phosphate synthase (CPS) that responsible for arginine and pyrimidine production. The purpose of this work was to study the gene organization and expression pattern of carAB operon, and the biological functions of carA and carB genes in Xanthomonas citri subsp. citri. METHODS RT-PCR method was employed to identify the full length of carAB operon transcript in X. citri subsp. citri. The promoter of carAB operon was predicted and analyzed its activity by fusing a GUS reporter gene. The swimming motility was tested on 0.25% agar NY plates with 1% glucose. Biofilm was measured by cell adhesion to polyvinyl chloride 96-well plate. RESULTS The results indicated that carAB operon was composed of five gene members carA-orf-carB-greA-rpfE. A single promoter was predicted from the nucleotide sequence upstream of carAB operon, and its sensitivity to glutamic acid, uracil and arginine was confirmed by fusing a GUS reporter gene. Deletion mutagenesis of carB gene resulted in reduced abilities in swimming on soft solid media and in forming biofilm on polystyrene microtiter plates. CONCLUSIONS From these results, we concluded that carAB operon was involved in multiple biological processes in X. citri subsp. citri.
Collapse
Affiliation(s)
- Tao Zhuo
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wei Rou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xue Song
- Hebei Institute of Engineering Technology, Shijiazhuang, 050091, China.
| | - Jing Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiaojing Fan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Gicharu Gibson Kamau
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Abstract
Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both E. coli and Salmonella typhimurium, the sequence analysis of all arg structural genes in E. coli and Salmonella typhimurium, the resulting evolutionary inferences, and the dual regulation of the carAB operon. This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both Escherichia coli and Salmonella enterica serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in Bacillus subtilis and fungi. Polyamine biosynthesis has been particularly well studied in E. coli, and the cognate genes have been identified in the Salmonella genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of E. coli and S. enterica serovar Typhimurium; homologous genes were identified in both organisms, except argF (encoding a supplementary OTCase), which is lacking in Salmonella. Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.
Collapse
|
11
|
Kim JS, Koo BS, Hyun HH, Lee HC. Deoxycytidine production by a metabolically engineered Escherichia coli strain. Microb Cell Fact 2015; 14:98. [PMID: 26148515 PMCID: PMC4491880 DOI: 10.1186/s12934-015-0291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022] Open
Abstract
Background Rational engineering studies for deoxycytidine production were initiated due to low intracellular levels and tight regulation. To achieve high-level production of deoxycytidine, a useful precursor of decitabine, genes related to feed-back inhibition as well as the biosynthetic pathway were engineered. Additionally, we predicted the impact of individual gene expression levels on a complex metabolic network by microarray analysis. Based on these findings, we demonstrated rational metabolic engineering strategies capable of producing deoxycytidine. Results To prepare the deoxycytidine producing strain, we first deleted 3 degradation enzymes in the salvage pathway (deoA, udp, and deoD) and 4 enzymes involved in the branching pathway (dcd, cdd, codA and thyA) to completely eliminate degradation of deoxycytidine. Second, purR, pepA and argR were knocked out to prevent feedback inhibition of CarAB. Third, to enhance influx to deoxycytidine, we investigated combinatorial expression of pyrG, T4 nrdCAB and yfbR. The best strain carried pETGY (pyrG-yfbR) from the possible combinatorial plasmids. The resulting strain showed high deoxycytidine yield (650 mg/L) but co-produced byproducts. To further improve deoxycytidine yield and reduce byproduct formation, pgi was disrupted to generate a sufficient supply of NADPH and ribose. Overall, in shake-flask cultures, the resulting strain produced 967 mg/L of dCyd with decreased byproducts. Conclusions We demonstrated that deoxycytidine could be readily achieved by recombineering with biosynthetic genes and regulatory genes, which appeared to enhance the supply of precursors for synthesis of carbamoyl phosphate, based on transcriptome analysis. In addition, we showed that carbon flux rerouting, by disrupting pgi, efficiently improved deoxycytidine yield and decreased byproduct content. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0291-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Sook Kim
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea. .,Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| | - Bong-Seong Koo
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea.
| | - Hyung-Hwan Hyun
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| | - Hyeon-Cheol Lee
- ForBioKorea Co., Ltd., Siheung Industrial Center 22-321, Seoul, 153-701, Republic of Korea. .,Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, San 89, Wangsan-Ri, Mohyun-Myun, Yongin-Shi, 449-791, Republic of Korea.
| |
Collapse
|
12
|
Ashworth J, Plaisier CL, Lo FY, Reiss DJ, Baliga NS. Inference of expanded Lrp-like feast/famine transcription factor targets in a non-model organism using protein structure-based prediction. PLoS One 2014; 9:e107863. [PMID: 25255272 PMCID: PMC4177876 DOI: 10.1371/journal.pone.0107863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
Widespread microbial genome sequencing presents an opportunity to understand the gene regulatory networks of non-model organisms. This requires knowledge of the binding sites for transcription factors whose DNA-binding properties are unknown or difficult to infer. We adapted a protein structure-based method to predict the specificities and putative regulons of homologous transcription factors across diverse species. As a proof-of-concept we predicted the specificities and transcriptional target genes of divergent archaeal feast/famine regulatory proteins, several of which are encoded in the genome of Halobacterium salinarum. This was validated by comparison to experimentally determined specificities for transcription factors in distantly related extremophiles, chromatin immunoprecipitation experiments, and cis-regulatory sequence conservation across eighteen related species of halobacteria. Through this analysis we were able to infer that Halobacterium salinarum employs a divergent local trans-regulatory strategy to regulate genes (carA and carB) involved in arginine and pyrimidine metabolism, whereas Escherichia coli employs an operon. The prediction of gene regulatory binding sites using structure-based methods is useful for the inference of gene regulatory relationships in new species that are otherwise difficult to infer.
Collapse
Affiliation(s)
- Justin Ashworth
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (JA); (NB)
| | | | - Fang Yin Lo
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - David J. Reiss
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (JA); (NB)
| |
Collapse
|
13
|
Koo BS, Hyun HH, Kim SY, Kim CH, Lee HC. Enhancement of thymidine production in E. coli by eliminating repressors regulating the carbamoyl phosphate synthetase operon. Biotechnol Lett 2010; 33:71-8. [PMID: 20872160 DOI: 10.1007/s10529-010-0413-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/08/2010] [Indexed: 11/29/2022]
Abstract
PURPOSE OF WORK Thymidine is an important precursor in antiviral drugs. We have enhanced thymidine production in E. coli by eliminating the repressors in the transcription of the gene coding for carbamoyl phosphate synthetase. The operon for carbamoyl phosphate synthetase (CarAB) in the thymidine biosynthesis regulatory pathway was derepressed by disrupting three known repressors (purR, pepA and argR). Combinatorial disruption of three repressors increased CarA expression levels in accordance with degree of disruption, which had a positive correlation with thymidine production. By simultaneous disruption of three repressors (BLdtugRPA), CarA expression level was increased by 3-fold compared to the parental strain, leading to an increased thymidine yield from 0.25 to 1.1 g thymidine l(-1). From BLdtugRPA, we established BLdtugRPA24 by transforming two plasmids expressing enzymes in the thymidine biosynthetic pathway and obtained 5.2 g thymidine l(-1) by Ph-stat fed-batch fermentation.
Collapse
Affiliation(s)
- Bong Seong Koo
- BioNgene Co., Ltd. 10-1, 1Ka, Myungryun-Dong, Jongro-Ku, Seoul, 110-521, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Nguyen PLM, Bervoets I, Maes D, Charlier D. The protein-DNA contacts in RutR•carAB operator complexes. Nucleic Acids Res 2010; 38:6286-300. [PMID: 20472642 PMCID: PMC2952853 DOI: 10.1093/nar/gkq385] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pyrimidine-specific regulation of the upstream carP1 promoter of the carbamoylphosphate synthase operon of Escherichia coli requires numerous trans-acting factors: the allosteric transcription regulator RutR, the nucleoid-associated protein integration host factor, and the trigger enzymes aminopeptidase A and PyrH (UMP-kinase). RutR, a TetR family member, binds far upstream of carP1. Here, we establish a high-resolution contact map of RutR•carP1 complexes for backbone and base-specific contacts, analyze DNA bending, determine the DNA sequence specificity of RutR binding by saturation mutagenesis, demonstrate that uracil but not thymine is the physiologically relevant ligand that inhibits the DNA binding capacity of RutR and build a model of the RutR·operator DNA complex based on the crystal structures of RutR and of the DNA-bound family member QacR. Finally, we test the validity of this model with site-directed mutagenesis of the helix–turn–helix DNA binding motif and in vitro binding studies with the cognate purified mutant RutR proteins.
Collapse
Affiliation(s)
- Phu Le Minh Nguyen
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel (VUB) and Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussel, Belgium
| | | | | | | |
Collapse
|
15
|
Brady BS, Hyman BC, Lovatt CJ. Regulation of CPSase, ACTase, and OCTase genes in Medicago truncatula: Implications for carbamoylphosphate synthesis and allocation to pyrimidine and arginine de novo biosynthesis. Gene 2010; 462:18-25. [PMID: 20451592 DOI: 10.1016/j.gene.2010.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 03/25/2010] [Accepted: 04/16/2010] [Indexed: 11/27/2022]
Abstract
In most prokaryotes and many eukaryotes, synthesis of carbamoylphosphate (CP) by carbamoylphosphate synthetase (CPSase; E.C. 6.3.5.5) and its allocation to either pyrimidine or arginine biosynthesis are highly controlled processes. Regulation at the transcriptional level occurs at either CPSase genes or the downstream genes encoding aspartate carbamoyltransferase (E.C. 2.1.3.2) or ornithine carbamoyltransferase (E.C. 2.1.3.3). Given the importance of pyrimidine and arginine biosynthesis, our lack of basic knowledge regarding genetic regulation of these processes in plants is a striking omission. Transcripts encoding two CPSase small subunits (MtCPSs1 and MtCPSs2), a single CPSase large subunit (MtCPSl), ACTase (MtPyrB), and OCTase (MtArgF) were characterized in the model legume Medicago truncatula. Quantitative real-time PCR data provided evidence (i) that the accumulation of all CPSase gene transcripts, as well as the MtPyrB transcript, was dramatically reduced following seedling incubation with uridine; (ii) exogenously supplied arginine down regulated only MtArgF; and (iii) mRNA levels of both CPSase small subunits, MtPyrB, and MtArgF were significantly increased after supplying plants with ornithine alone or in combination with uridine or arginine compared to plants treated with only uridine or arginine, respectively (P< or =0.05). A proposed novel, yet simple regulatory scheme employed by M. truncatula more closely resembles a prokaryotic control strategy than those used by other eukaryotes.
Collapse
Affiliation(s)
- Brian S Brady
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
16
|
Peeters E, Nguyen Le Minh P, Foulquié-Moreno M, Charlier D. Competitive activation of the Escherichia coli argO gene coding for an arginine exporter by the transcriptional regulators Lrp and ArgP. Mol Microbiol 2009; 74:1513-26. [DOI: 10.1111/j.1365-2958.2009.06950.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Minh PNL, Devroede N, Massant J, Maes D, Charlier D. Insights into the architecture and stoichiometry of Escherichia coli PepA*DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Res 2009; 37:1463-76. [PMID: 19136463 PMCID: PMC2655662 DOI: 10.1093/nar/gkn1078] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Multifunctional Aminopeptidase A (PepA) from Escherichia coli is involved in the control of two distinct DNA transaction processes: transcriptional repression of the carAB operon, encoding carbamoyl phosphate synthase and site-specific resolution of ColE1-type plasmid multimers. Both processes require communication at a distance along a DNA molecule and PepA is the major structural component of the nucleoprotein complexes that underlie this communication. Atomic Force Microscopy was used to analyze the architecture of PepA·carAB and PepA·cer site complexes. Contour length measurements, bending angle analyses and volume determinations demonstrate that the carP1 operator is foreshortened by ∼235 bp through wrapping around one PepA hexamer. The highly deformed part of the operator extends from slightly upstream of the –35 hexamer of the carP1 promoter to just downstream of the IHF-binding site, and comprises the binding sites for the PurR and RutR transcriptional regulators. This extreme remodeling of the carP1 control region provides a straightforward explanation for the strict requirement of PepA in the establishment of pyrimidine and purine-specific repression of carAB transcription. We further provide a direct physical proof that PepA is able to synapse two cer sites in direct repeat in a large interwrapped nucleoprotein complex, likely comprising two PepA hexamers.
Collapse
Affiliation(s)
- Phu Nguyen Le Minh
- Erfelijkheidsleer en Microbiologie and Laboratorium voor Ultrastructuur, Vrije Universiteit Brussel and Vlaams Interuniversitair Instituut voor Biotechnologie, Pleinlaan 2, B-1050 Brussel, Belgium
| | | | | | | | | |
Collapse
|
18
|
Hasegawa A, Ogasawara H, Kori A, Teramoto J, Ishihama A. The transcription regulator AllR senses both allantoin and glyoxylate and controls a set of genes for degradation and reutilization of purines. Microbiology (Reading) 2008; 154:3366-3378. [DOI: 10.1099/mic.0.2008/020016-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Akiko Hasegawa
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Hiroshi Ogasawara
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Ayako Kori
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Jun Teramoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| |
Collapse
|
19
|
Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 2008; 72:266-300, table of contents. [PMID: 18535147 DOI: 10.1128/mmbr.00001-08] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SUMMARY DNA-binding repressor proteins that govern transcription initiation in response to end products generally regulate bacterial biosynthetic genes, but this is rarely true for the pyrimidine biosynthetic (pyr) genes. Instead, bacterial pyr gene regulation generally involves mechanisms that rely only on regulatory sequences embedded in the leader region of the operon, which cause premature transcription termination or translation inhibition in response to nucleotide signals. Studies with Escherichia coli and Bacillus subtilis pyr genes reveal a variety of regulatory mechanisms. Transcription attenuation via UTP-sensitive coupled transcription and translation regulates expression of the pyrBI and pyrE operons in enteric bacteria, whereas nucleotide effects on binding of the PyrR protein to pyr mRNA attenuation sites control pyr operon expression in most gram-positive bacteria. Nucleotide-sensitive reiterative transcription underlies regulation of other pyr genes. With the E. coli pyrBI, carAB, codBA, and upp-uraA operons, UTP-sensitive reiterative transcription within the initially transcribed region (ITR) leads to nonproductive transcription initiation. CTP-sensitive reiterative transcription in the pyrG ITRs of gram-positive bacteria, which involves the addition of G residues, results in the formation of an antiterminator RNA hairpin and suppression of transcription attenuation. Some mechanisms involve regulation of translation rather than transcription. Expression of the pyrC and pyrD operons of enteric bacteria is controlled by nucleotide-sensitive transcription start switching that produces transcripts with different potentials for translation. In Mycobacterium smegmatis and other bacteria, PyrR modulates translation of pyr genes by binding to their ribosome binding site. Evidence supporting these conclusions, generalizations for other bacteria, and prospects for future research are presented.
Collapse
|
20
|
Shimada T, Hirao K, Kori A, Yamamoto K, Ishihama A. RutR is the uracil/thymine-sensing master regulator of a set of genes for synthesis and degradation of pyrimidines. Mol Microbiol 2007; 66:744-57. [PMID: 17919280 DOI: 10.1111/j.1365-2958.2007.05954.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Using the genomic SELEX, a total of six Escherichia coli DNA fragments have been identified, which formed complexes with transcription factor RutR. The RutR regulon was found to include a large number of genes encoding components for not only degradation of pyrimidines but also transport of glutamate, synthesis of glutamine, synthesis of pyrimidine nucleotides and arginine, and degradation of purines. DNase I footprinting indicated that RutR recognizes a palindromic sequence of TTGACCAnnTGGTCAA. The RutR box in P1 promoter of carAB encoding carbamoyl phosphate synthetase, a key enzyme of pyrimidine synthesis, overlaps with the PepA (CarP) repressor binding site, implying competition between RutR and PepA. Adding either uracil or thymine abolished RutR binding in vitro to the carAB P1 promoter. Accordingly, in the rutR-deletion mutant or in the presence of uracil, the activation in vivo of carAB P1 promoter was markedly reduced. Northern blot analysis of the RutR target genes indicated that RutR represses the Gad system genes involved in glutamate-dependent acid resistance and allantoin degradation. Altogether we propose that RutR is the pyrimidine sensor and the master regulator for a large set of the genes involved in the synthesis and degradation of pyrimidines.
Collapse
Affiliation(s)
- Tomohiro Shimada
- Department of Frontier Bioscience and Micro-Nano Technology Research Centre, Hosei University, Koganei, Tokyo 184-8584, Japan
| | | | | | | | | |
Collapse
|
21
|
Devroede N, Huysveld N, Charlier D. Mutational analysis of intervening sequences connecting the binding sites for integration host factor, PepA, PurR, and RNA polymerase in the control region of the Escherichia coli carAB operon, encoding carbamoylphosphate synthase. J Bacteriol 2006; 188:3236-45. [PMID: 16621816 PMCID: PMC1447446 DOI: 10.1128/jb.188.9.3236-3245.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 02/20/2006] [Indexed: 11/20/2022] Open
Abstract
Transcription of the carAB operon encoding the unique carbamoylphosphate synthase of Escherichia coli reflects the dual function of carbamoylphosphate in the biosynthesis of arginine and pyrimidine nucleotides. The tandem pair of promoters is regulated by various mechanisms depending on the needs of both pathways and the maintenance of a pyrimidine/purine nucleotide balance. Here we focus on the linker regions that impose the distribution of target sites for DNA-binding proteins involved in pyrimidine- and purine-specific repression of the upstream promoter P1. We introduced deletions and insertions, and combinations thereof, in four linkers connecting the binding sites for integration host factor (IHF), PepA, PurR, and RNA polymerase and studied the importance of phasing and spacing of the targets and the importance of the nucleotide sequence of the linkers. The two PepA binding sites must be properly aligned and separated with respect to each other and to the promoter for both pyrimidine- and purine-mediated repression. Similarly, the phasing and spacing of the IHF and PEPA2 sites are strictly constrained but only for pyrimidine-specific repression. The IHF target is even dispensable for purine-mediated regulation. Thus, a correct localization of PepA within the higher-order nucleoprotein complex is a prerequisite for the establishment of pyrimidine-mediated repression and for the coupling between purine- and pyrimidine-dependent regulation. Our data also suggest the existence of a novel cis-acting pyrimidine-specific regulatory target located around position -60. Finally, the analysis of a P1 derivative devoid of its control region has led to a reappraisal of the effect of excess adenine on P1 and has revealed that P1 has no need for a UP element.
Collapse
Affiliation(s)
- Neel Devroede
- Erfelijkheidsleer en Microbiologie (MICR), Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
22
|
Devroede N, Thia-Toong TL, Gigot D, Maes D, Charlier D. Purine and pyrimidine-specific repression of the Escherichia coli carAB operon are functionally and structurally coupled. J Mol Biol 2004; 336:25-42. [PMID: 14741201 DOI: 10.1016/j.jmb.2003.12.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcription of the carAB operon encoding the sole carbamoylphosphate synthetase of Escherichia coli proceeds from a tandem pair of promoters. P2, downstream, is repressed by arginine and the ArgR protein, whereas P1 is submitted to pyrimidine-specific regulation and as shown here to purine-specific control exerted by binding of the PurR protein to a PUR box sequence centered around nucleotide -128.5 with respect to the start of P1 transcription. In vivo analyses of the effects of trans and cis-acting mutations on the regulatory responses and single round in vitro transcription assays indicated that ligand-bound PurR is by itself unable to inhibit P1 promoter activity. To exert its effect PurR relies on the elaborated nucleoprotein complex that governs P1 activity in a pyrimidine-specific manner. Thus we reveal the existence of an unprecedented functional and structural coupling between the modulation of P1 activity by purine and pyrimidine residues that appears to result from the unique position of the PUR box in the carAB control region, far upstream of the promoter. Missing contact and premethylation binding interference studies revealed the importance of base-specific groups and of structural aspects of the PUR box sequence in complex formation. Permutation assays indicated that the overall PurR-induced bending of the carAB control region is slightly less pronounced than that of the purF operator. The PUR boxes of the carAB operon of E.coli and Salmonella typhimurium are unique in that they have a guanine residue at position eight. Interestingly, guanine at this position has been proposed to be extremely unfavorable on the basis of modeling and binding studies, as its exocyclic amino group would enter into a steric clash with the side-chain of lysine 55. To analyze the effect of guanine at position eight in the upstream half-site of the carAB operator we constructed the adenine derivative and assayed in vivo repressibility of P1 promoter activity and in vitroPurR binding to the mutant operator, and constructed a molecular model for the unusual lysine 55-guanine 8 interaction.
Collapse
Affiliation(s)
- Neel Devroede
- Erfelijkheidsleer en Microbiologie, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Delannay S, Charlier D, Tricot C, Villeret V, Piérard A, Stalon V. Serine 948 and threonine 1042 are crucial residues for allosteric regulation of Escherichia coli carbamoylphosphate synthetase and illustrate coupling effects of activation and inhibition pathways. J Mol Biol 1999; 286:1217-28. [PMID: 10047492 DOI: 10.1006/jmbi.1999.2561] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Escherichia coli carbamoylphosphate synthetase (CPSase) is a key enzyme in the pyrimidine nucleotides and arginine biosynthetic pathways. The enzyme harbors a complex regulation, being activated by ornithine and inosine 5'-monophosphate (IMP), and inhibited by UMP. CPSase mutants obtained by in vivo mutagenesis and selected on the basis of particular phenotypes have been characterized kinetically. Two residues, serine 948 and threonine 1042, appear crucial for allosteric regulation of CPSase. When threonine 1042 is replaced by an isoleucine residue, the enzyme displays a greatly reduced activation by ornithine. The T1042I mutated enzyme is still sensitive to UMP and IMP, although the effects of both regulators are reduced. When serine 948 is replaced by phenylalanine, the enzyme becomes insensitive to UMP and IMP, but is still activated by ornithine, although to a reduced extent. When correlating these observations to the structural data recently reported, it becomes clear that both mutations, which are located in spatially distinct regions corresponding respectively to the ornithine and the UMP/IMP binding sites, have coupled effects on the enzyme regulation. These results provide an illustration that coupling of regulatory pathways occurs within the allosteric subunit of E. coli CPSase. In addition, other mutants have been characterized, which display altered affinities for the different CPSase substrates and also slightly modified properties towards the allosteric effectors: P165S, P170L, A182V, P360L, S743N, T800F and G824D. Kinetic properties of these modified enzymes are also presented here and correlated to the crystal structure of E. coli CPSase and to the phenotype of the mutants.
Collapse
Affiliation(s)
- S Delannay
- Laboratoire de Microbiologie, Université Libre de Bruxelles, 1, Avenue E. Gryson, Brussels, B-1070, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Petersen C. Inhibition of cellular growth by increased guanine nucleotide pools. Characterization of an Escherichia coli mutant with a guanosine kinase that is insensitive to feedback inhibition by GTP. J Biol Chem 1999; 274:5348-56. [PMID: 10026143 DOI: 10.1074/jbc.274.9.5348] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli the enzyme guanosine kinase phosphorylates guanosine to GMP, which is further phosphorylated to GDP and GTP by other enzymes. Here I report that guanosine kinase is subject to efficient feedback inhibition by the end product of the pathway, GTP, and that this regulation is abolished by a previously described mutation, gsk-3, in the structural gene for guanosine kinase (Hove-Jensen, B., and Nygaard, P. (1989) J. Gen. Microbiol. 135, 1263-1273). Consequently, the gsk-3 mutant strain was extremely sensitive to guanosine, which caused the guanine nucleotide pools to increase dramatically, thereby initiating a cascade of metabolic changes that eventually led to growth arrest. By isolation and characterization of guanosine-resistant derivatives of the gsk-3 mutant, some of the crucial steps in this deleterious cascade of events were found to include the following: first, conversion of GMP to adenine nucleotides via GMP reductase, encoded by the guaC gene; second, inhibition of phosphoribosylpyrophosphate synthetase by an adenine nucleotide, presumably ADP, causing starvation for histidine, tryptophan, and pyrimidines, all of which require PRPP for their synthesis; third, accumulation of the regulatory nucleotide guanosine 5',3'-bispyrophosphate (ppGpp), a general transcriptional inhibitor synthesized by the relA gene product in response to amino acid starvation.
Collapse
Affiliation(s)
- C Petersen
- Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, Solvgade 83H, DK-1307 Copenhagen K, Denmark
| |
Collapse
|
25
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
26
|
Han X, Turnbough CL. Regulation of carAB expression in Escherichia coli occurs in part through UTP-sensitive reiterative transcription. J Bacteriol 1998; 180:705-13. [PMID: 9457878 PMCID: PMC106942 DOI: 10.1128/jb.180.3.705-713.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Escherichia coli, expression of the carAB operon is subject to cumulative repression, which occurs by ArgR-mediated repression at a downstream promoter, P2, and by pyrimidine-mediated regulation at an upstream promoter, P1. In this study, we show that pyrimidine-mediated regulation occurs in part through a mechanism involving UTP-sensitive reiterative transcription (i.e., repetitive addition of U residues to the 3' end of a nascent transcript due to transcript-template slippage). In this case, reiterative transcription occurs at the end of a run of three T x A base pairs in the initially transcribed region of the carAB P1 promoter. The sequence of this region is 5'-GTTTGC (nontemplate strand). In the proposed regulatory mechanism, increased intracellular levels of UTP promote reiterative transcription, which results in the synthesis of transcripts with the sequence GUUUU(n) (where n = 1 to >30). These transcripts are not extended downstream to include structural gene sequences. In contrast, lower levels of UTP enhance normal template-directed addition of a G residue at position 5 of the nascent transcript. This addition precludes reiterative transcription and permits normal transcript elongation capable of producing translatable carAB transcripts. Thus, carAB expression, which is necessary for pyrimidine nucleotide (and arginine) biosynthesis, increases in proportion to the cellular need for UTP. The proposed mechanism appears to function independently of a second pyrimidine-mediated control mechanism that involves the regulatory proteins CarP and integration host factor.
Collapse
Affiliation(s)
- X Han
- Department of Microbiology, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
27
|
Tuchman M, Rajagopal BS, McCann MT, Malamy MH. Enhanced production of arginine and urea by genetically engineered Escherichia coli K-12 strains. Appl Environ Microbiol 1997; 63:33-8. [PMID: 8979336 PMCID: PMC168299 DOI: 10.1128/aem.63.1.33-38.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli strains capable of enhanced synthesis of arginine and urea were produced by derepression of the arginine regulon and simultaneous overexpression of the E. coli carAB and argI genes and the Bacillus subtilis rocF gene. Plasmids expressing carAB driven by their natural promoters were unstable. Therefore, E. coli carAB and argI genes with and without the B. subtilis rocF gene were constructed as a single operon under the regulation of the inducible promoter ptrc. Arginine operator sequences (Arg boxes) from argI were also cloned into the same plasmids for titration of the arginine repressor. Upon overexpression of these genes in E. coli strains, very high carbamyl phosphate synthetase, ornithine transcarbamylase, and arginase catalytic activities were achieved. The biosynthetic capacity of these engineered bacteria when overexpressing the arginine biosynthetic enzymes was 6- to 16-fold higher than that of controls but only if exogenous ornithine was present (ornithine was rate limiting). Overexpression of arginase in bacteria with a derepressed arginine biosynthetic pathway resulted in a 13- to 20-fold increase in urea production over that of controls with the parent vector alone; in this situation, the availability of carbamyl phosphate was rate limiting.
Collapse
Affiliation(s)
- M Tuchman
- Department of Pediatrics, University of Minnesota Hospitals, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
28
|
Kwaga JK, Allan BJ, van der Hurk JV, Seida H, Potter AA. A carAB mutant of avian pathogenic Escherichia coli serogroup O2 is attenuated and effective as a live oral vaccine against colibacillosis in turkeys. Infect Immun 1994; 62:3766-72. [PMID: 8063392 PMCID: PMC303029 DOI: 10.1128/iai.62.9.3766-3772.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Colibacillosis is a serious and economically important disease of the respiratory tract of chickens and turkeys. The serogroups of Escherichia coli commonly associated with colibacillosis in poultry are O1, O2, and O78. Although previous attempts to develop a vaccine have not been very successful, vaccination is still considered the most effective way of controlling the disease. Therefore, our laboratory has been involved in the development of an attenuated live vaccine that will be effective in the prevention of colibacillosis. The carAB operon coding for carbamoyl-phosphate synthetase, an essential enzyme in arginine and pyrimidine metabolism, was selected for study. Generalized transduction was used to transfer a Tn10-generated mutation from a laboratory strain to virulent avian field isolates of E. coli. Molecular techniques were used to determine the point of Tn10 insertion within the carAB operon. The insertion mutants were then cured of the tetracycline resistance gene of the transposon to select for antibiotic-sensitive and stable carAB mutants. The degree of attenuation obtained by the mutation was determined in day-old chickens. Typically, when 100-fold the 50% lethal dose (for the wild type) was given, no more than 50% mortality in the day-old chickens was observed. The deletion mutant of serotype O2 was also found to be avirulent in turkeys rendered susceptible to infection with hemorrhagic enteritis virus A. Turkey poults vaccinated orally at 4 weeks old with either the wild-type E. coli EC317 strain or its carAB mutant EC751 were completely protected from infection following challenge with the homologous wild-type strain. Our data indicate that carAB mutants of virulent avian strains of E. coli will be effective and safe as live oral vaccines for prevention of colibacillosis in poultry.
Collapse
Affiliation(s)
- J K Kwaga
- Veterinary Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
29
|
Kwon DH, Lu CD, Walthall DA, Brown TM, Houghton JE, Abdelal AT. Structure and regulation of the carAB operon in Pseudomonas aeruginosa and Pseudomonas stutzeri: no untranslated region exists. J Bacteriol 1994; 176:2532-42. [PMID: 8169201 PMCID: PMC205390 DOI: 10.1128/jb.176.9.2532-2542.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The carAB operons from Pseudomonas aeruginosa PAO1 and Pseudomonas stutzeri JM300 were characterized by Southern and DNA sequence analyses. The results show that the previously reported sequence for carA (S. C. Wong and A. T. Abdelal, J. Bacteriol. 172:630-642, 1990) is derived from P. stutzeri and not P. aeruginosa, as originally reported. Therefore, the amino-terminal sequence of the purified carA product is identical to that derived from the nucleotide sequence in both organisms, P. stutzeri having four additional amino acids. The results also show that while carA and carB are contiguous in P. stutzeri, as is the case in other bacteria, they are surprisingly separated by an open reading frame (ORF) of 216 amino acids in P. aeruginosa. S1 nuclease mapping experiments with RNA extracted under a variety of growth conditions, as well as experiments using different lacZ fusions, indicate that the carA-ORF-carB operon of P. aeruginosa is transcribed from a single promoter. Moreover, these experiments demonstrate that expression of this single transcript is controlled by both arginine and pyrimidines and that variation in arginine levels specifically modulates transcriptional initiation, while pyrimidine regulation is exerted subsequent to transcriptional initiation. Modification of a rho-independent terminator-like structure, which is present upstream of carA in P. aeruginosa, removed all transcriptional sensitivity of a carA::lacZ fusion to pyrimidines. This result, when coupled with the finding that translation of an 18-amino-acid leader polypeptide (associated with this putative rho-independent terminator), is inversely proportional to pyrimidine concentration in the cell, strongly suggests that regulation of carA by pyrimidines is mediated through an attenuation-type mechanism in P. aeruginosa.
Collapse
Affiliation(s)
- D H Kwon
- Biology Department, Georgia State University, Atlanta 30303
| | | | | | | | | | | |
Collapse
|
30
|
Lu CD, Abdelal AT. The Salmonella typhimurium uracil-sensitive mutation use is in argU and encodes a minor arginine tRNA. J Bacteriol 1993; 175:3897-9. [PMID: 8509342 PMCID: PMC204807 DOI: 10.1128/jb.175.12.3897-3899.1993] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The use gene of Salmonella typhimurium was previously identified by a mutation conferring sensitivity to uracil in glucose minimal medium. The use gene was cloned and identified as an allele of argU encoding a tRNA for a minor arginine codon (CGG). The uracil-sensitive phenotype was shown to result from a base substitution in the anticodon stem of this tRNA.
Collapse
Affiliation(s)
- C D Lu
- Biology Department, Georgia State University, Atlanta 30303
| | | |
Collapse
|
31
|
Abstract
An updated compilation of 300 E. coli mRNA promoter sequences is presented. For each sequence the most recent relevant paper was checked, to verify the location of the transcriptional start position as identified experimentally. We comment on the reliability of the sequence databanks and analyze the conservation of known promoter features in the current compilation. This database is available by E-mail.
Collapse
Affiliation(s)
- S Lisser
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
32
|
Charlier D, Roovers M, Gigot D, Huysveld N, Piérard A, Glansdorff N. Integration host factor (IHF) modulates the expression of the pyrimidine-specific promoter of the carAB operons of Escherichia coli K12 and Salmonella typhimurium LT2. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:273-86. [PMID: 8455562 DOI: 10.1007/bf00282809] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report the identification of Integration Host Factor (IHF) as a new element involved in modulation of P1, the upstream pyrimidine-specific promoter of the Escherichia coli K12 and Salmonella typhimurium carAB operons. Band-shift assays, performed with S-30 extracts of the wild type and a himA, hip double mutant or with purified IHF demonstrate that, in vitro, this factor binds to a region 300 bp upstream of the transcription initiation site of P1 in both organisms. This was confirmed by deletion analysis of the target site. DNase I, hydroxyl radical and dimethylsulphate footprinting experiments allowed us to allocate the IHF binding site to a 38 bp, highly A+T-rich stretch, centred around nucleotide -305 upstream of the transcription initiation site. Protein-DNA contacts are apparently spread over a large number of bases and are mainly located in the minor groove of the helix. Measurements of carbamoyl-phosphate synthetase (CPSase) and beta-galactosidase specific activities from car-lacZ fusion constructs of wild type or IHF target site mutants introduced into several genetic backgrounds affected in the himA gene or in the pyrimidine-mediated control of P1 (carP6 or pyrH+/-), or in both, indicate that, in vivo, IHF influences P1 activity as well as its control by pyrimidines. IHF stimulates P1 promoter activity in minimal medium, but increases the repressibility of this promoter by pyrimidines. These antagonistic effects result in a two- to threefold reduction in the repressibility of promoter P1 by pyrimidines in the absence of IHF binding. IHF thus appears to be required for maximal expression as well as for establishment of full repression. IHF could exert this function by modulating the binding of a pyrimidine-specific regulatory molecule.
Collapse
Affiliation(s)
- D Charlier
- Research Institute, CERIA-COOVI, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The entropies of protein coding genes from Escherichia coli were calculated according to Boltzmann's formula. Entropies of the coding regions were compared to the entropies of noncoding or miscoding ones. With nucleotides as code units, the entropies of the coding regions, when compared to the entropies of complete sequences (leader and coding region as well as trailer), were seen to be lower but with a marginal statistical significance. With triplets of nucleotides as code units, the entropies of correct reading frames were significantly lower than the entropies of frameshifts +1 and -1. With amino acids as code units, the results were opposite: Biologically functional proteins had significantly higher entropies than proteins translated from the frameshifted sequences. We attempt to explain this paradox with the hypothesis that the genetic code may have the ability of lowering information content (increasing entropy) of proteins while translating them from DNA. This ability might be beneficial to bacteria because it would make the functional proteins more probable (having a higher entropy) than nonfunctional proteins translated from frameshifted sequences.
Collapse
Affiliation(s)
- G Lauc
- Laboratory of Physical Chemistry, Faculty of Science, University of Zagreb, Croatia
| | | | | |
Collapse
|
34
|
Wilson HR, Turnbough CL. Role of the purine repressor in the regulation of pyrimidine gene expression in Escherichia coli K-12. J Bacteriol 1990; 172:3208-13. [PMID: 1971621 PMCID: PMC209126 DOI: 10.1128/jb.172.6.3208-3213.1990] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pyrC and pyrD genes of Escherichia coli K-12 encode the pyrimidine biosynthetic enzymes dihydroorotase and dihydroorotate dehydrogenase, respectively. A highly conserved sequence in the promoter regions of these two genes is similar to the pur operator, which is the binding site for the purine repressor (PurR). In this study, we examined the role of PurR in the regulation of pyrC and pyrD expression. Our results show that pyrC and pyrD expression was repressed approximately twofold in cells grown in the presence of adenine [corrected] through a mechanism requiring PurR. A mutation, designated pyrCp926, which alters a 6-base-pair region within the conserved sequence in the pyrC promoter eliminated PurR-mediated repression of pyrC expression. This result indicates that PurR binds to the pyrC (and presumably to the pyrD) conserved sequence and inhibits transcriptional initiation. We also demonstrated that the pyrCp926 mutation had no effect on pyrimidine-mediated regulation of pyrC expression, indicating that pyrimidine and purine effectors act through independent mechanisms to control the expression of the pyrC and pyrD genes.
Collapse
Affiliation(s)
- H R Wilson
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
35
|
Abstract
The linkage map of Escherichia coli K-12 depicts the arrangement of genes on the circular chromosome of this organism. The basic units of the map are minutes, determined by the time-of-entry of markers from Hfr into F- strains in interrupted-conjugation experiments. The time-of-entry distances have been refined over the years by determination of the frequency of cotransduction of loci in transduction experiments utilizing bacteriophage P1, which transduces segments of DNA approximately 2 min in length. In recent years, the relative positions of many genes have been determined even more precisely by physical techniques, including the mapping of restriction fragments and the sequencing of many small regions of the chromosome. On the whole, the agreement between results obtained by genetic and physical methods has been remarkably good considering the different levels of accuracy to be expected of the methods used. There are now few regions of the map whose length is still in some doubt. In some regions, genetic experiments utilizing different mutant strains give different map distances. In other regions, the genetic markers available have not been close enough to give accurate cotransduction data. The chromosome is now known to contain several inserted elements apparently derived from lambdoid phages and other sources. The nature of the region in which the termination of replication of the chromosome occurs is now known to be much more complex than the picture given in the previous map. The present map is based upon the published literature through June of 1988. There are now 1,403 loci placed on the linkage group, which may represent between one-third and one-half of the genes in this organism.
Collapse
Affiliation(s)
- B J Bachmann
- Department of Biology, Yale University, New Haven, Connecticut 06511-7444
| |
Collapse
|
36
|
Lu CD, Kilstrup M, Neuhard J, Abdelal A. Pyrimidine regulation of tandem promoters for carAB in Salmonella typhimurium. J Bacteriol 1989; 171:5436-42. [PMID: 2676976 PMCID: PMC210381 DOI: 10.1128/jb.171.10.5436-5442.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The carAB operon of Salmonella typhimurium encodes the two subunits of the enzyme carbamoylphosphate synthetase. Transcription of the operon is initiated at tandem promoters that are subject to control by pyrimidines and arginine. Pyrimidine regulation was examined by quantitative primer extension experiments under conditions in which densitometric measurements of the transcripts were linear with the amount of RNA. RNA was obtained from mutant strains that permit manipulations of pyrimidine nucleotide pools. The data showed that a uridine nucleotide repressed the upstream promoter (Pl), whereas arginine repressed the downstream promoter (P2). Exogenous cytidine, which increased the intracellular CTP pool in certain mutant strains, did not affect either promoter. However, CTP limitation resulted in derepression of the pyrimidine-specific promoter as well as the downstream arginine-specific promoter. The effect of pyrimidines on P2 was confirmed in a carA::lacZ transcriptional fusion in which the activity of the pyrimidine-specific promoter was abolished. Primer extension experiments with an argR::Tn10 derivative showed that repression of Pl by uridine nucleotides did not require a functional arginine repressor and that repression of P2 by arginine did not interfere with elongation of transcripts initiated at the upstream Pl promoter.
Collapse
Affiliation(s)
- C D Lu
- Laboratory for Microbial and Biochemical Sciences, Georgia State University, Atlanta 30303
| | | | | | | |
Collapse
|
37
|
Andrews SC, Guest JR. Nucleotide sequence of the gene encoding the GMP reductase of Escherichia coli K12. Biochem J 1988; 255:35-43. [PMID: 2904262 PMCID: PMC1135187 DOI: 10.1042/bj2550035] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
(1) The nucleotide sequence of a 1991 bp segment of DNA that expresses the GMP reductase (guaC) gene of Escherichia coli K12 was determined. (2) This gene comprises 1038 bp, 346 codons (including the initiation codon but excluding the termination codon), and it encodes a polypeptide of Mr 37,437 which is in good agreement with previous maxicell studies. (3) The sequence contains a putative promoter 102 bp upstream of the translational start codon, and this is immediately followed by a (G + C)-rich discriminator sequence suggesting that guaC expression may be under stringent control (4) The GMP reductase exhibits a high degree of sequence identity (34%) with IMP dehydrogenase (the guaB gene product) indicative of a close evolutionary relationship between the salvage pathway and the biosynthetic enzymes, GMP reductase and IMP dehydrogenase, respectively. (5) A single conserved cysteine residue, possibly involved in IMP binding to IMP dehydrogenase, was located within a region that possesses some of the features of a nucleotide binding site. (6) The IMP dehydrogenase polypeptide contains an internal segment of 123 amino acid residues that has no counterpart in GMP reductase and may represent an independent folding domain flanked by (alanine + glycine)-rich interdomain linkers.
Collapse
Affiliation(s)
- S C Andrews
- Department of Microbiology, University of Sheffield, U.K
| | | |
Collapse
|
38
|
Kilstrup M, Lu CD, Abdelal A, Neuhard J. Nucleotide sequence of the carA gene and regulation of the carAB operon in Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 176:421-9. [PMID: 2843375 DOI: 10.1111/j.1432-1033.1988.tb14299.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The carAB operon of Salmonella typhimurium encoding carbamoyl-phosphate synthetase (CPSase) has been cloned, and the nucleotide sequence of the first gene of the operon, carA, together with 760 base pairs of the 5'-flanking region was determined. The product of the carA gene is the small subunit of CPSase. It catalyzes the transfer of the amide group from glutamine to an NH3-site on the heavy subunit. Primer extension and S1 nuclease mapping of in vivo carAB transcripts revealed that transcription is similar to that of Escherichia coli [Piette, J. et al. (1984) Proc. Natl Acad. Sci. USA 81, 4134-4138] in its initiation at two promoters, P1 and P2, controlled by pyrimidines and arginine, respectively. The arginine control is mediated through binding to the arginine repressor (argR). The involvement of titratable regulatory elements is indicated by the escape from both arginine and pyrimidine control, when the operon is present in multicopies on a plasmid. Measurements of CPSase levels in mutants which allows independent manipulation of the intracellular uracil and cytosine nucleotide pools show, that both uracil and cytosine nucleotides are required for full repression and that limitation of either nucleotide results in derepression of CPSase synthesis. Deletion analyses indicate that regions upstream of the P1 promoter are required for normal expression from this promoter but not from P2.
Collapse
Affiliation(s)
- M Kilstrup
- University of Copenhagen, Institute of Biological Chemistry B, Denmark
| | | | | | | |
Collapse
|
39
|
Robbins JC, Spanier JG, Jones SJ, Simpson WJ, Cleary PP. Streptococcus pyogenes type 12 M protein gene regulation by upstream sequences. J Bacteriol 1987; 169:5633-40. [PMID: 2445730 PMCID: PMC214017 DOI: 10.1128/jb.169.12.5633-5640.1987] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A partial nucleotide sequence that included 1,693 base pairs of the M12 (emm12) gene of group A streptococci (strain CS24) and adjacent upstream DNA was determined. Type 12 M protein-specific mRNA of strain CS24 is transcribed from two promoters (P1 and P3) separated by 30 bases. The transcription start sites of the emm12 gene were located more than 400 bases downstream of a deletion that causes decreased M-protein gene transcription in strain CS64. Deletion analysis of M protein-expressing plasmids indicated that an upstream region greater than 1 kilobase is required for M-protein gene expression. The M-protein gene transcriptional unit appears to be monocistronic. Analysis of the emm12 DNA sequence revealed three major repeat regions. Two copies of each repeat, A and B, existed within the variable 5' end of the gene; repeat C demarcated the 5' end of the constant region shared by emm12 and emm6.
Collapse
Affiliation(s)
- J C Robbins
- Department of Microbiology, University of Minnesota, Minneapolis 55455
| | | | | | | | | |
Collapse
|
40
|
Wilson HR, Chan PT, Turnbough CL. Nucleotide sequence and expression of the pyrC gene of Escherichia coli K-12. J Bacteriol 1987; 169:3051-8. [PMID: 2885307 PMCID: PMC212347 DOI: 10.1128/jb.169.7.3051-3058.1987] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The pyrC gene of Escherichia coli K-12, which encodes the pyrimidine biosynthetic enzyme dihydroorotase, was cloned as part of a 1.6-kilobase-pair chromosomal fragment. The nucleotide sequence of this fragment was determined. An open reading frame encoding a 348-amino acid polypeptide (Mr = 38,827) was identified as the pyrC structural gene by comparing the amino acid composition predicted from the DNA sequence with that previously determined for the dihydroorotase subunit. The pyrC promoter was mapped by primer extension of in vivo transcripts. Transcriptional initiation was shown to occur within a region located 36 to 39 base pairs upstream of the pyrC structural gene. Pyrimidine availability appears to affect the use of the minor transcriptional initiation sites. The level of pyrC transcription and dihydroorotase synthesis was coordinately derepressed by pyrimidine limitation, indicating that regulation occurs, at least primarily, at the transcriptional level. Inspection of the pyrC nucleotide sequence indicates that gene expression is not regulated by an attenuation control mechanism similar to that described for the pyrBI operon and the pyrE gene. A possible mechanism of transcriptional control involving a common repressor protein is suggested by the identification of a highly conserved, operatorlike sequence in the promoter regions of pyrC and the other pyrimidine genes (i.e., pyrD and carAB) whose expression is negatively regulated by a cytidine nucleotide effector.
Collapse
|
41
|
Blanco C. Transcriptional and translational signals of the uidA gene in Escherichia coli K12. MOLECULAR & GENERAL GENETICS : MGG 1987; 208:490-8. [PMID: 2823062 DOI: 10.1007/bf00328145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The expression of uidA is negatively controlled by the products of the uidR and uxuR genes and is sensitive to catabolite repression. The locations of the transcriptional and translational signals of uidA were determined using lac gene fusions and S1 mapping experiments. The promoter structure of uidA resembles that of a promoter activated by cAMP receptor protein (CRP); putative control regions are located at positions -10 and -35 (relative to the transcription start site), are separated by more than 17 bp and exhibit poor homology with the normally recognized consensus sequences. Moreover, 80 bp separate the promoter from the translational signals. No CRP binding site was detected in the promoter region of uidA. Two operator sites, 01 and 02, were identified: 01 has a greater affinity for the UidR repressor, whereas 02 has a greater affinity for the UxuR repressor, but the two repressor molecules are able to bind at both the 01 and 02 sites. Analysis of two operator constitutive mutations allowed the location of one of the two UidR repressor binding sites; it contains palindromic units spanning the TaqI site of the uidA control region.
Collapse
Affiliation(s)
- C Blanco
- Laboratoire de Microbiologie, I.N.S.A. de Lyon, Villeurbanne, France
| |
Collapse
|
42
|
Poulsen P, Jensen KF. Effect of UTP and GTP pools on attenuation at the pyrE gene of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1987; 208:152-8. [PMID: 3302606 DOI: 10.1007/bf00330436] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have used the galK gene, minus its promoter, to quantitate transcription of the orfE--pyrE operon of Escherichia coli in front of and after the intercistronic attenuator. Expression of the hybrid genes was studied in a bacterium with mutations that permit changes in the UTP and GTP pools during exponential growth. It was found that the greater part of pyrE gene regulation by the nucleotides takes place at the intercistronic attenuator and that promoter control contributes only little, ca. twofold. When pools of both UTP and GTP were high only 5%-6% of the mRNA chains were continued into the pyrE gene. However, when the UTP pool was reduced (from 1.3 to 0.2 mumol/g dry weight) nearly 100% of transcription passed the attenuator. Likewise, a reduction in the GTP pool (from 3.2 to 0.8 mumol/g dry weight) resulted in 25%-30% escape of attenuation. Regulation by attenuation disappeared when a premature stop-codon was introduced near the end of orfE such that translational coupling to transcription was prevented in the attenuator area. Therefore, we attribute the modulation of attenuation to nucleotide-induced variations in the kinetics of mRNA chain elongation. In support for this it was found that an RNA polymerase mutant with reduced RNA chain growth rate transcribed past the pyrE attenuator at a high frequency in the presence of a high UTP pool, but only when coupling of translation to transcription was allowed at the end of orfE.
Collapse
|
43
|
In vivo synthesis of carbamyl phosphate from NH3 by the large subunit of Escherichia coli carbamyl phosphate synthetase. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)61359-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
44
|
Falkner FG, Mocikat R, Zachau HG. Sequences closely related to an immunoglobulin gene promoter/enhancer element occur also upstream of other eukaryotic and of prokaryotic genes. Nucleic Acids Res 1986; 14:8819-27. [PMID: 3537963 PMCID: PMC311913 DOI: 10.1093/nar/14.22.8819] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Decanucleotide sequences closely related to the TNATTTGCAT element which occurs upstream of the immunoglobulin genes and in the immunoglobulin gene enhancer were found also upstream of other eukaryotic and of prokaryotic genes. The possibility of evolutionary and functional relationships between the various transcriptional systems is discussed.
Collapse
|
45
|
|
46
|
Ikenaka K, Ramakrishnan G, Inouye M, Tsung K, Inouye M. Regulation of the ompC gene of Escherichia coli. Involvement of three tandem promoters. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67656-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Krause HM, Higgins NP. Positive and negative regulation of the Mu operator by Mu repressor and Escherichia coli integration host factor. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35710-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Nomura T, Fujita N, Ishihama A. Promoter selectivity of E. coli RNA polymerase: analysis of the promoter system of convergently-transcribed dnaQ-rnh genes. Nucleic Acids Res 1985; 13:7647-61. [PMID: 2999701 PMCID: PMC322077 DOI: 10.1093/nar/13.21.7647] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Promoter properties were analyzed for the convergently-overlapped E. coli genes coding for the DNA polymerase III epsilon subunit (dnaQ) and the ribonuclease H (rnh). The rates of open complex formation for a single promoter of the rnh gene and two tandem promoters of the dnaQ gene were constant whether they are located on a single DNA fragment or separated into individual fragments. The relative expression levels of these three promoters, as measured using an in vitro mixed transcription system, varied differentially depending on the concentration of RNA polymerase. At low enzyme concentrations, the downstream promoter (P2) of the dnaQ gene was utilized preferentially, but the upstream promoter (P1) was utilized as well when the enzyme concentration was increased. This indicates different physiological roles between the two dnaQ promoters. The level of rnh transcription was as low as that of dnaQ-1 RNA synthesis but the rnh promoter was utilized as well as the dnaQ P2 promoter when it was separated from the dnaQ promoters. This implies a promoter interference between the convergently transcribed genes.
Collapse
|
49
|
Li S, Rabi T, DeMoss JA. Delineation of two distinct regulatory domains in the 5' region of the nar operon of Escherichia coli. J Bacteriol 1985; 164:25-32. [PMID: 2995309 PMCID: PMC214206 DOI: 10.1128/jb.164.1.25-32.1985] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A detailed restriction site map was determined for an 8.4-kilobase DNA fragment containing the 5' regulatory and promoter region of the nar operon of Escherichia coli. The 5' end of the nar operon was subcloned as a 2.5-kilobase fragment, and an intact nar operon was constructed from this subcloned fragment and an EcoRI fragment containing the remainder of the nar operon. A set of Bal 31 deletions extending into the 5' region of the intact operon was selected, mapped, and characterized. Based on the synthesis of the alpha and beta subunits of nitrate reductase in a nar::Tn5 mutant, three categories of deletions were found: (i) those which permitted normal expression, (ii) those which completely prevented expression, and (iii) those which permitted anaerobic expression of the operon but prevented any additional induction by nitrate. The nucleotide sequence was determined for a segment of the nar promoter region starting at one of the latter deletion end points and extending into the first structural gene of the operon. The position of the deletion end point relative to the translation start site for the first structural gene, narG, was defined by identifying the nucleotide sequence for the first 20 N-terminal amino acid residues of the alpha subunit of nitrate reductase. Deletions terminating 161 base pairs (bp) and approximately 200 bp upstream from the narG translation start site permitted anaerobic formation of nitrate reductase but interfered with the stimulation of nar operon expression by nitrate. A maximum size for the regulatory region was defined by two Tn5 insertions, which mapped approximately 550 bp 5' from the translation start site and did not interfere with the normal expression of nitrate reductase under anaerobic conditions with or without nitrate. We conclude that the nar operon 5' regulatory region is divided into two distinct regions: the 100 to 150 bp immediately 5' to the narG gene include a transcriptional start site and the signals necessary for anaerobic expression of the operon, and an adjacent region of 50 to 400 bp is required for the stimulation of operon expression by nitrate.
Collapse
|
50
|
Larsen JN, Jensen KF. Nucleotide sequence of the pyrD gene of Escherichia coli and characterization of the flavoprotein dihydroorotate dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 151:59-65. [PMID: 2992959 DOI: 10.1111/j.1432-1033.1985.tb09068.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dihydroorotate dehydrogenase (EC 1.3.3.1) was purified to near electrophoretic homogeneity from the membranes of a strain of Escherichia coli carrying the pyrD gene on a multicopy plasmid. The preparation had a specific activity of 120 mumol min-1 mg-1 and contained flavin mononucleotide (FMN) in amounts stoichiometric to the dihydroorotate dehydrogenase subunit (Mr = 37000). The flavin group was reduced when dihydroorotate was added in the absence of electron acceptors. The complete sequence of 1357 base pairs of an EcoRI-EcoRI DNA fragment containing the pyrD gene was established. Dihydroorotate dehydrogenase is encoded by a 336-triplets open reading frame. The molecular mass (Mr = 36732), the amino acid composition and the N-terminal sequence of the predicted polypeptide agree well with the data obtained by analysis of the purified protein. A region of the amino acid sequence (residues 292-303, i.e. Ile-Ile-Gly-Val-Gly-Gly-Ile-Asp-Ser-Val-Ile-Ala) shows distinct homology to the cofactor binding site of other flavoproteins. No hydrophobic regions large enough to span the cytoplasmic membrane were observed. By the S1-nuclease technique an mRNA start was mapped 34 +/- 2 nucleotide residues upstream of the beginning of the coding frame of pyrD. The leader region contains no similarity to the attenuators of the pyrB and pyrE genes of E. coli.
Collapse
|