1
|
Jeong S, Ha NC. Deciphering vimentin assembly: Bridging theoretical models and experimental approaches. Mol Cells 2024; 47:100080. [PMID: 38871297 PMCID: PMC11267000 DOI: 10.1016/j.mocell.2024.100080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
The intricate assembly process of vimentin intermediate filaments (IFs), key components of the eukaryotic cytoskeleton, has yet to be elucidated. In this work, we investigated the transition from soluble tetrameric vimentin units to mature 11-nm tubular filaments, addressing a significant gap in the understanding of IF assembly. Through a combination of theoretical modeling and analysis of experimental data, we propose a novel assembly sequence, emphasizing the role of helical turns and gap filling by soluble tetramers. Our findings shed light on the unique structural dynamics of vimentin and suggest broader implications for the general principles of IF formation.
Collapse
Affiliation(s)
- Soyeon Jeong
- Department of Agricultural Biotechnology, Center for Food and Bioconversions, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Center for Food and Bioconversions, and Research Institute for Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Nanes BA, Bhatt K, Boujemaa-Paterski R, Azarova E, Munawar S, Rajendran D, Isogai T, Dean KM, Medalia O, Danuser G. Keratin isoform shifts modulate motility signals during wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.04.538989. [PMID: 37205459 PMCID: PMC10187270 DOI: 10.1101/2023.05.04.538989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Keratin intermediate filaments form strong mechanical scaffolds that confer structural stability to epithelial tissues, but the reason this function requires a protein family with 54 isoforms is not understood. During skin wound healing, a shift in keratin isoform expression alters the composition of keratin filaments. How this change modulates cellular function to support epidermal remodeling remains unclear. We report an unexpected effect of keratin isoform variation on kinase signal transduction. Increased expression of wound-associated keratin 6A, but not of steady-state keratin 5, potentiated keratinocyte migration and wound closure without compromising epidermal stability by activating myosin motors. This pathway depended on isoform-specific interaction between intrinsically disordered keratin head domains and non-filamentous vimentin shuttling myosin-activating kinases. These results substantially expand the functional repertoire of intermediate filaments from their canonical role as mechanical scaffolds to include roles as isoform-tuned signaling scaffolds that organize signal transduction cascades in space and time to influence epithelial cell state.
Collapse
Affiliation(s)
- Benjamin A Nanes
- Department of Dermatology, UT Southwestern Medical Center; Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Kushal Bhatt
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | | | - Evgenia Azarova
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
- Present address: Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Sabahat Munawar
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Divya Rajendran
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Kevin M Dean
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich; Zurich CH-8057, Switzerland
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics and Cecil H and Ida Green Center for Systems Biology, UT Southwestern Medical Center; Dallas, TX 75390, USA
| |
Collapse
|
3
|
Nefedova VV, Kleymenov SY, Safenkova IV, Levitsky DI, Matyushenko AM. Neurofilament Light Protein Rod Domain Exhibits Structural Heterogeneity. Biomolecules 2024; 14:85. [PMID: 38254685 PMCID: PMC10813002 DOI: 10.3390/biom14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Neurofilaments are neuron-specific proteins that belong to the intermediate filament (IFs) protein family, with the neurofilament light chain protein (NFL) being the most abundant. The IFs structure typically includes a central coiled-coil rod domain comprised of coils 1A, 1B, and 2, separated by linker regions. The thermal stability of the IF molecule plays a crucial role in its ability for self-association. In the current study, we investigated the thermal stability of NFL coiled-coil domains by analyzing a set of recombinant domains and their fusions (NFL1B, NFL1A+1B, NFL2, NFL1B+2, and NFLROD) via circular dichroism spectroscopy and differential scanning calorimetry. The thermal stability of coiled-coil domains is evident in a wide range of temperatures, and thermal transition values (Tm) correspond well between isolated coiled-coil domains and full-length NFL. NFL1B has a Tm of 39.4 °C, and its' fusions, NFL1A+1B and NFL1B+2, have a Tm of 41.9 °C and 41.5 °C, respectively. However, in the case of NFL2, thermal denaturation includes at least two thermal transitions at 37.2 °C and 62.7 °C. These data indicate that the continuous α-helical structure of the coil 2 domain has parts with varied thermal stability. Among all the NFL fragments, only NFL2 underwent irreversible heat-induced denaturation. Together, these results unveil the origin of full-length NFL's thermal transitions, and reveal its domains structure and properties.
Collapse
Affiliation(s)
- Victoria V. Nefedova
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
| | - Sergey Y. Kleymenov
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Irina V. Safenkova
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
| | - Dmitrii I. Levitsky
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
| | - Alexander M. Matyushenko
- Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (S.Y.K.); (I.V.S.); (D.I.L.); (A.M.M.)
| |
Collapse
|
4
|
Hao M, Guan Z, Zhang Z, Ai H, Peng X, Zhou H, Xu J, Gu Q. Atractylodinol prevents pulmonary fibrosis through inhibiting TGF-β receptor 1 recycling by stabilizing vimentin. Mol Ther 2023; 31:3015-3033. [PMID: 37641404 PMCID: PMC10556230 DOI: 10.1016/j.ymthe.2023.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
Pirfenidone and nintedanib are only anti-pulmonary fibrosis (PF) drugs approved by the FDA. However, they are not target specific, and unable to modify the disease status. Therefore, it is still desirable to discover more effective agents against PF. Vimentin (VIM) plays key roles in tissue regeneration and wound healing, but its molecular mechanism remains unknown. In this work, we demonstrated that atractylodinol (ATD) significantly inhibits TGF-β1-induced epithelial-mesenchymal transition and fibroblast-to-myofibroblast transition in vitro. ATD also reduces bleomycin-induced lung injury and fibrosis in mice models. Mechanistically, ATD inhibited TGF-β receptor I recycling by binding to VIM (KD = 454 nM) and inducing the formation of filamentous aggregates. In conclusion, we proved that ATD (derived from Atractylodes lancea) modified PF by targeting VIM and inhibiting the TGF-β/Smad signaling pathway. Therefore, VIM is a druggable target and ATD is a proper drug candidate against PF. We prove a novel VIM function that TGF-β receptor I recycling. These findings paved the way to develop new targeted therapeutics against PF.
Collapse
Affiliation(s)
- Mengjiao Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| | - Zhuoji Guan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhikang Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haopeng Ai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xing Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihao Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qiong Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
5
|
Nefedova VV, Yampolskaya DS, Kleymenov SY, Chebotareva NA, Matyushenko AM, Levitsky DI. Effect of Neurodegenerative Mutations in the NEFL Gene on Thermal Denaturation of the Neurofilament Light Chain Protein. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:610-620. [PMID: 37331707 DOI: 10.1134/s0006297923050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 06/20/2023]
Abstract
Effects of E90K, N98S, and A149V mutations in the light chain of neurofilaments (NFL) on the structure and thermal denaturation of the NFL molecule were investigated. By using circular dichroism spectroscopy, it was shown that these mutations did not lead to the changes in α-helical structure of NFL, but they caused noticeable effects on the stability of the molecule. We also identified calorimetric domains in the NFL structure by using differential scanning calorimetry. It was shown that the E90K replacement leads to the disappearance of the low-temperature thermal transition (domain 1). The mutations cause changes in the enthalpy of NFL domains melting, as well as lead to the significant changes in the melting temperatures (Tm) of some calorimetric domains. Thus, despite the fact that all these mutations are associated with the development of Charcot-Marie-Tooth neuropathy, and two of them are even located very close to each other in the coil 1A, they affect differently structure and stability of the NFL molecule.
Collapse
Affiliation(s)
- Victoria V Nefedova
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Daria S Yampolskaya
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey Y Kleymenov
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Natalia A Chebotareva
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | | | - Dmitrii I Levitsky
- Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
6
|
Renganathan B, Zewe JP, Cheng Y, Paumier J, Kittisopikul M, Ridge KM, Opal P, Gelfand VI. Gigaxonin is required for intermediate filament transport. FASEB J 2023; 37:e22886. [PMID: 37043392 PMCID: PMC10237250 DOI: 10.1096/fj.202202119r] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 04/13/2023]
Abstract
Gigaxonin is an adaptor protein for E3 ubiquitin ligase substrates. It is necessary for ubiquitination and degradation of intermediate filament (IF) proteins. Giant axonal neuropathy is a pathological condition caused by mutations in the GAN gene that encodes gigaxonin. This condition is characterized by abnormal accumulation of IFs in both neuronal and non-neuronal cells; however, it is unclear what causes IF aggregation. In this work, we studied the dynamics of IFs using their subunits tagged with a photoconvertible protein mEOS 3.2. We have demonstrated that the loss of gigaxonin dramatically inhibited transport of IFs along microtubules by the microtubule motor kinesin-1. This inhibition was specific for IFs, as other kinesin-1 cargoes, with the exception of mitochondria, were transported normally. Abnormal distribution of IFs in the cytoplasm can be rescued by direct binding of kinesin-1 to IFs, demonstrating that transport inhibition is the primary cause for the abnormal IF distribution. Another effect of gigaxonin loss was a more than 20-fold increase in the amount of soluble vimentin oligomers in the cytosol of gigaxonin knock-out cells. We speculate that these oligomers saturate a yet unidentified adapter that is required for kinesin-1 binding to IFs, which might inhibit IF transport along microtubules causing their abnormal accumulation.
Collapse
Affiliation(s)
- Bhuvanasundar Renganathan
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - James P. Zewe
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jean‐Michel Paumier
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Mark Kittisopikul
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Karen M. Ridge
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Puneet Opal
- Ken and Ruth Davee Department of NeurologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Vladimir I. Gelfand
- Department of Cell and Developmental BiologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
7
|
Aweida D, Cohen S. The AAA-ATPase ATAD1 and its partners promote degradation of desmin intermediate filaments in muscle. EMBO Rep 2022; 23:e55175. [PMID: 36278411 PMCID: PMC9724657 DOI: 10.15252/embr.202255175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/13/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Maintenance of desmin intermediate filaments (IF) is vital for muscle plasticity and function, and their perturbed integrity due to accelerated loss or aggregation causes atrophy and myopathies. Calpain-1-mediated disassembly of ubiquitinated desmin IF is a prerequisite for desmin loss, myofibril breakdown, and atrophy. Because calpain-1 does not harbor a bona fide ubiquitin-binding domain, the precise mechanism for desmin IF disassembly remains unknown. Here, we demonstrate that the AAA-ATPase, ATAD1, is required to facilitate disassembly and turnover of ubiquitinated desmin IF. We identified PLAA and UBXN4 as ATAD1's interacting partners, and their downregulation attenuated desmin loss upon denervation. The ATAD1-PLAA-UBXN4 complex binds desmin filaments and promotes a release of phosphorylated and ubiquitinated species into the cytosol, presenting ATAD1 as the only known AAA-ATPase that preferentially acts on phosphorylated substrates. Desmin filaments disassembly was accelerated by the coordinated functions of Atad1 and calpain-1, which interact in muscle. Thus, by extracting ubiquitinated desmin from the insoluble filament, ATAD1 may expose calpain-1 cleavage sites on desmin, consequently enhancing desmin solubilization and degradation in the cytosol.
Collapse
Affiliation(s)
- Dina Aweida
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| | - Shenhav Cohen
- Faculty of BiologyTechnion Institute of TechnologyHaifaIsrael
| |
Collapse
|
8
|
Kim HR, Warrington SJ, López-Guajardo A, Al Hennawi K, Cook SL, Griffith ZDJ, Symmes D, Zhang T, Qu Z, Xu Y, Chen R, Gad AKB. ALD-R491 regulates vimentin filament stability and solubility, cell contractile force, cell migration speed and directionality. Front Cell Dev Biol 2022; 10:926283. [PMID: 36483676 PMCID: PMC9723350 DOI: 10.3389/fcell.2022.926283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/07/2022] [Indexed: 08/12/2023] Open
Abstract
Metastasizing cells express the intermediate filament protein vimentin, which is used to diagnose invasive tumors in the clinic. However, the role of vimentin in cell motility, and if the assembly of non-filamentous variants of vimentin into filaments regulates cell migration remains unclear. We observed that the vimentin-targeting drug ALD-R491 increased the stability of vimentin filaments, by reducing filament assembly and/or disassembly. ALD-R491-treatment also resulted in more bundled and disorganized filaments and an increased pool of non-filamentous vimentin. This was accompanied by a reduction in size of cell-matrix adhesions and increased cellular contractile forces. Moreover, during cell migration, cells showed erratic formation of lamellipodia at the cell periphery, loss of coordinated cell movement, reduced cell migration speed, directionality and an elongated cell shape with long thin extensions at the rear that often detached. Taken together, these results indicate that the stability of vimentin filaments and the soluble pool of vimentin regulate the speed and directionality of cell migration and the capacity of cells to migrate in a mechanically cohesive manner. These observations suggest that the stability of vimentin filaments governs the adhesive, physical and migratory properties of cells, and expands our understanding of vimentin functions in health and disease, including cancer metastasis.
Collapse
Affiliation(s)
- Hyejeong Rosemary Kim
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | | | - Ana López-Guajardo
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Khairat Al Hennawi
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sarah L. Cook
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Zak D. J. Griffith
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Deebie Symmes
- Aluda Pharmaceuticals, Inc., Menlo Park, CA, United States
| | - Tao Zhang
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Zhipeng Qu
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Ying Xu
- Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, China
| | - Ruihuan Chen
- Aluda Pharmaceuticals, Inc., Menlo Park, CA, United States
| | - Annica K. B. Gad
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
- Madeira Chemistry Research Centre, University of Madeira, Funchal, Portugal
| |
Collapse
|
9
|
Harne S, Gayathri P. Characterization of heterologously expressed Fibril, a shape and motility determining cytoskeletal protein of the helical bacterium Spiroplasma. iScience 2022; 25:105055. [PMID: 36157586 PMCID: PMC9489929 DOI: 10.1016/j.isci.2022.105055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Fibril is a constitutive filament-forming cytoskeletal protein of unidentified fold, exclusive to members of genus Spiroplasma. It is hypothesized to undergo conformational changes necessary to bring about Spiroplasma motility through changes in cell helicity. However, the mechanism driving conformational changes in Fibril remains unknown. We expressed Fibril from S. citri in E. coli for its purification and characterization. Sodium dodecyl sulfate solubilized Fibril filaments and facilitated purification by affinity chromatography. An alternative protocol for obtaining enriched insoluble Fibril filaments was standardized using density gradient centrifugation. Electron microscopy of Fibril purified by these protocols revealed filament bundles. Probable domain boundaries of Fibril protein were identified based on mass spectrometric analysis of proteolytic fragments. Presence of α-helical and β-sheet signatures in FT-IR measurements suggests that Fibril filaments consist of an assembly of folded globular domains, and not a β-strand-based aggregation like amyloid fibrils.
Collapse
Affiliation(s)
- Shrikant Harne
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Pananghat Gayathri
- Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
10
|
Wasilewska M, Żeliszewska P, Pogoda K, Deptuła P, Bucki R, Adamczyk Z. Human Vimentin Layers on Solid Substrates: Adsorption Kinetics and Corona Formation Investigations. Biomacromolecules 2022; 23:3308-3317. [PMID: 35829774 PMCID: PMC9364323 DOI: 10.1021/acs.biomac.2c00415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Adsorption kinetics of human vimentin on negatively charged substrates (mica, silica, and polymer particles) was analyzed using atomic force microscopy (AFM), quartz microbalance (QCM), and the laser doppler velocimetry (LDV) method. AFM studies realized under diffusion conditions proved that the adsorbed protein layer mainly consisted of aggregates in the form of compact tetramers and hexamers of a size equal to 11-12 nm. These results were consistent with vimentin adsorption kinetics under flow conditions investigated by QCM. It was established that vimentin aggregates efficiently adsorbed on the negatively charged silica sensor at pH 3.5 and 7.4, forming compact layers with the coverage reaching 3.5 mg m-2. Additionally, the formation of the vimentin corona at polymer particles was examined using the LDV method and interpreted in terms of the electrokinetic model. This allowed us to determine the zeta potential of the corona as a function of pH and the electrokinetic charge of aggregates, which was equal to -0.7 e nm-2 at pH 7.4 in a 10 mM NaCl solution. The anomalous adsorption of aggregates exhibiting an average negative charge on the negatively charged substrates was interpreted as a result of a heterogeneous charge distribution. These investigations confirmed that it is feasible to deposit stable vimentin layers both at planar substrates and at carrier particles with well-controlled coverage and zeta potential. They can be used for investigations of vimentin interactions with various ligands including receptors of the innate immune system, immunoglobulins, bacterial virulence factors, and spike proteins of viruses.
Collapse
Affiliation(s)
- Monika Wasilewska
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow, Poland
| | - Paulina Żeliszewska
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow, Poland
| | - Katarzyna Pogoda
- Institute
of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Piotr Deptuła
- Department
of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Robert Bucki
- Department
of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, PL-15222 Białystok, Poland
| | - Zbigniew Adamczyk
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow, Poland
| |
Collapse
|
11
|
Ceschi S, Berselli M, Cozzaglio M, Giantin M, Toppo S, Spolaore B, Sissi C. Vimentin binds to G-quadruplex repeats found at telomeres and gene promoters. Nucleic Acids Res 2022; 50:1370-1381. [PMID: 35100428 PMCID: PMC8860586 DOI: 10.1093/nar/gkab1274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Abstract
G-quadruplex (G4) structures that can form at guanine-rich genomic sites, including telomeres and gene promoters, are actively involved in genome maintenance, replication, and transcription, through finely tuned interactions with protein networks. In the present study, we identified the intermediate filament protein Vimentin as a binder with nanomolar affinity for those G-rich sequences that give rise to at least two adjacent G4 units, named G4 repeats. This interaction is supported by the N-terminal domains of soluble Vimentin tetramers. The selectivity of Vimentin for G4 repeats versus individual G4s provides an unprecedented result. Based on GO enrichment analysis performed on genes having putative G4 repeats within their core promoters, we suggest that Vimentin recruitment at these sites may contribute to the regulation of gene expression during cell development and migration, possibly by reshaping the local higher-order genome topology, as already reported for lamin B.
Collapse
Affiliation(s)
- Silvia Ceschi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Michele Berselli
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Marta Cozzaglio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro 35020, Italy
| | - Stefano Toppo
- CRIBI Biotechnology Center (Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative), University of Padova, Padova 35131, Italy
- Department of Molecular Medicine, University of Padova, Padova 35131, Italy
| | - Barbara Spolaore
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
- CRIBI Biotechnology Center (Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative), University of Padova, Padova 35131, Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
- CRIBI Biotechnology Center (Centro di Ricerca Interdipartimentale per le Biotecnologie Innovative), University of Padova, Padova 35131, Italy
| |
Collapse
|
12
|
Pechstein J, Schulze-Luehrmann J, Bisle S, Cantet F, Beare PA, Ölke M, Bonazzi M, Berens C, Lührmann A. The Coxiella burnetii T4SS Effector AnkF Is Important for Intracellular Replication. Front Cell Infect Microbiol 2020; 10:559915. [PMID: 33282747 PMCID: PMC7691251 DOI: 10.3389/fcimb.2020.559915] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular pathogen and the causative agent of the zoonotic disease Q fever. Following uptake by alveolar macrophages, the pathogen replicates in an acidic phagolysosomal vacuole, the C. burnetii-containing vacuole (CCV). Effector proteins translocated into the host cell by the type IV secretion system (T4SS) are important for the establishment of the CCV. Here we focus on the effector protein AnkF and its role in establishing the CCV. The C. burnetii AnkF knock out mutant invades host cells as efficiently as wild-type C. burnetii, but this mutant is hampered in its ability to replicate intracellularly, indicating that AnkF might be involved in the development of a replicative CCV. To unravel the underlying reason(s), we searched for AnkF interactors in host cells and identified vimentin through a yeast two-hybrid approach. While AnkF does not alter vimentin expression at the mRNA or protein levels, the presence of AnkF results in structural reorganization and vesicular co-localization with recombinant vimentin. Ectopically expressed AnkF partially accumulates around the established CCV and endogenous vimentin is recruited to the CCV in a time-dependent manner, suggesting that AnkF might attract vimentin to the CCV. However, knocking-down endogenous vimentin does not affect intracellular replication of C. burnetii. Other cytoskeletal components are recruited to the CCV and might compensate for the lack of vimentin. Taken together, AnkF is essential for the establishment of the replicative CCV, however, its mode of action is still elusive.
Collapse
Affiliation(s)
- Julian Pechstein
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Bisle
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franck Cantet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Martha Ölke
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
13
|
Bott CJ, Winckler B. Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton (Hoboken) 2020; 77:110-128. [PMID: 31970897 DOI: 10.1002/cm.21597] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Neuronal development relies on a highly choreographed progression of dynamic cellular processes by which newborn neurons migrate, extend axons and dendrites, innervate their targets, and make functional synapses. Many of these dynamic processes require coordinated changes in morphology, powered by the cell's cytoskeleton. Intermediate filaments (IFs) are the third major cytoskeletal elements in vertebrate cells, but are rarely considered when it comes to understanding axon and dendrite growth, pathfinding and synapse formation. In this review, we first introduce the many new and exciting concepts of IF function, discovered mostly in non-neuronal cells. These roles include dynamic rearrangements, crosstalk with microtubules and actin filaments, mechano-sensing and -transduction, and regulation of signaling cascades. We then discuss the understudied roles of neuronally expressed IFs, with a particular focus on IFs expressed during development, such as nestin, vimentin and α-internexin. Lastly, we illustrate how signaling modulation by the unconventional IF nestin shapes neuronal morphogenesis in unexpected and novel ways. Even though the first IF knockout mice were made over 20 years ago, the study of the cell biological functions of IFs in the brain still has much room for exciting new discoveries.
Collapse
Affiliation(s)
- Christopher J Bott
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
14
|
Klymkowsky MW. Filaments and phenotypes: cellular roles and orphan effects associated with mutations in cytoplasmic intermediate filament proteins. F1000Res 2019; 8. [PMID: 31602295 PMCID: PMC6774051 DOI: 10.12688/f1000research.19950.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic intermediate filaments (IFs) surround the nucleus and are often anchored at membrane sites to form effectively transcellular networks. Mutations in IF proteins (IFps) have revealed mechanical roles in epidermis, muscle, liver, and neurons. At the same time, there have been phenotypic surprises, illustrated by the ability to generate viable and fertile mice null for a number of IFp-encoding genes, including vimentin. Yet in humans, the vimentin ( VIM) gene displays a high probability of intolerance to loss-of-function mutations, indicating an essential role. A number of subtle and not so subtle IF-associated phenotypes have been identified, often linked to mechanical or metabolic stresses, some of which have been found to be ameliorated by the over-expression of molecular chaperones, suggesting that such phenotypes arise from what might be termed "orphan" effects as opposed to the absence of the IF network per se, an idea originally suggested by Toivola et al. and Pekny and Lane.
Collapse
Affiliation(s)
- Michael W Klymkowsky
- Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
15
|
The cell-cell junctions of mammalian testes: II. The lamellar smooth muscle monolayer cells of the peritubular wall are laterally connected by vertical adherens junctions-a novel architectonic cell-cell junction system. Cell Tissue Res 2018; 375:451-482. [PMID: 30591979 DOI: 10.1007/s00441-018-2968-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/20/2018] [Indexed: 12/19/2022]
Abstract
The testes of sexually mature males of six mammalian species (men, bulls, boars, rats, mice, guinea pigs) have been studied using biochemical as well as light and electron microscopical techniques, in particular immunolocalizations. In these tissues, the peritubular walls represent lamellar encasement structures wrapped around the seminiferous tubules as a bandage system of extracellular matrix layers, alternating with monolayers of very flat polyhedral "lamellar smooth muscle cells" (LSMCs), the number of which varies in different species from 1 to 5 or 6. These LSMCs are complete SMCs containing smooth muscle α-actin (SMA), myosin light and heavy chains, α-actinin, tropomyosin, smoothelin, intermediate-sized filament proteins desmin and/or vimentin, filamin, talin, dystrophin, caldesmon, calponin, and protein SM22α, often also cytokeratins 8 and 18. In the monolayers, the LSMCs are connected by adherens junctions (AJs) based on cadherin-11, in some species also with P-cadherin and/or E-cadherin, which are anchored in cytoplasmic plaques containing β-catenin and other armadillo proteins, in some species also striatin family proteins, protein myozap and/or LUMA. The LSMC cytoplasm is rich in myofilament bundles, which in many regions are packed in paracrystalline arrays, as well as in "dense bodies," "focal adhesions," and caveolae. In addition to some AJ-like end-on-end contacts, the LSMCs are laterally connected by numerous vertical AJ-like junctions located in variously sized and variously shaped, overlapping (alter super alterum) lamelliform cell protrusions. Consequently, the LSMCs of the peritubular wall monolayers are SMCs sensu stricto which are laterally connected by a novel architectonic system of arrays of vertical AJs located in overlapping cell protrusions.
Collapse
|
16
|
Zielinski A, Linnartz C, Pleschka C, Dreissen G, Springer R, Merkel R, Hoffmann B. Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application. Cytoskeleton (Hoboken) 2018; 75:385-394. [DOI: 10.1002/cm.21470] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/18/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Alexander Zielinski
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Christina Linnartz
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Catharina Pleschka
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Georg Dreissen
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Ronald Springer
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| | - Bernd Hoffmann
- Forschungszentrum Jülich, Institute of Complex Systems, ICS-7: Biomechanics; Jülich Germany
| |
Collapse
|
17
|
Danielsson F, Peterson MK, Caldeira Araújo H, Lautenschläger F, Gad AKB. Vimentin Diversity in Health and Disease. Cells 2018; 7:E147. [PMID: 30248895 PMCID: PMC6210396 DOI: 10.3390/cells7100147] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022] Open
Abstract
Vimentin is a protein that has been linked to a large variety of pathophysiological conditions, including cataracts, Crohn's disease, rheumatoid arthritis, HIV and cancer. Vimentin has also been shown to regulate a wide spectrum of basic cellular functions. In cells, vimentin assembles into a network of filaments that spans the cytoplasm. It can also be found in smaller, non-filamentous forms that can localise both within cells and within the extracellular microenvironment. The vimentin structure can be altered by subunit exchange, cleavage into different sizes, re-annealing, post-translational modifications and interacting proteins. Together with the observation that different domains of vimentin might have evolved under different selection pressures that defined distinct biological functions for different parts of the protein, the many diverse variants of vimentin might be the cause of its functional diversity. A number of review articles have focussed on the biology and medical aspects of intermediate filament proteins without particular commitment to vimentin, and other reviews have focussed on intermediate filaments in an in vitro context. In contrast, the present review focusses almost exclusively on vimentin, and covers both ex vivo and in vivo data from tissue culture and from living organisms, including a summary of the many phenotypes of vimentin knockout animals. Our aim is to provide a comprehensive overview of the current understanding of the many diverse aspects of vimentin, from biochemical, mechanical, cellular, systems biology and medical perspectives.
Collapse
Affiliation(s)
- Frida Danielsson
- Science for Life Laboratory, Royal Institute of Technology, 17165 Stockholm, Sweden.
| | | | | | - Franziska Lautenschläger
- Campus D2 2, Leibniz-Institut für Neue Materialien gGmbH (INM) and Experimental Physics, NT Faculty, E 2 6, Saarland University, 66123 Saarbrücken, Germany.
| | - Annica Karin Britt Gad
- Centro de Química da Madeira, Universidade da Madeira, 9020105 Funchal, Portugal.
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237 Uppsala, Sweden.
| |
Collapse
|
18
|
Mücke N, Kämmerer L, Winheim S, Kirmse R, Krieger J, Mildenberger M, Baßler J, Hurt E, Goldmann WH, Aebi U, Toth K, Langowski J, Herrmann H. Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophys J 2018; 114:2408-2418. [PMID: 29754715 DOI: 10.1016/j.bpj.2018.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Intermediate filaments (IFs) are principal components of the cytoskeleton, a dynamic integrated system of structural proteins that provides the functional architecture of metazoan cells. They are major contributors to the elasticity of cells and tissues due to their high mechanical stability and intrinsic flexibility. The basic building block for the assembly of IFs is a rod-like, 60-nm-long tetrameric complex made from two antiparallel, half-staggered coiled coils. In low ionic strength, tetramers form stable complexes that rapidly assemble into filaments upon raising the ionic strength. The first assembly products, "frozen" by instantaneous chemical fixation and viewed by electron microscopy, are 60-nm-long "unit-length" filaments (ULFs) that apparently form by lateral in-register association of tetramers. ULFs are the active elements of IF growth, undergoing longitudinal end-to-end annealing with one another and with growing filaments. Originally, we have employed quantitative time-lapse atomic force and electron microscopy to analyze the kinetics of vimentin-filament assembly starting from a few seconds to several hours. To obtain detailed quantitative insight into the productive reactions that drive ULF formation, we now introduce a "stopped-flow" approach in combination with static light-scattering measurements. Thereby, we determine the basic rate constants for lateral assembly of tetramers to ULFs. Processing of the recorded data by a global fitting procedure enables us to describe the hierarchical steps of IF formation. Specifically, we propose that tetramers are consumed within milliseconds to yield octamers that are obligatory intermediates toward ULF formation. Although the interaction of tetramers is diffusion controlled, it is strongly driven by their geometry to mediate effective subunit targeting. Importantly, our model conclusively reflects the previously described occurrence of polymorphic ULF and mature filaments in terms of their number of tetramers per cross section.
Collapse
Affiliation(s)
- Norbert Mücke
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Lara Kämmerer
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Winheim
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Robert Kirmse
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jan Krieger
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Maria Mildenberger
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jochen Baßler
- Biochemistry Center of Heidelberg University, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, Heidelberg, Germany
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics group, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Katalin Toth
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany; Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
19
|
Makise M, Nakamura H, Kuniyasu A. The role of vimentin in the tumor marker Nup88-dependent multinucleated phenotype. BMC Cancer 2018; 18:519. [PMID: 29724197 PMCID: PMC5934895 DOI: 10.1186/s12885-018-4454-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background Nucleoporin Nup88, a component of nuclear pore complexes, is known to be overexpressed in several types of tumor tissue. The overexpression of Nup88 has been reported to promote the early step of tumorigenesis by inducing multinuclei in both HeLa cells and a mouse model. However, the molecular basis of how Nup88 leads to a multinucleated phenotype remains unclear because of a lack of information concerning its binding partners. In this study, we characterize a novel interaction between Nup88 and vimentin. We also examine the involvement of vimentin in the Nup88-dependent multinucleated phenotype. Methods Cells overexpressing tagged versions of Nup88, vimentin and their truncations were used in this study. Coprecipitation and GST-pulldown assays were carried out to analyze protein-protein interactions. Vimentin knockdown by siRNA was performed to examine the functional role of the Nup88-vimentin interaction in cells. The phosphorylation status of vimentin was analyzed by immunoblotting using an antibody specific for its phosphorylation site. Results Vimentin was identified as a Nup88 interacting partner, although it did not bind to other nucleoporins, such as Nup50, Nup214, and Nup358, in HeLa cell lysates. The N-terminal 541 amino acid residues of Nup88 was found to be responsible for its interaction with vimentin. Recombinant GST-tagged Nup88 bound to recombinant vimentin in a GST-pulldown assay. Although overexpression of Nup88 in HeLa cells was observed mainly at the nuclear rim and in the cytoplasm, colocalization with vimentin was only partially detected at or around the nuclear rim. Disruption of the Nup88-vimentin interaction by vimentin specific siRNA transfection suppressed the Nup88-dependent multinucleated phenotype. An excess amount of Nup88 in cell lysates inhibited the dephosphorylation of a serine residue (Ser83) within the vimentin N-terminal region even in the absence and presence of an exogenous phosphatase. The N-terminal 96 amino acid residues of vimentin interacted with both full-length and the N-terminal 541 residues of Nup88. Conclusions Nup88 can affect the phosphorylation status of vimentin, which may contribute to the Nup88-dependent multinucleated phenotype through changing the organization of vimentin.
Collapse
Affiliation(s)
- Masaki Makise
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Akihiko Kuniyasu
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| |
Collapse
|
20
|
Walker JL, Bleaken BM, Romisher AR, Alnwibit AA, Menko AS. In wound repair vimentin mediates the transition of mesenchymal leader cells to a myofibroblast phenotype. Mol Biol Cell 2018; 29:1555-1570. [PMID: 29718762 PMCID: PMC6080657 DOI: 10.1091/mbc.e17-06-0364] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Following injury, mesenchymal repair cells are activated to function as leader cells that modulate wound healing. These cells have the potential to differentiate to myofibroblasts, resulting in fibrosis and scarring. The signals underlying these differing pathways are complex and incompletely understood. The ex vivo mock cataract surgery cultures are an attractive model with which to address this question. With this model we study, concurrently, the mechanisms that control mesenchymal leader cell function in injury repair within their native microenvironment and the signals that induce this same cell population to acquire a myofibroblast phenotype when these cells encounter the environment of the adjacent tissue culture platform. Here we show that on injury, the cytoskeletal protein vimentin is released into the extracellular space, binds to the cell surface of the mesenchymal leader cells located at the wound edge in the native matrix environment, and supports wound closure. In profibrotic environments, the extracellular vimentin pool also links specifically to the mesenchymal leader cells and has an essential role in signaling their fate change to a myofibroblast. These findings suggest a novel role for extracellular, cell-surface–associated vimentin in mediating repair-cell function in wound repair and in transitioning these cells to a myofibroblast phenotype.
Collapse
Affiliation(s)
- J L Walker
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - B M Bleaken
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A R Romisher
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A A Alnwibit
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A S Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
21
|
Trogden KP, Battaglia RA, Kabiraj P, Madden VJ, Herrmann H, Snider NT. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells. FASEB J 2018; 32:2841-2854. [PMID: 29401610 DOI: 10.1096/fj.201700663r] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vimentin is a cytoskeletal intermediate filament protein that is expressed in mesenchymal cells and cancer cells during the epithelial-mesenchymal transition. The goal of this study was to identify vimentin-targeting small molecules by using the Tocriscreen library of 1120 biochemically active compounds. We monitored vimentin filament reorganization and bundling in adrenal carcinoma SW13 vimentin-positive (SW13-vim+) cells via indirect immunofluorescence. The screen identified 18 pharmacologically diverse hits that included 2 statins-simvastatin and mevastatin. Simvastatin induced vimentin reorganization within 15-30 min and significant perinuclear bundling within 60 min (IC50 = 6.7 nM). Early filament reorganization coincided with increased vimentin solubility. Mevastatin produced similar effects at >1 µM, whereas the structurally related pravastatin and lovastatin did not affect vimentin. In vitro vimentin filament assembly assays revealed a direct targeting mechanism, as determined biochemically and by electron microscopy. In SW13-vim+ cells, simvastatin, but not pravastatin, reduced total cell numbers (IC50 = 48.1 nM) and promoted apoptosis after 24 h. In contrast, SW13-vim- cell viability was unaffected by simvastatin, unless vimentin was ectopically expressed. Simvastatin similarly targeted vimentin filaments and induced cell death in MDA-MB-231 (vim+), but lacked effect in MCF7 (vim-) breast cancer cells. In conclusion, this study identified vimentin as a direct molecular target that mediates simvastatin-induced cell death in 2 different cancer cell lines.-Trogden, K. P., Battaglia, R. A., Kabiraj, P., Madden, V. J., Herrmann, H., Snider, N. T. An image-based small-molecule screen identifies vimentin as a pharmacologically relevant target of simvastatin in cancer cells.
Collapse
Affiliation(s)
- Kathryn P Trogden
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Parijat Kabiraj
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Victoria J Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.,Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Sanghvi-Shah R, Weber GF. Intermediate Filaments at the Junction of Mechanotransduction, Migration, and Development. Front Cell Dev Biol 2017; 5:81. [PMID: 28959689 PMCID: PMC5603733 DOI: 10.3389/fcell.2017.00081] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/30/2017] [Indexed: 01/04/2023] Open
Abstract
Mechanically induced signal transduction has an essential role in development. Cells actively transduce and respond to mechanical signals and their internal architecture must manage the associated forces while also being dynamically responsive. With unique assembly-disassembly dynamics and physical properties, cytoplasmic intermediate filaments play an important role in regulating cell shape and mechanical integrity. While this function has been recognized and appreciated for more than 30 years, continually emerging data also demonstrate important roles of intermediate filaments in cell signal transduction. In this review, with a particular focus on keratins and vimentin, the relationship between the physical state of intermediate filaments and their role in mechanotransduction signaling is illustrated through a survey of current literature. Association with adhesion receptors such as cadherins and integrins provides a critical interface through which intermediate filaments are exposed to forces from a cell's environment. As a consequence, these cytoskeletal networks are posttranslationally modified, remodeled and reorganized with direct impacts on local signal transduction events and cell migratory behaviors important to development. We propose that intermediate filaments provide an opportune platform for cells to both cope with mechanical forces and modulate signal transduction.
Collapse
Affiliation(s)
- Rucha Sanghvi-Shah
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| | - Gregory F Weber
- Department of Biological Sciences, Rutgers University-NewarkNewark, NJ, United States
| |
Collapse
|
23
|
Arko-Boham B, Lomotey JT, Tetteh EN, Tagoe EA, Aryee NA, Owusu EA, Okai I, Blay RM, Clegg-Lamptey JN. Higher serum concentrations of vimentin and DAKP1 are associated with aggressive breast tumour phenotypes in Ghanaian women. Biomark Res 2017; 5:21. [PMID: 28616237 PMCID: PMC5466752 DOI: 10.1186/s40364-017-0100-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breast cancer, the most commonly diagnosed cancer among women and leading cause of cancer-related deaths worldwide, exhibits aggressive behavior in indigenous African women evidenced by high histologic grade tumours with low hormone receptor positivity. Aggressive breast cancers grow quickly, easily metastasize and recur and often have unfavourable outcomes. The current study investigated candidate genes that may regulate tumour aggression in Ghanaian women. We hypothesize that increased expression and function of certain genes other than the widely-held view attributing breast cancer aggression in African populations to their younger population age may be responsible for the aggressive nature of tumours. METHODS Employing ELISA, we assayed for vimentin and death-associated protein kinase 1 (DAPK1) from thawed archived (stored at -80 °C) serum samples obtained from 40 clinically confirmed Ghanaian breast cancer patients and 40 apparently healthy controls. Patients' clinical records and tumour parameters matching the samples were retrieved from the database of the hospital. ANOVA was used to compare means of serum protein concentration among groups while Chi-square analysis was used for the categorical data sets with p-value ≤0.05 considered significant. Multiple logistic regression analysis was conducted to determine the association between protein concentration and tumour parameters. RESULTS Of the 80 samples, 27 (33.8%) and 53 (66.2%) were from young (<35 years) and old (≥35 years), respectively. Vimentin and DAPK1 concentration were higher in patients than controls with higher levels in "young" age group than "old" age group. Vimentin concentration was highest in grade 3 tumours followed by grade 2 and 1 but that for DAPK1 was not significant. For vimentin, tumour area strongly correlated with tumour grade (r = 0.696, p < 0.05) but weakly correlated with tumour stage (r = 0.420, p < 0.05). Patient's age correlated with DAPK1 concentration (r = 0.393, p < 0.05). DAPK1 serum levels weakly correlated with cancer duration (r = 0.098, p = 0.27) and tumour size (r = 0.40, p < 0.05). CONCLUSION Serum concentration of Vimentin and DAPK1 are elevated in Ghanaian breast cancer patients. This may be partly responsible for aggressive nature of the disease among the population. Vimentin and DAPK1 should be explored further as potential breast cancer biomarkers in Africans.
Collapse
Affiliation(s)
- Benjamin Arko-Boham
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Justice Tanihu Lomotey
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Emmanuel Nomo Tetteh
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Nii Ayite Aryee
- Department of Medical Biochemistry, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ewurama Ampadu Owusu
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
- Centre of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Isaac Okai
- Department of Anatomy, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Richard Michael Blay
- Department of Anatomy, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Joe-Nat Clegg-Lamptey
- Department of Surgery, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
- Department of Surgery, Korle-Bu Teaching Hospital, Accra, Ghana
| |
Collapse
|
24
|
Leube RE, Moch M, Windoffer R. Intracellular Motility of Intermediate Filaments. Cold Spring Harb Perspect Biol 2017; 9:9/6/a021980. [PMID: 28572456 DOI: 10.1101/cshperspect.a021980] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SUMMARYThe establishment and continuous cell type-specific adaptation of cytoplasmic intermediate filament (IF) networks are linked to various types of IF motility. Motor protein-driven active transport, linkage to other cellular structures, diffusion of small soluble subunits, and intrinsic network elasticity all contribute to the motile behavior of IFs. These processes are subject to regulation by multiple signaling pathways. IF motility is thereby connected to and involved in many basic cellular processes guarding the maintenance of cell and tissue integrity. Disturbances of IF motility are linked to diseases that are characterized by cytoplasmic aggregates containing IF proteins together with other cellular components.
Collapse
Affiliation(s)
- Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Marcin Moch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
25
|
Abstract
For years intermediate filaments (IF), belonging to the third class of filamentous cytoskeletal proteins alongside microtubules and actin filaments, were thought to be exclusive to metazoan cells. Structurally these eukaryote IFs are very well defined, consisting of globular head and tail domains, which flank the central rod-domain. This central domain is dominated by an α-helical secondary structure predisposed to form the characteristic coiled-coil, parallel homo-dimer. These elementary dimers can further associate, both laterally and longitudinally, generating a variety of filament-networks built from filaments in the range of 10 nm in diameter. The general role of these filaments with their characteristic mechano-elastic properties both in the cytoplasm and in the nucleus of eukaryote cells is to provide mechanical strength and a scaffold supporting diverse shapes and cellular functions.Since 2003, after the first bacterial IF-like protein, crescentin was identified, it has been evident that bacteria also employ filamentous networks, other than those built from bacterial tubulin or actin homologues, in order to support their cell shape, growth and, in some cases, division. Intriguingly, compared to their eukaryote counterparts, the group of bacterial IF-like proteins shows much wider structural diversity. The sizes of both the head and tail domains are markedly reduced and there is great variation in the length of the central rod-domain. Furthermore, bacterial rod-domains often lack the sub-domain organisation of eukaryote IFs that is the defining feature of the IF-family. However, the fascinating display of filamentous assemblies, including rope, striated cables and hexagonal laces together with the conditions required for their formation both in vitro and in vivo strongly resemble that of eukaryote IFs suggesting that these bacterial proteins are deservedly classified as part of the IF-family and that the current definition should be relaxed slightly to allow their inclusion. The lack of extensive head and tail domains may well make the bacterial proteins more amenable for structural characterisation, which will be essential for establishing the mechanism for their association into filaments. What is more, the well-developed tools for bacterial manipulations provide an excellent opportunity of studying the bacterial systems with the prospect of making significant progress in our understanding of the general underlying principles of intermediate filament assemblies.
Collapse
Affiliation(s)
- Gabriella H Kelemen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
26
|
Moeton M, Stassen OMJA, Sluijs JA, van der Meer VWN, Kluivers LJ, van Hoorn H, Schmidt T, Reits EAJ, van Strien ME, Hol EM. GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions. Cell Mol Life Sci 2016; 73:4101-20. [PMID: 27141937 PMCID: PMC5043008 DOI: 10.1007/s00018-016-2239-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 04/12/2016] [Accepted: 04/21/2016] [Indexed: 11/01/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is the characteristic intermediate filament (IF) protein in astrocytes. Expression of its main isoforms, GFAPα and GFAPδ, varies in astrocytes and astrocytoma implying a potential regulatory role in astrocyte physiology and pathology. An IF-network is a dynamic structure and has been functionally linked to cell motility, proliferation, and morphology. There is a constant exchange of IF-proteins with the network. To study differences in the dynamic properties of GFAPα and GFAPδ, we performed fluorescence recovery after photobleaching experiments on astrocytoma cells with fluorescently tagged GFAPs. Here, we show for the first time that the exchange of GFP-GFAPδ was significantly slower than the exchange of GFP-GFAPα with the IF-network. Furthermore, a collapsed IF-network, induced by GFAPδ expression, led to a further decrease in fluorescence recovery of both GFP-GFAPα and GFP-GFAPδ. This altered IF-network also changed cell morphology and the focal adhesion size, but did not alter cell migration or proliferation. Our study provides further insight into the modulation of the dynamic properties and functional consequences of the IF-network composition.
Collapse
Affiliation(s)
- Martina Moeton
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Oscar M J A Stassen
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Soft Tissue Biomechanics & Engineering, Department of biomedical engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Vincent W N van der Meer
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Liselot J Kluivers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Hedde van Hoorn
- Physics of Life Processes, Leiden Institute of Physics, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden, The Netherlands
| | - Eric A J Reits
- Cell Biology and Histology, AMC Medical Center, Amsterdam, The Netherlands
| | - Miriam E van Strien
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Elly M Hol
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Truchan HK, Cockburn CL, May LJ, VieBrock L, Carlyon JA. Anaplasma phagocytophilum-Occupied Vacuole Interactions with the Host Cell Cytoskeleton. Vet Sci 2016; 3:vetsci3030025. [PMID: 29056733 PMCID: PMC5606578 DOI: 10.3390/vetsci3030025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 01/09/2023] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen of humans and animals. The A. phagocytophium-occupied vacuole (ApV) is a critical host-pathogen interface. Here, we report that the intermediate filaments, keratin and vimentin, assemble on the ApV early and remain associated with the ApV throughout infection. Microtubules localize to the ApV to a lesser extent. Vimentin, keratin-8, and keratin-18 but not tubulin expression is upregulated in A. phagocytophilum infected cells. SUMO-2/3 but not SUMO-1 colocalizes with vimentin filaments that surround ApVs. PolySUMOylation of vimentin by SUMO-2/3 but not SUMO-1 decreases vimentin solubility. Consistent with this, more vimentin exists in an insoluble state in A. phagocytophilum infected cells than in uninfected cells. Knocking down the SUMO-conjugating enzyme, Ubc9, abrogates vimentin assembly at the ApV but has no effect on the bacterial load. Bacterial protein synthesis is dispensable for maintaining vimentin and SUMO-2/3 at the ApV. Withaferin A, which inhibits soluble vimentin, reduces vimentin recruitment to the ApV, optimal ApV formation, and the bacterial load when administered prior to infection but is ineffective once vimentin has assembled on the ApV. Thus, A. phagocytophilum modulates cytoskeletal component expression and co-opts polySUMOylated vimentin to aid construction of its vacuolar niche and promote optimal survival.
Collapse
Affiliation(s)
- Hilary K Truchan
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Chelsea L Cockburn
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Levi J May
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Lauren VieBrock
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA.
| |
Collapse
|
28
|
In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study. PLoS One 2016; 11:e0157451. [PMID: 27304995 PMCID: PMC4909217 DOI: 10.1371/journal.pone.0157451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Intermediate filament (IF) elongation proceeds via full-width "mini-filaments", referred to as "unit-length" filaments (ULFs), which instantaneously form by lateral association of extended coiled-coil complexes after assembly is initiated. In a comparatively much slower process, ULFs longitudinally interact end-to-end with other ULFs to form short filaments, which further anneal with ULFs and with each other to increasingly longer filaments. This assembly concept was derived from time-lapse electron and atomic force microscopy data. We previously have quantitatively verified this concept through the generation of time-dependent filament length-profiles and an analytical model that describes assembly kinetics well for about the first ten minutes. In this time frame, filaments are shorter than one persistence length, i.e. ~1 μm, and thus filaments were treated as stiff rods associating via their ends. However, when filaments grow several μm in length over hours, their flexibility becomes a significant factor for the kinetics of the longitudinal annealing process. Incorporating now additional filament length distributions that we have recorded after extended assembly times by total internal reflection fluorescence microscopy (TIRFM), we developed a Monte Carlo simulation procedure that accurately describes the underlying assembly kinetics for large time scales.
Collapse
|
29
|
Robert A, Hookway C, Gelfand VI. Intermediate filament dynamics: What we can see now and why it matters. Bioessays 2016; 38:232-43. [PMID: 26763143 DOI: 10.1002/bies.201500142] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanical properties of vertebrate cells are largely defined by the system of intermediate filaments (IF). As part of a dense network, IF polymers are constantly rearranged and relocalized in the cell to fulfill their duty as cells change shape, migrate, or divide. With the development of new imaging technologies, such as photoconvertible proteins and super-resolution microscopy, a new appreciation for the complexity of IF dynamics has emerged. This review highlights new findings about the transport of IF, the remodeling of filaments by a process of severing and re-annealing, and the subunit exchange that occurs between filament precursors and a soluble pool of IF. We will also discuss the unique dynamic features of the keratin IF network. Finally, we will speculate about how the dynamic properties of IF are related to their functions.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
30
|
Snider NT, Omary MB. Assays for Posttranslational Modifications of Intermediate Filament Proteins. Methods Enzymol 2015; 568:113-38. [PMID: 26795469 DOI: 10.1016/bs.mie.2015.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intermediate filament (IF) proteins are known to be regulated by a number of posttranslational modifications (PTMs). Phosphorylation is the best-studied IF PTM, whereas ubiquitination, sumoylation, acetylation, glycosylation, ADP-ribosylation, farnesylation, and transamidation are less understood in functional terms but are known to regulate specific IFs under various contexts. The number and diversity of IF PTMs is certain to grow along with rapid advances in proteomic technologies. Therefore, the need for a greater understanding of the implications of PTMs to the structure, organization, and function of the IF cytoskeleton has become more apparent with the increased availability of data from global profiling studies of normal and diseased specimens. This chapter will provide information on established methods for the isolation and monitoring of IF PTMs along with the key reagents that are necessary to carry out these experiments.
Collapse
Affiliation(s)
- Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.
| | - M Bishr Omary
- Department of Molecular & Integrative Physiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
31
|
Bargagna-Mohan P, Lei L, Thompson A, Shaw C, Kasahara K, Inagaki M, Mohan R. Vimentin Phosphorylation Underlies Myofibroblast Sensitivity to Withaferin A In Vitro and during Corneal Fibrosis. PLoS One 2015; 10:e0133399. [PMID: 26186445 PMCID: PMC4506086 DOI: 10.1371/journal.pone.0133399] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 06/26/2015] [Indexed: 12/21/2022] Open
Abstract
Vimentin is a newly recognized target for corneal fibrosis. Using primary rabbit corneal fibroblasts and myofibroblasts we show that myofibroblasts, unlike fibroblasts, display impaired cell spreading and cell polarization, which is associated with increased levels of soluble serine-38 phosphorylated vimentin (pSer38Vim). This pSer38Vim isoform is inefficiently incorporated into growing vimentin intermediate filaments (IFs) of myofibroblasts during cell spreading, and as a result, myofibroblasts maintain higher soluble pSer38Vim levels compared to fibroblasts. Moreover, the soluble vimentin-targeting small molecule and fibrotic inhibitor withaferin A (WFA) causes a potent blockade of cell spreading selectively in myofibroblasts by targeting soluble pSer38Vim for hyperphosphorylation. WFA treatment does not induce vimentin hyperphosphorylation in fibroblasts. This hyperphosphorylated pSer38Vim species in WFA-treated myofibroblasts becomes complexed with adaptor protein filamin A (FlnA), and these complexes appear as short squiggles when displaced from focal adhesions. The extracellular-signal regulated kinase (ERK) is also phosphorylated (pERK) in response to WFA, but surprisingly, pERK does not enter the nucleus but remains bound to pSer38Vim in cytoplasmic complexes. Using a model of corneal alkali injury, we show that fibrotic corneas of wild type mice possess high levels of pERK, whereas injured corneas of vimentin-deficient (Vim KO) mice that heal with reduced fibrosis have highly reduced pERK expression. Finally, WFA treatment causes a decrease in pERK and pSer38Vim expression in healing corneas of wild type mice. Taken together, these findings identify a hereto-unappreciated role for pSer38Vim as an important determinant of myofibroblast sensitivity to WFA.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Ling Lei
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Alexis Thompson
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Camille Shaw
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Kousuke Kasahara
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Royce Mohan
- From the Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
32
|
Robert A, Rossow MJ, Hookway C, Adam SA, Gelfand VI. Vimentin filament precursors exchange subunits in an ATP-dependent manner. Proc Natl Acad Sci U S A 2015; 112:E3505-14. [PMID: 26109569 PMCID: PMC4500282 DOI: 10.1073/pnas.1505303112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intermediate filaments (IFs) are a component of the cytoskeleton capable of profound reorganization in response to specific physiological situations, such as differentiation, cell division, and motility. Various mechanisms were proposed to be responsible for this plasticity depending on the type of IF polymer and the biological context. For example, recent studies suggest that mature vimentin IFs (VIFs) undergo rearrangement by severing and reannealing, but direct subunit exchange within the filament plays little role in filament dynamics at steady state. Here, we studied the dynamics of subunit exchange in VIF precursors, called unit-length filaments (ULFs), formed by the lateral association of eight vimentin tetramers. To block vimentin assembly at the ULF stage, we used the Y117L vimentin mutant (vimentin(Y117L)). By tagging vimentin(Y117L) with a photoconvertible protein mEos3.2 and photoconverting ULFs in a limited area of the cytoplasm, we found that ULFs, unlike mature filaments, were highly dynamic. Subunit exchange among ULFs occurred within seconds and was limited by the diffusion of soluble subunits in the cytoplasm rather than by the association and dissociation of subunits from ULFs. Our data demonstrate that cells expressing vimentin(Y117L) contained a large pool of soluble vimentin tetramers that was in rapid equilibrium with ULFs. Furthermore, vimentin exchange in ULFs required ATP, and ATP depletion caused a dramatic reduction of the soluble tetramer pool. We believe that the dynamic exchange of subunits plays a role in the regulation of ULF assembly and the maintenance of a soluble vimentin pool during the reorganization of filament networks.
Collapse
Affiliation(s)
- Amélie Robert
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Molly J Rossow
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
33
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
34
|
Block J, Schroeder V, Pawelzyk P, Willenbacher N, Köster S. Physical properties of cytoplasmic intermediate filaments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3053-64. [PMID: 25975455 DOI: 10.1016/j.bbamcr.2015.05.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
Abstract
Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Johanna Block
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Viktor Schroeder
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Paul Pawelzyk
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sarah Köster
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
35
|
Luo T, Robinson DN. Kinetic Monte Carlo simulations of the assembly of filamentous biomacromolecules by dimer addition mechanism. RSC Adv 2015; 5:3922-3929. [PMID: 25574377 PMCID: PMC4283931 DOI: 10.1039/c4ra09189b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In cells, several important biomacromolecules form oligomers through a dimer addition mechanism. Rate equations based on mean field approximations are usually employed to describe the assembly process. However, such equations often require multiple assumptions that mask some detailed changes of the biomolecular configurations during aggregations. Here, we present a Kinetic Monte Carlo simulation scheme to account for the diffusion and rotation of dimers on two-dimensional hexagonal lattices while naturally including the stochastic features. We investigate the effects of the interaction energy between dimers, the diffusion coefficient and the concentration of dimers on the aggregation by dimer addition mechanism. Our simulations identified unusual double-S shape evolutions of aggregation kinetics, which are probably associated with the formation of metastable clusters.
Collapse
Affiliation(s)
- Tianzhi Luo
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Douglas N. Robinson
- Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
36
|
Nöding B, Herrmann H, Köster S. Direct observation of subunit exchange along mature vimentin intermediate filaments. Biophys J 2014; 107:2923-2931. [PMID: 25517157 PMCID: PMC4269786 DOI: 10.1016/j.bpj.2014.09.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 01/12/2023] Open
Abstract
Actin filaments, microtubules, and intermediate filaments (IFs) are central elements of the metazoan cytoskeleton. At the molecular level, the assembly mechanism for actin filaments and microtubules is fundamentally different from that of IFs. The former two types of filaments assemble from globular proteins. By contrast, IFs assemble from tetrameric complexes of extended, half-staggered, and antiparallel oriented coiled-coils. These tetramers laterally associate into unit-length filaments; subsequent longitudinal annealing of unit-length filaments yields mature IFs. In vitro, IFs form open structures without a fixed number of tetramers per cross-section along the filament. Therefore, a central question for the structural biology of IFs is whether individual subunits can dissociate from assembled filaments and rebind at other sites. Using the fluorescently labeled IF-protein vimentin for assembly, we directly observe and quantitatively determine subunit exchange events between filaments as well as with soluble vimentin pools. Thereby we demonstrate that the cross-sectional polymorphism of donor and acceptor filaments plays an important role. We propose that in segments of donor filaments with more than the standard 32 molecules per cross-section, subunits are not as tightly bound and are predisposed to be released from the filament.
Collapse
Affiliation(s)
- Bernd Nöding
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
37
|
Gruenbaum Y, Aebi U. Intermediate filaments: a dynamic network that controls cell mechanics. F1000PRIME REPORTS 2014; 6:54. [PMID: 25184044 PMCID: PMC4108948 DOI: 10.12703/p6-54] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In humans the superfamily of intermediate filament (IF) proteins is encoded by more than 70 different genes, which are expressed in a cell- and tissue-specific manner. IFs assemble into approximately 10 nm-wide filaments that account for the principal structural elements at the nuclear periphery, nucleoplasm, and cytoplasm. They are also required for organizing the microtubule and microfilament networks. In this review, we focus on the dynamics of IFs and how modifications regulate it. We also discuss the role of nuclear IF organization in determining nuclear mechanics as well as that of cytoplasmic IFs organization in maintaining cell stiffness, formation of lamellipodia, regulation of cell migration, and permitting cell adhesion.
Collapse
Affiliation(s)
- Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of JerusalemGivat Ram, Jerusalem 91904Israel
| | - Ueli Aebi
- Biozentrum, University of BaselKlingelbergerstrasse 70, CH-4056 BaselSwitzerland
| |
Collapse
|
38
|
Goto H, Inagaki M. New insights into roles of intermediate filament phosphorylation and progeria pathogenesis. IUBMB Life 2014; 66:195-200. [PMID: 24659572 DOI: 10.1002/iub.1260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/06/2014] [Indexed: 01/20/2023]
Abstract
Intermediate filaments (IFs) form one of the major cytoskeletal systems in the cytoplasm or beneath the nuclear membrane. Because of their insoluble nature, cellular IFs had been considered to be stable for a long time. The discovery that a purified protein kinase phosphorylated a purified IF protein and in turn induced the disassembly of IF structure in vitro led to the novel concept of dynamic IF regulation. Since then, a variety of protein kinases have been identified to phosphorylate IF proteins such as vimentin in a spatiotemporal regulated manner. A series of studies using cultured cells have demonstrated that preventing IF phosphorylation during mitosis inhibits cytokinesis by the retention of an IF bridge-like structure (IF-bridge) connecting the two daughter cells. Knock-in mice expressing phosphodeficient vimentin variants developed binucleation/aneuploidy in lens epithelial cells, which promoted microophthalmia and lens cataract. Therefore, mitotic phosphorylation of vimentin is of great importance in the completion of cytokinesis, the impairment of which promotes chromosomal instability and premature aging. © 2014 IUBMB Life, 66(3):195-200, 2014.
Collapse
Affiliation(s)
- Hidemasa Goto
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| | - Masaki Inagaki
- Division of Biochemistry, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-Ku, Nagoya, Japan.,Department of Cellular Oncology, Graduate School of Medicine, Nagoya University, Showa-Ku, Nagoya, Japan
| |
Collapse
|
39
|
Murray ME, Mendez MG, Janmey PA. Substrate stiffness regulates solubility of cellular vimentin. Mol Biol Cell 2014; 25:87-94. [PMID: 24173714 PMCID: PMC3873896 DOI: 10.1091/mbc.e13-06-0326] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/23/2013] [Accepted: 10/25/2013] [Indexed: 11/29/2022] Open
Abstract
The intermediate filament protein vimentin is involved in the regulation of cell behavior, morphology, and mechanical properties. Previous studies using cells cultured on glass or plastic substrates showed that vimentin is largely insoluble. Although substrate stiffness was shown to alter many aspects of cell behavior, changes in vimentin organization were not reported. Our results show for the first time that mesenchymal stem cells (hMSCs), endothelial cells, and fibroblasts cultured on different-stiffness substrates exhibit biphasic changes in vimentin detergent solubility, which increases from nearly 0 to 67% in hMSCs coincident with increases in cell spreading and membrane ruffling. When imaged, the detergent-soluble vimentin appears to consist of small fragments the length of one or several unit-length filaments. Vimentin detergent solubility decreases when these cells are subjected to serum starvation, allowed to form cell-cell contacts, after microtubule disruption, or inhibition of Rac1, Rho-activated kinase, or p21-activated kinase. Inhibiting myosin or actin assembly increases vimentin solubility on rigid substrates. These data suggest that in the mechanical environment in vivo, vimentin is more dynamic than previously reported and its assembly state is sensitive to stimuli that alter cellular tension and morphology.
Collapse
Affiliation(s)
- Maria E. Murray
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Melissa G. Mendez
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Paul A. Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
40
|
Buchmaier BS, Bibi A, Müller GA, Dihazi GH, Eltoweissy M, Kruegel J, Dihazi H. Renal cells express different forms of vimentin: the independent expression alteration of these forms is important in cell resistance to osmotic stress and apoptosis. PLoS One 2013; 8:e68301. [PMID: 23874579 PMCID: PMC3708942 DOI: 10.1371/journal.pone.0068301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/03/2013] [Indexed: 11/18/2022] Open
Abstract
Osmotic stress has been shown to regulate cytoskeletal protein expression. It is generally known that vimentin is rapidly degraded during apoptosis by multiple caspases, resulting in diverse vimentin fragments. Despite the existence of the known apoptotic vimentin fragments, we demonstrated in our study the existence of different forms of vimentin VIM I, II, III, and IV with different molecular weights in various renal cell lines. Using a proteomics approach followed by western blot analyses and immunofluorescence staining, we proved the apoptosis-independent existence and differential regulation of different vimentin forms under varying conditions of osmolarity in renal cells. Similar impacts of osmotic stress were also observed on the expression of other cytoskeleton intermediate filament proteins; e.g., cytokeratin. Interestingly, 2D western blot analysis revealed that the forms of vimentin are regulated independently of each other under glucose and NaCl osmotic stress. Renal cells, adapted to high NaCl osmotic stress, express a high level of VIM IV (the form with the highest molecular weight), besides the three other forms, and exhibit higher resistance to apoptotic induction with TNF-α or staurosporin compared to the control. In contrast, renal cells that are adapted to high glucose concentration and express only the lower-molecular-weight forms VIM I and II, were more susceptible to apoptosis. Our data proved the existence of different vimentin forms, which play an important role in cell resistance to osmotic stress and are involved in cell protection against apoptosis.
Collapse
Affiliation(s)
- Bettina S. Buchmaier
- Department of Nephrology and Rheumatology, Georg-August University, Göttingen, Germany
| | - Asima Bibi
- Department of Nephrology and Rheumatology, Georg-August University, Göttingen, Germany
| | - Gerhard A. Müller
- Department of Nephrology and Rheumatology, Georg-August University, Göttingen, Germany
| | - Gry H. Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, Göttingen, Germany
| | - Marwa Eltoweissy
- Department of Nephrology and Rheumatology, Georg-August University, Göttingen, Germany
| | - Jenny Kruegel
- Department of Nephrology and Rheumatology, Georg-August University, Göttingen, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, Göttingen, Germany
- * E-mail:
| |
Collapse
|
41
|
Bargagna-Mohan P, Deokule SP, Thompson K, Wizeman J, Srinivasan C, Vooturi S, Kompella UB, Mohan R. Withaferin A effectively targets soluble vimentin in the glaucoma filtration surgical model of fibrosis. PLoS One 2013; 8:e63881. [PMID: 23667686 PMCID: PMC3648549 DOI: 10.1371/journal.pone.0063881] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 04/09/2013] [Indexed: 01/23/2023] Open
Abstract
Withaferin A (WFA) is a natural product that binds to soluble forms of the type III intermediate filament (IF) vimentin. Currently, it is unknown under what pathophysiological contexts vimentin is druggable, as cytoskeltal vimentin-IFs are abundantly expressed. To investigate druggability of vimentin, we exploited rabbit Tenon's capsule fibroblast (RbTCF) cell cultures and the rabbit glaucoma filtration surgical (GFS) model of fibrosis. WFA potently caused G₀/G₁ cell cycle inhibition (IC₅₀ 25 nM) in RbTCFs, downregulating ubiquitin E3 ligase skp2 and inducing p27(Kip1) expression. Transforming growth factor (TGF)-ß-induced myofibroblast transformation caused development of cell spheroids with numerous elongated invadopodia, which WFA blocked potently by downregulating soluble vimentin and α-smooth muscle actin (SMA) expression. In the pilot proof-of-concept study using the GFS model, subconjunctival injections of a low WFA dose reduced skp2 expression in Tenon's capsule and increased p27(Kip1) expression without significant alteration to vimentin-IFs. This treatment maintains significant nanomolar WFA concentrations in anterior segment tissues that correspond to WFA's cell cycle targeting activity. A ten-fold higher WFA dose caused potent downregulation of soluble vimentin and skp2 expression, but as found in cell cultures, no further increase in p27(Kip1) expression was observed. Instead, this high WFA dose potently induced vimentin-IF disruption and downregulated α-SMA expression that mimicked WFA activity in TGF-ß-treated RbTCFs that blocked cell contractile activity at submicromolar concentrations. These findings illuminate that localized WFA injection to ocular tissues exerts pharmacological control over the skp2-p27(Kip1) pathway by targeting of soluble vimentin in a model of surgical fibrosis.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sunil P. Deokule
- Ophthalmology and Visual Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kyle Thompson
- Ophthalmology and Visual Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - John Wizeman
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Cidambi Srinivasan
- Statistics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sunil Vooturi
- Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Uday B. Kompella
- Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Royce Mohan
- Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| |
Collapse
|
42
|
Mahammad S, Murthy SNP, Didonna A, Grin B, Israeli E, Perrot R, Bomont P, Julien JP, Kuczmarski E, Opal P, Goldman RD. Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest 2013; 123:1964-75. [PMID: 23585478 DOI: 10.1172/jci66387] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/14/2013] [Indexed: 11/17/2022] Open
Abstract
Giant axonal neuropathy (GAN) is an early-onset neurological disorder caused by mutations in the GAN gene (encoding for gigaxonin), which is predicted to be an E3 ligase adaptor. In GAN, aggregates of intermediate filaments (IFs) represent the main pathological feature detected in neurons and other cell types, including patients' dermal fibroblasts. The molecular mechanism by which these mutations cause IFs to aggregate is unknown. Using fibroblasts from patients and normal individuals, as well as Gan-/- mice, we demonstrated that gigaxonin was responsible for the degradation of vimentin IFs. Gigaxonin was similarly involved in the degradation of peripherin and neurofilament IF proteins in neurons. Furthermore, proteasome inhibition by MG-132 reversed the clearance of IF proteins in cells overexpressing gigaxonin, demonstrating the involvement of the proteasomal degradation pathway. Together, these findings identify gigaxonin as a major factor in the degradation of cytoskeletal IFs and provide an explanation for IF aggregate accumulation, the subcellular hallmark of this devastating human disease.
Collapse
Affiliation(s)
- Saleemulla Mahammad
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Windoffer R, Beil M, Magin TM, Leube RE. Cytoskeleton in motion: the dynamics of keratin intermediate filaments in epithelia. ACTA ACUST UNITED AC 2012; 194:669-78. [PMID: 21893596 PMCID: PMC3171125 DOI: 10.1083/jcb.201008095] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelia are exposed to multiple forms of stress. Keratin intermediate filaments are abundant in epithelia and form cytoskeletal networks that contribute to cell type–specific functions, such as adhesion, migration, and metabolism. A perpetual keratin filament turnover cycle supports these functions. This multistep process keeps the cytoskeleton in motion, facilitating rapid and protein biosynthesis–independent network remodeling while maintaining an intact network. The current challenge is to unravel the molecular mechanisms underlying the regulation of the keratin cycle in relation to actin and microtubule networks and in the context of epithelial tissue function.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | |
Collapse
|
44
|
Bargagna-Mohan P, Paranthan RR, Hamza A, Zhan CG, Lee DM, Kim KB, Lau DL, Srinivasan C, Nakayama K, Nakayama KI, Herrmann H, Mohan R. Corneal antifibrotic switch identified in genetic and pharmacological deficiency of vimentin. J Biol Chem 2011; 287:989-1006. [PMID: 22117063 DOI: 10.1074/jbc.m111.297150] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The type III intermediate filaments (IFs) are essential cytoskeletal elements of mechanosignal transduction and serve critical roles in tissue repair. Mice genetically deficient for the IF protein vimentin (Vim(-/-)) have impaired wound healing from deficits in myofibroblast development. We report a surprising finding made in Vim(-/-) mice that corneas are protected from fibrosis and instead promote regenerative healing after traumatic alkali injury. This reparative phenotype in Vim(-/-) corneas is strikingly recapitulated by the pharmacological agent withaferin A (WFA), a small molecule that binds to vimentin and down-regulates its injury-induced expression. Attenuation of corneal fibrosis by WFA is mediated by down-regulation of ubiquitin-conjugating E3 ligase Skp2 and up-regulation of cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1). In cell culture models, WFA exerts G(2)/M cell cycle arrest in a p27(Kip1)- and Skp2-dependent manner. Finally, by developing a highly sensitive imaging method to measure corneal opacity, we identify a novel role for desmin overexpression in corneal haze. We demonstrate that desmin down-regulation by WFA via targeting the conserved WFA-ligand binding site shared among type III IFs promotes further improvement of corneal transparency without affecting cyclin-dependent kinase inhibitor levels in Vim(-/-) mice. This dissociates a direct role for desmin in corneal cell proliferation. Taken together, our findings illuminate a previously unappreciated pathogenic role for type III IF overexpression in corneal fibrotic conditions and also validate WFA as a powerful drug lead toward anti-fibrosis therapeutic development.
Collapse
Affiliation(s)
- Paola Bargagna-Mohan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Straub BK, Rickelt S, Zimbelmann R, Grund C, Kuhn C, Iken M, Ott M, Schirmacher P, Franke WW. E-N-cadherin heterodimers define novel adherens junctions connecting endoderm-derived cells. ACTA ACUST UNITED AC 2011; 195:873-87. [PMID: 22105347 PMCID: PMC3257573 DOI: 10.1083/jcb.201106023] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intercellular junctions play a pivotal role in tissue development and function and also in tumorigenesis. In epithelial cells, decrease or loss of E-cadherin, the hallmark molecule of adherens junctions (AJs), and increase of N-cadherin are widely thought to promote carcinoma progression and metastasis. In this paper, we show that this "cadherin switch" hypothesis does not hold for diverse endoderm-derived cells and cells of tumors derived from them. We show that the cadherins in a major portion of AJs in these cells can be chemically cross-linked in E-N heterodimers. We also show that cells possessing E-N heterodimer AJs can form semistable hemihomotypic AJs with purely N-cadherin-based AJs of mesenchymally derived cells, including stroma cells. We conclude that these heterodimers are the major AJ constituents of several endoderm-derived tissues and tumors and that the prevailing concept of antagonistic roles of these two cadherins in developmental and tumor biology has to be reconsidered.
Collapse
Affiliation(s)
- Beate K Straub
- Helmholtz Group for Cell Biology, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Goldman RD, Cleland MM, Murthy SNP, Mahammad S, Kuczmarski ER. Inroads into the structure and function of intermediate filament networks. J Struct Biol 2011; 177:14-23. [PMID: 22120848 DOI: 10.1016/j.jsb.2011.11.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 12/20/2022]
Abstract
Although intermediate filaments are one of three major cytoskeletal systems of vertebrate cells, they remain the least understood with respect to their structure and function. This is due in part to the fact that they are encoded by a large gene family which is developmentally regulated in a cell and tissue type specific fashion. This article is in honor of Ueli Aebi. It highlights the studies on IF that have been carried out by our laboratory for more than 40 years. Many of our advances in understanding IF are based on conversations with Ueli which have taken place during adventurous and sometimes dangerous hiking and biking trips throughout the world.
Collapse
Affiliation(s)
- Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
47
|
Challa AA, Stefanovic B. A novel role of vimentin filaments: binding and stabilization of collagen mRNAs. Mol Cell Biol 2011; 31:3773-89. [PMID: 21746880 PMCID: PMC3165730 DOI: 10.1128/mcb.05263-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/04/2011] [Indexed: 12/17/2022] Open
Abstract
The stem-loop in the 5' untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5'SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5'SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5'SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filaments through its La domain and colocalizes with the filaments in vivo. Knockdown of LARP6 by small interfering RNA (siRNA) or mutation of the 5'SL abrogates the interaction of collagen mRNAs with vimentin filaments. Vimentin knockout fibroblasts produce reduced amounts of type I collagen due to decreased stability of collagen α1(I) and α2(I) mRNAs. Disruption of vimentin filaments using a drug or by expression of dominant-negative desmin reduces type I collagen expression, primarily due to decreased stability of collagen mRNAs. RNA fluorescence in situ hybridization (FISH) experiments show that collagen α1(I) and α2(I) mRNAs are associated with vimentin filaments in vivo. Thus, vimentin filaments may play a role in the development of tissue fibrosis by stabilizing collagen mRNAs. This finding will serve as a rationale for targeting vimentin in the development of novel antifibrotic therapies.
Collapse
Affiliation(s)
- Azariyas A. Challa
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida 32306
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida 32306
| |
Collapse
|
48
|
The dual role of annexin II in targeting of brush border proteins and in intestinal cell polarity. Differentiation 2011; 81:243-52. [PMID: 21330046 DOI: 10.1016/j.diff.2011.01.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 01/20/2011] [Accepted: 01/22/2011] [Indexed: 01/23/2023]
Abstract
Functional intestinal epithelium relies on complete polarization of enterocytes marked by the formation of microvilli and the accurate trafficking of glycoproteins to relevant membrane domains. Numerous transport pathways warrant the unique structural identity and protein/lipid composition of the brush border membrane. Annexin II (Ca(2+)-dependent lipid-binding protein) is an important component of one of the apical protein transport machineries, which involves detergent-resistant membranes and the actin cytoskeleton. Here, we investigate in intestinal Caco-2 cells the contribution of annexin II to the sorting and transport of brush border hydrolases and role in intestinal cell polarity. Downregulation of annexin II in Caco-2-A4 cell line results in a severe reduction of the levels of the brush border membrane resident enzyme sucrase isomaltase (SI) as well as structural components such as ezrin. This reduction is accompanied by a redistribution of these proteins to intracellular compartments and a striking morphological transition of Caco-2 cells to rudimentary epithelial cells that are characterized by an almost flat apical membrane with sparse and short microvilli. Concomitant with this alteration is the redistribution of the intermediate filament protein keratin 19 to the intracellular membranes in Caco-2-A4 cells. Interestingly, keratin 19 interacts with annexin II in wild type Caco-2 cells and this interaction occurs exclusively in lipid rafts. Our findings suggest a role for annexin II and K19 in differentiation and polarization of intestinal cells.
Collapse
|
49
|
Kirmse R, Qin Z, Weinert CM, Hoenger A, Buehler MJ, Kreplak L. Plasticity of intermediate filament subunits. PLoS One 2010; 5:e12115. [PMID: 20814582 PMCID: PMC2930322 DOI: 10.1371/journal.pone.0012115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/18/2010] [Indexed: 11/19/2022] Open
Abstract
Intermediate filaments (IFs) assembled in vitro from recombinantly expressed proteins have a diameter of 8–12 nm and can reach several micrometers in length. IFs assemble from a soluble pool of subunits, tetramers in the case of vimentin. Upon salt addition, the subunits form first unit length filaments (ULFs) within seconds and then assembly proceeds further by end-to-end fusion of ULFs and short filaments. So far, IF subunits have mainly been observed by electron microscopy of glycerol sprayed and rotary metal shadowed specimens. Due to the shear forces during spraying the IF subunits appear generally as straight thin rods. In this study, we used atomic force microscopy (AFM), cryo-electron microscopy (cryo-EM) combined with molecular modeling to investigate the conformation of the subunits of vimentin, desmin and keratin K5/K14 IFs in various conditions. Due to their anisotropic shape the subunits are difficult to image at high resolution by cryo-EM. In order to enhance contrast we used a cryo-negative staining approach. The subunits were clearly identified as thin, slightly curved rods. However the staining agent also forced the subunits to aggregate into two-dimensional networks of dot-like structures. To test this conformational change further, we imaged dried unfixed subunits on mica by AFM revealing a mixture of extended and dot-like conformations. The use of divalent ions such as calcium and magnesium, as well as glutaraldehyde exposure favored compact conformations over elongated ones. These experimental results as well as coarse-grained molecular dynamics simulations of a vimentin tetramer highlight the plasticity of IF subunits.
Collapse
Affiliation(s)
- Robert Kirmse
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Zhao Qin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Carl M. Weinert
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrea Hoenger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
50
|
Kölsch A, Windoffer R, Würflinger T, Aach T, Leube RE. The keratin-filament cycle of assembly and disassembly. J Cell Sci 2010; 123:2266-72. [DOI: 10.1242/jcs.068080] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Continuous and regulated remodelling of the cytoskeleton is crucial for many basic cell functions. In contrast to actin filaments and microtubules, it is not understood how this is accomplished for the third major cytoskeletal filament system, which consists of intermediate-filament polypeptides. Using time-lapse fluorescence microscopy of living interphase cells, in combination with photobleaching, photoactivation and quantitative fluorescence measurements, we observed that epithelial keratin intermediate filaments constantly release non-filamentous subunits, which are reused in the cell periphery for filament assembly. This cycle is independent of protein biosynthesis. The different stages of the cycle occur in defined cellular subdomains: assembly takes place in the cell periphery and newly formed filaments are constantly transported toward the perinuclear region while disassembly occurs, giving rise to diffusible subunits for another round of peripheral assembly. Remaining juxtanuclear filaments stabilize and encage the nucleus. Our data suggest that the keratin-filament cycle of assembly and disassembly is a major mechanism of intermediate-filament network plasticity, allowing rapid adaptation to specific requirements, notably in migrating cells.
Collapse
Affiliation(s)
- Anne Kölsch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Würflinger
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Til Aach
- Institute of Imaging and Computer Vision, RWTH Aachen University, 52056 Aachen, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|